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ABSTRACT

Autoregressive language models rely on a Key-Value (KV) Cache, which avoids
re-computing past hidden states during generation, making it faster. As model sizes
and context lengths grow, the KV Cache becomes a significant memory bottleneck,
which calls for compression methods that limit its size during generation. In this
paper, we discover surprising properties of Query (Q) and Key (K) vectors that
allow us to efficiently approximate attention scores without computing the attention
maps. We propose Q-Filters, a training-free KV Cache compression method that
filters out less crucial Key-Value pairs based on a single context-agnostic projec-
tion. Contrarily to many alternatives, Q-Filters is compatible with FlashAttention,
as it does not require direct access to attention weights. Experimental results in
long-context settings demonstrate that Q-Filters is competitive with attention-based
compression methods such as SnapKV in retrieval tasks while consistently out-
performing efficient compression schemes such as Streaming-LLM in generation
setups. Notably, Q-Filters achieves a 99% accuracy in the needle-in-a-haystack
task with a ×32 compression level while reducing the generation perplexity drop
by up to 65% in text generation compared to Streaming-LLM.

1 INTRODUCTION

The performance of Large Language Models (LLMs) as autoregressive text-generation systems relies
on the effectiveness of the Transformer architecture (Vaswani et al., 2017). Recently, long-context
models such as Gemini-Pro-1.5 (Reid et al., 2024), Claude-3 (Anthropic, 2024), GPT-4 (Achiam
et al., 2023), and Llama-3.1 (Dubey et al., 2024) have demonstrated the ability to process hundreds
of thousands of tokens. However, processing such long sequences comes with significant challenges,
as it may lead to higher decoding latency and memory saturation. As the context length grows, each
inference step involves storing an increasingly large context from GPU memory in the form of the
KV Cache, creating a memory bottleneck that hinders efficient inference (Fu, 2024). To address this
issue, KV Cache compression methods aim to reduce the size of this past-context representations
storage by removing or merging Key-Value pairs, thereby alleviating memory bottlenecks. While
KV Cache compression techniques have gained popularity, many approaches require fine-tuning
or re-training the underlying models (Nawrot et al., 2024; Ainslie et al., 2023; DeepSeek-AI et al.,
2024), which limits their applicability in real-world deployment scenarios. Training-free methods
have also been proposed, but they often rely on access to attention weights to evaluate the importance
of Key-Value pairs (Xiao et al., 2024; Li et al., 2024), making them incompatible with the widely
adopted efficient attention algorithm FlashAttention (Dao, 2024). These methods usually require a
partial re-computation of the attention matrices, which leads to a time and memory overhead. Hence,
these algorithms are often used to compress prompts before generating answers and are not ideally
suited for memory-constrained generation.

∗Contact: nathan.godey@inria.fr

1



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Layer 0, Head 21 (b) Layer 14, Head 5 (ϵ = −1) (c) SVD absolute avg. coefficients

Figure 1: Left and center: distributions of the projections of Qh and Kh on uh for Llama-3.1-8B.
Right: estimates of

∣∣Ei(⟨Qh
i , vm⟩)

∣∣ where vm are the right vectors from the SVD of a set of Qh

representations from different Llama models, averaged over all layers and heads.

In this work, we propose Q-Filters, a training-free KV Cache compression method that uses the geo-
metric properties of Queries and Keys to filter out the less important Key-Value pairs. Our approach
achieves competitive results across synthetic tasks and pure generation cases while maintaining
compatibility with FlashAttention and, thus, better time efficiency.

Analysing the properties of queries (Q) and Keys (K) distributions, we find that a single direction,
spanned by the principal component of Q, encodes an input selection process for each head. Identify-
ing this direction allows us to efficiently estimate which inputs are mostly ignored by a given head
and can thus be discarded with minimal performance loss. Interestingly, we find that this direction is
context-agnostic, i.e., the directions we identify in different contexts are highly consistent. Leveraging
this property, we calculate lightweight projections, which we refer to as Q-Filters, based on a small
held-out calibration dataset only once for every model, incurring minimal computational overhead.
At inference time, we use Q-Filters to project Keys in the pre-computed direction to estimate the
importance of Key-Value pairs without accessing attention scores, and we prune the KV Cache
accordingly. This makes our method faster than most KV Cache compression alternatives that use
attention scores to estimate the importance of the KV pairs.

