Published in Transactions on Machine Learning Research (11/2025)

RoboRAN: A Unified Robotics Framework
for Reinforcement Learning-Based Autonomous Navigation

Matteo El-Hariry*
Space Robotics Research Group, SnT
University of Luxembourg

Antoine Richard*
Space Robotics Research Group, SnT
University of Luzembourg

Ricard M. Castan*
Space Robotics Research Group, SnT
University of Luzembourg

Luis F. W. Batista*
Georgia Tech-FEurope
IRL2958 GT-CNRS, Metz, France

Cedric Pradalier
Georgia Tech-Europe
IRL2958 GT-CNRS, Metz, France

Matthieu Geist
Earth Species Project

Miguel Olivares-Mendez
Space Robotics Research Group, SnT
University of Luxembourg

matteo. elhariry@uni.lu

antoine.richard@uni.lu

ricard.marsal@uni.lu

luis.batista@gatech.edu

cedric.pradalier@georgiatech-metz. fr

matthieu@earthspecies.org

miguel.olivaresmendez@uni.lu

Reviewed on OpenReview: htips: //openreview. net/ forum? id=OwDbhLeM59

Abstract

Autonomous robots must navigate and operate in diverse environments, from terrestrial
and aquatic settings to aerial and space domains. While Reinforcement Learning (RL)
has shown promise in training policies for specific autonomous robots, existing frameworks
and benchmarks are often constrained to unique platforms, limiting generalization and fair
comparisons across different mobility systems. In this paper, we present a multi-domain
framework for training, evaluating and deploying RL-based navigation policies across diverse
robotic platforms and operational environments. Our work presents four key contributions:
(1) a scalable and modular framework, facilitating seamless robot-task interchangeability
and reproducible training pipelines; (2) sim-to-real transfer demonstrated through real-
world experiments with multiple robots, including a satellite robotic simulator, an unmanned
surface vessel, and a wheeled ground vehicle; (3) the release of the first open-source API for
deploying Isaac Lab-trained policies to real robots, enabling lightweight inference and rapid
field validation; and (4) uniform tasks and metrics for cross-medium evaluation, through a
unified evaluation testbed to assess performance of navigation tasks in diverse operational
conditions (aquatic, terrestrial and space). By ensuring consistency between simulation
and real-world deployment, RoboRAN lowers the barrier to developing adaptable RL-based

*Equal contribution

https://openreview.net/forum?id=0wDbhLeMj9

Published in Transactions on Machine Learning Research (11/2025)

Figure 1: RoboRAN supports easy development of RL-based navigation tasks across a diverse set of robots.
The five robots shown are Kingfisher, Floating Platform, Turtlebot2, Leatherback, and Jetbot. All have been
implemented in simulation, while the first three have also been evaluated and demonstrated in real-world
environments.

navigation strategies. Its modular design enables straightforward integration of new robots
and tasks through predefined templates, fostering reproducibility and extension to diverse

domains. To support the community, we release RoboRAN as open-source’.

1 Introduction

One of the main goals of robotics research is to develop autonomous agents capable of navigating and
executing tasks in any environment and medium, from terrestrial rovers and aquatic vessels to aerial drones
and spacecraft. While Reinforcement Learning (RL) has shown promise in training such agents (Taheri
et al., 2024; Wisniewski et al., 2024; Tezerjani et al., 2024; Surmann et al., 2020), more often than not, the
capabilities of these agents are only illustrated on a single robot and on a single task. Existing benchmarks
are often restricted to specific robot types and environment settings, limiting generalization and cross-domain
comparisons. Although this approach is well suited to grow domain-specific knowledge, it makes it hard to
see how one method would transfer to a different system. Hence, to scale RL for robotics, this paradigm
must evolve toward more generalizable frameworks, enabling the development of universal solutions and their
efficient adaptation to specific systems.

In the literature, we can find many specialized RL frameworks, be it used to control boats (Batista et al.,
2024), satellites (El-Hariry et al., 2024; 2023), or ground rovers (Perille et al., 2020), but there has been
little effort to evaluate these systems under a common structure. With this paper, we introduce RoboRAN,
a multi-domain navigation framework focused on robot-task decoupling for simplifying the development and
evaluation of RL-based policies across different robots and operational mediums. Our framework enhances
Isaac Lab (Mittal et al., 2023), providing unified tasks and robots definition, and allowing to train one policy
per robot-task pair using a shared and extensible training infrastructure. While supporting all the robots
shown in Figure 1, RoboRAN offers the following four contributions:

1. Modular design enabling task-robot interchangeability. Our framework separates robot and task
definitions using standardized APIs, minimizing integration overhead and enabling new robot—task pair-
ings without altering existing modules. We demonstrate this interchangeability by training multiple
navigation tasks across robots with distinct mobility systems (e.g., thrusters, wheels, water-based propul-
sion).

Thttps://github.com/snt-spacer/RoboRAN-Code

https://github.com/snt-spacer/RoboRAN-Code

Published in Transactions on Machine Learning Research (11/2025)

Table 1: Comparison of RoboRAN with existing RL frameworks.

Benchmark Domain Diversity Task Types Sim-to-Real Robustness Sensor / Env. Realism Modularity Backend
RoboRAN (Ours) Land / Water / Orbital Navigation (4+) /(3 robots) Partial Moderate (realistic physics) v Isaac Lab
RL-Nav (Xu et al., 2023) (Xu et al., 2023) Ground Navigation (1) (1 robot) Partial Moderate (realistic physics) Partial Gazebo
Habitat 2.0 (Szot et al., 2021) Indoor Rearrangement / Manipulation Limited High (photorealism, articulation) ~ Partial Bullet
RRLS (Zouitine et al., 2024) Sim (MuJoCo) Continuous control V (worst-case) Low Moderate MuJoCo
Robust Gymnasium (Gu et al., 2024) Sim (varied tasks) Control / Safe RL / Multi-agent V (disruptions) Medium v Gymnasium
FlightBench (Yu et al., 2024) Aerial (quadrotors) Ego-vision navigation V(1 robot) Partial High (occlusion, motion blur) Custom
BARN (Perille et al., 2020) Ground Reactive / Safe navigation V(1 robot) v (safety/uncertainty) Medium / Low Partial ROS / Gym
iGibson 0.5 (Xia et al., 2019) Indoor Interactive navigation Limited High (realistic sensors) Partial Gibson + PyBullet
Aquatic Benchmark (Corsi et al., 2024) Water (aquatic) Point-to-point navigation Partial Moderate (hydrodynamics, drift) Unity3D

