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Abstract

Recent advances in generative models trained on large-scale datasets have enabled
high-quality 3D synthesis across various domains. However, these models also
raise critical privacy concerns. Unlike 2D image synthesis, where risks typically
involve the leakage of visual features or identifiable patterns, 3D generation intro-
duces additional challenges, as reconstructed shapes, textures, and spatial structures
may inadvertently expose proprietary designs, biometric data, or other sensitive
geometric information. This paper presents the first exploration of machine un-
learning in 3D generation tasks. We investigate different unlearning objectives,
including re-targeting and partial unlearning, and propose a novel framework that
does not require full supervision of the unlearning target. To enable a more efficient
unlearning process, we introduce a skip-acceleration mechanism, which leverages
the similarity between multi-view generated images to bypass redundant com-
putations. By establishing coherence across viewpoints during acceleration, our
framework not only reduces computation but also enhances unlearning effective-
ness, outperforming the non-accelerated baseline in both accuracy and efficiency.
We conduct extensive experiments on the typical 3D generation models (Zero123
and Zero123XL), demonstrating that our approach achieves a 30% speedup, while
effectively unlearning target concepts without compromising generation quality.
Our framework provides a scalable and practical solution for privacy-preserving
3D generation, ensuring responsible AI deployment in real-world applications.
The code is available at: https://github.com/sxxsxw/Fast-3D-Unlearn-with-Skip-
acceleration

1 Introduction

The ability to generate realistic and diverse 3D content is crucial for applications in gaming, film
production, virtual reality, and digital design, where high-quality 3D assets are in high demand. To
address this need, 3D generation models Wang et al. [2025], Nash et al. [2020], Raj et al. [2023] have
become a key research focus in computer vision and graphics, aiming to automate the creation of
detailed and structured 3D representations.

Despite significant advancements, 3D generation also introduces pressing privacy concerns. Many
models, particularly large-scale 3D generative foundation models Liu et al. [2023a], Tang et al.
[2024], are trained on extensive datasets, increasing the risk of incorporating proprietary, sensitive, or
personally identifiable information. This can lead to potential data leakage or unauthorized content
reproduction. Additionally, generative 3D models may inadvertently expose intricate details of objects,
raising ethical and legal challenges. Addressing these privacy risks is critical for the responsible
development and deployment of 3D generation technologies, yet it remains an underexplored issue.
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Figure 1: Given a single input image, the target Image-to-3D model generates a multi-view repre-
sentation of the object. Our proposed framework applies an unlearning process to the target model,
enabling tasks such as stylization removal, partial unlearning, and retargeting.

Over the past few years, the community has increasingly recognized the importance of ensuring
trust and safety in modern generative models. In particular, there is growing interest in developing
efficient unlearning methods to remove private or sensitive information from trained models. Given
the high cost of retraining large-scale generative models, machine unlearning aims to selectively erase
the influence of specific data without requiring full model retraining. Recently, Seo et al. Seo et al.
[2024] introduced GUIDE, a framework designed to prevent the reconstruction of a specific identity
by unlearning the generator using only a single image. Their approach demonstrates the effectiveness
of generative machine unlearning, highlighting the feasibility of targeted knowledge removal.

Despite recent advancements in machine unlearning for image generation, little to no work has
explored its application in 3D generation. We argue that trust and safety concerns in 3D generation
are just as critical, yet they introduce unique challenges compared to 2D generation. First, since
3D generation involves multi-view image outputs, correcting or modifying specific targets requires
consistency across all viewpoints, significantly increasing annotation complexity. Second, unlearning
must be applied to each generated view, making the process computationally expensive and time-
consuming. These challenges highlight the need for efficient and scalable unlearning techniques
tailored to 3D generation.

In this work, we propose the first 3D unlearning framework, targeting zero-shot image-to-3D view
synthesis models. These large-scale models, trained on vast datasets, pose increased privacy risks.
Our goal is to unlearn a specific object while preserving the generation performance for other objects.
To achieve this, we leverage the inherent similarity between different viewpoints, reconstructing
unseen views using only the nearest few. Additionally, we introduce an efficient caching mechanism
for the diffusion process of key views, significantly accelerating the denoising process for the input
object. The unlearning tasks in 3D include changing the style, retargeting to a completely new object,
or partially editing the given object. We demonstrate several cases solved by our framework in Fig. 1.

In conclusion, for machine unlearning in 3D tasks, our contributions could be concluded as:

• First, we pioneer the exploration of unlearning in image-to-3D models, addressing the
removal of entire objects, specific views, and the style of 3D objects.

• Second, we propose an accelerated unlearning process for image-to-3D models, demonstrat-
ing that full supervision with all target object views is unnecessary, making our approach
more practical for real-world applications.

• Lastly, we conduct various unlearning experiments in 3D tasks, and our methods maintain
the generative quality while achieving 30% speedup.

2 Related Work

2.1 3D Generative Models and Acceleration Techniques

In the past few years, 3D generation has gained significant attention, whose methods including point
clouds Bello et al. [2020], Wu et al. [2019], Achlioptas et al. [2018], voxels Liu et al. [2020], Ren
et al. [2024], meshes Tsalicoglou et al. [2024], Guédon and Lepetit [2024], Wu et al. [2024a], and
implicit fields Sun et al. [2024], Deng et al. [2021]. However, these methods often lack generalization,
as they are typically designed for generating specific categories. To overcome this limitation, many
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researchers have focused on large-scale 3D generation frameworks trained on extensive 3D datasets.
Specifically, a line of research aims to directly learn single-shot novel view generation models
conditioned on camera viewpoints from large-scale 3D datasets. For example, Zero123 Liu et al.
[2023a] is proposed as a framework for changing the camera viewpoint of an object given just a
single RGB image. Following this work, Objaverse-XL Deitke et al. [2023] utilizes over 100 million
multiview rendered images for training, thus achieving strong zero-shot generalization abilities.
Magic123 Qian et al. [2023] is presented as a two-stage coarse-to-fine approach for high-quality,
textured 3D meshes generations with both 2D and 3D priors.

