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UC San Diego, CSE

jskirzynski@ucsd.edu

Elena Glassman
Harvard University, SEAS

eglassman@g.harvard.edu

Berk Ustun
UC San Diego, HDSI
berk@ucsd.edu

Abstract

One of the underlying drivers to create interpretable models is that they may help
humans make better decisions. Given an interpretable model, a human decision-
maker may be able to better understand the model’s reasoning and incorporate
its insights into their own decision-making process. Whether this effect occurs
in practice is difficult to validate. It requires accounting for individuals’ prior
beliefs and objectively measuring when reliance on the model goes beyond what is
reasonable given the available information. In this work, we address these chal-
lenges and validate if interpretability improves decision-making. Concretely, we
compare how humans make decisions given a black-box model and an interpretable
model, while controlling for their prior beliefs and rigorously quantifying rational
behavior. Our results show that interpretable models can lead to overreliance and
that the level of overreliance varies across models that we would consider to be
equally interpretable. These findings raise fundamental concerns about current
approaches to AI-assisted decision-making. They suggest that making models trans-
parent is insufficient—and currently counterproductive—for promoting appropriate
reliance.

1 Introduction

Machine learning models are already applied in high-stakes domains. For instance, hundreds of
clinical prediction models are in everyday use by healthcare providers (see, e.g., 300+ scoring systems
on mdcalc.com). These providers decide whether to adopt such models, and then decide how to
incorporate the model’s predictions into their own decision-making about specific clinical cases.

When the model is a black box, it provides no information to help the human decide which predictions
to rely on and which to ignore. Supervising such a model can be a daunting task. To alleviate this
challenge, researchers established the burgeoning field of AI interpretability and explainability [8, 3,
73, 5, 10, 1, 70, 40], aiming to make the model’s logic comprehensible to people. This field spawned
thousands of papers defining interpretability [42, 79, 21] or developing models aimed at achieving it—
either through direct design [73, 70, 57] or through explanation methods that approximate complex
models through simpler ones on a subset of predictions [55, 8, 3, 5, 10, 1, 40].

The common belief is that presenting the logic employed by AI models to users can positively impact
their trust and reliance on these systems. In principle, interpretability should help humans spot model
errors or potentially unsafe model behavior—paving the way to “debug" the model, improve it, stop
it from deployment, or simply better judge when to accept or override its recommendations.

The issue is that we cannot currently tell if making AI interpretable actually helps humans make
better decisions. So far, empirical evidence investigating this topic is mixed. Initial studies found
that interpretability can increase acceptance of AI predictions regardless of correctness, leading to an
effect called “overreliance" [9, 16, 75, 11, 12, 15, 52]. Newer studies demonstrate that interpretability
can also exert a beneficial influence on decision-making [62, 77, 37, 20]. Still others found null
effects [76, 2, 67]. These contradictory findings stem from fundamental challenges in studying
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human-AI interaction that make the results difficult to generalize. These challenges include designing
realistic yet controlled tasks, accounting for participants’ prior beliefs, and objectively measuring
when reliance becomes overreliance.

Addressing these challenges is not trivial. Firstly, our selection of the task may easily affect the
population we should test. For instance, recidivism prediction might require more participants with
sophisticated knowledge, but narrowing down the pool of participants too much may lead to context-
specific results. Secondly, what participants know about the task environment affects their subsequent
decisions, e.g., two doctors making different diagnoses for the same patient based on variations
in their patient record. Thirdly, we need a principled manner of defining when reliance on the
model really means overreliance. For instance, a simplistic definition of overreliance might consider
accepting a prediction from a 99% accurate model as overreliance, just because the prediction turned
out to be incorrect. In reality, however, it is likely a perfectly rational decision.

In this work, we develop a novel experimental framework to tackle these challenges. Our framework
consists of a task and an experimental protocol that enables us to account for a wide range of
potentially confounding factors. We control for factors stemming from interpretability (we use
extremely simple models), individual variation (we elicit prior beliefs), and the task (our task does
not require expertise, can be run online, and resembles decision-making in practice). We also
rigorously quantify overreliance by comparing human behavior to the behavior of a rational agent.
This framework enables us to show that people fall prey to the interpretability trap—the general
tendency to overrely on interpretable models with the degree of overreliance controlled by model
format. Specifically, we find that (1) making blackbox AI models interpretable increases overreliance
and (2) overreliance can change if we change how the model’s logic is represented (!)

Our results suggest that even full understanding of the model’s logic is insufficient to counter
overreliance. To the contrary, our results show that even small perturbations to how the logic is
presented may generate systematic differences in reliance. This is concerning because it means that
building transparent models may not only be insufficient, but also counterproductive for promoting
appropriate reliance on AI. If this is the case, the use of interpretable or explainable models [23] may
have already led to erroneous, unsafe, or unjustified decisions by the humans using these models. For
instance, models on the previously-mentioned website for doctors, i.e., mdcalc.com, are actually all
interpretable in that they are linear combinations of human-understandable features. In the worst
case, this interpretability could have led to a decision violating clinical standards just because the
model used by a doctor used non-integer values instead of integer ones.

Our main contributions include:

1. Designing an experimental framework (Section 2) where we control for interpretability-related,
user-related, and task-related confounding factors; this allows us to isolate the fundamental effects
of interpretability on human behavior.

2. Quantifying overreliance with respect to an agent that models rational behavior (Section 2.1); this
allows us to measure it objectively.

3. Running a batch of experiments that showed people overrely on interpretable models (Section 3.1),
this effect is robust to model accuracy (Section 3.2.1), but changes depending on how the models
are presented (Section 3.2.2),

4. Providing a discussion in Section 4 that points to the need to re-think how we can promote
appropriate reliance.

2 Experimental Design

Our research considers decision support with simple prediction models that people can understand.
The goal is to examine whether, when, and how interpretability affects humans’ reliance on AI models
using carefully controlled experiments. By manipulating the aspects of the decision environment and
the AI model, we strive to disentangle different confounding factors (e.g., strong prior beliefs) and
characterize overreliance in more detail.

Studying overreliance on AI models in an experimental setting is difficult due to several factors:
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C1) People are biased towards information that confirms their beliefs [43, 45, 30, 34, 31]. This
confirmation bias could affect reliance and cause overreliance. However, any experimental study
works with individuals that have prior beliefs. Those beliefs are (initially) unknown.

C2) Overreliance can come from different sources: seeing the model’s logic (explanation bias [25]) or
seeing its predictions [36, 13]. People may also favor AI [32] or exhibit algorithmic aversion to-
wards AI as a construct in general [59]. It is thus necessary to compute the effects of interpretability
and model predictions separately.

C3) People tend to attach to the first information they see [61]. This anchoring bias may cause them to
stick to the AI’s prediction if it is shown first and, possibly, cause overreliance [12].

C4) Deployed models often make predictions in complex environments. Recreating that complexity to
make the task challenging while retaining interpretability is non-trivial.

We address these challenges through a carefully designed robot classification experiment described
in detail in Appendix B. Building on an existing psychological categorization task [69, 68, 18],
participants classify fictional robots as either a “Glorp" or a “Drent" through four stages:

1. Anchoring Stage: We present participants with images of labeled Glorps and Drents in an attempt
to anchor their beliefs to a "mental model" f user—one of a subset of possible linearly separable
mappings from robot features to robot type that is the easiest to spot (C1). The robots differ in
terms of categorical attributes, e.g., BodyShape ∈ {Round,Square}, and are individualized by
spurious features and color (see Fig. 1b)

2. Probing Stage: We elicit a complete specification of participants’ post-anchoring beliefs by asking
them to specify whether each (new) robot example is a Glorp or a Drent. In this way, we confirm
their mental model f user (C1).

3. Model Selection Stage: We present participants with an interpretable classification model f shown

to predict if a robot is a Glorp or a Drent, e.g., Predict Glorp if BodyShape = Round. The
model is chosen to satisfy a given property with respect to the mental model, such as adding N
conditions, removing K conditions, or both. We also select the ground truth f true to ensure that the
mental model f user and the shown model f shown achieve a specific level of true performance (C4).