Additionally, our method is training-free, requiring only a very short initial calibration, and we show
it can be easily applied to a variety of decoder-only language models. We validate our method on a
wide set of tasks, ranging from language modelling to in-context learning and long-context tasks,
achieving competitive performance even with 32x compression ratios.

2 METHOD

2.1 EXPLORING THE QUERY-KEY GEOMETRY

In Devoto et al. (2024), the authors examined a relationship between basic characteristics of the
Key representations and attention score distributions. Notably, they observe a negative correlation
between the average attention weight given to a position and the L2-norm of the Kh

t vector at that
position (where h is the head index, and t the position in the sequence). Leveraging this observation,
they propose to compress the KV Cache by selecting the KV pairs for which ||Kh

t ||2 is the smallest.
Using this simple heuristic, they are able to reach ×2 compression ratios without altering the retrieval
and modelling performance of the models they study.

Godey et al. (2024) show that the distributions of Qh
t and Kh

t are anisotropic, i.e. they do not
uniformly occupy RdH . They observe that both distributions “drift away” from the origin as training
progresses. Crucially, this drift occurs along parallel directions in RdH , so that the dot product
between mean Qh

t and mean Kh
t representations tends to increase in absolute value and to be either

positive or negative for different heads.

Motivated by Devoto et al. (2024) and Godey et al. (2024), we propose to further explore some
geometrical properties of Qh and Kh vectors and their implications for unnormalized attention
logits Qh(Kh)T . First, we expose the joint anisotropy of Qh and Kh in Figure 1b. Empirically, we
observe a head-dependent direction uh so that projections of Qh

t and Kh
t in this direction are each of

consistent sign. This direction can be identified by performing a Singular Value Decomposition (SVD)
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on a set of Qh representations and setting uh = ±v1 where v1 is the right-vector corresponding to
the highest singular value, and where the sign is chosen to make most Qh

t (if not all) project to a
positive value.

Interestingly, as shown in Figure 1c, v1 is the only component of the SVD that projects Qh repre-
sentations to a non-null average coefficient. The intuitive consequence of these two observations
is that if a given Kh

t has a strong (negative) projection along uh, then the ⟨Qh
i ,K

h
t ⟩ dot products

should all be negatively affected, which results in less important attention weights towards Kh
t . Since

v1 is the only direction that encodes such a phenomenon, one can derive an approximation of the
average attention score received by Kh

t based on its projection on v1 = uh, which is summarized in
Proposition 2.1.
Proposition 2.1 (proof in Appendix B). Under Hypothesis A.1 and Hypothesis A.2, we have:

EQh
i
(⟨Qh

i ,K
h
j ⟩) ≈ κh⟨Kh

j , u
h⟩

where κh is a positive constant.

Intuitively, projecting Kh
t along the anisotropic direction uh gives us an estimate of the attention

logits that involve Kh
t up to a positive multiplicative constant κh.

The resulting v1 vectors, that we refer to as Q-Filters, allow to estimate, up to a sign, which Key-Value
pairs are worth storing for each head along generation.

2.2 Q-FILTERS

Based on Proposition 2.1, we can design a KV Cache compression scheme that consists of the
following steps:

1. For a given model, retrieve its Q-Filters, which can be obtained with the following procedure:
(a) Gather Qh representations by passing samples through the model;
(b) Compute the SVD of the gathered representations at each layer and head;
(c) Obtain the positive right vector (or Q-Filter) for each head v+1 = sgn(1uT

1 )v1.

2. At inference, for each head, discard the Kh
t with the lowest ⟨Kh

t , v
+
1 ⟩ value.