Generative tasks often rely on diffusion models, which involve computationally intensive sampling
processes. As a result, recent research has focused on accelerating the generation process Ma et al.
[2024], Huang et al. [2025], Yao et al. [2025], So et al. [2023]. For example, Ma et al. Ma et al. [2024]
propose the DeepCache framework as a novel training-free paradigm to accelerate diffusion models
from the perspective of model architecture. And S2-DMs Wang and Li [2024] utilizes the accelerating
mechanism to reintegrate the information omitted during the selective sampling phase. This challenge
is even more pronounced in 3D generation, where optimization typically requires tens of thousands of
iterations of full-image volume rendering and prior model inferences, often taking tens of minutes per
shape. To improve efficiency, numerous studies Liu et al. [2023b], Shi et al. [2023], Liu et al. [2023c],
Li et al. [2023], Liu et al. [2024a] have explored ways to accelerate both training and reconstruction.
For instance, One-2-3-45 Liu et al. [2023b] utilizes multi-view images predicted by Zero123 to
generate a textured 3D mesh in just 45 seconds, while One-2-3-45++ Liu et al. [2023c] enhances
texture quality through lightweight optimization. In contrast to these acceleration-focused methods,
our framework is designed for unlearning, aiming to efficiently remove the influence of specific views
or concepts.

2.2 Machine Unlearning

The concept of machine unlearning is firstly introduced by Bourtoule et al. Bourtoule et al. [2021],
which aims to eliminate the effect of data point(s) on the already trained model without retraining
the model from scratch. In the past few years, it has been well studied especially in classification
tasks Tarun et al. [2023], Ye et al. [2022], Kurmanji et al. [2023]. However, these approaches face
scalability challenges in generative tasks due to the massive training datasets and the large model
sizes involved.

Since large-scale models are trained on extensive datasets, they often raise privacy concerns, prompt-
ing increasing research efforts to address these issues Liu et al. [2025], Shi et al. [2024], Li et al.
[2025], Liu et al. [2024b]. For instance, Liu et al.Liu et al. [2025] investigate machine unlearning in
large language models (LLMs), aiming to remove sensitive or illegal information while preserving
essential knowledge and model capabilities. In diffusion models, Wu et al.Wu et al. [2024b] propose
aligning the output domains of sensitive and anchor concepts through adversarial training, while
meta-unlearning Gao et al. [2024] not only removes harmful or copyrighted concepts but also pre-
vents their malicious relearning. Additionally, Score Forgetting Distillation (SFD) Chen et al. [2024]
accelerates forgetting while preserving generation quality and improving inference speed. Our work
further enriches this field by being the first to explore unlearning in 3D generation, extending the
scope of machine unlearning to address ethical concerns in generative AI.

3 Methods

3.1 Problem Formulation

Our target model is a zero-shot image-to-3D view synthesis model f , which generates multi-view 3D
representations from a single image. Recall that in the 2D setting, unlearning aims to remove specific
objects or attributes from a pre-trained generative model while preserving its ability to generate other
realistic images. Given a diffusion-based generative model f , which generates images from noise z,
such unlearning modifies the model to ensure that a target object It is removed while maintaining
overall generation quality:

x̃ = fu(z, ϕ), s.t. x̃ ̸≈ It, (1)

where fu represents the unlearned model for the target object. The main challenge in 2D unlearning
lies in selectively forgetting the exact object without affecting unrelated generations. Since image
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synthesis occurs in a single 2D space, this process is computationally feasible using methods such as
gradient-based fine-tuning or regularization-based memory erasure.

3D generation models, such as zero-shot image-to-3D synthesis models f , are typically trained to
learn a mapping from a single input image I to a set of novel viewpoints for 3D reconstruction:

X = {x(θ) | x(θ) = f(I, θ)}, (2)

where x(θ) denotes the synthesized image from viewpoint θ. These models are often trained on
large-scale datasets and may inadvertently memorize information from the training data, leading to
potential privacy risks.

Unlike 2D unlearning, where modifications are applied to a single image, 3D unlearning must ensure
that the target object is removed across multiple viewpoints. This requires updating the model f
across the full set of angles Θ, leading to significantly higher computational cost:

ℓunlearn =
∑
θ∈Θ

|fu(I, θ)− x̃(θ)|2. (3)

where x̃(θ) is the target image with the sensitive content removed at viewpoint θ. Since diffusion-
based 3D models generate each view iteratively, this increases the overall training cost by a factor of
|Θ|, where |Θ| is the number of sampled viewpoints.

Our goal is to develop an efficient 3D unlearning framework that removes specific objects or attributes
(donated as the forget set Df ) from the target model f while preserving its ability to generate accurate
3D views of other objects (donated as the preservation set Dr). To achieve this, we propose a
dynamic skipping scheme (Sec. 3.2) that accelerates the 3D unlearning process by strategically
leveraging multi-view consistency, reducing redundant computations while maintaining coherence
across viewpoints. Throughout the rest of the paper, we use the re-targeting task as an illustrative
example of our approach. Specifically, we aim to adapt the generation results for the forget set Df so
that they resemble those of a designated re-target set Do. This objective is formalized as:

{fu(I, θ) | I ∈ Df} ≈ {f(I, θ) | I ∈ Do}, {fu(I, θ) | I ∈ Dr} ≈ {f(I, θ) | I ∈ Dr}, (4)

where fu denotes the updated model after unlearning, and the goal is to make the outputs of fu on
Df indistinguishable from those on Do.

3.2 Dynamic Skipping via Interpolation

To address the high computational cost of 3D unlearning across dense viewpoints, we introduce a
dynamic skipping scheme. Instead of independently unlearning each view, our method strategically
selects a sparse set of key viewpoints and interpolates the remaining ones. By leveraging multi-view
consistency, this approach significantly reduces redundant updates while preserving visual coherence
across views.

For each selected key view θs ∈ Θ, the reverse diffusion process is performed iteratively over T
steps. At each step, the model refines the latent representation by removing a portion of the noise,
gradually approaching the clean image. The denoising process is defined as:

xs
t−1 ← f

(
xs
t

)
, t = T, T − 1, . . . , 1. (5)

At the final step, xs
0 denotes the fully denoised sample, corresponding to the final synthesized image

for view θs.

To further optimize the denoising process, we introduce an interpolation-based acceleration technique
that eliminates redundant computation across views. The core idea is to cache intermediate diffusion
states from a small set of reference viewpoints, denoted as θr ∈ Θr. For each reference view θr, we
pre-compute and store the entire reverse diffusion trajectory:

Cache←
{
{xt(θr)}Tt=0 | θr ∈ Θr

}
, where |Θr| ≪ |Θ|. (6)

In the following part of the paper, we simplify xt(θr) as xr
t , where the superscript r denotes the

reference viewpoint corresponding to θr.

This cache in Eq. 6 plays a central role in our perspective-aware acceleration framework by:
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• Accelerating Inference: Providing cached diffusion states as reference anchors to efficiently
initialize and interpolate intermediate views, reducing redundant computation.

• Enhancing Generation Quality: Serving as a geometric prior to ensure coherence across
neighboring viewpoints, which in turn improves the quality of multi-view image synthesis.

