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Abstract

Large Language Models and Vision-Language Models have achieved impressive
performance across a wide range of tasks, yet they remain vulnerable to carefully
crafted perturbations. In this study, we seek to pinpoint the sources of this fragility
by identifying parameters and input dimensions (pixels or token embeddings) that
are susceptible to such perturbations. To this end, we propose a stability measure
called FI, First order local Influence, which is rooted in information geometry
and quantifies the sensitivity of individual parameter and input dimensions. Our
extensive analysis across LLMs and VLMs (from 1.5B to 13B parameters) reveals
that: (I) A small subset of parameters or input dimensions with high FI values
disproportionately contribute to model brittleness. (II) Mitigating the influence of
these vulnerable parameters during model merging leads to improved performance.

1 Introduction

Large Language Models (LLMs) and Vision Language Models (VLMs) such as GPT [5] and Llama
[36], have revolutionized the field of Natural Language Processing (NLP), exhibiting remarkable
proficiency across a variety of tasks [14, 47, 24] and modalities [3, 21, 46]. These modern LLMs
are massive in size, trained on vast amounts of data, and meticulously aligned to prevent generating
harmful content [30], leaking private information [45], or exhibiting sexual or religious bias [39].
Despite the enthusiasm for these integrative approaches, a critical issue remains: LLMs remain
susceptible to both external and internal perturbations, affecting their reliability and performance.

“Below is a food web from an ocean ecosystem. 
Based on the arrows, which of the following living things is a decomposer?”

“bat star”

“kelp”

FI of Image
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Qwen-vl

Perturbed ImageOriginal Image

Figure 1: A case study of the Qwen-VL model [3] on SCI-QA. The image on the far right visualizes
the per-pixel FI values. Masking just 10 pixels with the highest FI values leads to a failure in
producing the correct answer.
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Externally, LLMs are vulnerable to input perturbations, such as Embedding-Corrupted Prompts
[11, 20] and jail-breaking prompts [50, 49]. This susceptibility extends to visual inputs in VLMs,
where adversarially optimized images can drastically alter model behavior [31]. Beyond adversarial
attacks, VLMs exhibit high sensitivity to perturbations in specific local regions of an image—a
common issue, as user-uploaded images often suffer from blurring, masking, or low resolution.
The vulnerability is highlighted in our case study of the Qwen-VL model. As depicted in Figure 1,
masking the ten most sensitive pixels, which are unrelated to the question, resulted in incorrect model
outputs.

Figure 2: A case study of Qwen2.5 on
MMLU-Geography. “FI-High” refers to
zeroing out parameters with the highest
FI values, whereas “Random” denotes
random parameter removal.

Internally, LLM stability is further challenged by parame-
ter perturbations, often introduced through model merging
and quantization. While these techniques improve deploy-
ment efficiency by reducing inference costs [12, 1], they
can also induce hallucinations and degrade performance
[26, 44, 19]. However, our findings reveal that parameter
susceptibility varies significantly. As Figure 2 illustrates,
randomly dropping 5% of parameters has a minimal im-
pact on performance. In contrast, zeroing out just 1% of
the parameters identified by our measure can drastically
reduce accuracy, even below random guessing levels.

To pinpoint the sources of this fragility, we propose a novel
stability measure called FI, First order local Influence,
to quantitatively assess the stability of LLMs against perturbations. Specifically, we construct a
perturbation manifold that encompasses all perturbed models, along with its associated geometric
properties. Our stability measure quantifies the degree of local influence of a perturbation on a given
objective function within this manifold, thereby reflecting the stability of individual LLM components.
We summarize the advantages of FI as follows:

1. FI’s versatility allows for effective stability assessment under both external and internal
perturbations across various granularities—from individual parameters to input features like
pixels and patches.

2. FI effectively identifies vulnerabilities. Our extensive studies validate its effectiveness
in pinpointing fragile pixels in VLM vision inputs, vulnerable embedding dimensions of
tokens in LLMs (Section 4), and salient model parameters (Subsection 5.1).

3. FI offers insights into improving model robustness. We further illustrate that understand-
ing these vulnerabilities can lead to enhanced model resistance to perturbations. By focusing
on model merging as an example, we show that safeguarding key parameters identified by
high FI values can substantially reduce performance degradation during the merging process
(Subsection 5.2).