2. Sim-to-real transfer across diverse platforms with a single training and deployment pipeline.
In contrast to previous work that primarily validates policies on a single robot type, we conduct real-world
experiments on three distinct platforms: a Floating Platform, a Boat, and a Turtlebot2. We demonstrate
how our simulation platform, with domain randomization and physically grounded disturbances, enables
sim-to-real transfer, and report the corresponding performance results across robot-task pairs.

3. Open-source deployment API for Isaac Lab-trained policies. We release the first deployment
stack that enables policies trained with skrl or rl_games in Isaac Lab to run directly on real robots.
The stack removes dependencies on the Gym wrapper, supports lightweight execution on edge devices,
and provides ROS 2 integration and Dockerized workflows for reproducibility, lowering the barrier from
training to real-world validation.

4. Unified tasks and metrics for cross-medium evaluation. We provide a common testbed for evaluat-
ing navigation strategies in a diverse set of operational conditions (e.g., terrestrial, aquatic, or microgravity
environments). This is enabled by a reusable and extensible performance metric layer, applicable across
navigation tasks and robot configurations.

2 Related Work

Reinforcement Learning (RL) has emerged as a powerful paradigm for control tasks, demonstrating its ability
to learn complex policies directly from sensorimotor data. This has led to significant advancements across
various domains, including robotic manipulation (Levine et al., 2015), humanoid locomotion (Peng et al.,
2018), and the control of legged robots (Lee et al., 2020). While benchmark development has primarily
centered on manipulation (Lee et al., 2019; James et al., 2019; Zhu et al., 2020; Heo et al., 2023), navigation
remains a fundamental aspect of embodied intelligence that has gained increasing attention (Zhu & Zhang,
2021; El-Hariry et al., 2023).

To facilitate learning-based navigation, numerous simulation environments and physics engines have been
developed. Frameworks such as MuJoCo (Todorov et al., 2012), PyBullet (Coumans & Bai, 2016), We-
bots (Michel, 2004), and Isaac Gym (Makoviychuk et al., 2021) provide efficient and scalable platforms
for RL training, but are often constrained to single-domain settings or specific robot morphologies. Isaac
Lab (Mittal et al., 2023) extends Isaac Gym by supporting diverse robotic platforms, though it lacks both
a structured evaluation suite for benchmarking RL policies across tasks and domains and the flexibility for
interchangeable training of multiple tasks across multiple robots. Several recent benchmarks have addressed
learning-based navigation under specific environmental and sensory constraints. Habitat (Savva et al., 2019;
Szot et al., 2021) targets high-level planning and mobile manipulation in photorealistic indoor environments.
The BARN challenge (Perille et al., 2020) focuses on low-level control in cluttered scenes, while Flight-
Bench (Yu et al., 2024) benchmarks ego-vision-based navigation for agile quadrotors. Aquatic navigation
tasks are considered in (Corsi et al., 2024), and iGibson 0.5 (Xia et al., 2019) provides an interactive bench-
mark in household environments. These efforts, however, are typically domain-specific and lack support for
robot—task interchangeability or sim-to-real evaluation.

Robustness and generalization have become important in recent benchmark development. RRLS (Zouitine
et al., 2024) introduces worst-case robust control evaluation using adversarial domains in MuJoCo, while
Robust Gymnasium (Gu et al., 2024) defines modular disruption models across 60+ tasks. Although these
environments are well-suited to studying resilience in policy learning, they remain simulation-bound and are
limited in the diversity of robotic embodiments.

Published in Transactions on Machine Learning Research (11/2025)

Prior work such as (Xu et al., 2023) identifies four key desiderata for RL in robotics (uncertainty handling,
safety guarantees, data efficiency, and generalization) and provides valuable evaluation metrics and insights.
The Gazebo-based simulation environment used in this work supports algorithm comparisons, but is limited
to a single navigation task and robot. In contrast, RoboRAN emphasizes multi-robot, multi-domain flexibility
within a high-throughput, GPU-accelerated simulation stack. Its modular design and extensibility enable
future integration of safety-focused features such as policy and environment constraints.

While robustness and safety-centric studies like RRLS (Zouitine et al., 2024), Robust Gymnasium (Gu et al.,
2024), and (Xu et al., 2023) focus on domain shifts or guarantees, RoboRAN provides complementary value
by supporting simple real-world deployment and modular task-robot definitions, allowing practitioners to
easily integrate different robot morphologies and new navigation tasks across diverse physical environments.
Table 1 compares RoboRAN with existing RL benchmarks along axes such as domain diversity, task types,
sim-to-real validation, robustness testing, realism, and modularity. We highlight our benchmark’s cross-
domain reach, support for real-world deployment, and modular structure enabling extensibility.

3 RoboRAN Overview

Common Environment Manager

Custom Domain q
Custom Physics
Train Deploy
ROS2 API

Robot API

Extensible
Set of Robots

~ Task API Evaluate
Y
] =
"‘% ﬁ Go Through Positions
g %= N i) RL Library 5 :
= .
;_E @ 21 Turtlebot 2 Floating Platform
v
Go,To Pose. 5 Go To Position 583
- ® 1l games
- Direct Environment phid

RoboRAN Isaac Lab Real Robots

Figure 2: RoboRAN framework: the navigation tasks and Simulation Robots modules, along with a selected
RL library of preference, serve as only inputs needed for our Environment Manager to train a policy in
simulation, providing a readily available network for deployment on the real analog of the chosen robot.