In the case of Grouped-Query Attention or GQA (Ainslie et al., 2023), we simply average the
Q-Filters for each group of Query representations.

We bring the attention of the reader to the fact that this method only requires a single preparation step
following training for a given model. The Q-Filters are entirely context-agnostic and rely on inherent
properties of the Query and Key latent spaces. In the rest of this article, we use a subset of the Pile
dataset (Gao et al., 2020) to compute the Q-Filters and discuss the choice of the dataset and of the
number of necessary SVD samples in Appendix H.

In Figure 11, we observe that the Q-Filters heuristic is noticeably more correlated with the attention
score for most heads compared to the L2-norm metric. As such, ordering the Key-Value pairs using
the Q-Filters heuristic should allow us to select more relevant pairs than using the method from
Devoto et al. (2024) - that we will call K-norm for the sake of simplicity.

3 EXPERIMENTS

We validate our method both on memory-constrained language modelling and on long-context
retrieval tasks (e.g. needle-in-a-haystack). Additionally, we test our method on the Ruler dataset
Hsieh et al. (2024), which is specifically designed to test the model’s long context modelling abilities.
We test Q-Filters on Llama-3.1-8B, Llama-3.1-70B Dubey et al. (2024), and Qwen-2.5-7B Qwen
et al. (2025), but the method can be easily used for any pre-trained decoder-only LLM. We compare
Q-Filters with several KV Cache compression methods. These include StreamingLLM (Xiao et al.,
2024), which focuses on language modelling by always retaining the initial tokens of the sequence.
We also compare with SnapKV (Li et al., 2024), which performs compression based on attention
scores from the final portion of the prompt, making it particularly suitable for compression of large
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Figure 2: Left (a): Llama-3.1-8B Language Modelling performance in the streaming compression
setup. Center (b): Average performance on Ruler (8192) for Llama-3.1-8B-Instruct. Right (c): First
token latency across KV Cache compression methods of Llama-3.2-8B with a length of 64k prompt.

prompts. Additionally, we compare against preserving low-L2 norm tokens (Devoto et al., 2024) and
the recent ExpectedAttention (Jegou & Jeblick, 2024).

We show results for different tasks in Figure 2. In Language modelling, we observe that Q-Filters
consistently achieves the lowest perplexity among compression schemes, even for very long contexts.
In the Ruler dataset Hsieh et al. (2024), we test the model’s score for several compression factors
ranging from 2× to 32×. While for some lower compression factors, we find performance on par
with other methods, Q-Filters achieve the highest score with the strongest compression factor of 32×,
demonstrating the method’s effectiveness at high compression rates. We provide detailed results in
table Table 1 and further discussion on additional benchmarks in Appendix G.

Compression method FA-compatible CWE FWE Multi-Key Multi-Query Multi-Value Single QA VT Average
SnapKV ✗ 88.7 89.0 15.1 29.6 28.8 68.7 42.8 83.2 50.5

Expected Attention ✗ 70.0 79.3 12.0 59.7 37.8 31.2 44.2 96.3 43.2

Streaming-LLM ✓ 53.8 93.4 14.1 16.8 16.7 15.7 62.3 15.8 31.6
K-Norm ✓ 22.9 74.8 8.7 16.6 25.8 55.9 20.6 32.0 31.3

Q-Filters (ours) ✓ 82.5 80.2 22.9 49.1 60.6 71.1 37.6 100 56.1

Table 1: Results on the Ruler-4096 dataset for Llama-3.1-70B-Instruct with an 8× compression ratio.
The second column indicates compatibility with FlashAttention.

3.1 THROUGHPUT AND SCALABILITY

Our approach is more efficient than many KV Cache compression methods, as it estimates the
relevance of a Kh representation without materializing the attention maps. This property makes it
compatible with memory-efficient self-attention implementations such as FlashAttention (Dao, 2024).
During inference, Q-Filters maintains the same theoretical time complexity as the K-norm method
(Devoto et al., 2024), since computing a norm and a scalar product require a comparable number of
floating-point operations.

