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ABSTRACT

Gradient quantization is a critical technique for reducing communication overhead
in large-scale distributed training. However, existing methods often employ fixed
bit-width quantization or adaptive quantizers optimized with signal-level distor-
tion metrics such as MSE, which poorly correlate with model performance. In
this paper, we propose a novel layer-wise bit allocation framework for gradient
quantization, formulated under a rate-distortion optimization (RDO) paradigm.
Unlike prior approaches, our method introduces a loss-aware distortion metric
that directly quantifies the impact of quantization on training loss, enabling task-
aligned solution for bit allocation. A key insight of our work is the linear su-
perposition property of cross-layer loss distortion, which we theoretically justify
and empirically validate. This property allows us to decouple the original joint
optimization problem and efficiently solve it via a Lagrangian optimization algo-
rithm with linear complexity. Extensive experiments across vision and language
tasks—using CNNs, ViTs, LSTMs, and Transformers—demonstrate the effective-
ness of our approach. Moreover, our method integrates seamlessly with existing
gradient compression techniques, yielding consistent performance gains.

1 INTRODUCTION

The rapid development of large-scale deep learning models has significantly reshaped the landscape
of artificial intelligence. Foundation models such as GPT-4 (Achiam et al., 2023) and large-scale
diffusion models like Stable Diffusion (Rombach et al., 2022) have demonstrated impressive gener-
alization capabilities across a broad range of tasks. However, the enormous number of parameters
in these models, often reaching hundreds of billions, necessitates distributed training across large
GPU clusters. Within this paradigm, the synchronization of gradients or model parameters incurs
substantial communication overhead, which has emerged as a primary bottleneck that limits both
scalability and training efficiency (Wang et al., 2023; Tang et al., 2021).

To alleviate this bottleneck, gradient compression has become an essential component of modern
distributed training systems. Existing approaches can be broadly categorized into three classes:
sparsification (Stich et al., 2018; Lin et al., 2017; Wangni et al., 2018), low-rank decomposition (Vo-
gels et al., 2019; Wang et al., 2018; Yu et al., 2018), and quantization. Among these, quantization
is particularly appealing due to its simplicity and compatibility with contemporary hardware, mak-
ing it a central focus of this study. Early studies, such as TernGrad (Wen et al., 2017) and QSGD
(Alistarh et al., 2017), employed uniform quantization across fixed ranges, while more recent meth-
ods like Natural Compression (NC) (Horvóth et al., 2022) improved fidelity through non-uniform
schemes. However, a common limitation of these methods is that their quantization levels are stat-
ically defined at the beginning of training and remain fixed throughout the training process, which
is often suboptimal in practice due to the dynamic nature of gradient distributions. To address this,
adaptive quantization methods have been investigated to dynamically adjust quantization strategies
in response to the evolving characteristics of the training process. Prior work has primarily focused
on intra-layer adaptation, where quantization parameters, such as clipping range or step size, are ad-
justed over time. However, these approaches typically overlook inter-layer heterogeneity, treating all
layers uniformly despite their differing sensitivities to quantization. Representative methods, includ-
ing AdaQS (Guo et al., 2020), AQG (Mao et al., 2022), and ALQ (Faghri et al., 2020), introduce
various mechanisms for adaptive adjustment of quantization parameters. While these techniques
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offer increased flexibility, they typically employ a uniform bit-width across all layers, thereby over-
looking the varying sensitivity of gradients in different layers to quantization.

In light of this, mixed-precision quantization approaches have been explored to assign different bit-
widths to gradients based on their relative sensitivity to compression. AC-SGD (Yan et al., 2022)
adaptively adjusts the quantization bit-width over training iterations with respect to the norm of
gradients, communication budget, and the remaining training steps. L-GreCo (Markov et al., 2024)
employs dynamic programming to determine the minimum bit-width for each layer under a global
quantization error constraint. Different from these two approaches, our work focuses on solving
the layer-wise bit allocation problem under a fixed per-iteration communication budget constraint.
Moreover, the above two methods rely on signal-level metrics, such as the L2 norm or mean squared
error (MSE) of gradients, to estimate sensitivity to compression, which exhibit weak correlation
with the actual impact of quantization on model performance.

In this paper, we propose a layer-wise bit allocation framework for adaptive gradient quantization.
Specifically, we formulate the bit allocation problem within a rate-distortion optimization (RDO)
paradigm, aiming to minimize task-related distortion under a fixed communication budget. Instead
of optimizing signal-level quantization errors (typically heuristic metrics such as L2-norm or MSE),
we introduce a loss-aware distortion metric that directly quantifies the impact of quantization on the
training objective. This enables fine-grained, dynamic bit allocation guided by true optimization
sensitivity. To decouple the RDO problem, we investigate and validate a linear superposition prop-
erty of cross-layer loss distortion through theoretical and empirical analysis. Specifically, we show
that the total degradation in training loss resulting from the joint quantization of multiple layers can
be well approximated by the sum of individual distortions incurred when each layer is quantized in-
dependently. To solve the decoupled RDO problem, we further develop a Lagrangian optimization
algorithm that identifies the optimal bit allocation while reducing computational complexity from
exponential to linear in the number of layers. In addition, to efficiently perform bit allocation during
model training without introduce unnecessary computational overhead, we propose a dynamic real-
location trigger that monitors changes in the gradient distribution and initiates bit assignment when
significant shifts are detected.