RoboRAN is designed to train and evaluate robotic navigation tasks across a variety of operational settings.
We introduce a unified structure where diverse robots can be evaluated on a shared set of tasks, using
consistent interfaces and metrics. This design uniquely enables seamless interchangeability between agents
and environments across different physical domains.

Our environment, formulated as a standard Markov Decision Process (MDP) (Puterman, 2014), is defined
by the tuple (S,.A, P,7,7), where S is the set of states, A is the set of actions, P(s | s,a) is the transition
probability function, 7(s, a) is the scalar reward function, and ~ € [0, 1] is the discount factor. At each time
step t, an agent observes a state s; € S, selects an action a; € A according to its policy 7(as | s¢), receives a
reward r; = r(st, at), and transitions to a new state s;y1 ~ P(- | ¢, a¢). The environment thus provides at
each step an observation o; € O, a reward ¢, and a done signal d; € {0,1} indicating termination. The goal

of the agent is to maximize the expected return J(7) = E, [Z::T:o v'r(s¢, ar)| over episodes of length 7.

Figure 2 depicts the main components of our framework:

The Common Environment Manager instantiates a specified task-robot pair, dynamically configuring
the simulation assets, physics parameters, and task constraints based on the robot’s specific characteristics
and operational medium. This modular design is a key contribution of our framework, as it enables full
interchangeability between tasks and robots, and sub-module addresses a distinct aspect of this flexibility.

Published in Transactions on Machine Learning Research (11/2025)

Table 2: Comparison of Robot Properties in RL Navigation Tasks. Control inputs are expressed as mathe-
matical spaces.

Robot Actuation Type Degrees of Freedom Control Input Space Motion Constraints

Floating Platform Thruster-based (binary) 3 (x,y, yaw) {0,1}® No rolling/pitching, planar motion
Kingfisher Water-based thrusters 3 (x,y, yaw) R? (left/right thrust) Drag and inertia effects, smooth but slow
Turtlebot2 Differential drive 3 (x, y, yaw) R? (v, w) No lateral movement, limited turn speed

More details provided in Appendix A.7.

The Custom Physics module computes custom dynamics and actuation forces through parameterized
thruster/propeller models. For instance, it applies hydrodynamic and propeller models for surface vessels, or
microgravity and frictionless dynamics for the floating platform. It also enables flexible rewards to platform-
specific constraints, such as penalizing rapid thruster actuation.

The Custom Domain Randomization module implements the disturbances detailed in Section 3.4 which
are required to achieve sim-to-real transferability.

During training or evaluation, the Performance Metrics layer attach task-specific logging hooks enabling
both on-line navigation metric updates and uniform post-hoc evaluation.

The ROS2 API simplifies policy deployment by using a ready-to-use inference node that exposes stan-
dard ROS2 interfaces, eliminating manual policy export steps that differ across RL libraries. More in the
Deployment Section 3.6.

Together, these sub-modules enables flexibility and streamline the pipeline that shortens the loop between
Training, Deployment and Simulation for diverse types of robots. The relationship between RoboRAN and
Isaac Lab is detailed in Section 3.7.

3.1 Robots

RoboRAN supports all robots presented in Figure 1. Among them, we selected three representative robots
for further evaluation and field tests. Their characteristics and control properties are summarized in Table 2.

Land. We selected the Turtlebot2, an open source platform with differential drive system with non-
holonomic dynamics. To demonstrate the extensibility of our stack, two more wheeled robots (Leatherback
and JetBot) are supported and tested in simulation. Results and details are provided in the Appendix A.1.
Water. We use the Kingfisher M200?, a surface vessel with high inertial properties featuring a catamaran
hull configuration and is driven by two fixed propellers, one on each hull. To simulate aquatic dynamics, we
override Isaac Lab’s default planar physics with custom hydrodynamics and hydrostatics models, enabling
more accurate motion behaviors influenced by water resistance.

Space. We implement a floating platform, a thruster-actuated system constrained to planar movement,
mimicking spacecraft-like motion with force-based control. This robot, through air bearings mounted on its
base, generates a microgravity effect by pushing a constant airflow against the floor to lift and levitate in a
free-floating fashion. To simulate this effect, we implement a custom frictionless dynamics to approximate
free-floating orbital behavior, which is not natively supported by Isaac Lab.

3.2 Tasks

While Isaac Lab designs tasks around fixed robot models, RoboRAN decouples robot and task definitions,
allowing consistent training and evaluation pipelines for any supported robot across all tasks. Our framework
includes a suite of four navigation tasks designed to evaluate robotic motion in different environments and
actuation methods. Each task leverages a structured observation space, detailed in Table 3, providing
essential state information such as base velocities [vy, vy, w], which capture the linear and angular velocity
of the agent. To enhance temporal reasoning, we augment the observation vector with the previous action
at—1, enabling the policy to infer dynamic transitions and improve stability in control. In all tasks, the
observations are provided in the robot’s own frame and apply Domain Randomization that mimics the noise
of real sensors commonly used for state estimation.

2https://clearpathrobotics.com/

Published in Transactions on Machine Learning Research (11/2025)

Table 3: Summary of Navigation Tasks, Objectives, and Observation Space

Task Objective Obs Obs Components Obs Variables
Dim
GoToPosition Reach a target position | 6 Base Velocities, Target [V, Uy, w], [d,cos(6), sin(6)]
Info
xZ, b) 9y d7 - 0 3~ i 0 ,
GoToPose Reach a target 3DoF | 8 Base Velocities, Target [vz, vy w}. [d, cos(6), sin(9)]
pose Info, Target Heading [cos(1)), sin(4))]
T)] d’ “0S 9] si 0)
GoThroughPositions | Follow a sequence of | 6 +3n | Base Velocities, Target [z, vy,] |) cos(8), sin(6)]
waypoints Info, Future Goals [di, cos(6:), sin(0;)]
TrackVelocities Maintain a set velocity | 6 Error Terms, State [€v; €1, €w], [V Uy, w]

GoToPosition task requires the agent to reach a randomly initialized 2D position using the target infor-
mation [d, cos(f),sin(6)], representing the Euclidean distance and bearing to the goal. The relative angular
position of the goal, is provided as a cos and sin of the angle to ensure the observations are continuous (Zhou
et al., 2018).