By avoiding the explicit computation of attention scores, our method achieves lower inference latency
compared to existing approaches. To quantify this efficiency, we measure the Time to First Token
across different methods in Section 3. Time to First Token (TTFT) refers to the latency between
submitting a prompt and receiving the first generated token. This metric is particularly relevant in
scenarios where fast response times are critical, such as interactive AI applications. Compressing
the KV Cache directly impacts TTFT: by reducing the memory footprint of the KV Cache, it
allows a larger portion of the prompt context to fit within fast-access memory, minimizing memory
swapping overhead. As a result, compression techniques that efficiently manage the KV Cache should
significantly reduce initial response latency. Notably, our experiments show that Q-Filters maintain
this performance advantage even as the sequence length increases, suggesting better scalability
compared to methods that require explicit attention computation.
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4 CONCLUSION

We introduced Q-Filters, a novel training-free method for KV Cache compression. We show that
projecting the Key representations on the main SVD component of the Query vectors results in an
accurate approximation of the attention scores. Q-Filters is extremely efficient and is compatible
with FlashAttention as it does not require accessing the attention scores. We validated our method on
several tasks (Language modelling, NIAH, Ruler) and models up to 70B parameters, and showed
competitive performance with respect to more costly state-of-the-art KV Cache compression methods.
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A OBSERVATIONS

Hypothesis A.1 (Joint anisotropy). There exist uh ∈ SdH−1 and ϵ = ±1 such that

E
(
⟨Qh

i , u
h⟩
)
> 0 and E

(
⟨Kh

j , ϵu
h⟩
)
> 0,

where ⟨·, ·⟩ denotes the dot product.

To validate Hypothesis A.1, we compute the Singular Value Decomposition (SVD) of a set of Qh

representations taken from various sequences for Llama-3.1-8B. We find that the first right-vector
of the SVD verifies Hypothesis A.1 for all tested heads, and we display examples of projection
distributions in Figure 1b. The intuitive consequence of this observation regarding attention weights
is that, if a given Kh

t has a strong projection along ϵuh, then future queries Qh
≥t can be expected to

have a stronger dot-product with Kh
t in average.

However, it is not clear a priori that this effect is uni-directional, i.e. that there exists a unique
direction uh (up to a sign) that verifies Hypothesis A.1. Hence, identifying one such direction
may not suffice to characterize the anisotropy of Qh representations and to derive estimations of
the dot-products used in attention. The uni-directional nature of the Query-Key anisotropy can be
formalized as in Hypothesis A.2.
Hypothesis A.2. Let uh = argmaxu∈SdH−1 E

(
⟨Qh

i , u⟩
)

and B = (uh, u2, ..., udH
) an orthonormal

basis of RdH . Then for all attention inputs X:

∀m ∈ [2, dH ],E
(
⟨Qh

i , um⟩
)
≈ 0

In Figure 1c, we observe that only the first singular component of the SVD of Qh representations
carries an anisotropic behavior, as the projections on all other components have a null mean. Hence, by
taking the SVD right-vector basis as B, we can show that the first component of the SVD empirically
verifies Hypothesis A.2.

B PROOF OF PROPOSITION 2.1

We begin the proof by writing ⟨Qh
i ,K

h
j ⟩ in the basis B:

EQh
i
(⟨Qh

i , k⟩) = EQh
i
(⟨Qh

i , u
h⟩)⟨k, uh⟩

+

dh∑
m=2

EQh
i
(⟨Qh

i , um⟩)⟨k, um⟩

Hypothesis A.2 states that Ei,X(⟨Qh
i , um⟩) ≈ 0, which lets us do the following approximation:

dh∑
m=2

EQh
i
(⟨Qh

i , um⟩)⟨k, um⟩ ≈ 0

By combining Hypothesis A.1 and Hypothesis A.2, we also have that:

EQh
i
(⟨Qh

i , u
h⟩) > 0

We conclude the proof by setting κh = EQh
i
(⟨Qh

i , u
h⟩).