4. Deployment Stage: We show participants new robots and measure their performance. Participants
see the new robot and categorize it as a Glorp or a Drent without the assistance of a model (C3).
Then, they see the f shown model’s prediction with or without the model prediction logic visible (C2),
and decide whether to accept the predicted robot type as their final decision, override the predicted
robot type with a differnt answer, or abstain from predicting if they are sufficiently uncertain
(see Fig. 1a; C4). These decisions are motivated by rewards and punishments participants may
receive based on their performance. We chose Score Functions as the main model representation,
as they are simple, sparse linear classification models, validated through years of practice in clinical
or judicial decision-making [6, 7, 66, 33, 58].

(a) The interface during the Deployment stage. (b) Subtypes of FootShape.

Figure 1: Left: Participants are asked to determine if a robot is a Glorp or a Drent with the assistance of
predictions from a model f shown. For each robot, people see an image of a robot, the model, its prediction for the
robot, and a summary of their previous decisions and performance. Right: Three robots with the same unique
feature pattern which differ in terms of the subtype.
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2.1 Measuring Inappropriate Reliance

After deployment, we gather four key sequences: robot feature patterns, ground truth robot types,
model predictions, and user decisions. Using these sequences, we quantify user behavior through
four metrics: Reliance (agreement with model; Pr(Accept)), Overreliance (excessive acceptance of
predictions; Pr(Accept | Should not Accept)), Earnings Deviation (performance gap relative to the
rational behavior), and Correctness (decision accuracy; Pr(correct prediction)).

To define inappropriate reliance and the measures above, we first formalize a rational agent’s behavior.
This agent makes decisions based on (1) the stakes in the decision problem (rewards: 5 for correct
override, 1 for correct accept, -3 for mistakes); (2) accumulated knowledge about model performance
and (3) known robot types. The rational agent updates its belief about model accuracy (pt) and
ground-truth robot types based on observed outcomes. It makes decisions that maximize the expected
reward. It selects the ground-truth robot type after encountering a robot with the same set of features
it has seen before. In the case of a new robot, it overrides predictions when pt ≤ 5

8 , skips when
pt ∈ ( 58 ,

3
4 ), and accepts when pt ≥ 3

4 . The measures are formalized using the rational agent’s policy
π as the baseline.

3 Interpretability Does not Lead to Better Decisions

We examined interpretability in a scenario where humans must evaluate model logic that in some
way differs from their understanding. This is a common problem [78, 44, 24, 57, 54, 63] that can
arise e.g. in clinical decision-making [35, 14]. It is common because machine learning models very
often find patterns that experts didn’t anticipate [56, 4, 47, 41, 19, 14]. In cases like these, people
may have prior beliefs about important features and their relationship with the outcome. A model
may include some of these features and respect some of their relationships. Interpretable models
would show people this overlap between their beliefs and the outcome – i.e., given the model, people
would be able to tell if the model is using the patterns they think are important (or not), and whether
it is using them in the right way (or not). This understanding should enable people to evaluate the
model prior and in deployment and better understand when the model makes wrong decisions.

Contrary to this common-sense assumption, however, in Section 3.1 we find that interpretability leads
to overreliance. We call that effect the interpretabiltiy trap. Our analysis reveals that overreliance
is robust to traditional factors we consider in machine learning and Human Computer Interaction
such as accuracy (see Section 3.2.1), and instead changes with factors such as model format (see
Section 3.2.2) that has not been previously controlled. This result is particularly important because
current work focuses on making models more interpretable [57, 8, 3, 73, 5, 10, 1, 70, 40] without
confirming if interpretable models lead to more appropriate reliance and better decision-making.

3.1 Experiment 1: People overrely on interpretable models

In this experiment, we studied how people’s reliance on models changes when interpretability
reveals model uses new prediction patterns. Such models could extend human knowledge and
decision-making capabilities by uncovering patterns that were previously unknown or overlooked
[57, 41, 19, 14]. They could also be wrong and signal overfitting [14, 55].

Setup Our selection of the experimental parameters was aimed at presenting a model that is
sufficiently complex but still trivial enough to be stored in working memory. To do so, we anchored
towards mental model f user with 2 features (see Fig. 5) – BodyShape = Square∧FootShape =
Pointy – and picked f shown that is as similar to f user in terms of a Score Function as possible, but
makes at least 2 different predictions. There was only one linearly separable model meeting these
constraints (see Fig. 2). To model a realistic AI-assisted decision-making scenario, we set the error
of f shown to E = 3 (81% accuracy). The deployment error of both models was set to Ereal = 6
to compute Overreliance reliably, make both models equally usable, and not misrepresent the true
model error too much. We additionally controlled for the distribution of errors given by Ereal by
ensuring that the 6 mistakes arise at the same time for all participants. Our experiment compared two
conditions: the Blackbox E=3 condition, where participants made decisions without seeing the
model, and the Interpretable E=3 condition, where they could additionally see it.
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(a) Blackbox E=3

[No model shown]

(b) f shown in Interpretable E=3

Figure 2: Archetypal examples of participant decisions in different experimental conditions. Yellow glow
indicates points where f shown and f user differed. We can see that when participants did not see the model, they
almost often overrode model’s predictions, most often when it disagreed with their mental model. Once the
model was made interpretable, however, they only overrode initially, making few mistakes, and subsequently
relied on the model even if it was irrational.

Hypothesis Our assumption was that interpretability would lead to more cautious decision-making
and reduce Reliance (H1.1) as well as prevent Overreliance (H1.2). The reasoning was that seeing
the model fail would be more easily attributed to a culprit of a novel predictive pattern, whereas for
blackbox the reasons for failure would be tied to specific robots. Because of this caution, we also
posited that interpretability will lead to higher Correctness (H1.3), due to more correct decisions
early in deployment.

Participants and Procedure We recruited 56 English-speaking participants on Prolific (age 19-73,
avg. 36), requiring them to pass two tests: (1) demonstrate anchoring towards f user during Probing
(max 1 disagreeing prediction) and (2) pass a comprehension check on robot characteristics, model
operation, and score function understanding. We accepted 48 submissions (11% exclusion rate),
including 6 with one non-anchored prediction. Rejections were primarily due to failed comprehension
checks (7) rather than non-anchored models (1). The 35-minute experiment offered $4 base pay plus
performance bonus (avg. $3, max $6). Participants were randomly assigned to one of the mentioned
2 conditions with a task to supervise model f shown knowing its error E = 3. They played the role of
NASA advisors who determined if a model for predicting a particular robot class (a "Glorp") was
correct. Each participant went through the same stages of the experiment.

3.1.1 Results

Our results reveal that interpretability hinders achieving appropriate reliance in a realistic AI-assisted
decision-making scenario. Contrary to our hypotheses, we found that interpretability makes peo-
ple rely significantly more on models with novel prediction patterns (H1.1), up to the point of
Overreliance (H1.2).1 The increased Reliance also lowered Correctness in the task (H1.3). These
effects are shown Fig. 3, and can be also noticed in individual behavior in Fig. 2 (right).

Reliance: reached 75% (Mean = 69%, SD = 16%) for participants in the
Interpretable E=3 condition, but dropped to 58% (Mean = 62%, SD = 15%) for par-
ticipants in the Blackbox E=3 condition (U = 205; p < 0.05).

1In this and further experiments, our variables were not normally distributed and hence we used one-sided
Man-Whitney U-tests and reported condition medians.
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Figure 3: Reliance and Overreliance is significantly higher when seeing
the Interpretable model.

Override Rate: This drop was
mainly driven by more Overrides
in the Blackbox E=3
condition with 25%
(Mean = 25%, SD = 13%),
compared to 17% (Mean =
17%, SD = 10%) for the
Interpretable E=3
condition (U = 401; p < 0.01)

Overreliance: was as high as
25% (Mean = 40%, SD =
44%) for participants in the
Interpretable E=3 con-
dition, but virtually non-existent
at 0% (Mean = 11%, SD = 25%) for participants in the Blackbox E=3 condition (U =
182; p < 0.01)

Correctness: Participants in the Interpretable E=3 condition achieved Correctness of 78%
(Mean = 76%, SD = 16%), roughly matching the model’s accuracy. For Blackbox E=3
condition Correctness reached 85% (Mean = 85%, SD = 8%) which marked a significant increase
(U = 387.5; p < 0.05).