2 Related Work

Recent efforts to evaluate LLM stability typically adopt a coarse-grained approach, aiming to assess
the overall robustness of models under various perturbations. One line of work investigates how
stability is influenced by sampling parameters, such as temperature, which affect output variability
during generation [2, 28]. Another direction studies model sensitivity to input or parameter per-
turbations. For instance, [4] analyze input-level robustness using optimal transport to quantify a
model’s response to distributional shifts in prompts. On the other hand, [29] focus on parameter-space
perturbations, demonstrating that LLMs remain robust to weight changes up to a certain threshold,
beyond which performance significantly degrades. They estimate a model’s robustness tolerance by
injecting random perturbations into model weights and evaluating the performance drop.

Despite these contributions, fine-grained analyses—such as those examining the effect of individual
input tokens, pixels, or specific model parameters—remain underexplored. [37] take a step in this
direction by leveraging pruning-based techniques, including SNIP [18] and Wanda [35], to identify
critical neurons and low-rank structures that impact model safety and utility. However, there is
still a lack of unified metrics or frameworks that assess stability with respect to both input- and
parameter-level perturbations. Moreover, the downstream applications of such stability assessments
remain largely unexamined.
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3 Stability Measure of Large Language Models

In this section, we propose a new metric called FI to quantify the stability of large language models
against local perturbations. Considering the auto-regressive nature of LLMs, we first develop FI for
single-step generation and discuss its theoretical and computational properties in detail. We then
show how FI can be naturally extended to sequence generation tasks. Finally, we compare FI to
existing stability measures, highlighting its unique advantages.

3.1 FI Metric

Problem formulation. Consider an LLM parameterized by θ, with input data x, which may consist
of text or, for visual language models, a combination of text and images. Given x, the model generates
a probability distribution over its vocabulary to predict the next token, which can be framed as a
classification problem with K classes, where K represents the vocabulary size.

However, vocabulary sizes are typically large [3, 9], and predictions are often concentrated on a small
subset of tokens. Instead of using the entire vocabulary, it is more efficient to focus on a relevant
subset based on the task. For example, in multiple-choice questions, probabilities are restricted to the
choices “A”, “B”, “C”, or “D”. Classes can also be defined semantically, such as categorizing tokens
as “neutral” or “notorious” in toxicity detection [13].

With appropriately defined classes, the predicted probability for class y ∈ {1, . . . ,K} is denoted as
P (y|x, θ), satisfying

∑K
y=1 P (y|x, θ) = 1. Let ω ∈ Rd be a perturbation vector varies in an open

subset Ω. ω can be applied to a subset of the model parameters θ and locations within the input data
x. We denote the output of the perturbed model under this perturbation as P (y|x, θ, ω).

Perturbation Manifold and FI Since our primary interest lies in examining the behavior of
P (y|x, θ, ω) as a function of ω near ω0 = 0, we shift focus from θ to ω. We introduce the perturbation
manifold as defined in [51] and [52].
Definition 3.1. Define the d-dimensional perturbation manifold M = {P (y|x, θ, ω) : ω ∈ Ω},
which encompasses all perturbed models. Assume that for all ω ∈ Ω, the perturbed models {P (y =
i|x, θ, ω)}Ki=1 are positive and sufficiently smooth. The tangent space Tω of M at ω is spanned by
the partial derivatives of the log-likelihood function ℓ(ω|y, x, θ) = logP (y|x, θ, ω) with respect to
ω, specifically Tω = span{ ∂

∂ωi
ℓ(ω|y, x, θ)}di=1.

The metric gω on M can be defined with the metric tensor Gω. Consider two tangent vectors at ω
given by vj(ω) = h⊤

j ∂ωℓ(ω|y, x, θ) ∈ Tω , where h1 and h2 are the weights on the basis. Their inner
product is defined as:

⟨v1(ω), v2(ω)⟩gω =

K∑
y=1

v1(ω)v2(ω)P (y|x, θ, ω).

The metric tensor Gω is given by:

Gω =

K∑
y=1

∂ωℓ(ω|y, x, θ)∂⊤
ω ℓ(ω|y, x, θ)P (y|x, θ, ω).

Subsequently, the norm of vj(ω) under metric gω is ∥vj∥gω =
√

h⊤
j Gωhj . Let C(t) =

P (y|x, θ, ω(t)) be a smooth curve on the manifold M connecting two points ω1 = ω(t1) and
ω2 = ω(t2). Then, the distance between ω1 and ω2 along the curve C(t) is given by:

SC (ω1, ω2) =

∫ t2

t1

√
∥∂t logP (y|x, θ, ω(t))∥gω dt

=

∫ t2

t1

√
dω(t)T

dt
Gω(t)

dω(t)

dt
dt.