Remark This result provides a justification for the method developed in Devoto et al. (2024). As
a matter of fact, Hypothesis A.1 implies that Ej

(
cos(Kh

j , u
h)
)

should have the same sign as ϵ. In
practice, we observe ϵ = −1 for a vast majority of heads in trained causal LMs. Hence, we can derive
a looser estimation from Proposition 2.1:

Ei,X(⟨Qh
i ,K

h
j ⟩) ≈ −κh

∣∣Ej,X

(
cos(Kh

j , u
h)
)∣∣ ||Kh

j ||2
This estimation shows that the L2-norm of Kh

j vectors is negatively correlated with the corresponding
mean attention logits and can therefore be used to approximate them. However, only using the
L2-norm to estimate the attention score as done in Devoto et al. (2024) is suboptimal, as it ignores
the angular component of the ⟨Kh

j , u
h⟩ product.
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C GENERATION RESULTS

We compute the final perplexity of Llama-3.1-70B in the memory-constrained setup for various
compression factors and methods.

Figure 3: Final perplexity after 512 tokens for Llama-3.1-70B in the memory-constrained generation
scenario.

We also run a study similar to the one conducted in Figure 6 with Qwen-2.5-7B-Instruct, which we
display in Figure 4a, and with Llama-3.2-1B, which we display in Figure 4b.

(a) Perplexity of the Qwen-2.5-7B-Instruct model
along generation.

(b) Perplexity of the Llama-3.2-1B model along
generation.

9



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

D RULER RESULTS

In Figure 5 we report detailed evaluation on the subsets of the Ruler dataset Hsieh et al. (2024).

(a) Variable tracking (b) NIAH - single (1) (c) NIAH - single (2)

(d) NIAH - single (3) (e) NIAH - Multi-key (1) (f) NIAH - Multi-key (2)

(g) NIAH - Multi-key (3) (h) NIAH - Multi-Value (i) NIAH - Multi-Query

(j) Frequent Words Extraction
(FWE)

(k) Common Words Extraction
(CWE)

Figure 5: Performance of Llama-3.1-8B-Instruct using several KV Cache compression methods on
individual tasks from the Ruler dataset (with length 8192) as compression ratio evolves. We report
prompt compression methods using dotted lines for comparison.

E GENERATION EXAMPLES

Using Llama-3.1-8B, we identify interesting cases where Q-Filters provide the correct next token in a
given long context, while K-norm and Streaming-LLM fail to capture the relevant information.
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Text Sample (Context) Q-Filters K-Norm Streaming-LLM
One of the show’s first longest-running story-
lines was the rivalry between a young man-
icurist Jill Foster Abbott (Brenda Dickson,
Jess Walton) and wealthy socialite, Kather-
ine Chancellor (Jeanne Cooper). [...] After
much investigation, it is revealed that Kay is
Jill’s biological...

mother father father

Both extreme right-wing leaders taught and
practised the theology of Christian Identity,
a belief system which the FBI includes on
its watch list as an extremist religion. [...]
Here, the group trained an estimated 1,500
of like-minded Christian...

Identity fundamental fundamental

The Viral Fever
[...] TVF debuted their platform, releasing
the final two episodes of Pitchers on TVF-
Play. [...] TVF claims to have worked with
over 150 brands. [...] The show has been on
hold as writer Biswapati Sarkar focuses on
writing web series, including the sequel to
TV...

F _show _show

Table 2: Next-token generation examples for different KV Cache Compression methods, applied to
Wikipedia article. Passages in bold correspond to useful information that is necessary to resolve the
ambiguity in the choice of the next token.

F IMPLEMENTATION DETAILS

For all our experiments, we use the popular Huggingface models with the recently released KVPress
library Jegou & Jeblick (2024).