The primary contributions of this paper are summarized as follows:

• We formulate the bit allocation problem for gradient quantization within a rate-distortion
optimization (RDO) framework, which directly optimizes the training loss rather than
widely-used signal-level quantization errors, thereby ensuring improved model training
performance.

• We theoretically prove and empirically validate a linear superposition property of loss dis-
tortion, which enables efficient decomposition of the RDO problem. Based on this prop-
erty, we propose a Lagrangian optimization method that achieves optimal bit allocation
with linear computational complexity.

• We evaluate our method across a diverse set of model architectures, including CNNs, Vi-
sion Transformers (ViTs), Transformers, and LSTMs, on both image classification and
language modeling tasks. Experimental results demonstrate that our approach consistently
outperforms state-of-the-art static and adaptive quantization baselines.

2 METHODOLOGY

2.1 PROBLEM FORMULATION: AN RDO PERSPECTIVE

Gradient quantization aims to transform a full-precision gradient g into a lower-bit representation g̃
to reduce communication overhead during distributed training. In layer-wise bit allocation problem,
the key challenge is to determine how to distribute a limited communication budget Btotal (measured
in bits) across the layers of a neural network. Consider a model with L layers, where g(l) denotes the
gradient tensor of layer l, and Nl is its number of parameters. The objective is to assign a bit-width
bl ∈ Boptions to each layer such that the total quantization-induced distortion is minimized, subject to
the overall budget constraint.

We formulate this as a classic RDO problem, where the “rate” R refers to the total number of
bits used for communication, and the “distortion” D quantifies the performance degradation due to
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quantization. The optimization objective is given by:

min
{bl}∈Boptions

Dtotal = D(g, Q(g, {bl})), s.t. Rtotal =

L∑
l=1

bl ·Nl ≤ Btotal, (1)

where Q(g, {bl}) denotes the quantization function applying bl bits to g(l). To secure final training
performance, the optimization objective (i.e., the distortion metric) should be carefully designed.

2.1.1 THE LOSS-AWARE DISTORTION METRIC

Traditional distortion metrics, such as MSE, quantify the geometric deviation between the orig-
inal and quantized gradients. While computationally efficient, these metrics often exhibit weak
alignment with the ultimate objective of deep learning optimization: minimizing the training loss.
Therefore, to better capture the true impact of quantization on model performance, we propose a
Loss-Aware Distortion (LAD) metric, which directly measures the change in the training objective
induced by quantizing the gradient of a specific layer.

Let Wt denote the model weights at iteration t and η denote the learning rate. Consider a set of K
data batches S = {d1, d2, . . . , dK} sampled from the training data, we first define the per-batch loss
difference ∆Ll(bl; d) for layer l with bit-width bl as:

∆Ll(bl; d) =
∣∣∣L(Wt − η · g(l)

mixed,t; d)− L(Wt − η · gt; d)
∣∣∣ , (2)

where gt = (g
(1)
t , . . . ,g

(L)
t )T is the gradient vector of all L layers and g

(l)
mixed,t =

(g
(1)
t , . . . , g̃

(l)
t , . . . ,g

(L)
t )T is a mixed gradient vector where only the gradient for layer l (i.e. g(l)

t )
is replaced by its quantized version g̃

(l)
t . We then define the Loss-Aware Distortion Dl(bl) as the

expected loss difference over the batch set S:

Dl(bl) = Ed∈S [∆Ll(bl; d)] . (3)

This expectation over multiple batches mitigates the effects of single-batch noise and yields a more
stable and reliable signal for guiding bit allocation.

By quantifying distortion in terms of its impact on the training loss rather than gradient geometry,
the proposed metric offers a task-aligned and dynamic measure of gradient sensitivity, better sup-
porting optimization-aware quantization decisions. Our ablation study in Appendix B.1 confirms
this, showing that using our LAD metric consistently yields higher accuracy than using a traditional
MSE metric.

2.2 THE LINEAR SUPERPOSITION PROPERTY

A fundamental challenge in solving the RDO problem (Equation 1) lies in the combinatorial com-
plexity of the joint optimization. Specifically, assigning bit-widths to L layers from a discrete set
B results in a search space of size |B|L, which grows exponentially with the number of layers. In
deep neural networks, where L may reach hundreds or more, this combinatorial explosion renders
brute-force approaches (such as heuristic algorithms and greedy search methods) computationally
infeasible. Moreover, the total distortion Dtotal exhibits highly non-linear and coupled dependencies
on the joint bit allocation bl, as it reflects complex interactions among quantization errors across lay-
ers within the non-convex loss landscape of deep networks. It makes the joint bit allocation problem
particularly challenging.