With the Perturbation manifold M and respective metric gω defined, we are ready to propose the
metric that quantifies the stability of large language models (LLMs) against various types of local
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perturbations. Let f(ω) be the objective function of interest for sensitivity analysis, in our case being
− logP (ypred|x, θ, ω), we can define the following (first-order) local influence metric FI:
Definition 3.2. Given the perturbation manifold M and its metric, the first-order local stability
measure of f(ω) at ω(0) = ω0 is defined as

FIω (ω0) = max
C

lim
t→0

[f(ω(t))− f(ω(0))]2

S2
C(ω(t), ω(0))

. (1)

The ratio in Equation 1 measures the amount of change introduced to the objective function relative
to the distance of the perturbation on the perturbation manifold. Thus, Equation 1 can be naturally
interpreted as the maximum local ratio of change among all possible perturbation curves C(t).

Computation of FI. As we will show, Theorem A.1 in Appendix A.3 regarding diffeomorphic
reparameterization invariance enables us to derive an easy-to-compute solution for Equation 1, while
addressing the low-dimensionality problem inherent in LLMs.
Theorem 3.3. If Gω is positive definite, the FI measure has the following closed-form:

FIω (ω0) = ∇T
f(ω0)

G−1
ω0

∇f(ω0), (2)

where

∇f(ω0) =
∂f(ω)

∂ω

∣∣∣
ω=ω0

.

The detailed proof of Theorem 3.3 can be found in Appendix A.6. It is important to note that the
closed form of FI in Theorem 3.3 depends on the positive definiteness of Gω, which is not always
guaranteed. This is due to the fact that the parameters in LLMs are often high-dimensional tensors
with low-rank structures [17].

We apply the invariance result of Theorem A.1 in Appendix A.3 by transforming ω to a vector ν such
that Gν = IK , where K is an integer. Specifically, we notice that Gω0

= BT
0 B0, where

B0 =
[
P (y = i|x, θ, ω)1/2∂ωℓ(ω|y = i, x, θ)

]
i⩽K

.

Let r0 = rank(Gω0
), we apply the compact SVD to B0 ∈ Rp×K , which yields B0 = V0Λ0U0, where

V0 ∈ Rp×r0 and U0 ∈ Rr0×K are semi-orthogonal matrices and Λ0 ∈ Rr0×r0 is a diagonal matrix.
Under the transformation ν = Λ0V

T
0 ω, we have FIω (ω0) = FIν (ν0) , which can be expressed as

∇⊤
f(ω0)

(V0R0)
⊤
Λ−2
0 (V0R0)∇f(ω0),

where the equality holds by applying the chain rule to Gν .

FI for sequence generation. Sequence generation is essentially multiple rounds of next-token
generation, where the l-th token y(l) is generated given the initial input z and previously generated
tokens y(l) = {y(1), . . . , y(l−1)}. We define the FI measure for generating the l-th token y(l)

given the initial input z by averaging out the randomness from the preceding steps FIl(z) =
Ey(l) [FI({z,y(l)}, θ, ω)|z].
To formulate an overall measure for sequence generation, we aggregate these per-token FI measures.
Since sequences generated by LLMs can vary in length, we propose two methods to handle this
heterogeneity. The first approach sets a fixed horizon L and computes the mean FI over these rounds

FILseq(z) =
1

L

L∑
l=1

FIl(z). (3)

Alternatively, inspired by the concept of average discounted rewards in reinforcement learning [22],
we consider sequences of potentially infinite length and propose a discounted FI measure with
discount factor γ

FI∞,γ
seq (z) = (1− γ)

∞∑
l=0

γl · FIl(z).

By taking the expectation over the distribution of z, we obtain the average FI for sequence generation
in both cases EPz

[FILseq(z)] and EPz
[FI∞,γ

seq (z)], respectively.
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3.2 Other Measures & Discussion

We note that several alternative methods can also serve as stability measures for LLMs. We provide
their explicit formulations and compare them with FI.

Jacobian Norm [27]: ∥∂ωf(ypred, ω)∥2
SNIP [18]: ∥ω ⊙ ∂ωf(ypred, ω)∥2
Both measures focuses solely on ypred, while neglecting the probabilities assigned to other choices.
For example, consider two output distributions: (0.9, 0.05, 0.05, 0.02) and (0.3, 0.25, 0.25, 0.2). In
both cases, the model selects option A. However, the second distribution is more unstable, as a small
perturbation in the probabilities could lead to a different prediction. In contrast, FI measure accounts
for both the probability and gradient across all possible choices.