Earnings Deviation: This reduced performance is also seen when comparing the rewards par-
ticipants gathered at the end of the experiment. In the Interpretable E=3 condition the
Earnings Deviation compared to the rational behavior was -9 (Mean = −11.4, SD = 15.9) but it
was merely -2 (Mean = −1.5, SD = 11.3) in the Blackbox E=3 condition (U = 385.5; p <
0.05).

3.2 Post-Hoc: Overreliance on interpretable models can vary but is never eliminated

We performed additional experimentation to corroborate the effect we observed in Experiment 1
and to check what are its main drivers. We found that it appears irrespective of model accuracy, a
traditional measure of trust in Human-Computer Interaction research, but changes with model format
– a factor that was not previously considered. Experiments summarized in this section are described
in more detail in the Appendix.

3.2.1 Experiment 2: Overreliance on interpretable models remains as we vary accuracy

Even when the model has substantially high accuracy or substantially low accuracy, we still observe
overreliance on interpretable models. We repeated our experiment with an addition of 49 participants
in two more conditions: Interpretable E=1 condition, where the model accuracy was 94%,
and Interpretable E=6 condition, where the model accuracy was 63%. In the latter case we
also increased the number of errors on the deployment set Ereal to 9. The error cut-off was based on
the logic that 6/16 = 40% is the highest reasonable error level we would expect from a classifier or
someone’s internal model [72]. Despite different accuracy conveyed to participants, we observed
no positive effect exerted on Overreliance. When the error was low in the Interpretable E=1
condition, Overreliance hit 40% (Mean = 41%, SD = 35%) even though Reliance itself decreased
to compared to what we observed in Experiment 1 and was 65%. This means that participants
experienced a form of an algorithmic aversion and were seemingly let down by the poorer accuracy
of the model compared to the advertised one. Still, that decrease in Reliance did not eliminate
Overreliance. When error was high (in the Interpretable E=6 condition), Reliance once
again roughly matched the model’s accuracy and reached 67%. But like in the former case, partic-
ipant’s Overreliance was as high as 47% (Mean = 54%, SD = 16%), meaning that participant’s
acceptances were misguided.

3.2.2 Experiment 3 and 4: Overreliance on interpretable models changes if we vary format

Surprisingly, models that are traditionally considered "equally interpretable"—those depending on
the same number of features, printable on a sheet, and easy to simulate—can induce different degrees
of Overreliance. While some variation in decisions could be attributed to individual beliefs, overall
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Figure 4: Different representations of the same model f shown and their effect on Reliance and Overreliance.

model transparency, decision-making context, or user’s cognitive resources [38], we would expect
similar behaviors across a random population when these variables are fixed. Contrary to that expecta-
tion, we found that seemingly equivalent interpretable models can induce significantly different levels
of Overreliance. To test this, we presented participants (N=116) with the same underlying model
with 81% accuracy through 3 different representations: Score Function, DNF formula (OR of ANDs),
and Non-integer Score Function (see Fig. 4). We found that participants’ perceived complexity varied
between conditions (26% rated Score Functions as "too complex", compared to 40% for Non-integer
Scores and 46% for DNF) and correlated with behavioral differences:

Reliance: was highest with Score Functions (Mean = 79%, SD = 13%), significantly decreasing
for DNF (Mean = 74%, SD = 11%; U = 878; p < 0.05) and Non-integer Scores (Mean = 71%,
SD = 14%; U = 474.5; p < 0.01)

Overreliance showed even larger differences: Score Functions (Mean = 61%, SD = 38%,
Median = 75%) induced significantly more overreliance than both DNF (Mean = 35%, SD =
39%, Median = 25%; U = 970.5; p < 0.01) and Non-integer Scores (Mean = 37%, SD = 35%,
Median = 50%; U = 445.5; p < 0.01).

4 Discussion

Our findings reveal the existence of an interpretability trap: people’s propensity to overrely on
interpretable models across different accuracy levels and model formats, to an extent as high as 75%.
The controlling factor seems to concern perceived complexity of the interpretable model, rather than
its clarity. We hypothesize that this effect aligns with opponent heuristics theory [29]: people judge
simpler representations (like Score Functions) as having higher prior probability while assigning
higher likelihood to complex ones. This would lead to optimal posterior probability estimates for
moderately complex representations that consequently induce the highest trust and overreliance.
This has concerning implications for AI-assisted decision-making, particularly in critical domains.
There, interpretability trap may lead to accept clearly ill-motivated model predictions (like a medical
diagnosis) simply because the model seemed expertly designed.

This result does not come without limitations. First, our Prolific participants may have had lower
cognitive resources than real-world professionals, and the robot classification task may not have
generated beliefs as strong as domain expertise. Both of these factors could have made following
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the model a default strategy. Second, we didn’t explicitly examine scenarios where users’ mental
models outperform AI and the effect of interpretability could be positive. Still, a realistic scenario
reveals that the interpretability trap may occur. This underscores the importance to develop strategies
that mitigate overreliance while preserving interpretability’s benefits. Such strategies might include
presenting competing models with similar accuracy but different logic, or finding ways to facilitate
learning from the model logic without amplifying biases. We hope that our work lays the groundwork
to explore these areas, and will eventually lead to the development of effective strategies that can
harness interpretability – but avoid the interpretability trap.
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A Related Work

Measuring Reliance and Inappropriate Reliance The most basic way to measure reliance on
AI systems is to calculate the percentage of AI decisions that humans follow. While this provides
a straightforward metric, it doesn’t help us identify cases where the AI’s presence inappropriately
influences human decision-making. Neither does "weight of advice", that is a measure of how much
people adjust their initial estimates toward AI suggestions [60, 52, 39]. This is because weight
of advice only quantifies deviation from one’s original judgment without assessing whether such
adjustments were appropriate.

Surprisingly, however, there seems to be no one established definition of inappropriate reliance, and
most importantly – overreliance, that is the excessive acceptance of the model’s predictions. The
majority of researchers define it as the percentage of incorrect AI decisions that users accept but
would not have made independently [9, 16, 75, 11, 12]. But a recent work by Vasconcelos et al. [62]
considered engaging or not engaging with an explanation as a determinant of overreliance – if users
fail to spot incorrect AI solutions when given explanations, this indicates they overrelied. These are
conceptually different definitions as even effortful consideration of the model’s logic [62] might not
lead to better performance [12] – because of other biases, faulty memory, incorrect beliefs about the
environment, etc. The reason overreliance is treated differently by different authors might partially
explain the discrepancies in the results.

Recently, Guo et al. [22] argued that prior approaches may mischaracterize inappropriate reliance,
since observed behavior might actually be rational given the available information. Their framework
defines reliance only for cases where human and AI predictions disagree, and models the rational
agent as making a binary choice between following either the human or AI prediction based on
which gives higher expected payoff. While this provides a principled way to measure appropriate
reliance in some settings, it has limitations. Most notably, it cannot capture scenarios where neither
the human nor AI prediction is correct and humans exhibit clear overreliance - such as accepting all
AI predictions even when told the AI’s accuracy is very low (e.g., 40%). To alleviate that problem,
we propose altering the rational agent framework to model how the agent with full task information
would behave when given three possible actions: accepting the AI’s prediction, overriding it, or
abstaining from decision. More details about our approach are provided in Section 2.1.

Effects of Interpretability on Reliance A growing body of work concerns defining properties
of “whitebox” models [e.g., scrutinizability, faithfulness 42, 79, 21]), and shows how to create
such models from scratch (see ensemble methods as in [51]) or how to obtain them via post-hoc
transformation of blackbox models (e.g. [71, 46]). An even larger volume of work focuses on
explanations – interpretable models or summaries that approximate blackbox model’s logic on a
subset of predictions (e.g. the popular LIME by Ribeiro et al. [55]). But to date, there is no clear
evidence on whether interpretability calibrates or exacerbates appropriate reliance on AI models.
One of the first papers to study the issue was by Poursabzi-Sangdeh et al. [52] where the authors
found that people are less accurate when using interpretable models and often fail at spotting model
errors. Some additional hints are given by research on explanations but even there, the results are
inconclusive. On one hand, Bansal et al. [9] found that pairing humans with AI and explanations
merely increased the chance AI predictions will get accepted irrespective of their correctness. These
results could mean transparency – and interpretability – inevitably leads to overreliance because
its existence somehow makes people trust the models more, also found in [16, 75, 11, 12]. But
contrary to this claim, a notable work by Vasconcelos et al. [62] showed that overreliance may
be controlled by a cost-benefit user analysis. The authors claim it is possible to see a reduction
in overreliance in situations when studying an explanation is considerably easier than solving the
problem itself. Reduction in overreliance was also seen in [77, 37, 16]. Yet another perspective is
that there is possibly no effect, for instance because long time series of decision-making make people
progressively complacent [76]. Similar null effects were reported in [2, 67].