To address this challenge, we introduce and validate a linear superposition property, which asserts
that the total change in training loss resulting from the simultaneous quantization of multiple layers
can be closely approximated by the sum of the individual distortions incurred when each layer is
quantized independently, i.e.:

Djoint({bl}) ≈
L∑

l=1

Dl(bl). (4)
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Figure 1: Empirical validation of the Linear Superposition property on ResNet-18. The joint loss
change from quantizing two layers simultaneously (y-axis) versus the sum of their individual loss
changes (x-axis). Each point represents a different quantization level (2-8 bits), evaluated at various
stages of training.

2.2.1 THEORETICAL PROOF

We begin by providing a theoretical justification for the linear superposition property based on a
first-order Taylor expansion of the loss function. For a given layer l, we define the quantization error
as e(l) = (0, . . . , 0,g(l) − g̃(l), 0, . . . , 0)T . When a subset K of layers is quantized, the resulting
perturbation to the weights can be expressed as:

δW(K) = (Wt − ηg
(K)
mixed)− (Wt − ηg) = η

∑
l∈K

e(l). (5)

Let Worig = Wt − ηg denote the pristine weight after a full-precision update. According to Equa-
tion 2, the distortion induced by quantizing layers in K is then:

D(K) = L(Worig + δW(K))− L(Worig). (6)

Applying a first-order Taylor expansion to L(Worig + δW(K)) around Worig yields:

D(K) ≈ ∇L(Worig)
T δW(K) = gT

t+1

(
η
∑
l∈K

e(l)

)
, (7)

where gt+1 = ∇L(Worig) is the gradient evaluated in updated full-precision weights. Given the
linearity of the dot product, we can distribute it across the sum:

D(K) ≈
∑
l∈K

(
η · gT

t+1e
(l)
)
. (8)

The term η · gT
t+1e

(l) corresponds to the first-order approximation of the individual distortion Dl,
i.e., the distortion caused by quantizing only layer l. Therefore, we obtain the approximate linear
superposition:

D(K) ≈
∑
l∈K

Dl. (9)

The approximation error stems from the higher-order terms in the Taylor expansion. The leading
second-order term is given by (∆W)TH(∆W), where H denotes the Hessian matrix. This term
includes interaction effects between different error vectors and is quadratic in both the learning rate
η and the magnitude of the quantization error, making its contribution negligible in practice.

In addition, the above proof is based on the stochastic gradient descent (SGD). We also demonstrate
that the linear superposition property remains valid for the AdamW (Loshchilov & Hutter, 2017)
optimizer. The detailed proof is provided in Appendix A.

2.2.2 EMPIRICAL VALIDATION

We further provide empirical evidence demonstrating that the higher-order terms in the Taylor ex-
pansion are indeed negligible. Figure 1 presents a comparison between the joint distortion (Di,j)
and the sum of individual distortions (Di +Dj) for two representative layers, evaluated across bit-
widths ranging from 2 to 8. The data points align closely with the y = x diagonal, indicating strong
agreement and validating the linear superposition property at various stages of training.
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Algorithm 1 Lagrangian Search for Layer-wise Bit Allocation

Require: Gradients {g(l)}Ll=1, bit options B, average quantization bit-width constraint Bc, data
batches D

Ensure: Bit allocation {bl}Ll=1

1: Btotal ← Bc ·
∑L

l=1 Nl

2: Compute R-D curves:
3: for each layer l ∈ {1, . . . , L} do
4: for each bit option b ∈ B do
5: dl,b ← LossDiff(gl, b,D) {Distortion per layer}
6: rl,b ← b ·Nl {Rate per layer}
7: end for
8: end for
9: Estimate λ range: λlow, λhigh from R-D slopes

10: A∗ ← ∅
11: while λhigh − λlow > ϵ do
12: λmid ← (λlow + λhigh)/2
13: Bused ← 0
14: for each layer l ∈ {1, . . . , L} do
15: b∗l ← argminb∈B{dl,b + λmid · rl,b}
16: Bused ← Bused + b∗l ·Nl

17: end for
18: if Bused > Btotal then
19: λlow ← λmid

20: else
21: λhigh ← λmid

22: A∗ ← {b∗l }Ll=1
23: end if
24: end while
25: return A∗

2.2.3 PROBLEM DECOUPLING.

Validating this linear superposition property enables the decoupling of the intractable joint opti-
mization problem. By substituting the total distortion with the sum of individual LAD metrics
(Equation 3), our objective function becomes separable:

min
{bl}∈Boptions

L∑
l=1

Dl(bl), s.t.
L∑

l=1

bl ·Nl ≤ Btotal. (10)

This transformation reduces the problem’s complexity from exponential to linear with respect to the
number of layers, enabling practical applicability even in deep neural networks. It serves as the
foundation for our proposed bit allocation algorithm.