Saliency map [34]: 
0, if

∂f(ypred, ω)

∂ω
< 0or

∑
y ̸=ypred

∂f(y, ω)

∂ω
> 0

−∂f(ypred, ω)

∂ω

∑
y ̸=ypred

∂f(y, ω)

∂ω
, otherwise

Saliency maps consider the gradients with respect to all possible choices. However, they lose
significant information by zeroing out many of these gradients.

To this end, we highlight the unique advantages of FI. Effectiveness: A quantitative comparison of
these measures is provided in Section 4 and 5, while their computational complexities are discussed
in Appendix A.2. Theoretical rigor: In particular, only FI possesses a reparameterization invariance
property (see Appendix A.3), which further distinguishes it by enhancing interpretability.

4 External Perturbations Analysis

In this section, we first demonstrate the effectiveness of FI in identifying vulnerable locations in both
vision and language inputs through guided attack. Then, we conclude the section with a finding from
cross-modal analysis.

Identify Fragile Pixels We conduct the attack process on the MMbench dataset [23], a comprehensive
benchmark designed to evaluate various multimodal capabilities of VLMs. For a fair comparison, we
identify the top 10 pixels using different stability measures and assess the model’s performance after
masking out the corresponding pixels.

Identify Vulnerable Embedding Dimensions We conduct attack on pure-text LLMs to verify the
effectiveness of our approach in identifying vulnerable embedding dimensions. Specifically, we
follow the token embedding attack methods proposed in [20] and [11].

More concretely, we compute the stability measure for each embedding dimension and select the top
0.1% most sensitive dimensions (ω) as identified by the metrics. We then apply a gradient-based attack
strategy following [11], perturbing the selected dimensions in the direction of −∇ω logP (ypred |
x, θ).

From both Table 1 and Table 2, we observe the following: (I) Stability measures are effective in
identifying vulnerable input dimensions (i.e., pixels in images and dimensions in embeddings).
Notably, LLMs are generally robust to random perturbations and such perturbations rarely lead
to significant performance degradation. In contrast, perturbations guided by stability measures
consistently result in substantial drops in performance. (II) Among all the stability measures evaluated,
FI proves to be the most effective: masking pixels or perturbing dimensions identified by FI leads to
the largest observed decline in performance.

Effect of Prompting on Pixel Vulnerability While the significant impact of prompt design on VLM
performance is well-recognized [48], and carefully crafted prompts are known to even jailbreak
these models [32], a quantitative analysis of this cross-modal influence – specifically, how prompting
affects the processing and stability of visual input – remains largely unexplored.
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Table 1: Accuracy on the MMBench dataset after masking out top ten pixels in images identified by
different measures.

Model Method Action
Recognition

Attribute
Recognition

Celebrity
Recognition

Function
Reasoning

Qwen
VL

FI (Ours) 0.320 0.402 0.673 0.411
Jacobian 0.668 0.587 0.906 0.604
Saliency 0.782 0.525 0.873 0.639
Random 0.812 0.550 0.881 0.683
Original 0.814 0.549 0.882 0.686

Qwen2.5
VL-3B

FI (Ours) 0.720 0.735 0.780 0.723
Jacobian 0.731 0.752 0.797 0.755
Saliency 0.745 0.761 0.797 0.774
Random 0.882 0.931 0.957 0.928
Original 0.890 0.946 0.959 0.930

Qwen2.5
VL-7B

FI (Ours) 0.768 0.750 0.796 0.723
Jacobian 0.778 0.768 0.815 0.755
Saliency 0.792 0.777 0.815 0.774
Random 0.891 0.944 0.951 0.925
Original 0.890 0.946 0.959 0.930

Table 2: Comparison of accuracy in the MMLU dataset after perturbing the same number of dimen-
sions in the embedding space identified using different measures.

Model Method Business Geo Culture Law

Pythia
1B

FI (ours) 0.270 0.261 0.195 0.236
Saliency 0.278 0.272 0.210 0.243
Jacobian 0.273 0.264 0.201 0.241
Random 0.301 0.368 0.237 0.246

SNIP 0.297 0.281 0.226 0.242
Original 0.303 0.370 0.240 0.247

Qwen2.5
3B

FI (ours) 0.656 0.620 0.610 0.547
Saliency 0.677 0.637 0.632 0.560
Jacobian 0.665 0.641 0.625 0.560
Random 0.805 0.781 0.781 0.672

SNIP 0.783 0.663 0.665 0.563
Original 0.810 0.800 0.785 0.673

Qwen2.5
7B

FI (ours) 0.748 0.780 0.705 0.713
Saliency 0.756 0.789 0.709 0.725
Jacobian 0.764 0.782 0.717 0.720
Random 0.852 0.884 0.802 0.735

SNIP 0.757 0.791 0.710 0.727
Original 0.856 0.890 0.810 0.737

Our study aims to bridge this gap by investigating how varying prompt instructions influence the
sensitivity of VLMs to visual perturbations. Specifically, we examine two types of prompts:

• Aggressive Prompts: Designed to encourage the model to consider every detail in the image,
potentially increasing sensitivity to noise.