To make things even less decisive, it is questionable if we eliminated confounding factors and learned
anything about interpretability per se. Firstly, an extensive amount of prior work studied overreliance
on interpretability under the guise of explanations. Participants saw images [62], feature-importance
metrics [9, 12] or examples and prototypes [13, 16]. But as Rudin [57] points out in her seminal
work, the scope and the validity of information conveyed by different explanations might affect or
even mislead participant behavior. Secondly, we echo the design concern of [32] or Vasconcelos
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et al. [62] who point out that most if not all existing work does not offer generalizable conclusions. It
focuses on highly-specialized tasks such as recidivism prediction [64], tasks where participants have
different prior beliefs like apartment-pricing [52], or applied tasks where participants have different
capacities like time to examine the whitebox [28]. Lack of knowledge, strong convictions about one’s
beliefs, or an unmotivated approach might have all affected the final results of the known studies. We
make an attempt to alleviate these issues by controlling for most aspects of the decision problem, as
described in Section 2.

Our results are in line with research on explanations that show they increase overreliance. We go
even further, providing evidence that even simple, transparent models make people overrely. This
result opposes some of the remaining research, however. We believe this is due to how overreliance
was operationalized in those studies (i.e. differently than irrational acceptance, c.f. [62]) and how
the tasks depended on prior knowledge (c.f. [16, 12]) or how the model’s logic was unequivocally
incorrect (c.f. [62]) – contrary to the real-case scenario where things are rarely black-and-white.

Effects of Model Accuracy on Reliance Research consistently shows that model accuracy sig-
nificantly influences how much people rely on AI systems. In a foundational study, Yin et al. [72]
demonstrated that reported model accuracy affects both behavioral reliance (how often people follow
model predictions) and self-reported trust, particularly when accuracy exceeds a minimal threshold
(around 55%). Beyond this seminal work, numerous studies have confirmed that reliance generally
increases with model accuracy, whether measured through behavioral metrics or self-reported trust
[36, 74, 17, 48, 49].

The relationship between accuracy and reliance appears to be moderated by user experience and
feedback, however. People tend to increase their reliance after observing that a model outperforms
their own predictions, but this effect diminishes if the model’s actual performance falls significantly
below its reported accuracy [72]. While some researchers have explored whether model confidence
or explanations might mediate this relationship, evidence suggests that observed accuracy remains
the primary driver of reliance [53], while confidence levels or initial accuracy claims come secondary
[48, 49].

A gap in the knowledge that we fill with out current study is how accuracy influences inappropriate
reliance, especially overreliance, when paired with interpretability. We find that as much as accuracy
remains an important signal for reliance, interpretability does not help in deciding when to rely on
the model, and systematically leads to high overreliance.

Cognitive Biases as Potential Drivers of Reliance Several cognitive biases may confound studies
of human reliance on AI systems. Confirmation bias - the tendency to favor information confirming
existing beliefs - has been well documented in information search and interpretation [43, 45, 30, 34].
In human-AI interaction, this bias could lead participants to more readily accept AI predictions that
align with their preconceptions while rejecting those that don’t, regardless of the AI’s actual reliability.
Thus, the results of prior studies that focused on real-world environments and did not control for
prior beliefs may be compromised [50, 65, 75, 52, 16, 27, 72]. For example, Poursabzi-Sangdeh et al.
[52] found that participants in human-subject studies adhered to both simple and complex models
equally often. This was taken as an indication that individuals don’t necessarily favor simpler models
over complex ones. Yet, it is plausible that the simpler models clashed with the participants’ prior
beliefs, leading to reluctance to follow the more straightforward model. Other studies estimated prior
knowledge for each individual through questionnaires or experimental tasks at the beginning of the
study, and compared subsequent behavior changes to this baseline [65, 75, 16]. When the baseline
is not estimated on an individual-by-individual level, however, this could potentially invalidate the
findings as well. We control for confirmation by using a novel prediction task (robot classification)
where participants have no prior domain expertise or established beliefs.

Anchoring bias - the tendency to rely heavily on the first piece of information encountered - is another
potential confounder [61]. When AI predictions are presented before human judgment, participants
may unduly anchor on these predictions rather than engage in independent reasoning. To mitigate
this, our experimental design requires participants to make their own predictions before seeing the
AI’s recommendations (see Section 2).

Explanation bias - the phenomenon where the act of generating an explanation for a hypothesis
increases its perceived likelihood [25] - is particularly relevant to interpretability and explainability

15



research. When participants see model logic, they might engage in generating their own explanations
of how the model works, increasing their perceived likelihood of these explanations. This could
lead to strengthening reliance if the explanation process sought to confirm one’s beliefs because of
confirmation bias. Previous studies might thus conflate the effects of seeing the model logic with the
effects of trusting own generated explanation for the model logic. In our study, we control for this by
having all participants generate the same hypothesis during the Anchoring phase. We then isolate the
effects of interpretability by comparing the decisions made by participants who saw the model versus
those who did not see it (see Section 2).

Beyond these biases, model complexity itself may confound reliance measurements. Prior work
suggesting mistrust of interpretable AI systems may have been affected by overly complex model pre-
sentations (e.g. [52]). We address this potential confounder by using maximally simple interpretable
models - Score Functions and DNF formulas with at most 4 features and 3 conditions. These models
fully disclose their decision logic while remaining easily comprehensible to non-experts (e.g. see
Fig. 4).

B Experimental Design in Detail

B.1 Robot Classification Task

Robot Features We consider a simple binary classification task where participants label robots as
Glorps or Drents. Our task is adapted from a task proposed by Williams and Lombrozo [69] that
investigated how explaining the differences between categories (Glorps and Drents) affects employing
prior knowledge in the discovery and use of classification patterns.

We define 4 categorical attributes c = (HeadShape, BodyShape, FootShape, HasKnees)
encoded as binary variables x =

(
1[HeadShape = Square], 1[BodyShape =

Square], 1[FootShape = Pointy], 1[HasKnees = True]
)
. This gives us |X | = 24 = 16

feature patterns (see Table 3 in the Appendix). We assume that each pattern specifies a Glorp or a
Drent, Y = {G,D}, deterministically – i.e., all robots with a fixed x are predicted the same y ∈ Y .
We create 96 robots to show to participants by re-using feature patterns and changing the visual
display of the robot. We introduce 6 “subcategories" of FootShape to increase the number of
robots from 16 to 2 × 2 × 2 × 6 = 48 (see Fig. 1b). We then induce multiple color patterns and
effectively increase the number of robots from 48 to 96.

Classification Models Models in our setting are mappings from robot characteristics to robot type,
denoted as f : X → Y . We define the participant mental model f user, the model shown to the
participants f shown, and the true mapping f true. Given that we consider 16 different robots, we have
22

4

= 65, 536 possible functions f . We assume that the mental model f user is linearly separable,
which limits us to 1,886 functions f ∈ F . We chose linearly separable models because they can
be expressed both as a Disjunctive Normal Form formula (shortened DNF; an OR of ANDs of
conditions on features) or a “score function", a simple linear model, e.g. sign(2 ∗ BodyShape =
Square+2 ∗ FootShape = Pointy− 1), and change predictions monotonically with each feature.
The latter means that switching the value of one feature always results in the same effect for the
model prediction. As you can see in Table 1, XOR is an example non-linearly separable function that
does not have a score function representation. Also, changing the value of FootShape to Pointy
may turn a Square BodyShape robot into a Drent, but will turn a Round BodyShape robot into
a Glorp, having a non-monotonic effect for the feature change. We prioritize separable functions
because we believe people more naturally form monotonic beliefs.