G DETAILED EXPERIMENTAL RESULTS

Language Modelling To evaluate the performance of Q-Filters in the language modelling setup, we
perform generation on the Pile dataset Gao et al. (2020). We let the KV Cache grow up until a certain
threshold, after which we start evicting the KV pairs so that the total size never exceeds the maximum
threshold. We measure performance by tracking the model perplexity computed on past tokens in 20
sequences. We report results for a maximum KV Cache size of 512 pairs in Figure 6. We observe
that Q-Filters consistently achieves the lowest perplexity among compression schemes, even for
very long contexts. This observation scales to the 70B model, where Q-Filters significantly reduces
the perplexity gap. This improvement is more pronounced in the latter portions of the sequences,
suggesting better retention of relevant contextual information.

Needle in a Haystack The Needle-in-a-Haystack task embeds a key piece of information (the
“needle”) within a long sequence of distractors (the “haystack”), followed by a question that requires
retrieving the needle. This evaluates the model’s ability to handle long-range dependencies and tests
how well KV Cache compression retains critical information. If important KV pairs are evicted, the
model fails to answer correctly.

We evaluate Q-Filters by placing the needle at depths from 1k to 64k tokens and measuring retrieval
accuracy. As shown in Figure 7, Q-Filters outperforms K-Norm (Devoto et al., 2024), preserving
crucial information even in extremely long contexts.

Ruler Tasks We evaluate the proposed method on the Ruler dataset Hsieh et al. (2024), which
comprises several sub-tasks that test the model long context modelling abilities, including Multi-hop
Tracing, Long Context Aggregation, Long Context Retrieval and Question Answering. The dataset
offers 3 variants with different sequence lengths: 4096, 8192, and 16384. We compare the score
on Ruler with several other KV Cache compression methods and show average results in Figure 8a.
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Figure 6: Generation performance for a KV Cache size limited to 512 items for Llama-3.1-8B (left)
and Llama-3.1-70B (right).

(a) K-norm (average accuracy: 63%) (b) Q-filters (average accuracy: 91%)

Figure 7: Needle-in-a-haystack performance for Llama-3.1-8B using 64x KV Cache compression.

We report detailed per-task results in Table 1 and in Appendix D. We test the model’s score for
several compression factors ranging from 2× to 32×. While for some lower compression factors, we
find performance on par with other methods, Q-Filters achieve the highest score with the strongest
compression factor of 32×, demonstrating the method’s effectiveness at high compression rates.

H ROBUSTNESS OF THE CALIBRATION DATASET

In Figure 9, we analyse how the calibration dataset size impacts the performance of our Q-Filters
computation. Our experimental results demonstrate that increasing the number of samples in the
calibration dataset leads to an improvement in average perplexity, although the marginal benefits
diminish beyond a certain point, namely around 1k samples. This suggests that while larger cali-
bration datasets generally produce more robust Q-Filters, there exists a practical trade-off balancing
computational cost and performance benefits. Based on these empirical findings and computational
efficiency considerations, we standardized our experimental protocol to utilize 3,000 samples for
computing the Q-Filters across all subsequent experiments. Another important consideration in the
development of robust Q-Filters is the choice of calibration dataset. To investigate this aspect, we
conducted a systematic analysis using multiple diverse datasets and model versions in Figure 10. Our
experiments revealed that the Q-Filter vectors exhibit remarkable stability across different calibration
datasets, with a high average cosine similarity between vectors computed from distinct sources. This
finding suggests that our method is relatively insensitive to the specific choice of calibration data,
provided it maintains sufficient diversity and quality. Based on these results, we opted to use a
carefully curated subset of the Pile dataset (Gao et al., 2020) for all Q-Filter computations.
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(a) Average performance on Ruler (8192)
(b) Average performance on Loogle (Short Depen-
dency QA)

Figure 8: Average score for different long-context benchmarks using Llama-3.1-8b with different
methods and compression ratios
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Figure 9: Perplexity after 1024 tokens for Q-Filters obtained using different counts of Qh representa-
tions to calculate the SVD.