2.3 SOLVE BIT ALLOCATION VIA LAGRANGIAN RELAXATION

To solve the decoupled constrained optimization problem efficiently, we adopt Lagrangian relax-
ation approach. By introducing a Lagrange multiplier λ ≥ 0, we can convert the constrained
problem into an unconstrained objective:

J(λ) =

L∑
l=1

[Dl(bl) + λ · (bl ·Nl)] . (11)

The multiplier λ can be interpreted as the trade-off factor between distortion D and rate R (i.e., bits).
A greater λ places a higher penalty on bit usage, favoring lower-bit allocations, while a smaller λ
prioritizes minimizing distortion. For a fixed λ, the optimal bit-width for each layer b∗l can be
obtained independently by minimizing its layer-wise Lagrangian cost:

b∗l (λ) = argmin
bl∈Boptions

[Dl(bl) + λ · (bl ·Nl)] , (12)
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Table 1: Accuracy recovery and compression ratios for different compression methods with uniform
and adaptive schemes on image classification tasks at 2-bit quantization. ‘Acc.’ refers to Top-1
accuracy and ‘Comp. Ratio’ refers to compression ratio.

ResNet-18 on CIFAR-10 ViT-small on ImageNet

0–50 epoch 150–200 epoch 250–300 epoch

Method Acc.(%) Comp.
Ratio Acc.(%) Comp.

Ratio Acc.(%) Comp.
Ratio Acc.(%) Comp.

Ratio

FP32 88.24 - 60.11 - 63.24 - 65.36 -

Uniform 77.33 16.00× 47.88 16.00× 62.84 16.00× 65.24 16.00×
+ Greedy 88.09 16.35× 51.13 16.07× 64.03 16.07× 65.30 16.08×
+ Ours 88.39 16.46× 52.66 16.28× 64.15 16.26× 65.33 16.24×

Table 2: Accuracy recovery and compression ratios for different compression methods with uniform
and adaptive schemes on language modeling tasks at 3-bit quantization.

Method LSTM on PTB Transformer on WikiText-103

Perplexity Compression Ratio Perplexity Compression Ratio

FP32 82.32 - 77.18 -

Uniform 639.94 10.67× 133.64 10.67×
+ Greedy 561.79 11.27× 128.20 11.51×
+ Ours 388.08 12.37× 118.27 12.77×

since the solution space for each layer is small and discrete (e.g., 1 to 8 bits), this step can be
performed efficiently.

The remaining challenge is to identify the optimal value of λ∗ that minimizes total distortion while
satisfying the overall communication budget constraint. Given that the total rate Rtotal(λ) is a mono-
tonically non-increasing function of the Lagrange multiplier λ, we can efficiently identify the opti-
mal value λ∗ using a bisection search. This process iteratively refines a bounded interval [λlow, λhigh],
converging to a value that yields the total usage of bits as close as possible to, but not exceeding, the
target budget Btotal. This entire procedure allows us to find an optimal, per-layer bit allocation in a
computationally efficient manner. The complete algorithm is described in Algorithm 1.

2.4 PERFORM BIT ALLOCATION WITH A DYNAMIC REALLOCATION TRIGGER MECHANISM

The previous sections detail how to optimally allocate bit-widths across layers under a fixed com-
munication budget. However, computing the LAD metric (Equation 3) for all layers and candidate
bit-widths incurs substantial computational overhead, primarily due to the need for multiple forward
passes. Moreover, prior work has shown that the optimal bit allocation tends to remain relatively sta-
ble across consecutive training steps (Markov et al., 2024), making full reallocation at every iteration
both computationally expensive and largely unnecessary.

This motivates the need for a mechanism to determine when bit reallocation should be performed. To
this end, we propose a lightweight yet effective dynamic reallocation trigger that adaptively decides
when to recompute the allocation based on changes in gradient statistics. Specifically, we monitor
the distribution of L2-norms of the gradients across all L layers, which serves as a compact and
computationally efficient proxy for detecting shifts in the overall gradient landscape. Let vt ∈ RL

be the gradient norm vector at iteration t, where the l-th element is the L2-norm of the gradient of
layer l:

vt =
[
∥g(1)

t ∥2, ∥g
(2)
t ∥2, . . . , ∥g

(L)
t ∥2

]T
. (13)
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Figure 2: Learning curves of full-precision and different quantization methods for ResNet-18 on
CIFAR-10 under 2-bit budget. The zommed-in views highlight test curves during Epochs 140–160.

The trigger mechanism works as follows:

1. Anchoring: After a bit allocation is performed at step talloc, we take the normalized gra-
dient norm vector as an “anchor” vector vanchor. Normalization ensures that subsequent
comparisons reflect changes in the distribution shape rather than overall magnitude:

vanchor =
vtalloc

∥vtalloc∥2
. (14)

2. Monitoring: At each subsequent training step t > talloc, we compute the current normal-
ized gradient norm vector, vcurrent = vt/∥vt∥2.

3. Similarity Check: We then measure the change between the current and the anchor vector
using Cosine Similarity:

Similarity(t) =
vcurrent · vanchor

∥vcurrent∥2∥vanchor∥2
(15)

The denominator is unity since both vectors are L2-normalized.
4. Triggering Condition: A reallocation is triggered at step t when both of the following two

conditions are met: (a) the similarity between the current and anchor gradient norm vectors
falls below a predefined threshold τ (e.g., τ = 0.92), indicating a significant shift in the
gradient distribution; and (b) a minimum number of iterations, kmin, has elapsed since the
last allocation at talloc (i.e., t− talloc ≥ kmin).