Linearly Separable Model (OR) Linearly Inseparable Model (XOR)
DNFs BodyShape = Square BodyShape=Square ∧ FootShape=Flat

∨ ∨
FootShape = Pointy BodyShape=Round ∧ FootShape=Pointy

Score Functions sign(2 ∗ BodyShape = Square +
2 ∗ FootShape = Pointy− 1) –

Table 1: Classification models that are linearly separable (left) and linearly inseparable (right). As shown, the
linearly separable function can be expressed as a score function with integer coefficients
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Features Models

HeadShape BodyShape FootShape HasKnees f user f true f shown

Round Round Flat False u1 y1 ŷ1
Round Round Flat True u2 y2 ŷ2
Round Round Pointy False u3 y3 ŷ3
Round Round Pointy True u4 y4 ŷ4
Round Square Flat False u5 y5 ŷ5
Round Square Flat True u6 y6 ŷ6
Round Square Pointy False u7 y7 ŷ7
Round Square Pointy True u8 y8 ŷ8
Square Round Flat False u9 y9 ŷ9
Square Round Flat True u10 y10 ŷ10
Square Round Pointy False u11 y11 ŷ11
Square Round Pointy True u12 y12 ŷ12
Square Square Flat False u13 y13 ŷ13
Square Square Flat True u14 y14 ŷ14
Square Square Pointy False u15 y15 ŷ15
Square Square Pointy True u16 y16 ŷ16

Table 2: Overview of the feature space and models. We consider 16 robots defined by four binary attributes:
HeadShape, BodyShape, FootShape, HasKnees. Each combination of characteristics (row) maps to a
Glorp or a Drent. We elicit the prior beliefs of a participant by querying the labels for f user. Given f user we
present a model f shown to and evaluate participant reliance through a simulation. We control the error of f user

and f shown by specifying f true as described in Appendix B.2.

B.2 Study Description

Participants go through four stages of the experiment: anchoring (to anchor their beliefs), probing (to
capture their mental model), model selection (to select the ground truth and the shown model), and
deployment (to compute participant’s reliance and correctness on new data). We visualize what the
models’ predictions and the participant’s decisions may be in each of the stages in Table 3.

Anchoring We show participants a subset of robots to anchor their beliefs to a certain model, e.g.
BodyShape = Square ∧ FootShape = Pointy (see Fig. 5). We then require them to correctly
write the model down as a logical rule in DNF. Although the anchoring model is one of many
possible models that classify the subset without error, it uses the fewest conditions. Thus, we expect
participants to notice it first.

Probing During probing, participants specify the labels (Glorp or Drent) of 16 unique feature
patterns represented by different robots (see Fig. 6). We use their responses to specify all 16
predictions for f user. Since we aim to elicit one particular model, we restrict our analyses to
participants who make identical or almost identical (1 incompatible choice) predictions compared to
that one model.

Model Selection In the model selection stage, we use a set of parameters and participant’s responses
from the Probing Stage to specify the predictions of two classification models: f true and f shown.

We chose f shown from a subset of models that are bound to correctly label robots in the anchoring set.
We can restrict that subset according to several input parameters:

• edit distance in the feature space compared to mental model f user (i.e. the minimum number of
conditions to add or remove to transform one model into another)

• minimum number of different predictions on unique robots compared to the mental model f user

• number of conditions in the DNF formula representing f shown

• whether f shown should use the same features as f user or not
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After Anchoring After Probing After Model Selection After 5 Robots in Deployment

f user f true f shown f user f true f shown f user f true f shown f user f true f shown diniti dfinali

G G G G G G G G G G G G
G G G G G G G G G G G G
G G G G G G G G G G G G
D D D D D D D D D D G D
D D D D D D D D D D ⊥ D
D D D D D D D D D D

G G D G G D G
G G D D G D D
G G D G G D G
G G D D G D D
D D G G D G G
D D G D D G D
G G D G G D G
D D G D D G D
D D G G D G G
D D G D D G G

Table 3: The output of models and the participant’s decisions for each robot type at key stages of the experiment.
We use ⊥ to indicate abstention from predicting. Here, f user is the model that outputs the labels specified by
the participant during the probing stage. f true is the ground truth model that outputs the true types of each
robot. f shown is the model that we show the participant in the deployment stage. We choose f true and f shown once
the participant has completed the probing stage and thus specified all of the outputs for f user – so that we can
present the participant with f shown with a desired level of error and disagreement with the participant’s prior
beliefs. dinit and dfinal are the participant’s initial robot labels during deployment, and final robot labels during
deployment, elicited before and after seeing the model prediction, respectively.

Figure 5: Sample interface of the anchoring stage, with the anchoring set of 3 Glorps and 3 Drents that cover 6
feature patterns. The robots are chosen so that all Glorps had Square BodyShape and Pointy FootShape,
but neither of Drents did, the robots used the largest number of distinct features possible, and the set supported
f shown with provided input properties.

Such a restriction allows us to find models that are similar or dissimilar to the mental model f user

using precisely controllable parameters. After applying the restriction, we limit the set of viable
models to K, out of which we select one model randomly.

Given the mental model f user and the shown model f shown, we specify f true so that f shown made e
errors on the 16 unique feature patterns and achieved a desired level of error δ = e/16, and the error
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Figure 6: Experimental interface during the Probing stage. Participants see the anchoring set they know from
the Anchoring stage and an image of a robot. Their task is to specify the robot type by clicking on a button
(Glorp or Drent).

of f user was as close to δ as possible. Formally, f true is the solution to the optimization problem:

min
f∈F

Pr(f user(x) 6= f(x))− Pr(f shown(x) 6= f(x)) (1)

s.t. Pr(f shown(x) 6= f(x)) = δ (2)

Deployment We use the Deployment stage to measure participant’s reliance and other metrics on a
subset of 24 previously unseen robots. The robots are divided into 4 rounds, 6 robots each. For each
robot, the participant is first asked for their prediction, then shown the prediction from f shown, then
asked whether they wish to accept the prediction of f shown, override it, or abstain (skip predicting).

To measure reliance well, we chose deployment robots such that they contain 12 robots where f user

and f shown disagree and 12 robots where they agree. These robots are distributed equally between the
rounds, and positioned randomly within the rounds. We also make sure that the error of the shown
model f shown on the deployment robots is equal to a parameter, and the error of f user is as close to the
error of f shown as possible.

We incentivize participants to respond correctly and thoughtfully by specifying a virtual reward and
time penalty for each response. Specifically, each participant receives:

• $1 if they accept a correct prediction:
• $5 if they override an incorrect prediction
• -$3 if they override a correct prediction + a 10 second time penalty
• $0 if they choose to skip

We designed the interface of the Deployment stage to ensure that participants are informed in a way
that is not overbearing (see Fig. 1a). They are shown the robot, the model, the model’s prediction
with the conditions that are met for the current robot, and a summary of their performance to date.
They also have access to the anchoring set of robots. In addition, participants see a summary of their
performance after each round, both globally and on the last 6 robots. These measures make sure that
participants are provided with as much information as possible to make an informed decision and
understand what their decision entails.

Deployment is also when participants answer a number of survey questions. After model selection
and right before deployment, participants are asked over 20 questions about their understanding of
f shown and its similarity to their mental model f user. This gives us qualitative data on participant’s
perceptions of the model.
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B.3 Measuring Inappropriate Reliance

After deployment, we gather the following data:

• the sequence of robot feature patterns x = (x1, . . . ,x24), where x[i] = xi ∈ X is a 4-tuple of
robot features

• the sequence of ground truth robot types y = (yi, . . . , y24) with y[i] = yi ∈ Y is either G(lorp) or
D(rent)

• the sequence of the shown model’s predictions f = (f shown(x1), . . . , f shown(x24) where again
f [i] = fi = f shown(xi) ∈ Y

• the sequence of user deployment decisions a = (a1, . . . , a24), where ai ∈
{Accept,Override,Skip}

The convention is that by adding superscript t to any of the sequences, e.g. f t, we refer to the
sequence up to point t. By using these sequences we quantify user behavior by computing the
following decision metrics:

• Reliance, which expresses agreement with the model,
• Overreliance, which expresses the tendency to accept model predictions too often,
• Earnings Deviation, which expresses the performance gap between the final reward and the

expected reward
• Correctness, which quantifies overall decision accuracy

To define people’s tendency to perform certain actions excessively, we turn to the approach suggested
by Guo et al. [22], and define the rational agent first. The rational agent formalizes behavior expected
when considering the stakes in the decision problem and the learned information.