Once the reference trajectories are stored, we accelerate the denoising for each sample angle θs by
interpolating between the states of the two closest reference viewpoints, θr1 and θr2 , based on their
similarity to θs. Specifically, we select the closest reference viewpoints Rs = {θr1 , θr2} as the two
reference angles that maximize the similarity measure S(θs, θr):

Rs = arg max
θr∈Θr

{S(θs, θr)}, θr1 , θr2 ∈ Rs. (7)

We compute S(θs, θr) using CLIP-based similarity by incorporating viewpoint information directly
into the CLIP input. Specifically, we define:

S(θs, θr) = cos (CLIP(I, θs),CLIP(I, θr)) , (8)

where CLIP(I, θ) denotes the CLIP embedding obtained by feeding the image I along with viewpoint
θ as input (as a joint representation). The angular difference between θs and the reference angles
determines whether to skip intermediate timesteps.

The angular difference between θs and the selected reference angles determines whether to skip
intermediate timesteps in the denoising trajectory. Specifically, we compute:

∆θs = min
{
|θs − θr1 |, |θs − θr2 |

}
. (9)

Given an empirically validated threshold τ = 20◦ (as shown in the supplementary), we dynamically
adjust the timestep tjump from which denoising begins:

tjump =

{
tupper, if ∆θs < τ,

tlower, otherwise.
(10)

We empirically set tupper and tlower to control the degree of skipping, corresponding to aggressive
and conservative denoising strategies, respectively. Then, after determining the timestep tjump, the
initial state for denoising at angle θs is then interpolated from the cached reference states at timestep
T − tjump:

x
(s)
T−tjump

= wr1 · x
(r1)
T−tjump

+ wr2 · x
(r2)
T−tjump

, (11)

where the interpolation weights wr1 , wr2 are computed from the normalized similarity scores defined
in Eq. 8:

wri =
S(θs, θri)

S(θs, θr1) + S(θs, θr2)
, i ∈ {1, 2}. (12)

This strategy provides efficient initialization and ensures geometric consistency by starting the
denoising process closer to convergence and reducing redundant computation across similar views.

Finally, starting from the interpolated state, we perform the remaining denoising steps from t =
T − tjump to t = 1:

x
(s)
t−1 = f

(
x
(s)
t

)
, t = T − tjump, . . . , 1, (13)

yielding the final denoised output x(s)
0 . This scheme effectively reduces redundant computation while

preserving the fidelity of multi-view 3D representations.

3.3 Accelerated Unlearning with Remain and Forget Losses

The dynamic skipping scheme enables efficient computation across all viewpoints, which could be
leveraged to update the target fu, so as to achieve unlearning on the unlearn set Df .

For conducting unlearning on the forget setDf , we firs train a fake score network Sf for the guidance
on updating fu. And during the training of Sf , the target model f keeps fixed. To be concrete, Sf is
initialized by the pre-trained score network St. The training of the Fake Score Network involves two
key loss functions:

Lfn = λLfn remain + µLfn forget (14)
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• Fake Score Remain Loss: This loss is used to train the Fake Score Network to replicate the
noise prediction of the pretrained model-true score on the remaining samples. This ensures
that when the Generator generates images for the remain set its conditional score aligns with
the pretrained model, maintaining the original generation quality.

Lfn remain = EXr∼Dr, ϵ∼N (0,1)

[
∥Sf (f(Xr) + ϵ, θ)− ϵ∥2

]
(15)

where ϵ ∼ N (0, 1) is the noise perturbation.
• Fake Score Forget Loss: This loss is used to train the Fake Score Network to output a noise

prediction different from the original class for unlearn class samples, tending towards the
distribution of the override image. In our retarget task, we align the noise prediction with
that in Do. By altering the noise prediction, the Generator is indirectly guided to “forget”
the features of the target class.

Lfn forget = EXf∼Df , Xo∼Do, ϵ∼N (0,1)

[
∥Sf (f(Xf ) + ϵ, θ)− St(f(Xo) + ϵ, θ)∥2

]
(16)

After training the fake score network Sf , we use it to guide the unlearning of the target model f ,
resulting in the updated model fu. This process aims to balance two objectives: (1) retaining the
generation quality on the remain set Dr, and (2) suppressing the model’s capacity to reconstruct the
forget set Df .

The loss used to update f is defined as:

Ltotal = λr · Lg remain + λf · Lg forget, (17)

where λr and λf control the trade-off between remain and forget objectives. And at this stage, the
fake score network Sf keeps fixed. And the two loss items are defined as:

• Diffusion Remain Loss: We preserve generation quality for the remain set by encouraging
the updated model fu to generate outputs whose score under Sf matches the ground-truth
noise:

Lg remain = EXr∈Dr, ϵ∼N (0,1)

[
∥Sf (fu(Xr, θ) + ϵ, θ)− ϵ∥2

]
(18)

This loss ensures that generation quality on the remain set is not degraded after unlearning.
• Diffusion Forget Loss: For the forget set, we guide the model to move away from its

original generation path, and instead produce outputs whose score under Sf aligns with that
of the override distribution Do:

Lg forget = EXf∈Df , Xo∈Do, ϵ∼N (0,1)

[
∥Sf (fu(Xf , θ) + ϵ, θ)− Sf (f(Xo) + ϵ, θ)∥2

]
(19)

This loss prevents the model from reconstructing features related to the forget set and
enforces retargeting.

By jointly optimizing these loss functions, we ensure that the diffusion model gradually unlearns the
forget set while preserving its generation quality on the remain set. This process is repeated iteratively,
with the model being updated using gradients derived from both loss terms. Additionally, acceleration
techniques, such as the dynamic skipping scheme, can be incorporated to improve efficiency and
stabilize training dynamics. These techniques enable the model to reach an effective unlearning state
with fewer iterations, thereby reducing computational costs while maintaining performance.

4 Experiments

We have performed various unlearning tasks and presented their evaluation results, with additional
implementation details provided in the supplementary material.

4.1 Experimental Setting

Datasets. We conduct experiments on three types of data: (1) Ten 3D Minions models collected from
the internet (denoted as Min10), with one used for training and the rest for testing; (2) Rendered 3D
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Table 1: Quantitative comparison of the quality of synthesized novel views against ground truth views
under different reference angles and step skip selections.