• Safe Prompts: Intended to focus the model on salient entities and relationships, potentially
enhancing robustness by ignoring irrelevant details.

We computed the FI value for each pixel and visualized the resulting distributions under different
prompt settings, as illustrated in Figure 3. Our main findings are as follows:

(I) Prompt choice has a substantial impact on the stability of individual pixels within the image.
As shown on the left of Figure 3, aggressive prompts shift the FI distribution toward higher values,
resulting in a marked increase in both the mean and maximum FI values. This suggests that the model
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Please focus on the entities and relationships in the image, rather than the noise or potential masks. 
Please consider every detail in the image.
“Below is a food web from an ocean ecosystem. 
Based on the arrows, which of the following living things is a decomposer? ”

bat star

kelp

0.36

0.64

Qwen-vl

Figure 3: A case study utilizing FI for cross-modal analysis. In the same example, the bottom-left
image shows how Aggressive and Safe prompts affect the FI distribution on the image.

becomes more sensitive to pixel-level perturbations throughout the image. In contrast, safe prompts
significantly shift the FI distribution toward lower values, indicating reduced sensitivity and improved
stability against perturbations in less relevant regions.

(II) Vulnerability remains even with careful prompt design. Although safe prompts generally
reduce FI values, they do not fully guarantee model stability, as outliers with large FI values persist.
As shown in the right column of Figure 3, even when applying the safe prompt, masking out the two
pixels with the highest FI values still leads to incorrect model predictions. This result underscores the
persistent challenge of achieving robustness in VLMs and demonstrates the effectiveness of the FI
measure for identifying vulnerable regions.

Our findings contribute to the growing body of literature on cross-modal interactions in VLMs,
offering a stability-centric perspective that complements existing behavioral and attributional analyses.
Importantly, this framework can inform the development of more robust multimodal systems and
prompt design strategies for safety-critical applications.

5 Internal Perturbations Analysis

In this section, we first conduct a parameter sparsification experiment to demonstrate the effectiveness
of the FI. We then apply the FI measure to mitigate parameter interference during model merging,
showcasing its potential for guiding LLM improvement.

5.1 Parameter Sparsification

We conduct experiments on multiple-choice problems from MMLU [15] and sequence generation
tasks from Alpaca-Eval [10] to examine how these perturbations impact two key capabilities of large
models: knowledge retention and instruction-following. Details of both experimental setups are
provided in Appendix A.

As shown in Figure 2 and 4, sparsifying (zeroing out) just 2–3% of the high-FI parameters significantly
degrades the model’s knowledge capacity, leading to catastrophic forgetting and hallucinations, with
performance dropping by up to 75%. A similar trend is observed in Table 6 at around the 10% sparsity
level. In contrast, models remain relatively robust against random sparsification, often exhibiting
nearly identical behavior even after 5% sparsification.

These findings demonstrate FI’s effectiveness in identifying fragile parameters and further support the
inherent structure within the parameter matrix, aligning with recent observations on model brittleness
[25, 37, 44].
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(a) Business (b) Geography

(c) Culture (d) Law

Figure 4: Performance of Qwen2-7B on the MMLU dataset under varying levels of parameter
sparsification. “FI-High” denotes sparsifying parameters with the highest FI values, while “Random”
refers to random parameter sparsification.

5.2 FI-Guided Parameter Protection in Model Merging

Model merging is a technique for acquiring domain-specific knowledge by combining models from
different domains, thereby reducing the computational cost of additional fine-tuning (see [43] for a
review). However, a persistent challenge is that merging parameters introduces perturbations that
can hinder a model’s ability to retain previously learned information. To address this, we use FI to
identify parameters susceptible to forgetting and exclude them from the merging process.

We demonstrate that FI can be seamlessly integrated into mainstream model merging methods,
including Average Merging [38], Task Arithmetic [16], and TIES [40]. Additionally, we include
DARE [44] as a competing baseline for completeness.