GoToPose task is similar to GoToPosition, but also requires orientation alignment. Therefore, the obser-
vation space incorporates the target heading as [cos(v)), sin(¢)] to provide the angular distance to the desired
final orientation.

GoThroughPositions task involves sequential navigation through a series of n waypoints, introducing fu-
ture goals [d;, cos(6;),sin(6;)] in the observation space to ensure smooth trajectory planning.
TrackVelocities task requires the agent to follow a time-varying velocity reference in both linear and an-
gular components. The observation space includes velocity error terms [e,, €}, .| capturing deviations from
the desired forward, lateral, and angular velocities. While no explicit path planner is embedded in the con-
trol policy, the velocity references can be derived from any arbitrary trajectory generator, including spline
interpolators or MPC-based local planners. In this sense, the generator acts as a lightweight path planner,
and the learned policy serves as a robust low-level controller that tracks planned motion commands across
diverse robot morphologies and terrains.

These tasks provide a flexible evaluation suite for RL-based navigation, adaptable to use-cases such as
autonomous docking, inspection, formation control, and trajectory tracking. While the core experiments in
this paper focus on fundamental control-oriented tasks without obstacles or perceptual inputs, the framework
is designed to support more complex scenarios. Thanks to its modular architecture, features such as obstacle
avoidance, moving targets, and real-world sensing modalities can be integrated with minimal code changes.
We provide illustrative examples of these extended capabilities, such as navigation with static obstacles, in
Appendix A.2, demonstrating the framework’s applicability beyond the tasks reported in the main evaluation.

3.3 Reward Formulation

The reward function combines task-specific objectives with general regularization terms to ensure consistent
goal-directed behavior and control smoothness across robot types. Its unified form is shown in Eq. 1, where
dp, dp, and dy denote the distance to the goal position, heading misalignment, and boundary proximity
respectively. The terms v; represent linear and angular velocities clipped to task-defined ranges, Ad,, is the
signed progress along the goal direction, and Ig0, provides a terminal bonus when the goal is reached. The

term 7°P°t adds optional robot-specific shaping such as control regularization.
ry = Z wie” 4/ 4 Z w; clip(v}, Umin, Vmax) + WpgAdp + Whns * Ibonus + T,fObOt (1)
i€{p,h,b} J€{v.w}

The weights w;, wj, Wpg, and Weyee vary by task, and are denoted in Table 10 as «; for GoToPosition, B;
for GoToPose, ¢; for GoThroughPositions, and ~y; for TrackVelocities with decay constants \; shared across
tasks. For example, aje~ %/ encourages position convergence in GoToPosition, while Bie~ /A e=dn/a
jointly rewards alignment in GoToPose. Similarly, progress is captured by ¢1Ad, in GoThroughPositions,

Published in Transactions on Machine Learning Research (11/2025)

and Track Velocities uses v;e~%/*5 to penalize velocity tracking errors. All coefficients were tuned for balance
and stability across robots, and are reported in Table 10 of the Appendix A.4 for full reproducibility.

3.4 Domain Randomization

To support sim-to-real transfer, we apply domain randomization in three key areas: (i) robot mass properties
(mass, center of mass location, inertia tensor), (ii) actuation noise via Gaussian perturbations to commanded
actions, and (iii) external disturbances modeled as random wrenches applied to the robot’s base. The
amount of randomization is chosen at random at every reset. We ensure reproducibility through a per-
environment seed-controlled random number generation (RNG) using Warp (Macklin, 2022), allowing fine-
grained domain randomization across parallel training environments. We apply moderate randomizations
to simulate real-world uncertainties. For the Turtlebot2, we vary its mass by £0.1kg and CoM by +0.05m
(std = 0.01), reflecting typical manufacturing variances. For the Kingfisher, which operates in a fluid
environment, we use broader mass (+2.0kg) and CoM (£0.05m) perturbations, and apply random body
wrenches (forces € [0,0.25] N, torques € [0,0.05] Nm) to account for water currents. For the Floating
Platform, we use intermediate mass (£0.25kg) and similar CoM and wrench ranges to model small-scale
system variations and external disturbances. An extensive description of the domain randomization is
provided in the Appendix A.3.

3.5 Training

We train RL algorithms using the skrl (Serrano-Mufioz et al., 2023) library, with PPO (Schulman et al., 2017)
as the training algorithm. PPO was selected due to its stability in high-dimensional continuous control and
its widespread use in RL robotics settings. Rather than comparing algorithms, our focus is on demonstrating
the decoupling of robot-task development within a unified framework. All experiments were run on a single
NVIDIA RTX 4090. PPO was trained with default hyperparameters, listed in the Appendix A.5, and each
robot-task pair converged in ~ 15 minutes on average. The final set of policies trained and used for evaluation
are 12 (3 robots and 4 tasks).

3.6 Deployment

A key contribution of this work is the open-sourcing of the first deployment stack that seamlessly integrates
policies trained with skrl or rl_games into the Isaac Lab simulation and real-robot environments. Our
deployment framework is composed of three main components: (i) a state creation node, which constructs
the observation vector required by the trained policy for a given robot-task configuration; (ii) a model
inference node, which loads the exported policy checkpoint and publishes control commands; and (iii) a goal
generation node, enabling dynamic task definition during execution.

To facilitate reproducibility and portability, the system is fully containerized with Docker, and offers direct
ROS 2 integration for hardware deployment. Additionally, a simulated OptiTrack module allows rapid
evaluation of inference pipelines without requiring physical experiments. Importantly, we deploy the system
without relying on the Gym wrapper, which enables lightweight execution on edge devices without the need
for workstation-grade resources to load the networks. This design ensures that controllers trained within
Isaac Lab can be deployed to heterogeneous robotic platforms with minimal adaptation, making the stack
suitable for both simulation benchmarking and field testing.