B.3.1 Rational Agent

Intuitively, the rational agent should make decisions invariant to robot color and robot subtype (visual
features introduced to increase the number of different robots for the experiment) and try to maximize
its reward. To do so, the agent needs to recognize each robot on the basis of its unique feature pattern
x (see Table 2). It also needs to keep a tally of known true labels of the patterns it has uncovered and
prioritize actions specifying the ground truth label of the robot beginning from the second encounter
onwards. For robots whose ground truth label is unknown, the agent should make decision based on
the expected reward.

To properly define the rational agent as specified above we need to introduce the concept of states,
actions and rewards. States represent all information available to the agent when making a decision in
round t: current robot, model prediction and historical data. Formally, using the superscript notation
we set s ∈ S = (x, f shown(x), (xt,f t,yt)). Actions in this understanding are simply decisions
regarding each robot: a ∈ A = {Accept,Override,Skip}. The reward for action a in state s is
finally given by the incentives specified in the experiment. The numbers were chosen to incentivize
overriding:

r(a, s) =


0 if a = Skip
1 if a = Accept and f true(x) = f shown(x)

5 if a = Override and f true(x) 6= f shown(x)

−3 otherwise

(3)

To simplify the notation, let us denote the reward under correct and incorrect model prediction as

rT (a, s) := r(a, s | f shown(x) = f true(x)) (shown model is correct)

rF (a, s) := r(a, s | f shown(x) 6= f true(x)) (shown model incorrect)

The expected reward is the probability the model is correct or incorrect times the reward associated
with each outcome. However since the agent accumulates knowledge, the said probability changes.
We will refer to it as the expected accuracy in round t, pt. To define pt, we need to note the predictions
that the algorithm got right and wrong so far. Initially, participants are told the accuracy of the model
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is δ and that means it correctly labeled R out of N robots they have seen during the Probing stage.
With that prior knowledge, pt is an update to these numbers:

pt = Pr(f shown(x) = f true(x) | (xt,f t,yt)) =

=


0 if ∃i : x = x[i] ∧ f [i] 6= y[i]

1 if ∃i : x = x[i] ∧ f [i] = y[i]
R+|{i∈[t]:f shown(xi)=yi}|

t+N otherwise

Finally, we define the rational agent through its decision-making policy π : S → A. π(st) is the
action that maximizes the expected reward:

π(st) ∈ argmax
a∈A

E [r(a, s)]

= Pr(f shown = f true | (xt,f t,yt)) · rT (a, s)
+ (1− Pr(f shown = f true | (xt,f t,yt))) · rF (a, s))

= pt · rT (a, s) + (1− pt) · rF (a, s)
= pt · (rT (a, s)− rF (a, s)) + rF (a, s)

According to the rewards we set in the Deployment stage, the incentives for each action at time t are

• Accept : 4pt − 3

• Override : 5− 8pt,
• Skip : 0.

Thus, the agent is incentivized to Override for pt ≤ 5
8 , it is incentivized to Skip when pt ∈ ( 58 ,

3
4 ),

and it favors Accept when pt ≥ 3
4 . For example, if the model’s initial accuracy is 50%, the agent

would be incentivized to Override in the first round and subsequent rounds (when seeing new unique
robots), until realizing the model’s accuracy may actually be at least 62.5%. The agent would keep
skipping whenever the model’s accuracy was said to be between 62.5% and 75%, and accepting when
the accuracy was above 75%.

The rational agent becomes an oracle agent – i.e., an agent enacting the ground truth – after observing
labels of all 16 unique labels. We denote the policy of the oracle agent as π∗.

B.3.2 Metrics Formalization

Having the rational’s agent policy π we define overrreliance as the proportion of irrational Accepts,
i.e. Accepts among all cases when the agent would Override or Abstain. Reliance remains the Accept
rate. All the metrics are defined in round t:

Reliance(at) = Pr(Accept) = (4)

= 1
t |{i ∈ [t] : ai = Accept}|

Overreliance(at, st) = Pr(Accept | Should not Accept) = (5)

= |{i∈[t]: Accept=ai 6=π(si)}|
|{i∈[t]: π(si)6=Accept}|

We quantify the cost of irrational behavior in terms of correctness, and the change in the earnings.
We measure the relative loss in earnings with respect to an agent with policy π as:

Earnings Deviation(at, st) = et(at)− et(π(st)) (6)
Here et+1(a) = max(0, et + r(a, s)) denotes cumulative earnings in round t+ 1 based on action a
in state s and e0(a) = 0. Correctness(π, st) is the proportion of correct predictions over all decisions
other than abstention (skipping). We can formalize it using the oracle agent’s policy π∗ that sets the
ground truth action in each step:

Correctness(at, st) = Pr(correct prediction) = (7)

= |{i∈[t]: ai=π∗(si)}|
|{i∈[t]: ai 6=Abstain|

We omit the arguments in our measures to indicate they are computed over all 24 deployment robots.
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B.4 Screens

Participants were randomly assigned to one of the conditions, and consequently the shown model
f shown, and shown model error E. In each condition, participants played the role of NASA advisors
who determined if a model for predicting a particular robot class ("Glorp" instead of "Drent") was
correct. Each participant saw the same set of screens in the following order:

1. Consent screen,
2. (Anchoring stage) General info screen,
3. (Anchoring stage) Robot instructions screen explaining robot features and introducing the NASA

setup,
4. (Anchoring stage) Attention quiz (max 3 attempts) about robot features where participants needed

to choose feature values being shown a sample robot,
5. (Anchoring stage) Anchoring screen with the anchoring set participants would have access to for

the remainder of the study
6. (Anchoring stage) Instructions on what logical conjunctions are (called prediction patterns) and

how they can predict Glorps
7. (Anchoring stage) Quiz of understanding prediction patterns
8. (Anchoring stage) Anchoring screen with the anchoring set; participants needed to explicitly state
f user by choosing features, values, and logical connections between the feature-value pairs to create
"their rule for deciding when a robot is a Glorp"

9. (Probing stage) A series of 24 robot images for which participants were asked to use the rule they
developed in the Anchoring stage by labeling robots as either "Glorps" or "Drents"

10. (Probing stage) Probing summary screen, where participants could move images robots around to
finalize their division into "Glorps" and "Drents"

11. (Probing stage) Probing finale screen informing that participants got over half of the labels correctly
or not (for participants who were rejected due to incorrect labeling)

12. (Deployment stage) Three rule instructions screens that explained the premise of classification
models and introduced score functions

13. (Deployment stage) Comprehension quiz (max 3 attempts) that asked participants to apply score
functions to robots and create a score function for f user (by copying the format of another score
function)

14. (Deployment stage) Model selection screen that showed participants the rule developed by NASA
they would supervise – f shown – and its accuracy 1− E

15. (Deployment stage) Questionnaire page with a list of 30 multiple-choice questions on model
understanding, its complexity, perceived similarity to f user, etc.

16. (Deployment stage) Two model questionnaires that asked about participants’ attitudes towards the
model

17. (Deployment stage) Three deployment instructions screens that explained the deployment stage
and the reward structure; each participant started with $5 virtual dollars and received $1 for correct
acceptance, $5 for correct override or lost $3 for taking an incorrect action other than abstention

18. (Deployment stage) A series of 24 deployment screens that asked participants to predict robot type
and then decide whether to Accept, Override or Abstain from prediction

19. (Deployment stage) Deployment summaries with the number of Accepts, Overrides and Abstains
as well as correct and incorrect decisions and rewards every 6 robots

20. (Deployment stage) Questionnaires about participant’s changing attitude towards the model every
6 robots

21. (Deployment stage) Questionnaire on risk aversion taken from [26] where participants were
choosing between bets

22. (Deployment stage) Questionnaire that asked about participants’ attitude towards f user, if not
previously completed

23. Reward and thank you screen
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C IRB Approval

This research was conducted under the exemption of the Institutional Review Board at University
of California, San Diego, Protocol #806253, granted on 02, Feb, 2023. All participants provided
informed consent before participating in the study.