We consider merging two models, A and B, both fine-tuned from the same base model. Let θA, θB ,
and θBase denote the parameters of models A, B, and the base model, respectively. We first introduce
the merging methods and then demonstrate how FI can be integrated into these methods to mitigate
perturbation effects.

Average Merging Average merging obtains the merged model by averaging θA and θB , resulting in
parameters θAvg = θA+θB

2 .

Task Arithmetic Task arithmetic constructs “task vectors” by subtracting a base model from each
task-specific model and then merges these vectors linearly before adding back the base model
θTask = θBase + γ(δA + δB), where δA = θA − θBase and similarly for δB .

Both Average Merging and Task Arithmetic modify all parameters in models A and B, potentially
degrading performance by disturbing their most sensitive parameters. To address this, we employ a
protection strategy that preserves these vulnerable parameters while merging only the less critical
ones. Specifically, we identify the top k% of high-FI parameters in both models and record their
locations in ΘA and ΘB . Then, for each layer in both θTask and θAvg, we revert parameters at locations
in ΘA∩Θ∁

B to their original values from θA, and parameters at locations in ΘB ∩Θ∁
A to their original

values from θB .

TIES (TrIm, Elect Sign) operates in two steps. First, it sets a fraction of the “task vectors” δA and δB
to zero. Then, for each remaining entry, it retains the weight from the vector with the larger absolute
value.
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Table 3: Performance of merging Qwen2.5-Math-7B and HuatuoGPT-o1-7B. The “Mean” column
reports the average accuracy across tasks. Blue and cyan percentages indicate the performance drop
for the “Without” and “With” variants compared to the original model, respectively.

FI-protect Math Health Mean
Qwen2.5
Math-7B / 0.616 / /

Huatuo
o1-7B / / 0.724 /

Average Without 0.534 (-8.2%) 0.514 (-21.0%) 0.524
With 0.543 (-7.3%) 0.522 (-20.2%) 0.533

Task Without 0.577 (-3.9%) 0.597 (-12.7%) 0.587
With 0.573 (-4.3%) 0.598 (-12.6%) 0.586

TIES
Without 0.565 (-5.1%) 0.596 (-12.8%) 0.581
With I 0.583 (-3.3%) 0.606 (-11.8%) 0.595
With II 0.566 (-5.0%) 0.601 (-12.3%) 0.584

DARE
Task / 0.573 (-4.3%) 0.589 (-13.5%) 0.581

DARE
TIES / 0.560 (-5.6%) 0.588 (-13.6%) 0.574

FI-guided protection can be incorporated into both steps. In the first step, we protect δA at locations
ΘA and δB at ΘB from being trimmed. In the second step, entries within ΘA are preserved as δA,
while those in ΘB remain as δB , regardless of their absolute values.

We merged Qwen2.5-Math-7B [41] and HuatuoGPT-o1-7B [6], as both models are fine-tuned from
Qwen2.5-7B [42]. We evaluate the performance of the merged models on math and health subjects
within the MMLU benchmark [15].

From Table 3, we observe the following: (1) FI-guided protection generally enhances the performance
of the merged models in both domains. For example, the Average model merging method with FI-
guided protection yields approximately a 1% improvement in both the Math and Health domains. (2)
Furthermore, TIES with FI protection applied in its first stage performs the best among all merging
methods.

Figure 5: Accuracy of average-merged models
with FI-guided protection across both domains for
different protection percentages k.

Figure 5 uses average merging as an example.
The results indicate that as the percentage of pro-
tected parameters increases, the performance of
the merged models initially improves but later
declines, highlighting a trade-off in FI-guided
protection. Protecting a small proportion of pa-
rameters with the highest FI helps mitigate per-
formance degradation caused by parameter con-
flicts. However, a high percentage of protection
may lead to forgetting issues in both domains.
To determine the optimal protection percentage,
we conduct a hyperparameter search on the val-
idation set. More details can be found in Ap-
pendix D.

6 Conclusion & Discussion

In summary, we introduce a stability measure, FI, to systematically identify the fragility of LLMs
and VLMs. Through experiments under both internal and external perturbations, we demonstrate the
effectiveness of our proposed method.

Our work constitutes an initial attempt to leverage sensitivity measures for improving model per-
formance, focusing primarily on their application to model merging at the inference stage. While
our study provides insights into the potential of such measures, we believe that further research is
warranted to explore their utility in enhancing model training.
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A Appendices

A.1 Detail of Parameter sparsification experiment

Experiment on MMLU We conduct experiments on the multiple-choice problems from the MMLU
[15] dataset, using Qwen2-7B. We take the cross-entropy loss, i.e., f = − logP (y = ypred|x, θ), as
the target function, and calculate the FI value according to Theorem 3.3. In this setup, we treat the
task as a 4-class classification problem with the possible classes being “A,” “B,” “C,” and “D”.