By open-sourcing this stack, we provide the community with the first unified and lightweight pathway from
Isaac Lab training to real-world robotic control, lowering the barrier to reproducible RL deployment across
platforms. Link to the code.?

3.7 Relation to Isaac Lab

While Isaac Lab provides a flexible starting point for robot simulation and training, RoboRAN extends it
into a modular, benchmark-ready framework tailored for reinforcement learning. Our stack introduces (i) a

Shttps://github.com/snt-spacer/RoboRAN-deploy-to-robot

https://github.com/snt-spacer/RoboRAN-deploy-to-robot

Published in Transactions on Machine Learning Research (11/2025)

Table 4: Task Success Criteria and Thresholds. Each task defines success based on reaching position,
orientation, velocity, or time-based constraints.

Task Success Condition Threshold
GoToPosition Final position error < ¢, ep = 0.1m
GoToPose €p and orientation error < eg ep = 0.1m, g = 10°
GoThroughPositions Waypoints reached within e, €p = 0.2m
TrackVelocities Maintain €,, €, €y = 0.2m/s, €, = 10°/s

decoupled robot-task interface enabling easy re-use of tasks across robots and vice versa, (ii) standardized
reward APIs and evaluation metrics for consistent comparisons, (iii) a Dockerized ROS2 deployment interface
for seamless sim-to-real transfer, and (iv) a suite of field-validated scenarios on heterogeneous platforms
(ground, water, microgravity). These additions transform Isaac Lab from a development toolkit into a
ready-to-use research benchmark for RL in mobile robotics.

4 Simulation Results

We evaluate our RL-trained policies in simulation across representative robot-task pairs, reporting results
for three multi-domain robots: Floating Platform, Kingfisher, and Turtlebot2. These cover a diverse range
of actuation models and navigation challenges, ensuring a broad evaluation scope.

4.1 Experimental Setup

Each policy is trained for 3200 epochs using PPO, over 5 random seeds per robot-task pair. During
evaluation, we use GPU-accelerated Isaac Lab rollouts with parallel environments to collect performance
data from 4096 evaluation episodes per run. All results are reported as mean + std across environments.
We define task-specific success as percentage of trajectories that satisfy the task specific metrics. Each
metric is associated to a set of thresholds (e, €9, €, €,, and €,) that are listed in Table 4):
GoToPosition: distance to goal < €, within a fixed time budget.

GoToPose: both distance < ¢, and heading error < ¢y must be satisfied.

GoThroughPositions: count of waypoints reached in sequence within €, tolerance before timeout.
TrackVelocities: mean absolute tracking error for linear and angular velocity must stay below €, and €.

In addition to success rate (defined as the percentage of episodes that meet task-specific thresholds), we
report continuous evaluation metrics to capture control precision and stability:

Final Distance Error (m): Euclidean distance to the goal at the end of the episode.

Heading Error (°): Absolute orientation difference at the final timestep (GoToPose only).

Time to Target (s): Duration required to reach the target precision threshold. Lower values reflect faster
convergence.

Velocity Tracking Error (m/s): Mean absolute error between target and actual linear/angular velocities
(TrackVelocities only).

Control Signal Variation (unitless): Standard deviation of control signals over the episode, reflecting
smoothness or abruptness of control.

Goals Reached: Total number of intermediate targets successfully reached during sequential waypoint
tasks (GoThroughPositions).

All these metrics are aggregated in Table 6, enabling a multi-dimensional comparison across tasks and robots.

Published in Transactions on Machine Learning Research (11/2025)

-
&
3

-
IS}
&

H
o
3

Training Performance Comparison: GoToPosition Task

Training Performance Comparison: GoToPose Task

T
© E 50
2 75 H
& &
% 50 c
3 g °
= 5 =
Robots Robots
0 —— floatingplatform -0 —— turtlebot2
25 —— kingfisher — floatingplatform
—— turtlebot2 —— kingfisher
~100
20 40 60 80 100 0 20 40 60 80 100
Training Steps Training Steps
Training Performance Comparison: GoThroughPositions Task Training Performance Comparison: TrackVelocities Task
30 180
20 160
B0 °
© S 140
z o 3
4 -4
§ -10 5 120
L L)
= =
=20 100
Robots Robots
-30 —— turtlebot2 —— kingfisher
—— floatingplatform 80 —— floatingplatform

—— kingfisher

20 40 60 80 100
Training Steps

40 60
Training Steps

—— turtlebot2

80 100

Figure 3: Learning curves showing rewards (mean =+ std) over 5 seeds per robot, compared based on task.

Table 5: Wall-clock time per robot-task pair (mean + std over 5 seeds) in minutes [m].

Task Floating Platform Kingfisher Turtlebot2

GoToPosition 7.35 £ 0.02m 13.91 +0.19m 11.55+ 0.14m
GoToPose 5.46 4+ 0.00m — 11.53 £ 0.16m
TrackVelocities 5.08 £ 0.18m 13.47+0.07m 11.28 £ 0.02m
GoThroughPositions 5.51 £ 0.13m 13.47£0.35m 11.20 £ 0.03m

4.2 Training Efficiency and Learning Trends

Figure 3 shows the training reward across 5 seeds, highlighting learning speed and convergence per robot.
The FloatingPlatform achieves the highest asymptotic rewards, benefiting from direct actuation despite its
discrete thrust model. Turtlebot2 converges reliably with moderate final returns, aided by low-dimensional
control. Kingfisher shows slower and less stable learning, likely due to its hydrodynamic complexity and
inertia. Table 5 reports average wall-clock time per training run. The Kingfisher requires the longest
training time, consistent with its complex dynamics. Turtlebot2 trains fastest among wheeled platforms.
The unexpectedly short time for the FloatingPlatform suggests beneficial interaction between its discrete
control structure and Isaac Lab’s GPU-based parallelization. These differences motivate further study into
simulation efficiency under varying robot dynamics.