When a trigger condition is met, the full adaptive bit allocation algorithm is executed, and the cur-
rent gradient norm vector vcurrent is stored as the new anchor vector vanchor for subsequent iterations.
This dynamic trigger mechanism ensures that computational resources for reallocation are used only
when necessary—that is, when the model’s learning dynamics exhibit meaningful change. As a re-
sult, our approach remains both highly responsive and computationally efficient. Our ablation study
in Appendix B.2 validates this, demonstrating that our dynamic trigger achieves superior accuracy
with significantly lower overhead compared to fixed-interval strategies.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and models We evaluate the effectiveness of our proposed method on two representative
machine learning tasks: image classification and language modeling. For image classification, we
train ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) using momentum SGD
with momentum 0.9, and ViT-Small (Dosovitskiy et al., 2020) on ImageNet (Deng et al., 2009) using
AdamW with gradient clipping and weight decay. For language modeling, we employ a two-layer
LSTM (Press & Wolf, 2016) on Penn Treebank (PTB) (Marcinkiewicz, 1994) trained with vanilla
SGD and gradient clipping, and a four-layer Transformer (Vaswani et al., 2017) on WikiText-103
(Merity et al., 2016) using AdamW (Loshchilov & Hutter, 2017) with gradient clipping and weight

7
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Figure 3: Performance boost from our bit allocation framework across various base quantizers on
ResNet-18 using from 2 to 4 bits.

decay. This selection encompasses a broad range of model architectures, including convolutional
and recurrent networks as well as modern attention-based designs.

For ViT-Small on ImageNet, we divide the full training process into three representative 50-epoch in-
tervals: 0–50 (early stage), 150–200 (middle stage), and 250–300 (late stage). This setup enables us
to evaluate each method’s behavior across distinct training dynamics—from rapid parameter updates
in early training to stable convergence in later stages—while significantly reducing computational
requirement. The middle and late stages are initialized from FP32 checkpoints at epoch 150 and
250, respectively, and finetuned for 50 epochs using quantized gradient for training. This staged
evaluation strategy ensures both fairness and efficiency, avoiding the need for full retraining under
each configuration.

Baselines Given that the optimization objectives and constraint conditions in prior studies
(Markov et al., 2024; Yan et al., 2022) on bit allocation for gradient compression differ from ours, as
elaborated in the Introduction, we select the following three baselines for comparison: (1) ‘FP32’
refers to full-precision training and serves as the benchmark for evaluating training accuracy; (2)
‘Uniform’ applies a fixed bit-width uniformly across all gradient layers; (3) ‘Greedy’ represents a
heuristic-based adaptive bit allocation method. Specifically, the greedy strategy utilizes the same
distortion metric as our method but differs in its approach by iteratively allocating bits to the layer
with the highest quantization error until the communication budget is fully utilized, without account-
ing for global optimality. For a fair comparison, all methods are evaluated under the same average
bit budget and are implemented using uniform scalar quantization.

Infrastructure All experiments are implemented in PyTorch 2.3.0 with CUDA 12.1 and cuDNN
8.9.0.2. We use torchvision 0.18.0 and torchtext 0.18.0 for data processing of image clas-
sification and language modeling, respectively. Model training is performed on NVIDIA RTX 4090
GPUs and AMD EPYC 7402 24-core CPUs at 2.8GHz.

3.2 EVALUATION ON DIFFERENT MODELS AND DATASETS

We first conduct experiments on a variety of deep learning models and datasets to assess the effec-
tiveness of our bit allocation framework. Table 1 and Table 2 present the comparison results between
our method and baseline approaches on the image classification and language modeling tasks, re-
spectively. The results demonstrate that, under the given bit constraint, our proposed layer-wise bit
allocation method consistently enhances final model training performance, as measured by accuracy
and perplexity. For instance, on ResNet-18, our method achieves 88.39% accuracy, representing
improvements of 11.01% and 0.30% over the ‘Uniform’ and ‘Greedy’ baselines, respectively. In
the case of ViT-small on ImageNet, our approach outperforms the baselines at every training stage,
achieving higher accuracy even at more aggressive compression rates, particularly during the initial
50 epochs. For language modeling with LSTM on PTB, our method attains a perplexity of 388.08,
reducing near 40% and 31% perplexity compared to ‘Uniform’ and ‘Greedy’ methods, respectively.
The advantages of our approach are also evident in Transformer models, where, under a 3-bit quan-
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tization setting, it achieves a perplexity of 118.27 at a compression rate of 12.77×. These results
validate that our bit allocation framework consistently identifies more effective bit allocation strate-
gies than both uniform and heuristic-based adaptive methods across diverse domains and training
stages.

3.3 COMPARISON ON CONVERGENCE SPEED AND STABILITY

To further investigate the impact of different quantization strategies on training trajectories under
constrained communication budgets, we visualize the test loss and accuracy curves. As shown in
Figure 2, our method consistently delivers competitive performance throughout the training process,
demonstrating clear advantages in both convergence speed and final accuracy. During the early
training phase, the ‘Uniform’ baseline exhibits significant instability and underfitting, as reflected
by pronounced fluctuations and elevated test loss. This instability arises from its inability to accom-
modate layer-wise sensitivity variations under stringent bit constraints. In contrast, both ‘Greedy’
and our method substantially enhance training stability through adaptive bit allocation. Zoomed-in
views of the training curves during the late stage (Epochs 140–160) reveal that while all methods
achieve relative stability, our approach attains the highest accuracy and lowest loss with minimal
fluctuation, outperforming both ‘FP32’ and ‘Greedy’. These results underscore the efficacy of our
bit allocation framework in dynamically adapting to the evolving gradient landscape and effectively
prioritizing sensitive layers.