Experiment on Alpaca-Eval We use the Alpaca-eval validation set [10], a widely adopted benchmark,
and conduct experiments with various open-source models, including LLaMA2, LLaMA3 [36], and
Qwen2 [3], across different sizes. We report two metrics: ROUGE-1 (comparing to pre-sparsity
responses) and length-control winning rate (LCWR), comparing to GPT-3.5 Turbo. Higher scores are
better for both metrics.

To estimate the average FI for sequence generation, we use the fixed-context approach with L = 5.
For each sample z, we estimate FIl(z) by generating N = 10 responses, truncating them at position
l − 1. These truncated sequences are used to approximate the conditional expectation by computing
the sample average. The per-token FI values are then aggregated using Equation 3 to obtain FILseq(z),
which is averaged across all samples to estimate the overall FI.

A.2 Computation complexity analysis

Let n denote the number of samples, p denote the dimension of perturbation (p = 3 for pixel-wise
computations and p = 1 for parameter-wise computations), and d represent the total number of pixels
or parameters.

Computational Complexity Analysis:

• Jacobian-Norm: O(npd), arising from gradient computation per pixel/parameter.
• Saliency-Map: Identical to Jacobian-Norm, O(npd).
• FI-inverse: O(np3d + npd), with O(p3) from inverse matrix computations and O(npd)

from gradient calculations.
• FI-cSVD (our method): O(np2r0d+ npd), where O(p2r0) stems from the compact SVD

used to compute matrix inversion efficiently.

In practical scenarios:

1. Parameter-wise stability: Since individual parameters have dimension p = 1, the FI
calculation reduces to scalar inversion, thus the complexity simplifies to O(npd), matching
Jacobian-Norm and Saliency-Map.

2. Pixel-wise stability (image data): Given that each pixel has dimension p = 3 (RGB), the FI
calculation involves compact SVD for a 3× 3 matrix. Theoretically, this makes our method
about 9 times slower compared to baseline methods. However, in practical implementation,
our approach is only approximately 2 times slower.

The table below presents the average time required to compute FI, Saliency Map, and Jacobian Norm
for a single image using Qwen2VL-7B. All results are averaged over 100 images and measured on an
A100-80G GPU.

Table 4: Empirical computation times for different methods.

Method Time (s)
FI 0.3828
Saliency-Map 0.1964
Jacobian-Norm 0.1939

A.3 Reparametrization Invariance of FI

The proposed FI measure has the property of transformation invariance.
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Theorem A.1 (Reparametrization invariance). Suppose that ϕ is a diffeomorphism of ω. Then,
FIω(ω0) is invariant with respect to any reparameterization corresponding to ϕ. Specifically, let

ω̃(t) = ϕ ◦ ω(t), ω̃0 = ϕ(ω0),

we have
FIω̃(ω̃0) = FIω(ω0).

The detailed proof can be found in [33].

Theorem A.1 establishes that FIω(ω0) is invariant under any diffeomorphic (e.g., scaling and
spinning) reparameterization of the original perturbation. This invariance property is not shared by
other measures, such as Jacobian norm [27], Cook’s local influence measure [7], and Sharpness [27].

For instance, consider a perturbation of the form α + ∆α, where α is a subvector of (x⊤, θ⊤)⊤.
If we apply a scaling reparameterization α′ = K ⊙ α, where K is a scaling vector and ⊙ denotes
element-wise multiplication, then the Jacobian norms change:

∥J(α)∥F =

[∑
i

(
∂f

∂αi

)2
]1/2

̸= ∥J(α′)∥F .

In contrast, the FI measure remains unchanged. Such a reparameterization does not alter the function
itself but may affect the measure values, potentially weakening the correlation between perturbation
and performance degradation. A similar discussion can be found in [8].

A.4 Detail of FI-guided protection in model merging

Table 5: Searched ranges of hyperparameters of model merging methods.

Hyper parameter Search Ranges of Hyperparameters
Protecting ratio k [1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%,

10%]
Weight parameter γ in Task Arithmetic &
TIES

[0.3, 0.4, 0.5, 0.6, 0.9, 1.0]

A.5 Additional experiment results on parameter sparsification

Table 6: Performance of Different Models Based on Criteria with Full Value and Sparsity Percentages.