D Experiment 2: Overreliance on interpretable models remains even as we
vary model accuracy

The experiment was identical to Experiment 1 but for the fact that Ereal = 9 when E = 6 to better
match the model real accuracy during deployment. We recruited 63 participants (23-26 per condition,
age 18-66, English speaking) and accepted 49 submissions (22% exclusion rate). Among the excluded
participants, 4 failed comprehension checks (6%) and 10 were not anchored to the mental model
f user (16%). We also accepted 4 participants (6%) whose decision during the Probing stage made
1 prediction that disagreed with the planned f user. The experiment lasted an average of 39 minutes.
Participants were given a base pay of $4 and a performance bonus of up to $6. On average participants
received a bonus of $3.

E Experiment 3 and 4: Overreliance on interpretable models changes if we
vary model format

Firstly, we strategically compared two highly interpretable representations: Score Functions and
DNF formulas, asking whether there are differences in reliance and overreliance when the same
model is represented in two different interpretable formats. We chose Score Functions as they
are simple, sparse linear classification models, validated though years of practice in clinical or judicial
decision-making [6, 7, 66, 33]. We chose DNF formulas, as they are logical alternatives of prediction
patterns that, arguably, offer the most straightforward representation of the model logic due to their
most reduced, atomic form. We hypothesized that irrespective of the high model interpretability, we
would observe differences in Reliance and Overreliance. The reasoning was that participants seeing
the Score Function would focus more on how single features validate their mental model, leading to
higher acceptance. In contrast, participants seeing the DNF would understand the differences better,
making them more cautious.

E.1 Experiment 3: Overreliance can vary with different model representations

E.1.1 Setup

We strove to make f shown as complex as possible to maximize the differences between the two tested
representations. This would enable us to more easily extract the effect of model representation. To do
this, but still maintain intelligibility, we picked f user as the 2-feature model and set S = 3 to have 3
terms in the DNF. We also wanted to maximize Alignment Distance D, and found that the upper limit
is 6 for DNFs. We also selected disagreement of at least δ = 4 compared to the mental model f user.
This procedure limited the set of models to 2, out of which we selected one model randomly:

BodyShape = Square ∧ HeadShape = Round ∧ HasKnees = False
∨
FootShape = Pointy ∧ HasKnees = False
∨
BodyShape = Square ∧ FootShape = Pointy ∧ HeadShape = Round

To consider a representative case in terms of model performance, we focused on E = 3/16 and
Ereal = 6/24, to be able to compute Overreliance reliably. Importantly, the deployment error of f user

was equal to the value of Ereal, allowing us to reduce the effect of one of the models being superior.
We also needed to control an additional source of variation, namely the distribution of errors given by
Ereal. To that end, we ensured that the 6 mistakes arise at the same time. We named our conditions
DNF Complex and Score Complex.

Hypothesis We hypothesized that the Score Function representation would elicit higher Reliance
and Overreliance compared to the DNF representation. This hypothesis was based on two premises.
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Firstly, we assumed that participants would perceive the Score Function as more similar to their own
mental model, leading to increased trust and reliance. Secondly, we assumed that participants would
focus more on the prediction patterns in the DNF and that will enable them to make more informed
decisions.

H3.1: Score Function representation elicits higher Reliance on the tested interpretable model
compared to the DNF representation

H3.2: Score Function representation elicits higher Overreliance on the tested interpretable model
compared to the DNF representation

Procedure Participants were randomly assigned to one of the 2 conditions: DNF Complex,
where they’ve seen the model as a DNF formula, and Score Complex, where they’ve seen it as
a Score Function. In both conditions, participants were asked to supervise model f shown knowing
its error E = e. They played the role of NASA advisors who determined if a model for predicting a
particular robot class (a "Glorp") was correct. Each participant went through the Anchoring, Probing,
Model Selection, and Deployment stages as described previously, and saw the same set of screens
(see more details in the Appendix).

Participants We recruited 112 participants on Prolific (56 participants per condition, age 18-70,
avg. 35, English speaking) among which we eventually accepted 76 submissions (exclusion rate
32%). Our acceptance criteria required participants to pass 2 tests as in Experiment 1. In the second
comprehension check we additionally required participants to pass a quiz on prediction patterns,
(logical conjunctions).

Although the exclusion rate is high, most of it was driven by participants whose prior beliefs we
couldn’t control, i.e. 16 participants (14%) used a model different than the anchored one during the
Probing stage. The remaining 20 participants (18%) were excluded because they failed to pass a
comprehension check on understanding the robot characteristics, prediction patterns (or terms) in
the DNF, and the ability to simulate simple model predictions. Among the accepted participants, 9
participants (8%) made 1 prediction that disagreed with the anchored f user during the Probing stage
and who were accepted nevertheless. The experiment lasted an average of 43 minutes. Participants
were given a base pay of $6 and a performance bonus of up to $6. On average participants received a
bonus of $3.

E.1.2 Results

Generally, we found that participants in the DNF Complex condition had lower Reliance and
Overreliance than their counterparts in the Score Complex condition (see Fig. 4).2 This led
to higher Correctness and better Earnings Deviation. Our analysis on the main mechanism of this
change was inconclusive, however: it was either a better grasp of the model logic or dismissing the
model logic whatsoever the DNF Complex condition. We tackled this problem in Experiment 2

On Decisions Our results supported both hypotheses H1.1 and H1.2 regarding Reliance and
Overreliance. We found that seeing the model as a DNF reduces both measures.

• Reliance reached 79% (Mean = 79%, SD = 13%) for participants in the Score Complex
condition, but dropped to 71% (Mean = 74%, SD = 11%) for participants in the
DNF Complex condition (U = 878; p < 0.05)

• Overreliance was as high as 75% (Mean = 61%, SD = 38%) for participants in the
Score Complex condition, but only 25% (Mean = 35%, SD = 39%) for participants in
the DNF Complex condition (U = 970.5; p < 0.01)

Interestingly, we observed more Overrides in the DNF Complex condition at 17% (Mean =
18%, SD = 10%), compared to 12% (Mean = 14%, SD = 12%) for the Score Complex
condition (U = 511.5; p < 0.05). These results suggest that the difference between the participants
in both conditions is making fewer accepts at the cost of more overrides.

2In this and further experiments, our variables were not normally distributed and hence we used one-sided
Man-Whitney U-tests and reported condition medians.
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On Correctness and Earnings While not statistically significant (p = 0.06), we observed
a trend towards higher Correctness in the DNF Complex condition (81% against 74% for
Score Complex condition). This trend, combined with the previous results, indicates that partici-
pants in the Score Complex condition erroneously relied on the model when it was incorrect.

We also found significantly lower Earnings Deviation = −26 in the Score Complex con-
dition (Mean = −18.7, SD = 11.7) compared to the DNF Complex condition with
Earnings Deviation = −9 (Mean = −10.8, SD = 14), U = 458.5; p < 0.01. These sizeable
differences indicate that the mistakes made by participants in the Score Complex condition were
more costly, meaning they did not only pertain to incorrect acceptances but also incorrect overrides,
indicating reduced ability to reason about model and own errors.

On In-depth Analysis Participants’ perceptions of the models revealed interesting insights:

• 46% of participants in the DNF Complex condition found the model too complex, compared to
26% in the Score Complex condition.

• DNF Complex condition participants reported higher confidence in their decisions, despite
perceiving the model as more complex (75% to 60%).

• Contrary to our expectations, perceived similarity to participants’ own mental models was equiva-
lent between conditions (35% found the models similar or identical).

This led us to investigate the reasons for the differences in Overreliance in both conditions as we
hypothesized complexity might have discouraged participants from using the DNF representation.
Our post-hoc analysis revealed distinct patterns in how participants adapted to observed model
errors across conditions. After excluding approximately 10% of participants who exhibited perfect
performance (suggesting they developed their own prediction strategies), we found significant
differences in error adaptation between conditions.