3.4 ENHANCED PERFORMANCE WHEN INTEGRATED WITH EXISTING QUANTIZERS

To demonstrate the versatility of our bit allocation framework, we also apply our adaptive bit al-
location strategy to several representative base quantizers, including QSGD (Alistarh et al., 2017),
NC (Horvóth et al., 2022), and ALQ (Faghri et al., 2020). These methods span a diverse range of
quantization paradigms, from fixed uniform schemes (QSGD) to non-uniform quantization (NC)
and adaptive techniques (ALQ). As shown in Figure 3, we compare the accuracy of each quan-
tizer with and without the integration of our bit allocation framework under an identical average bit
budget. The results demonstrate that our framework consistently achieves significant performance
gains across all quantizers, particularly under aggressive low-bit settings. For instance, applying
our method to QSGD with a 2-bit budget elevates accuracy from 79.02% to 88.18%, effectively
recovering 9.16% in performance and mitigating the adverse effects of severe quantization. Sim-
ilarly, NC benefits from an accuracy increase from 82.93% to 88.11%, demonstrating that even
advanced non-uniform schemes can be further enhanced by our strategy. Even for a strong baseline
like ALQ, which already adapts its quantization range, our method further improves its performance
from 86.01% to 88.30% at 2-bit setting. By integrating seamlessly with a wide range of existing
quantization methods, our approach enables significant improvements in both gradient compression
efficiency and final model performance.

4 CONCLUSION

In this paper, we proposed an efficient layer-wise bit allocation framework for gradient quantiza-
tion based on a principled RDO formulation. Departing from prior works that naively optimize for
signal-level quantization errors, we introduced a loss-aware distortion measure that captures the sen-
sitivity of training loss to quantization, enabling task-aligned optimization. A key contribution of
our work is the discovery and validation—both theoretical and empirical—of the linear superposi-
tion property of loss distortion. This property allows us to decompose the otherwise intractable joint
bit allocation problem into a series of decoupled, per-layer subproblems. Building on this insight,
we developed a Lagrangian-based optimization algorithm that finds the globally optimal bit alloca-
tion with linear computational complexity in the number of layers. Extensive experiments across
a wide range of model architectures and learning tasks demonstrate the superiority and generality
of our approach. Our method consistently outperforms both static and adaptive baselines, and can
be seamlessly integrated with various quantization schemes to further enhance model performance
under constrained communication budgets. Beyond empirical gains, this work offers theoretical in-
sights into the structure of optimization-aware compression strategies, contributing toward scalable
and intelligent gradient quantization for large-scale distributed deep learning.
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6 REPRODUCIBILITY STATEMENT

All source code required for conducting and analyzing the experiments will be made publicly avail-
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Appendix

A PROOF OF THE LINEAR SUPERPOSITION PROPERTY ON ADAMW

In our main paper, we provided a theoretical justification for the linear superposition property of
distortion based on a first-order Taylor expansion, primarily framed around the SGD optimizer for
clarity. Here, we extend this analysis to the AdamW optimizer (Loshchilov & Hutter, 2017), which
is commonly used in practice. This justifies the application of our rate-distortion optimization frame-
work to modern adaptive optimizers. The notation is kept consistent with the analysis for SGD.

A.1 PRELIMINARIES: THE ADAMW UPDATE RULE

At timestep t, the AdamW optimizer updates the weights Wt to Wt+1 based on the gradient gt =
∇L(Wt). The complete update rule is as follows:

mt = β1mt−1 + (1− β1)gt, (16)

vt = β2vt−1 + (1− β2)g
2
t , (17)

m̂t =
mt

1− βt
1

, (18)

v̂t =
vt

1− βt
2

, (19)

∆Wt = η
m̂t√
v̂t + ϵ

, (20)

Wt+1 = Wt −∆Wt − ηλWt, (21)

where mt and vt are the first and second moment estimates, m̂t and v̂t are their bias-corrected
counterparts, and all operations involving vectors are element-wise. For this analysis, we focus on
the perturbation to the main update term ∆Wt, as the decoupled weight decay term is independent
of the gradient quantization.

A.2 DEFINING WEIGHT PERTURBATION DUE TO QUANTIZATION

Our goal is to analyze the relationship between the gradient quantization error and the resulting
perturbation in the weight space. Let ∆Worig,t denote the weight update computed using the full-
precision gradient gt and ∆W

(K)
mixed,t denote the update computed using a mixed gradient where all

layers in a set K are quantized. The weight perturbation, δW(K)
t , is the difference between these

two updates:

δW
(K)
t ≜ ∆W

(K)
mixed,t −∆Worig,t. (22)

The key to establishing the property is to determine if δW(K)
t ≈

∑
l∈K δW

(l)
t , where δW

(l)
t is the

perturbation from quantizing only layer l.