Model Criteria Full 6% Sparsity 8% Sparsity 10% Sparsity 12% Sparsity
FI Random FI Random FI Random FI Random

Llama2
13B

Rouge-1 1.0 0.52 0.59± 0.02 0.4 0.43± 0.06 0.18 0.68± 0.01 0.05 0.19± 0.03
LCWR 0.43 0.38 0.41± 0.03 0.29 0.34± 0.07 0.09 0.42± 0.0 0.01 0.08± 0.05

Llama3
8B

Rouge-1 1.0 0.46 0.52± 0.04 0.21 0.41± 0.06 0.09 0.25± 0.04 0.04 0.12± 0.03
LCWR 0.42 0.4 0.38± 0.01 0.12 0.30± 0.03 0.0 0.12± 0.01 0.0 0.01± 0.01

Llama2
7B

Rouge-1 1.0 0.44 0.56± 0.01 0.25 0.45± 0.02 0.06 0.33± 0.02 0.0 0.21± 0.02
LCWR 0.42 0.32 0.4± 0.0 0.12 0.35± 0.01 0.0 0.19± 0.05 0.0 0.1± 0.03

Qwen2
7B

Rouge-1 1.0 0.09 0.41± 0.05 0.01 0.30± 0.09 0.01 0.31± 0.06 0.01 0.15± 0.02
LCWR 0.41 0.03 0.35± 0.03 0.02 0.25± 0.1 0.03 0.20± 0.05 0.03 0.08± 0.02

Qwen2
1.5B

Rouge-1 1.0 0.18 0.4± 0.13 0.16 0.32± 0.02 0.05 0.28± 0.08 0.05 0.23± 0.02
LCWR 0.14 0.03 0.07± 0.04 0.04 0.02± 0.02 0.0 0.04± 0.0 0.0 0.02± 0.02
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A.6 Proof of Theorem 3.3

Proof. We apply Taylor expansion to f(ω(t)) at the point ω(t):

f(ω(t)) = f(ω(0)) +∇T
f(ω0)

hω0t+
1

2

(
hT
ω0
Hf(ω0)hω0 +∇T

f(ω0)
d2ω(0)/dt2

)
t2 + o

(
t2
)
,

where ∇f(ω0) = ∂f(ω)/ ∂ω|ω=ω0
and Hf(ω0) = ∂2f(ω)/ ∂ω∂ωT

∣∣
ω=ω0

. From the definition of
SC , S2

C(ωt, ω0) can be approximated as S2
C(ωt, ω0) = t2hT

ω0
Gω0

hω0
+o

(
t2
)
. Based on l’H^opital’s

rule, the stability measure FI from Equation1 can be rewritten as:

FIω (ω0) = max
hω

hT
ω∇f(ω0)∇T

f(ω0)
hω

hT
ωGω0

hω
.

We then reparameterize ω to ω̃ = G
−1/2
ω0 ω. According to Theorem A.1, the stability measure FI

remains invariant under this reparameterization

FIω(ω0) = FIω̃(ω̃0) = argmax
hω̃

h⊤
ω̃G

−1/2
ω0 ∇f(ω0)∇⊤

f(ω0)
G

−1/2
ω0 hω̃

h⊤
ω̃hω̃

.

The maximization problem is now in the form of a Rayleigh quotient, which attains its maximum
when hω̃ is proportional to G

−1/2
ω0 ∇f(ω0). Substituting back into the Rayleigh quotient, we find:

FIω(ω0) =

(
G

−1/2
ω0 ∇f(ω0)

)T

G
−1/2
ω0 ∇f(ω0)∇T

f(ω0)
G

−1/2
ω0

(
G

−1/2
ω0 ∇f(ω0)

)
(
G

−1/2
ω0 ∇f(ω0)

)T (
G

−1/2
ω0 ∇f(ω0)

)
=

∇T
f(ω0)

G−1
ω0

∇f(ω0)∇T
f(ω0)

G−1
ω0

∇f(ω0)

∇T
f(ω0)

G−1
ω0 ∇f(ω0)

= ∇T
f(ω0)

G−1
ω0

∇f(ω0).

This concludes the proof.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract is self-contained.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed in the conclusion section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide them in the apepndix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have the hyperparameters experiment listed in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data is open-source and we will release the code after accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have them discussed in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have confidence interval listed e.g. Table 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We listed the GPUs and the algorithm complexity analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is not related to negative social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We cited related works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing related.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing related.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Only use LLM for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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