Method Steps Skipped Training Time SSIM ↑ LPIPS ↓ ∆PSNR (dB) ↑
Baseline (Non-accelerated) 0 226.5 0.766 0.160 0.00

3 Ref Angles 8 196.2 (1.13) 0.760 0.159 +0.295
12 180.0 (1.23) 0.752 0.182 -0.605
16 170.1 (1.30) 0.762 0.151 +0.338

4 Ref Angles 8 196.2 (1.13) 0.770 0.148 +0.418
12 180.9 (1.22) 0.783 0.136 +1.093
16 167.4 (1.32) 0.761 0.155 +0.163

8 Ref Angles 8 193.5 (1.14) 0.746 0.171 -0.446
12 180.9 (1.22) 0.752 0.161 -0.093
16 171.0 (1.30) 0.761 0.161 0.000

objects from Objaverse 1.0, including sculptures, traffic barriers, and fire hydrants; and (3) A subset
of five Objaverse models rendered from 24 viewpoints, each with 35 images, totaling approximately
4,200 ground-truth images.

Evaluation Metrics. We evaluate our approach across three key aspects: generation quality and
efficiency, effectiveness of unlearning, and preservation of retained knowledge. The following metrics
are used. (1) SSIM: Structural Similarity Index, which measures the similarity between generated
images and their ground truth. Higher values indicate better structural preservation. (2) LPIPS:
Learned Perceptual Image Patch Similarity, a metric that quantifies perceptual differences. Lower
values are preferred. (3) ∆PSNR: The difference in Peak Signal-to-Noise Ratio between the generated
images and ground truth images. (4) ∆FID: The change in Fréchet Inception Distance (FID), which
measures the difference between the feature distributions of real images and generated images. A
lower ∆FID indicates that the generated images have become closer to the real images in terms of
perceptual quality, while a higher ∆FID suggests greater divergence between the generated and real
image distributions. (5) Inference Time (Speedup Analysis): Measures the computational efficiency
of the proposed accelerated unlearn method.

4.2 Experimental Results

Quantitative comparison of the proposed framework with discrete reference angles and step
skips. We evaluate our accelerated unlearning framework on the Min10 dataset by comparing it
against a baseline (non-accelerated) approach. In this experiment, we set the total number of view-
points to |Θ| = 40, where the baseline performs unlearning across all angles exhaustively. Our
method, in contrast, leverages view coherence to infer fewer reference angles while maintaining or
even improving unlearning performance. To analyze the effects of our dynamic skipping mechanism,
we conduct ablation studies by varying the number of reference angles and controlling the step skip-
ping range, with tlower = tupper to ensure fixed skip lengths. We evaluate both image quality—using
SSIM, LPIPS, and ∆PSNR—and training efficiency, as summarized in Table 1.

As shown in Table 1, our accelerated unlearning framework significantly reduces training time, with
up to 1.32 times speedup compared to the baseline. Importantly, this efficiency gain does not come at
the cost of image quality. The setting with 4 reference angles and 12 steps skipped achieves the best
overall performance, improving SSIM by 0.017, reducing LPIPS by 0.024, and increasing ∆PSNR by
1.093 dB relative to the baseline. These results demonstrate that modeling cross-view coherence not
only enables faster training but also leads to more effective unlearning, outperforming the baseline
that processes all viewpoints exhaustively. And the visual comparison results are depicted in Fig. 2,
which further illustrates how different skip step settings affect the visual quality of synthesized views.

Performance on other unlearning tasks.

In addition to the retargeting task, we also conducted experiments on other types of unlearning tasks.
Specifically, we selected ten categories and performed unlearning on each category individually. For
each task, the current category was treated as the forget set, while the remaining nine categories
formed the remain set. In total, we conducted ten unlearning tasks. For each task, we compared

7



8 Steps 

Skipped

12 Steps 

Skipped

16 Steps 

Skipped

Sample 1 Sample 2

Figure 2: Visual comparison of generated novel views under different skip step settings. The results
demonstrate how varying the number of skipped steps affects synthesis quality.

Table 2: This table presents a comparison of SSIM and LPIPS metrics between the synthesized novel
view images and their corresponding ground truth images at various angles for different unlearn tasks
when the forget_image is unlearned. We calculate the metric both on the forget set and the remain set.

Unlearn Task Model Forget Set Remain Set

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

Yellow Car Transformation Original 0.802 0.250 0.783 0.286
Unlearned 0.898 0.066 0.781 0.336

Metal Syle Icecream Transformation Original 0.752 0.345 0.789 0.276
Unlearned 0.829 0.102 0.797 0.315

Bronze Statue Transformation Original 0.790 0.270 0.785 0.284
Unlearned 0.819 0.142 0.793 0.308

Cherry to Banana Original 0.770 0.315 0.787 0.279
Unlearned 0.829 0.140 0.792 0.257

Barrier to Fire Hydrant Original 0.810 0.230 0.783 0.288
Unlearned 0.843 0.117 0.744 0.262

Football to Phone Original 0.761 0.330 0.788 0.277
Unlearned 0.698 0.301 0.744 0.328

Barrel Add Black Lid Original 0.785 0.285 0.785 0.282
Unlearned 0.722 0.142 0.736 0.291

Doraemon with Hat Original 0.807 0.240 0.783 0.287
Unlearned 0.744 0.139 0.749 0.297

Minion With Backpack Original 0.797 0.260 0.784 0.285
Unlearned 0.789 0.139 0.783 0.252

Stool with Pot Original 0.779 0.300 0.786 0.281
Unlearned 0.846 0.192 0.795 0.271

the image generation quality of both the forget set and the remain set before and after unlearning.
Detailed unlearning targets are provided in the supplementary material, and quantitative results are
reported in Table 2.

From the results in Table 2, the SSIM and LPIPS metrics for both the forget set and remain set
across ten unlearning tasks are reported. After unlearning, the SSIM scores of the forget set generally
increase, while the LPIPS scores significantly decrease, indicating that the forget set has been
effectively altered and is no longer faithfully reconstructed—reflecting successful unlearning. For
instance, in the ‘Yellow Car Transformation task’, the forget set SSIM improves from 0.802 to 0.898,
and LPIPS drops from 0.250 to 0.066. Similar trends are observed in most tasks, such as ‘Metal Style
Ice Cream Transformation’ and ‘Cherry to Banana’.

Meanwhile, the performance on the remain set remains relatively stable, with only minor variations
in SSIM and LPIPS. This suggests that the unlearning process selectively affects the forget set
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Figure 3: Visualization of generated results for different unlearning tasks. Each row corresponds to
one unlearning task, where the diagonal entries represent the forget set.

without significantly compromising the model’s ability to generate high-quality results for the remain
set. These findings demonstrate that our method achieves targeted unlearning while preserving
generalization performance.

We further visualize the generation results in Fig. 3, where each row corresponds to a specific
unlearning task. The diagonal entries show the generated results for the forget set, which have been
mapped to their respective unlearn targets. The off-diagonal entries correspond to the remain set. As
illustrated, the forget set images on the diagonal exhibit a clear shift toward the designated unlearn
targets, indicating successful forgetting. Meanwhile, the generation quality for the remain set remains
consistent, demonstrating that our approach effectively removes the targeted information without
significantly affecting unrelated content.