I Q-FILTERS ESTIMATION OVERHEAD

It could be argued that our method introduces a memory overhead as we need to store the Q-Filters
on-device. Nevertheless, for a model using l layers and nH heads, storing the Q-Filters requires
l × nH × dH parameters. For Llama-3.2-1B, this is 36k× smaller than the total parameter count
and 196k× smaller in the case of Llama-3.2-405B. Another source of overhead could be attributed
to the initial computation of the filters that are required for every new model. We find that passing
20 samples of length 2048 through the model and performing the SVD on 3k randomly sampled
representations for each head is sufficient to obtain strong performance. In our experiments with
Llama-3.2-70B, computing the filters took less than 3 minutes on two A100-80GB GPUs. This cost
is thus negligible when compared with the cost of inference.

J RELATED WORKS

After the success of long-context models (Reid et al., 2024; Anthropic, 2024; Achiam et al., 2023),
compressing the KV Cache has become a key research focus to enable processing of long-context
inputs.

Some methods reduce the KV Cache size by modifying the model architecture. For example,
Ainslie et al. (2023) and Shazeer (2019) reuse the same Keys for multiple queries, thereby reducing
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Figure 10: Cosine-similarity between Q-Filters computed on datasets coming from different domains
and languages and on pre-trained and post-trained models. The scores are averaged over all layers
and heads.

(a) K-norm (b) Q-Filter

Figure 11: Spearman rank correlation between KV compression scoring metrics and the observed
attention Sh for Llama-3.2-1B, for K-norm (top) and Q-Filters (bottom).

redundancy in storage. Nawrot et al. (2024) propose a dynamic token-merging strategy, learning
which KV pairs to merge. While these approaches achieve significant compression, they require
training or fine-tuning, making them less practical in real-world scenarios where retraining the
model from scratch is not feasible. In contrast, our method requires only a short, computationally
inexpensive calibration step, avoiding parameter updates entirely. Recently DeepSeek-AI et al. (2024)
introduced a Multi-Head Latent Attention, a modification to the standard attention mechanism that
performs a low-rank reduction of the KV Cache during pre-training.

Training-free approaches aim to compress the KV Cache without modifying the model, typically by
approximating the attention score over long sequences and prioritizing tokens with higher importance.
Among these, Xiao et al. (2024) focus on language modelling tasks and propose always retaining
the first token(s) (as an attention sink) and the last n tokens in a sliding window. Also, Zhang et al.
(2024) focuses on generation tasks and introduces a policy that evicts tokens during generation based
on a scoring function derived from cumulative attention. In contrast, other works focus on the task of
compressing a large prompt provided by the user. Li et al. (2024) uses attention from the last part
of the prompt to estimate KV pairs importance. With the same goal, Cai et al. (2024) assigns more
cache budget to lower layers and less to higher layers. Finally, Guo et al. (2024) proposes to rescale
the KV score of other methods by the L1 norm of the Values.

In contrast, our approach is not tailored to a specific use case but provides competitive performance
across both synthetic tasks and real-world scenarios, including in-context learning and chat-based
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interactions. Additionally, many of these approaches are incompatible with FlashAttention Dao
(2024) due to their reliance on accessing the full attention weights, which FlashAttention does not
expose.

K LIMITATIONS

In Appendix C, we run generation experiments on Qwen-2.5-7B-Instruct (Qwen et al., 2025), and we
observe that, although the results still favour the Q-Filters method, the gap is less clear compared to
the Llama models. Our main hypothesis for this discrepancy lies in the slightly different attention
mechanism used in Qwen-2.5 suite, which adds a bias to the QKV projection. Hence, it is likely
that the geometrical observations made in Section 2 are not accurate in that case. Similarly, initial
experiments with Olmo-2 models (OLMo et al., 2025) were unsuccessful, which can be explained by
their use of the QK-normalization technique (Dehghani et al., 2023). These different tricks would
most likely require an adaptation of our analysis to yield a better approximation of the attention
distributions.
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