Firstly, we found that our Overreliance measures focused on four specific robots during deployment:
Robots 14 and 16, that both followed the prediction pattern HasKnees = False ∧ FootShape =
Pointy. This pattern caused f shown to make 2 erroneous predictions and 1 correct prediction on 3
different robots. Then it appeared 4 more times during deployment, repeating Robots 14 and 16. The
last of these 3 partially-correct predictions was also the cut-off point when the rational agent had
gathered sufficient information to avoid making mistakes on this pattern. What happens if participants
see the model logic however and presumably, incorporate it to reason about the correctness of
the predictions? Participants in the Score Complex condition showed a concerning behavior:
their performance after the cut-off point actually deteriorated. Specifically, participants in the
Score Complex condition, having observed enough errors on robots with HasKnees = False∧
FootShape = Pointy, went from 67% incorrectness (3 accepts where 2 were incorrect and 1 was
correct) to 100% (4 incorrect accepts) – the change was −33%(Mean = −9%). Participants in the
DNF Complex condition, while showing no significant improvement (Median = 0%,Mean =
17%), avoided this deterioration (U = 352, p < 0.05). They went from 67% incorrectness to around
50% incorrectness. This means that they made 2 correct predictions among the 4 robots where
we computed Overreliance. This is what happened for an average participant. When it comes to
individual participants, analysis of error adaptation approaches (see Fig. 7) revealed two dominant
strategies across conditions: no improvement or complete adaptation. While most participants in the
Score Complex condition showed no improvement, the majority in DNF Complex condition
achieved perfect adaptation. Some participants did exhibit intermediate learning patterns, though
these were less common. This can be found in Fig. 7.

A closer examination of these cases provided further insights into adaptation patterns. For Robot 14,
participants in the DNF Complex condition showed substantial improvement, reducing incorrect
predictions by 50% (i.e. still made 1 wrong prediction after seeing the error, mirroring the finding
about the overall incorrectness). Robot 16 showed a similar but weaker pattern, likely due to the
earlier occurrence of model errors for this robot affecting learning. Among participants who did
adapt their behavior in the DNF Complex condition, the adaptation was notably strong (100% drop
in incorrectness for Robot 16, 50% for Robot 14), suggesting that when participants chose to modify
their strategy, they did so decisively.

25



Figure 7: Histogram of participant incorrectness after observing enough model errors to start making informed
overrides. The majority of the participants in the DNF Complex showed complete adaptation, and maximally
improved their correctness. On the other hand, participants in the Noninteger Complex condition showed
learning patterns, with the least learning curve observed for participants in the DNF Complex condition, who
predominantly showed no improvement in correctness whatsoever.

E.1.3 Discussion

Our results revealed significant differences in Reliance and Overreliance for participants what saw
a model represented as a DNF formula versus participants who saw it as a Score Function. Most
strikingly, after seeing model errors, participants showed markedly different adaptation strategies.
While participants in the Score Complex condition consistently maintained their initial accep-
tance strategy even after seeing model errors, participants in the DNF Complex condition split
more visibly: the majority achieved perfect adaptation, while some showed no improvement. This
distribution suggests two possible mechanisms.

First, the DNF representation might better expose prediction patterns and their failures, helping users
track when specific patterns lead to errors. This would align with our initial hypothesis about DNF
making model logic more accessible. However, a second possibility is that the DNF’s perceived
complexity (reported by 46% of the participants) encouraged some users to disengage from model
logic entirely and focus on learning from individual robot cases. Both mechanisms could explain
why most DNF users adapted perfectly after seeing errors while Score Function users maintained
their reliance on the model. We examined which mechanism is more likely in Experiment 4.

E.2 Experiment 4: Overreliance can vary within the same model representation

The results from Experiment 3 raised an important question: was the reduction in Overreliance with
DNF representation due to better understanding of the model logic, or did the representation’s
complexity simply discourage participants from engaging with the model? To investigate this,
we designed an experiment comparing Integer and Non-integer Score Functions. This modification
allowed us to increase model complexity while maintaining the same basic representation format,
providing insight into whether complexity alone could drive changes in reliance.
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E.2.1 Setup

We chose the exact set of parameters as in Experiment 3. To obtain non-integer coefficients of f shown,
we added random ri ∈ [0, 1] to each integer coefficient ci of the original model (see the resulting
model in Fig. 4). The procedure followed the steps from Experiment 3. We refer to the new condition
as Noninteger Complex

Hypothesis Contrary to our initial assumption in Experiment 3, this time we assumed that it is
complexity that plays the main role role in decreasing Overreliance and Reliance. We changed our
belief because making participants dismiss the model’s logic due to complexity was a simpler solution
knowing that almost half of the participants in Stage 1 reported the model as too complex. Hence,
we assumed that Reliance and Overreliance would decrease for participants seeing the complex,
Non-integer Score Function compared to participants seeing the Integer Score Function.

H4.1: Non-integer Score Function representation elicits lower Reliance on the tested interpretable
model compared to the Integer Score Function representation

H4.2: Non-integer Score Function representation elicits lower Overreliance on the tested inter-
pretable model compared to the Integer Score Function representation

Participants We recruited an additional of 67 participants (age 19-55, avg. 36, English speaking)
and accepted 40 out of them (40% rejection rate), including 10 participants (15%) with 1 prediction
incompatible with the anchored model. For excluded participants, again, only 12 failed the compre-
hension check (18%) whereas 15 (22%) displayed non-anchored beliefs. The experiment lasted an
average of 39 minutes, and paid $6 with an average bonus of $3.

E.2.2 Results

We found evidence in favor of our hypotheses. We also found more qualitative data corroborating
that complexity of the model makes participants disregard model’s logic, and move to analyzing data
on a case-by-case basis.

On Decisions The comparison between Integer and Non-Integer Score Functions largely replicated
the results from Experiment 3:

• Reliance was 79% (Mean = 79%, SD = 13%) in the Score Complex condition, but in
dropped to 71% (Mean = 71%, SD = 14%) in the Noninteger Complex condition (U =
474.5; p < 0.01)

• Overreliance reached a very high 75% (Mean = 61%, SD = 38%) in the Score Complex
condition, but was reduced to 50% (Mean = 37%, SD = 35%) in the Noninteger Complex
condition (U = 445.5; p < 0.01)

We found no other significant differences in any reliance-oriented metric, although there was more
variance in the responses.

On Correctness and Earnings While we only found marginally significant differences in
Correctness between the conditions (p = 0.08), we did observe a significant difference in
Earnings Deviation, where participants in the Score Complex condition earned 26 points
less than the rational agent (Mean = −18, SD = 11.6), while participants in the
Noninteger Complex condition earned 16 points less (Mean = −13, SD = 12.2), U =
932; p < 0.01. This pattern mirrors the findings from Experiment 1.

On Differences with DNF According to our hypothesized cause that governs changes in Reliance
– perceived complexity – we found no significant differences between the DNF and Non-integer Score
Function representations.

On In-depth Analysis Our post-hoc analysis yielded similar adaptation strategies to those found
in Experiment 3. Participants in the Noninteger Complex condition demonstrated significantly
better adaptation to error but only by not deteriorating their performance. The improvement on
individual robots was comparable (50% drop in incorrectness for Robot 14). However, we observed
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a subtle shift in adaptation strategies: while the DNF Complex condition showed a strong split
between full adapters and non-adapters, the Noninteger Complex condition had more partici-
pants showing no adaptation and a larger group exhibiting gradual learning (see Fig. 7). Participants’
responses also revealed that they found the model complex, with 40% reporting they thought it was
too complex, only 6% less than in the DNF Complex condition.

E.2.3 Discussion

The results of Experiment 4 aligned with our hypothesis that perceived model complexity may cause
a drop in Reliance and Overreliance. The results of the Noninteger Complex condition were
not statistically different from the results of the DNF Complex condition. By and large, neither
were the error-adaptation strategies. However, fewer participants claiming the model is too complex
in the Non-integer case caused slight differences in the distribution of adaptation behavior. In total,
these results suggest that it is the perceived complexity that promotes disengaging from the model
and using single predictions to guide decision-making.
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