A.3 ADDITIVITY OF PERTURBATIONS IN MOMENT ESTIMATES

First, we analyze how quantization errors propagate to the moment estimates.

12
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First Moment Perturbation The perturbed first moment estimate, m(K)
mixed,t, is:

m
(K)
mixed,t = β1mt−1 + (1− β1)g

(K)
mixed,t (23)

= β1mt−1 + (1− β1)

(
gt −

∑
l∈K

e
(l)
t

)
(24)

= (β1mt−1 + (1− β1)gt)− (1− β1)
∑
l∈K

e
(l)
t (25)

= morig,t − (1− β1)
∑
l∈K

e
(l)
t . (26)

The total perturbation to the first moment is thus ∆m
(K)
t = m

(K)
mixed,t − morig,t = −(1 −

β1)
∑

l∈K e
(l)
t . Since the single-layer perturbation is ∆m

(l)
t = −(1− β1)e

(l)
t , we have:

∆m
(K)
t =

∑
l∈K

∆m
(l)
t . (27)

Second Moment Perturbation The perturbed second moment estimate, v(K)
mixed,t, is:

v
(K)
mixed,t = β2vt−1 + (1− β2)(g

(K)
mixed,t)

2. (28)

The total perturbation is ∆v
(K)
t = v

(K)
mixed,t − vorig,t = (1− β2)[(g

(K)
mixed,t)

2 − (gt)
2]. We expand the

squared term:

(g
(K)
mixed,t)

2 =

(
gt −

∑
l∈K

e
(l)
t

)2

= (gt)
2 − 2gt

(∑
l∈K

e
(l)
t

)
+

(∑
l∈K

e
(l)
t

)2

. (29)

Due to the zero-padding, the error vectors for different layers are orthogonal, i.e., et(i) · et(j) = 0
for i ̸= j. This implies that the square of the sum is the sum of the squares. The perturbation
becomes:

∆v
(K)
t = (1− β2)

[
−
∑
l∈K

(2g
(l)
t e

(l)
t ) +

∑
l∈K

(e
(l)
t )2

]
(30)

=
∑
l∈K

(1− β2)
[
−2(g(l)

t e
(l)
t ) + (e

(l)
t )2

]
. (31)

The term inside the summation is precisely the single-layer second-moment perturbation, ∆v
(l)
t .

Therefore, the additivity is also exact for the second moment:

∆v
(K)
t =

∑
l∈K

∆v
(l)
t . (32)

The bias correction terms (Equation 18, 19) are scalar multiplications and do not affect the additivity
of these perturbations.

A.4 FROM MOMENT PERTURBATIONS TO WEIGHT PERTURBATION

The weight update ∆Wt is a non-linear function f(mt,vt). To analyze the weight perturbation
δWt, we apply a first-order multi-variate Taylor expansion to f(·, ·) around the full-precision point
(morig,t,vorig,t). For simplicity, we absorb the bias correction scalars into f :

δW
(K)
t = f(morig,t +∆m

(K)
t ,vorig,t +∆v

(K)
t )− f(morig,t,vorig,t) ≈

∂f

∂m
∆m

(K)
t +

∂f

∂v
∆v

(K)
t .

(33)
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The partial derivatives are evaluated at the full-precision point. Since the perturbations to the mo-
ments are additive, we substitute them into Equation 33:

δW
(K)
t ≈ ∂f

∂m

(∑
l∈K

∆m
(l)
t

)
+

∂f

∂v

(∑
l∈K

∆v
(l)
t

)
(34)

=
∑
l∈K

(
∂f

∂m
∆m

(l)
t +

∂f

∂v
∆v

(l)
t

)
. (35)

The term inside the summation in Equation 35 is precisely the first-order approximation of the
individual weight perturbation δW

(l)
t from quantizing only layer l. Thus, we have established the

approximate additivity of weight perturbations:

δW
(K)
t ≈

∑
l∈K

δW
(l)
t . (36)

A.5 FROM WEIGHT PERTURBATION TO LOSS DISTORTION

Finally, we connect the weight perturbation to the overall loss distortion. Let Worig,t+1 = Wt −
∆Worig,t be the weight state after a full-precision update (ignoring weight decay). The state after a
quantized update is W(K)

mixed,t+1 = Wt −∆W
(K)
mixed,t = Worig,t+1 − δW

(K)
t .

The distortion D(K) is the change in loss between these two final states:

D(K) = L(W
(K)
mixed,t+1)− L(Worig,t+1) = L(Worig,t+1 − δW

(K)
t )− L(Worig,t+1). (37)

Applying a first-order Taylor expansion to the loss function L(·) around Worig,t+1 yields:

D(K) ≈ ∇L(Worig,t+1)
T (−δW(K)

t ) = −(gt+1)
T δW

(K)
t , (38)

where gt+1 = ∇L(Worig,t+1) is the gradient evaluated at the updated weights.