4.3 Task Success and Performance Analysis

To complement the reward learning curves shown in Figure 3, we conduct a detailed quantitative evaluation
across all robot-task pairs. This evaluation uses standardized success metrics and control efficiency indicators
(Table 6) collected over 4096 parallel trajectories per setting.

Figure 4 presents the convergence curves for each robot-task pair. Shared tasks (GoToPosition, GoThrough-
Positions, and Track Velocities) are plotted together for comparison, while specialized tasks (GoToPose) are
shown separately.

Published in Transactions on Machine Learning Research (11/2025)

GoToPosition: Simulation Performance

GoToPose: Distance Convergence

Distance to Goal (m)

3 5 100 150 20 20 30
Timesteps

3 5 100 150 20 20 30
Timesteps

GoToPose: Heading Alignment

Timesteps

(a) GoToPosition: all robots. (b) GoToPose (distance): Floating- (c) GoToPose (heading): Floating-
Platform, Turtlebot?2. Platform, Turtlebot?2.
. S —
(d) GoThroughPositions: goals (e) GoThroughPositions: goals dis- (f) TrackVelocities: linear (black) and

achieved (all robots). tribution (4096 evaluation envs, all

robots).

angular (orange) velocity errors (all
robots).

Figure 4: Simulation results across robots and tasks. Performance comparisons for GoToPosition,
GoToPose, GoThroughPositions, and TrackVelocities tasks. (a) All robots for GoToPosition. (b, ¢) Floating-
Platform and Turtlebot2 on GoToPose (distance, heading). (d) Number of goals achieved in GoThroughPo-
sitions (all robots). (e) Goals distribution over 4096 parallel evaluation environments (all robots). (f) Linear
velocity error in TrackVelocities (all robots).

Table 6: Simulation evaluation metrics per task and robot (mean =+ std across 4096 envs, PPO-
skrl). Metrics include: success rate (%), final distance error (m), heading error (°), time to target (s),
velocity tracking error (m/s), control signal variation (unitless), and number of goals reached. “—” indicates
non-applicable metrics.

Task Robot Success Rate T Dist Err | Heading Err | Time to Target | Lin Vel Err | Ang Vel Err | Ctrl Var | Goals Reached 1
GoToPosition FloatingPlatform 0.94 + 0.04 0.05 + 0.01 87.05 £+ 3.38 0.62 + 0.04
Kingfisher 0.59 + 0.29 1.06 £ 0.73 — 176.11 % 60.86 — — 0.75 =+ 0.45 —
Turtlebot2 0.99 + 0.01 0.07 £ 0.00 — 92.60 + 4.67 — — 0.43 £ 0.26 —
GoToPose FloatingPlatform 0.99 + 0.01 0.02 £+ 0.01 0.78 £+ 0.01 92.38 £ 2.59 0.69 &+ 0.05
Kingfisher 0.66 = 0.09 0.23 &+ 0.06 7.07 £ 3.08 126.80 + 31.29 0.48 + 0.29
Turtlebot2 0.84 + 0.04 0.14 £ 0.01 4.39 + 1.56 131.49 + 2.16 0.63 + 0.38
GoThroughPositions FloatingPlatform 1.00 + 0.00 2.35 + 0.25 — 65.18 £+ 1.03 — — 0.32 + 0.04 13.57 + 0.33
Kingfisher 1.00 £ 0.00 2.41 + 0.79 — 93.29 £ 18.56 — — 0.43 + 0.24 10.70 + 2.84
Turtlebot2 1.00 + 0.00 1.79 £ 0.05 101.50 + 12.25 0.13 &+ 0.06 11.01 + 0.12
TrackVelocities FloatingPlatform 0.93 + 0.18 — — — 0.05 + 0.07 0.03 % 0.01 0.45 + 0.04 —
Kingfisher 0.48 + 0.03 — — — 0.03 % 0.00 0.24 £ 0.02 0.62 + 0.37 —
Turtlebot2 0.77 & 0.01 — — — 0.02 & 0.01 0.11 £ 0.01 0.15 + 0.09 —

GoToPosition and GoToPose The Turtlebot2 achieves the highest success rate in GoToPosition with
0.99 =+ 0.01, benefiting from its differential-drive system and precise low-speed control. The FloatingPlat-
form follows with 0.94 4+ 0.04, while the Kingfisher lags at 0.59 £ 0.29 due to inertia and limited turning
agility. These trends are confirmed in Figure 4a, where Turtlebot2 reaches the goal region fastest, followed
by FloatingPlatform and Kingfisher. In the GoToPose task, both FloatingPlatform and Turtlebot2 succeed
in reaching the target, with success rates of 0.99 4+ 0.01 and 0.84 + 0.04, respectively. Kingfisher is not
evaluated due to its lack of heading control. FloatingPlatform achieves superior orientation control, with a
heading error of 0.78° % 0.01°, compared to Turtlebot2’s 4.39° £+ 1.56°, as shown in Figure 4c. Distance
convergence is also faster and more precise for FloatingPlatform (0.02 £ 0.01 m vs 0.14 + 0.01 m, Fig. 4b).

GoThroughPositions All three robots successfully complete partial trajectories (100% success rate), but
differ in the number of goals reached. FloatingPlatform achieves the highest average at 13.57 + 0.33,

10

Published in Transactions on Machine Learning Research (11/2025)

while Turtlebot2 and Kingfisher reach 11.01 £ 0.12 and 10.70 £ 2.84 respectively. These differences are
reflected in Figure 4d (cumulative goals) and Figure 4e (distribution), where FloatingPlatform’s performance
is both higher and more consistent. Turtlebot2 shows smoother trajectories but fails to reach all waypoints
within the time constraints, while Kingfisher’s performance is more variable due to inertia limiting sharp
turns.