5 Conclusions

The rapid advancements in generative models trained on large-scale datasets have enabled the synthe-
sis of high-quality 3D samples across diverse domains. However, these developments also introduce
critical privacy concerns. This paper presents the first exploration of machine unlearning in 3D
generative models, addressing the unique challenges posed by multi-view consistency and spatial
dependencies. We propose a novel approach that exploits the inherent similarities between images
rendered from different perspectives to introduce a skip acceleration mechanism. By strategically by-
passing redundant computations, our method enhances efficiency while preserving task performance,
providing a promising direction for privacy-aware 3D generation. In the future, we plan to extend our
research to other image-to-3D generative models, further exploring unlearning techniques tailored to
different architectures and training paradigms.
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We have given all the experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We comply fully with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We discuss both potential positive and negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our paper does not release models or datasets with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All datasets and code libraries used are properly cited and comply with their
respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our codebase under an open-source license (MIT), with detailed
documentation and instructions for reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research involving human
participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects and thus did not require IRB
approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

6 Supplementary Methods

6.1 Framework Algorithms

We propose a novel two-stage framework that integrates dynamic timestep skipping with directional
unlearning, enabling efficient and precise removal of targeted concepts from a diffusion-based
generative model. This section provides supplementary algorithms for our proposed framework,
including Algorithm 1 and Algorithm 2.

Algorithm 1 Dynamic Skipping via Interpolation

Require: Total timesteps T , base angles θb, all the sample angles θ, each sample angle θs, weight
factor wf , noise perturbation ϵ ∼ N (0, 1), angle threshold θth, interpolation upper time step
tupper, interpolation lower time step tlower, and noise weight factor ϵw, xt(θ) represents the
denoised result at timestep t during the diffusion process, conditioned on the angle θ. At timestep
t = 0, x0(θ) is the final denoised image, and at timestep t = T , xT (θ) is the noisy image or
latent representation.

1: Examples of base angles:
2: • 3 base angles: θb = {0◦, 120◦,−120◦}
3: • 4 base angles: θb = {0◦, 90◦,−90◦, 180◦}
4: • 8 base angles: θb = {0◦, 45◦, 90◦, 135◦, 180◦,−135◦,−90◦,−45◦}
5: for each sample angle θs do
6: Compute CLIP similarity S(θs, θb) with key angles
7: Select the two most similar key angles as θ1, θ2
8: Determine skip steps based on threshold and similarity
9: Interpolate xt(θs) from xt(θ1) and xt(θ2) using:

10: xt(θs) = λxt(θ1) + (1− λ)xt(θ2)

11: λ = S(θs,θ1)
S(θs,θ1)+S(θs,θ2)

12: if |θs − θb| < θth then
13: Use interpolated xt at t = T − tupper
14: else
15: Use interpolated xt at t = T − tlower

16: end if
17: end for

Description of Algorithm 1: This algorithm accelerates the diffusion process by dynamically
skipping denoising steps through interpolation. For each sample-conditioned angle θs, it identifies
the two most similar base angles θ1 and θ2 using a similarity metric (e.g., CLIP similarity). Then,
it interpolates the intermediate denoised result xt(θs) from the known results at θ1 and θ2 via a
weighted average governed by their similarity scores:

xt(θs) = λxt(θ1) + (1− λ)xt(θ2), λ =
S(θs, θ1)

S(θs, θ1) + S(θs, θ2)
.

Depending on whether the sample angle is sufficiently close to a base angle (determined by a threshold
θth), the algorithm either uses the interpolated result at a higher or lower timestep (i.e., fewer or more
skipped steps). This allows the system to trade off between fidelity and speed while maintaining
semantic consistency.
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Algorithm 2 Unlearning via Dynamic Acceleration with Remain and Forget Losses

Require: Pre-trained score network St, unlearned model for the target object fu, fake score network
Sf , remain set Dr, unlearn set Df , override set Do, all the sample angles θ, each sample angle
θs, batch size B, weights λ > 0, µ > 0

1: Initialize Sf and fu from pre-trained model
2: for each epoch do
3: Sample batch Xr ∼ Dr, Xf ∼ Df , Xo ∼ Do

4: Call Algorithm 1 with θs ▷ Interpolation Acceleration
5: for each sample angle θs in θ do

▷ Train Fake Score Network
6: Compute Lfn remain(θs)
7: Compute Lfn forget(θs)
8: Compute total loss: Lfn = λLfn remain + µLfn forget
9: Update Sf using gradient descent on Lfn ▷ λ, µ: weights for remain/forget tasks

▷ Train Generator
10: Compute Lg remain(θs)
11: Compute Lg forget(θs)
12: Compute total loss: Lg = λLg remain + µLg forget
13: Update fu using gradient descent on Lg ▷ λ, µ: weights for remain/forget tasks
14: end for
15: end for

Description of Algorithm 2: This algorithm presents a training framework for concept unlearning
by alternately optimizing the generator and a fake score network using supervision from the remain,
forget, and override datasets. A key innovation of this framework lies in the use of dynamic skipping
(realized by Algorithm 1) to accelerate the diffusion process for arbitrary sample angles, enabling
efficient training while preserving semantic consistency in generated outputs.

At the beginning of each epoch, Algorithm 1 is invoked to perform interpolation sampling across all
base angles. This preprocessing step prepares the interpolated denoising results, allowing for fast
inference at any sample angle θs by reusing the precomputed intermediate states.

Subsequently, the algorithm iterates through all sample angles θs defined in the training setup. For
each θs, it alternates between training the fake score network and the generator. The score network is
updated using remain and forget losses to reflect the desired unlearning behavior, while the generator
is optimized using the same objectives to remove target concepts while preserving unrelated features.

By integrating dynamic acceleration and angle-wise alternating optimization, this framework achieves
fine-grained control over the forgetting process in diffusion models, while significantly reducing the
computational burden of full denoising for every training step.

6.2 Dynamic Acceleration Threshold Selection Basis

Recall that in the main paper (see Eq. (10)), we empirically set the angular threshold τ = 20◦ to
guide the dynamic adjustment of the denoising timestep tjump. Below, we provide supplementary
justification for this choice.

Specifically, we precompute and cache intermediate denoising results for a discrete set of reference
viewpoints across all sampling steps. For each non-reference training view, we identify its nearest
reference angle via cosine similarity and interpolate the cached features at matched time steps to
approximate the denoising trajectory. This enables a skip-sampling mechanism in which certain
sampling steps are bypassed by reusing spatially coherent representations.