By substituting the additivity of weight perturbations from Equation 36 and leveraging the linearity
of the dot product, we arrive at the final result:

D(K) ≈ −(gt+1)
T

(∑
l∈K

δW
(l)
t

)
(39)

=
∑
l∈K

(
−(gt+1)

T δW
(l)
t

)
(40)

≈
∑
l∈K

Dl. (41)

Therefore, the total distortion caused by quantizing multiple layers under the AdamW optimizer can
be approximated by the sum of distortions from quantizing each layer individually. The approxi-
mation error stems from the higher-order terms in two Taylor expansions: one for the non-linear
update rule and another for the loss function itself. This indicates that our rate-distortion framework
remains theoretically applicable to adaptive optimizers.

B ABLATION STUDIES

B.1 EFFECTIVENESS OF THE DISTORTION METRIC

We validate the core principle of our approach through an ablation study designed to assess the
effectiveness of the proposed LAD metric (Equation 3) compared with traditional signal-level met-
rics. Specifically, we evaluate both our Lagrangian-based allocation method and the Greedy baseline
when guided by either MSE or LAD.

As shown in Table 3, the results provide strong evidence for the superiority of the LAD metric.
First, for both allocation algorithms, replacing MSE with LAD consistently improves final accuracy,
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Table 3: Ablation results for different distortion metrics on ResNet-18 at 2 and 3-bit quantization.
Method Distortion Metric Acc. at 2-bit (%) Acc. at 3-bit (%)
Uniform - 77.33 87.32

+ Greedy MSE 87.13 88.14
LAD (Ours) 88.09 88.33

+ Ours MSE 87.24 88.21
LAD (Ours) 88.39 88.49

Table 4: Ablation results for different bit reallocation strategies and trigger configurations. All
methods are evaluated on ResNet-18 using 2-bit quantization. The “Strategy Explanation” column
briefly summarizes the dynamic behavior of each setting.

Strategy Type Configuration Accuracy (%) Total Reallocations Strategy Explanation
Static Baselines τ = 0.00 87.31 1 Only allocates at the first iteration

Fixed Interval Baselines Fixed-50 88.02 784 Re-allocates every 50 iterations
Fixed-100 88.26 392 Re-allocates every 100 iterations

Dynamic Trigger (Ours)
Sensitivity to τ
(with kmin = 20)

τ = 0.98 87.80 373 High sensitivity
τ = 0.95 88.32 91 Balanced trade-off
τ = 0.92 88.28 59 Low sensitivity

Dynamic Trigger (Ours)
Sensitivity to kmin

(with τ = 0.95)

kmin = 0 88.39 416 No minimum reallocation interval
kmin = 20 88.32 91 Balanced trade-off
kmin = 50 88.20 51 Longer reallocation interval

confirming that directly quantifying the impact on the training objective offers a more reliable signal
for bit allocation. Second, we observe a pronounced synergy between our proposed metric and our
optimization algorithm: when guided by the suboptimal MSE metric, the performance gap between
our Lagrangian method and the greedy heuristic is relatively small, whereas under LAD guidance
the advantage of our method becomes substantial. This demonstrates that the full potential of our
principled optimization approach is realized when it is paired with its corresponding principled
distortion measure.

B.2 ANALYSIS OF THE DYNAMIC REALLOCATION TRIGGER

We conduct an ablation study to evaluate the effectiveness of our proposed dynamic reallocation
trigger and analyze its sensitivity to two key hyperparameters: the similarity threshold τ and the min-
imum reallocation interval kmin. The parameter τ governs the sensitivity of the trigger to changes in
the gradient distribution. Larger values make the system more responsive by lowering the similarity
required to trigger reallocation. Conversely, kmin serves as a damping factor, enforcing a minimum
number of iterations between successive reallocations; smaller values permit more frequent updates.

Table 4 presents the performance of different configurations. Notably, disabling reallocation after
initialization by setting τ = 0 results in a significant accuracy drop to 87.31%, highlighting the crit-
ical role of dynamic reallocation in preserving model performance under quantization constraints.
We also examine fixed-interval reallocation strategies, such as triggering reallocation every 50 or
100 steps. While these strategies partially recover accuracy, they incur substantial computational
overhead, requiring up to 784 reallocation events over the course of training. In contrast, dynamic
strategies based on our trigger mechanism achieve superior trade-offs. Among dynamic config-
urations, τ = 0.95 consistently provides a favorable trade-off between accuracy and efficiency.
Although the setting with τ = 0.95 and kmin = 0 achieves the highest accuracy of 88.39%, increas-
ing kmin to 20 reduces the number of reallocations from 416 to 91, with only a 0.07% decrease in
accuracy. These results confirm the necessity of adaptive reallocation and the importance of tun-
ing the trigger mechanism. Our proposed dynamic trigger significantly outperforms fixed or naive
strategies, enabling efficient training with minimal accuracy loss under aggressive quantization.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of LLMs as writing assistance tools during the preparation of this paper.
Specifically, we used LLMs for language polishing, whose role was limited to improving the gram-
matical correctness, refining sentence structure, and suggesting alternative academic phrasing to
enhance the clarity and readability of our paper. The authors reviewed, edited, and take full respon-
sibility for all content presented in this paper, including the final form of any text refined with LLMs
assistance.
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