TrackVelocities FloatingPlatform demonstrates moderate success in tracking target velocities. Its linear
velocity error is 0.05 £ 0.07, and angular velocity error is 0.03 & 0.01, better than both Turtlebot2
(0.02 £ 0.01, 0.11 + 0.01) and Kingfisher (0.03 £ 0.00, 0.24 £ 0.02), as detailed in Table 6 and shown in
Figure 4f. The high angular error for Kingfisher highlights the difficulty of fast heading corrections in water
due to drag and momentum.

Success Rate Summary Table 6 confirms these observations across tasks. Turtlebot2 dominates in
GoToPosition, FloatingPlatform leads in GoThroughPositions, and both Turtlebot2 and FloatingPlatform
perform comparably in GoToPose. In TrackVelocities, all robots achieve reasonable success, but Kingfisher
exhibits the highest angular tracking errors, limiting its overall precision. These trends are visible in Figure 4,
supporting our conclusion that control effectiveness varies not only across robots but also across tasks.

4.4 Discussions

While RL policies achieve high success rates, several robot-specific failure cases were observed. The Float-
ingPlatform experiences oscillations near target positions due to force-based control lag. The Kingfisher
struggles with understeering in tight waypoint sequences, making sharp turns difficult. The Turtlebot2, de-
spite overall fast learning, exhibits difficulty in precise in-place rotations, leading to longer turning maneuvers
in the GoToPose task. These challenges highlight the need for refined reward shaping and constraint defi-
nitions to improve task execution. Overall, the successful training of diverse robots on shared tasks, despite
their differing actuation and mobility constraints, demonstrates the viability of unified cross-medium
pipeline. The Turtlebot2’s rapid convergence, the FloatingPlatform’s discrete thrust limitations, and the
Kingfisher’s inertia-driven control difficulties highlight the importance of evaluating RL policies across het-
erogeneous platforms.

5 Sim-To-Real Results

5.1 Overview and Setup

We tested the trained policies on platforms (FloatingPlatform, Kingfisher, and Turtlebot2) across different
navigation tasks. Real-world tests did not include the GoToPose task for the Kingfisher because wind,
currents, and its non-holonomic motion often made goal poses unreachable. Track Velocities was not reported
for the Turtlebot as it directly executes velocity commands, making performance evaluation trivial. Each
robot-task pair evaluated over 4 to 10 independent trials, with key metrics summarized in 7.

Sim-to-real performance drops are shown in Table 8. We omit results for the GoThroughPositions and
TrackVelocities due to inconsistencies between simulation and real-world conditions. Specifically some task
parameters (e.g. goal distances and target velocities) were adjusted to fit the physical testing areas, making
direct comparison with simulation results unfair. A full breakdown of real-world evaluation runs, including
per-trial plots and setup configurations, is available in Appendix A.6 and the public repository.

5.2 Field Results and Task Trends

GoToPosition: All three robots successfully minimized the distance-to-goal across runs, with Turtlebot2
and FloatingPlatform reaching perfect success rates of 1.00, and Kingfisher at 0.667. Despite Kingfisher’s
slower convergence and higher final distance error (0.464 £+ 0.660), Turtlebot2 showed precise goal conver-
gence (0.019 £ 0.044), matching simulation trends. Figure 5c illustrates these results.

11

Published in Transactions on Machine Learning Research (11/2025)

FloatingPlatform - GoToPose Field Test Performance N Turtlebot2 - GoToPose Field Test Performance

Distance Error (m)
S

0 25 50 75 100 125 150 175 200 : 0 50 100 150 200 250 300
Timesteps Timesteps

(a) GoToPose: FloatingPlatform. (b) GoToPose: Turtlebot2.

GoToPosition: Comparison Across Robots GoThroug! iti Field Tests C ive Goals

— FloatingPlatform — FloatingPlatform
— Kingfisher 40 | — ingfisher
— Turtlebot2 — Turtlebot2

4 --- Distance Threshold (0.1m) 35

Distance to Goal (m)
~

Cumulative Goals Reached
~
°

o

0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160
Timesteps Timesteps

(c) GoToPosition: all robots. (d) GoThroughPositions: all robots.

Figure 5: Field test results for navigation tasks. Performance evaluation for GoToPose (FloatingPlat-
form, Turtlebot2), GoToPosition (all robots), and GoThroughPositions (all robots).

GoToPose: FloatingPlatform and Turtlebot2 both completed the task with high success rates (0.818 and
0.800, respectively), although heading alignment remained a challenge. FloatingPlatform achieved slightly
better heading accuracy (3.68° £ 2.37°) than Turtlebot2 (4.21° 4 2.79°), as visualized in Fig. 5a—b.

GoThroughPositions: Although evaluated in the field, this task’s structure changed significantly from
simulation due to physical constraints. As such, we only report cumulative goals without comparison to sim
results. FloatingPlatform consistently reached the most goals (6.00 = 0.06), followed by Kingfisher (5.33 +
1.03) and Turtlebot2 (4.60 + 0.55), as seen in Fig. 5d.

TrackVelocities: We report how accurately each robot tracks time-varying linear and angular velocity
commands. FloatingPlatform achieved the lowest angular tracking error (0.041 + 0.019), benefiting from its
symmetric thrust layout and rigid structure, while Kingfisher has a higher angular tracking error of 0.077 +
0.049), consistent with the challenge of turning in water with drag-induced delay.

More results showing the repeatability of the field experiments are reported in Appendix A.6.

5.3 Sim-to-Real Comparison

To assess generalization, Table 8 compares simulation and real-world performance on shared metrics for Go-
ToPosition and GoToPose. We observe modest drops in heading accuracy and final distance error, especially
under noisy dynamics. However, success rates remain high, confirming strong policy transferability.

5.4 Discussions

Despite signals of good sim-to-real transfer, specific failure modes were observed. FloatingPlatform often
overshot targets due to inertia and delayed braking. Kingfisher drifted in tight turns, likely due to hydrody-
namic lag. Turtlebot2 struggled to rotate in place precisely, especially during heading alignment.