Motivated by the inherent geometric consistency among nearby viewpoints, we hypothesize that
smaller angular distances to reference views indicate higher structural similarity and, consequently,
greater tolerance for step skipping. Based on this observation, we design a dynamic skipping scheme
where the number of skipped steps is conditioned on the angular proximity to the nearest reference
angle. In later experiments, we quantitatively assess the trade-off between generation quality and
sampling efficiency under this dynamic scheme using SSIM, LPIPS, and ∆PSNR, as well as overall
training speedup.
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6.2.1 Marginal Benefit Analysis

We introduce the concept of marginal benefit as a key indicator for dynamic acceleration threshold
selection.

Combining SSIM decrease and LPIPS increase into a single quality loss metric:

∆Qtotal = α ·∆QSSIM + β ·∆LLPIPS

Marginal Benefit =
∆S

∆Qtotal
=

Scurrent − Sprevious

α · (Qprevious −Qcurrent) + β · (Lcurrent − Lprevious)

(20)

• Objective: Find the threshold range that maximizes marginal benefit, i.e., achieve the
greatest acceleration improvement with the minimal quality degradation.

• Weight coefficients α and β need to be adjusted based on business requirements (defaulting
to 0.5 each).

• Physical meaning:

– ∆QSSIM = Qprevious −Qcurrent (SSIM decrease, larger value means more quality
loss).

– ∆LLPIPS = Lcurrent − Lprevious (LPIPS increase, larger value means more percep-
tual difference).

– ∆S = Scurrent − Sprevious (Speed-up Ratio increase, larger value means faster
reasoning).

6.2.2 Experimental Setup and Threshold Determination

To determine the optimal dynamic acceleration threshold, we sampled 36 viewpoints within the
[0◦, 45◦] range from the base view at 2◦ intervals, using 4 reference views. Experiments were con-
ducted on the Yellow Car unlearning task. For each candidate threshold, we computed SSIM, LPIPS,
and acceleration ratio under the dynamic 4-view, 12-step sampling configuration, and subsequently
calculated the marginal benefit. The angle yielding the highest marginal benefit was selected as the
optimal dynamic threshold. As shown in Figure 4a, the marginal benefit peaks at a threshold of 20◦.

To further validate the effectiveness of the proposed dynamic strategy, we compared it with a
static configuration using 4 reference views and 12 uniform steps, without threshold adaptation.
This comparison demonstrates that our strategy can achieve acceleration while maintaining high
generation quality. The results of this comparative experiment are presented in Figure 4b.

From the figure, we observed that as the angular threshold increases from 0◦ to 45◦, the SSIM
decreases from 0.69 to 0.51, while LPIPS increases from 0.05 to 0.36, indicating a consistent trade-
off between fidelity and efficiency. Meanwhile, the acceleration ratio improves from the static
baseline of 0.29 up to 0.48. Notably, the 20◦ threshold yields a balanced performance—achieving
0.62 SSIM, 0.22 LPIPS, and 0.38 acceleration ratio—and represents the optimal marginal gain point.
Beyond 20◦, marginal returns diminish: from 20◦ to 30◦, acceleration increases only 0.06, while
LPIPS worsens 0.07. After 30◦, visual degradation accelerates, with LPIPS exceeding 0.3 and SSIM
dropping below 0.6. These results confirm that moderate thresholds (approximately 20◦) achieve the
best trade-off, while aggressive skipping leads to diminishing quality returns.
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(a) Marginal benefit vs. threshold angle. (b) Comparison between dynamic and static strategies.

Figure 4: Analysis of threshold selection and strategy comparison.

7 Supplementary Experimental Results

7.1 Experimental Settings

Implementation Details

To cover the full 360° horizontal field of view, we define the angular range as (−180◦, 180◦]. Given
the desired number of reference directions Nreference, we generate a set of reference angles starting
from 0◦ with a fixed interval of 360◦/Nreference. As these angles are initially defined in the [0◦, 360◦)
range, we map them into (−180◦, 180◦] to align with the defined coordinate system.

During the training stage of the unlearning task, we additionally sample one angle every 10◦ over the
range from −180◦ to 180◦, excluding the reference angles. This ensures dense and uniform coverage
across the entire horizontal span. Such a setup helps the model generalize to diverse viewpoints while
maintaining consistency between the training and evaluation angular distributions.

Hyper-parameter Settings

In all experiments, we employ the Adam optimizer, where β1 and β2 denote the exponential decay
rates for the first and second moment estimates, respectively. The parameters λ and µ represent the
regularization coefficients used in the objective function. The term ϵt denotes the standard Gaussian
noise added during the diffusion process at time step t, with ϵt ∼ N (0, 1).

The Number of References represents the number of pre-cached reference angles used for subsequent
interpolation to estimate noise; the Skip Steps indicates the initial steps skipped during the sampling
process.

Table 3: Hyperparameters for Fake Score and Generator
Parameter Fake Score Generator
λ 1.0 1.0
µ 0.01 0.01
Optimizer Adam Adam
Learning Rate 4× 10−6 6× 10−6

β1 0.0 0.0
β2 0.999 0.999
ϵt 10−8 10−8

23



Table 4: Experimental Settings for Different Reference Angles and Unlearn Effects
Parameter Reference Angles Experiment Target Forget Images Experiment
GPU NVIDIA A100 80GB NVIDIA A6000 48GB
Batch Size 8 2
Sample Steps 32 32
Training Epochs 5 -
Number of References - 4
Skip Steps - 12

7.2 Multi-angle presentation of the results from the main experiment

We provide additional experimental results to supplement the main paper. The following provides
concrete examples of the unlearning implementation for the retargeting, stylization, and partial tasks
in our experiments.

Table 5: Representative application cases categorized by type.
Category Case Examples
Style Transfer Yellow Car Transformation, Metal Style Ice-cream Trans-

formation, Bronze Statue Transformation
Whole Object Retarget Cherry to Banana, Barrier to Fire Hydrant, Football to

Phone
Partial Edit Replacement Barrel Add Black Lid, Doraemon with Hat, Minion with

Backpack, Stool with Pot

Unlearning task 1: Style Transfer

• Yellow Car Transformation: In this experimental setup, a frontal image of a silver car is
designated as the forget image, representing the category to be unlearned, while a frontal
image of a yellow car which is generated by adjusting the color tone of the original image,
changing the car body color to yellow while keeping other visual content unchanged, serves
as the override image, representing the target category. During training, the forget image
combined with a given sample angle is replaced by the override image with the same
corresponding sample angle. This configuration aims to evaluate the model’s ability to
forget and override when the object’s appearance attributes, such as color, change.

• Metal Style Ice-cream Transformation: The forget image is a Green ice cream cone, while
the override image is generated by changing the color of the ice cream to a metallic sheen.
Similar to the Yellow Car Transformation case, both the forget angle and the override angle
are aligned with the sample angle.

• Bronze Statue Transformation: The forget image is a white marble sculpture, while the
override image is generated by changing the color of the sculpture to bronze. Again, both
the forget angle and the override angle are aligned with the sample angle.

Unlearning task 2: Whole Object Retarget

• Cherry to Banana: In this experimental setup, a frontal image of a cherry is designated
as the forget image, representing the category to be unlearned, while a frontal image of a
banana serves as the override image, representing the target category. During training, the
forget image combined with a given sample angle is replaced by the override image with the
same corresponding sample angle. This configuration is designed to evaluate the model’s
capability in performing semantic transformation between different object categories.

• Barrier to Fire Hydrant: The forget image is a barrier, while the override image is a fire
hydrant. Similar to the Cherry to Banana case, both the forget angle and override angle are
aligned with the sample angle.

• Football to Phone: The forget image is a football, while the override image is a phone.
Again, both the forget angle and override angle are aligned with the sample angle.
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Unlearning task 3: Partial Edit Replacement

• Minion With Backpack This setting aims to evaluate the model’s response to viewpoint
variations and additional attribute modifications. The forget image is a frontal view of a
minion. When the sample angle lies within the range [−90◦, 90◦], the override image is the
same as the forget image, and both the forget angle and override angle match the sample
angle. However, when the sample angle falls outside this range (i.e., side or rear views),
the override image is replaced by a rear view of the minion wearing a red backpack, and
the override angle is defined as the sample angle plus 180◦ (i.e., the opposite viewing
direction). This setting simulates the unlearning and rewriting behavior when the target
object undergoes structural or appearance changes under different viewpoints. The specific
angle relationships are as follows:

– If the original forget angle is within [−90◦, 90◦], the guidance condition uses the
original forget image and forget angle.

– If the forget angle lies in [−180◦,−90◦), the guidance condition replaces the image
with the override image and adjusts the angle to forget angle plus 180◦.

– If the forget angle lies in (90◦, 180◦], the guidance condition replaces the image with
the override image and adjusts the angle to forget angle minus 180◦.

• Barrel Add Black Lid: The forget image is a wooden barrel, while the override image is
generated by adding a big black lid to the original barrel. Both the forget angle and the
override angle are aligned with the sample angle.

• Doraemon With Hat: The forget image is a Doraemon, while the override image is
generated by putting a red cap on Doraemon’s head.. Both the forget angle and the override
angle are aligned with the sample angle.

• Stool With Pot: The forget image is a wooden stool, while the override image is generated
by placing a small plant in a pot on the stool. Again, both the forget angle and override
angle are aligned with the sample angle.

Figure 5 presents multi-view visualizations of the unlearning outcomes for various target objects
across multiple categories, demonstrating the consistency and robustness of the unlearning effect
under different viewing angles.

In each row, the left-most pair shows the original source object (left) and the desired unlearned
target (right). The right panel visualizes the unlearned results rendered from multiple canonical
perspectives (front, side, back, etc.). It can be observed that across diverse object types—including
vehicles, statues, characters, and everyday items—the model consistently applies unlearning effects
to generate novel outputs aligned with the desired target identity or semantics. For instance, the “car"
is reliably altered to resemble a yellow sports model across all views, while the “Doraemon" character
is consistently altered to wear a red hat across all viewpoints, suggesting strong disentanglement and
generalization capacity in the forgetting process.

These results validate that our method does not overfit to a single viewpoint, but achieves semantically
coherent forgetting across multiple 3D-consistent renderings, highlighting the model’s capacity for
multi-perspective semantic consistency in unlearning tasks.
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Figure 5: Demonstration of multi-perspective effects on the forget set for different unlearning tasks.

7.3 3D Reconstruction Demonstrations

7.3.1 Qualitative Results of 3D Unlearning

We showcase 3D reconstruction results for several tasks, presenting pairs of rendered images and
depth maps.These results demonstrate that our unlearning strategy not only performs effectively
in multi-view consistency settings but also extends to full 3D geometry. Specifically, we observe
consistent suppression of undesired concepts across different viewpoints and depth cues, indicating
that unlearning has been successfully integrated into the volumetric representation. This highlights
the generalizability and spatial coherence of our method beyond view-based supervision, ensuring
that undesired features are removed holistically rather than superficially.
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Figure 6: Qualitative 3D reconstruction results across different tasks after unlearning.

Figure 7: more angles sampled in 3D rec

7.3.2 Results on Free3D Framework

To demonstrate the generalizability of our dynamic skipping framework beyond Zero123, we integrate
it with Free3D, a state-of-the-art diffusion-based 3D generation model. Our method is adapted by
aligning the multi-view conditioning and applying the view-consistent acceleration strategy during
the denoising process.
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Figure 8: Multi-view 3D generation results using Free3D integrated with our dynamic skipping
framework. Leftmost column: Input view. Remaining columns: Generated novel views from
different angles. The high consistency and quality across views demonstrate the effectiveness and
generalizability of our method on the Free3D architecture.
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Figure 8 shows multi-view renderings of 3D objects generated by Free3D enhanced with our dynamic
skipping approach. Each row presents a different object reconstructed from a single input view
(shown on the left), with subsequent columns showing synthesized views from novel angles. The
results exhibit high visual fidelity, geometric consistency, and smooth transitions across viewpoints,
confirming that our acceleration framework is effective in improving inference efficiency while
preserving generation quality on diverse 3D diffusion architectures.

This successful integration underscores the flexibility and broad applicability of our method, position-
ing it as a promising general acceleration paradigm for multi-view 3D generation systems.

7.4 Effect of View-consistent Acceleration without Unlearning

To isolate the effect of acceleration from unlearning, we conduct an ablation study on the Zero123
baseline by applying our multi-view consistency-guided acceleration without any unlearning objective.
Specifically, we introduce skip-step sampling with different reference view counts (3/4/8 views) to
observe how generation quality changes purely due to acceleration.

Table 6 reports the ∆FID scores, computed as the difference between the FID of accelerated models
and the baseline Zero-1-to-3 model. Positive values indicate improved fidelity relative to the baseline,
while negative values indicate a degradation.

Table 6: ∆ FID Comparison between Accelerated Models and Baseline (Zero-1-to-3).
Method Steps Skipped Delta FID

3 View
8 +0.9779

12 -6.7059
16 -15.8247

4 View
8 +0.3379

12 -7.1140
16 -34.8952

8 View
8 +2.8421

12 -10.5640
16 -74.9905

Table 7: Generation Quality Metrics under Different Dynamic Skipping and Reference Views
Configurations on Zero123.

Metrics SSIM LPIPS PSNR MSE
zero123 0.7469 0.2526 13.53 0.0597
3view 8skip 0.7683 0.2417 14.29 0.0494
3view 12skip 0.7641 0.2463 14.17 0.0507
3view 16skip 0.7605 0.2532 14.04 0.0532
4view 8skip 0.7728 0.2389 14.34 0.0424
4view 12skip 0.7701 0.2418 14.27 0.0441
4view 16skip 0.7674 0.2485 14.13 0.0511
8view 8skip 0.7672 0.2331 14.57 0.0467
8view 12skip 0.7643 0.2338 14.51 0.0483
8view 16skip 0.7614 0.2515 14.41 0.0487
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Figure 9: Qualitative results demonstrating the effect of view-consistent acceleration without unlearn-
ing. (Corresponds to Table 6 data)

We analyze the results from two perspectives: the number of reference (baseline) views used for
interpolation, and the number of diffusion steps skipped during inference.
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Effect of Reference View Number: When fixing the number of skipped steps, increasing the number
of reference views generally leads to a more accurate initialization for the diffusion process due
to finer angular coverage and closer interpolation points. This advantage is reflected in the 8-step
skip setting, where the model with 8 reference views achieves the highest positive ∆FID (+2.8421),
compared to 3 and 4 views (+0.9779 and +0.3379 respectively). This suggests that a denser set of
baseline views provides a better starting point, facilitating high-fidelity multi-view synthesis.

Effect of Skipped Diffusion Steps: Across all reference view counts, increasing the number of
skipped diffusion steps significantly degrades performance. For example, under 8 reference views,
the Delta FID drops from +2.8421 at 8 skipped steps to -10.5640 at 12 skipped steps and further to
-74.9905 at 16 skipped steps. This trend indicates that while skipping steps can accelerate inference,
excessive step skipping undermines the model’s ability to refine the initial interpolated latent, leading
to poorer image quality.

Interaction between Reference Views and Skipped Steps: Interestingly, the degradation caused by
skipping more steps is more pronounced as the number of reference views increases. This is likely
because the interpolation between two nearby reference views produces a finer but potentially more
complex latent initialization that requires sufficient diffusion steps to properly refine. When too many
steps are skipped, the model lacks the capacity to adequately recover details and enforce multi-view
consistency, resulting in a sharper performance drop.

Qualitative results illustrating these effects are shown in Figure 9.

7.5 Inference Efficiency

As shown in Table 8, the baseline represents the time (1.1000 seconds) taken by Zero123 to sample
an image without using dynamic skipping via interpolation. The other columns show the sampling
times with different skip steps, along with the speedup ratios compared to the baseline.

Table 8: Inference Time and Speedup of Dynamic Skipping Strategies.
Method Full Sample (s) Skip 8 Sample (s) Skip 12 Sample (s) Skip 16 Sample (s)

Baseline (No Accelerate) 1.1000 - - -
Accelerated (Skip 8) 1.1000 0.7709 - -
Accelerated (Skip 12) 1.1000 - 0.6459 -
Accelerated (Skip 16) 1.1000 - - 0.5193

Speedup (vs. Baseline) - 1.4286 1.7072 2.1210

The speedup ratios are calculated as Speedup = Baseline Time
Accelerated Time . Results show that skipping 8, 12,

and 16 steps achieves 1.43×, 1.71×, and 2.12× faster inference, respectively, demonstrating the
efficiency of our dynamic skipping strategy.

8 Limitation and Social Impact

While our method introduces a novel framework for machine unlearning in 3D generation, several
limitations remain. We categorize these into technical limitations and broader societal concerns, and
outline promising future directions to address them.

Technical Limitations.

• Model Generalization. Our framework is currently validated on Zero123 and Zero123XL.
Its applicability to other 3D generation paradigms (e.g., NeRFs, mesh-based models, point-
based representations) remains untested and may require architectural adaptations.

• View Similarity Estimation. The dynamic skipping mechanism leverages CLIP-based sim-
ilarity to approximate view-level correspondence. While practical, this may be suboptimal
for objects with subtle geometric or structural variations that CLIP embeddings cannot fully
capture.
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• Manual Target Selection. The forget/remain/retarget sets are manually specified. Real-
world deployment would benefit from automatic identification of privacy-sensitive or biased
content, requiring new detection or attribution tools.

• Hyperparameter Sensitivity. Our method depends on empirically chosen parameters, such
as the angular threshold τ and skip-step schedule. These may require retuning on new
datasets or under different acceleration regimes.

• Lack of Robustness Evaluation. We do not assess the robustness of the unlearned model
against adversarial attacks such as model inversion, concept re-injection, or prompt-based
data recovery.

Future Work.

• Broader Model Applicability. We aim to adapt our framework to a wider range of 3D gen-
eration backbones, including volumetric NeRFs, implicit surfaces, and real-time rendering
architectures.

• Privacy-Aware Target Detection. Future work will explore integrating privacy or attribution
detectors to automatically identify sensitive content for targeted unlearning without human
intervention.

• Unlearning Without Retargeting. While our method currently aligns forgotten content with
a retargeted distribution, we plan to investigate pure erasure techniques without replacement,
suitable for content removal rather than transformation.

• Online and Continual Unlearning. Extending our method to dynamic settings—such as
continual learning or post-deployment unlearning requests—is an important direction for
practical applications.

• Trustworthy Unlearning Evaluation. We plan to develop formal verification protocols
and benchmarks to quantify the effectiveness and irreversibility of unlearning across diverse
tasks and threat models.

Social Impact Considerations. Our framework raises potential concerns regarding privacy leakage
and model bias, especially in the context of modular or pre-trained model reuse.

• Privacy Risk. By reusing pretrained parameters, the unlearned model may unintentionally
retain latent traces of upstream data. Adversaries could potentially reconstruct sensitive
content through model inversion or prompt tuning. One mitigation strategy is to increase
the diversity and number of pretrained models used, ensuring that no single model contains
sufficient information to recover sensitive content.

• Model Bias. Biases present in the original training data or source models may propagate
through the unlearning process. To mitigate this, we propose diversifying the source model
pool and introducing diversity-promoting regularization during training. This helps prevent
over-reliance on any single biased component and encourages fairer predictions.

We consider these directions essential for improving the robustness, fairness, and ethical deployment
of 3D unlearning systems, and plan to extend our study to address these limitations in future iterations
of this research.
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