12

Published in Transactions on Machine Learning Research (11/2025)

Table 7: Real-world task performance (mean =+ std). “—” indicates not applicable or not tested.
Task Robot Success Final Dist Err Heading Err Ang Vel Err Lin Vel Err Goals Reached
GoToPosition FloatingPlatform 1.00 0.004 £ 0.009 — — — —
Kingfisher 0.667 0.464 + 0.660 — — — —
Turtlebot2 1.00 0.019 + 0.044

GoToPose FloatingPlatform 0.818 0.112 £ 0.061 3.68 £ 2.37 — — —
Turtlebot2 0.800 0.027 + 0.020 4.21 + 2.79 — — —

GoThroughPos FloatingPlatform 1.00 0.112 £+ 0.061 — — — 6.00 £ 0.06
Kingfisher 1.00 0.235 % 0.039 — — — 5.33 £ 1.03
Turtlebot2 0.00 0.287 + 0.090 — — — 4.60 + 0.55

TrackVelocities ~ FloatingPlatform — — — 0.175 £+ 0.027 0.056 £ 0.009 —
Kingfisher — — — 0.077 £ 0.049 0.041 £ 0.019 —
Turtlebot2 — — — — — —

Table 8: Sim-to-real performance gap for shared metrics. Only GoToPosition and GoToPose are directly
comparable.

Task Robot Success (Sim — Real) A Final Dist Err A Heading Err

GoToPosition FloatingPlatform 0.94 — 1.000 1 0.05 — 0.014 —
Kingfisher 0.59 — 0.667 1 1.06 — 0.460 —
Turtlebot2 0.99 — 1.000 1 0.07 — 0.019 —

GoToPose FloatingPlatform 0.99 — 0.818 17 0.02 — 0.112 17 0.78° — 3.68°
Turtlebot2 0.84 — 0.800 17 0.14 — 0.027 ~ 4.39° — 4.21°

These observations suggest opportunities for improvement via adaptive feedback control, recurrent models,
or further domain randomization, especially for tasks requiring fine heading convergence or dynamic stop
conditions.

6 Conclusions

RoboRAN introduces a unified framework that decouples robot and task definitions, enabling reproducible
training, evaluation and deployment of four navigation tasks on three heterogeneous robots spanning land,
water, and microgravity. All robot—task pairs train in simulation within minutes and are assessed with con-
sistent success metrics, facilitating direct comparison of learning progress and control efficiency across media.
Policies learned in simulation transfer to the physical Turtlebot2, Kingfisher, and Floating Platform with
high success rates and centimeter-level position errors, confirming effective sim-to-real generalization, though
heading alignment and inertia-related failures highlight that the sim-to-real gap can be further minimized.
Future work will extend RoboRAN to more complex tasks and additional robots, and its modular design
provides a practical foundation for advancing robust autonomous navigation and studies of generalization
across dynamics and platforms. In particular, we identify RoboRAN as a clean foundation for integrating
transfer learning, multitask training, or policy distillation approaches.

References

Luis FW Batista, Junghwan Ro, Antoine Richard, Pete Schroepfer, Seth Hutchinson, and Cedric Pradalier. A
deep reinforcement learning framework and methodology for reducing the sim-to-real gap in asv navigation.
In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1258-1264.
IEEE, 2024.

Davide Corsi, Davide Camponogara, and Alessandro Farinelli. Aquatic navigation: A challenging benchmark
for deep reinforcement learning. arXiv:2405.2053/4, 2024.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. arXiv, 2016.

13

Published in Transactions on Machine Learning Research (11/2025)

Matteo El-Hariry, Antoine Richard, and Miguel Olivares Mendez. Rans: Highly-parallelised simulator for
reinforcement learning based autonomous navigating spacecrafts. In 17th Symposium on Advanced Space
Technologies in Robotics and Automation (ASTRA’23), 2023.

Matteo El-Hariry, Antoine Richard, Vivek Muralidharan, Matthieu Geist, and Miguel Olivares-Mendez.
Drift: Deep reinforcement learning for intelligent floating platforms trajectories. In 2024/ IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 14034-14041. IEEE, 2024.

Shangding Gu, Laixi Shi, Muning Wen, Ming Jin, Eric Mazumdar, Yuejie Chi, Adam Wierman, and Costas
Spanos. Robust gymnasium: A unified modular benchmark for robust reinforcement learning. Github,
2024.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. Furniturebench: Reproducible real-world
benchmark for long-horizon complex manipulation. arXiv:2305.12821, 2023.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot learning
benchmark & learning environment. arXiv:1909.12271, 2019.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science Robotics 2020 Vol. 5, Issue 47, eabc5986, 2020. doi: 10.1126/
scirobotics.abcb986.

Youngwoon Lee, Edward S. Hu, Zhengyu Yang, Alex Yin, and Joseph J. Lim. Ikea furniture assembly
environment for long-horizon complex manipulation tasks. arXiv:1911.07246, 2019.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. arXi:1504.00702, 2015. Available at arXiv: https://arxiv.org/abs/1504.00702.

Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics. https:
// github. com/nvidia/warp, March 2022. NVIDIA GPU Technology Conference (GTC).

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Olivier Michel. Cyberbotics 1td. webots™: professional mobile robot simulation. International Journal of
Advanced Robotic Systems, 1(1):5, 2004.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik
Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and
Animesh Garg. Orbit: A unified simulation framework for interactive robot learning environments. IEEE
Robotics and Automation Letters, 8, June 2023. doi: 10.1109/LRA.2023.3270034.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. arXiv:1804.02717, 2018. doi: 10.1145/3197517.
3201311.

Daniel Perille, Abigail Truong, Xuesu Xiao, and Peter Stone. Benchmarking metric ground navigation. In
2020 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE, 2020.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian
Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for
Embodied AT Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv:1707.06347, 2017.

14

https://arxiv.org/abs/1504.00702
https://github.com/nvidia/warp
https://github.com/nvidia/warp

Published in Transactions on Machine Learning Research (11/2025)

Antonio Serrano-Muifioz, Dimitrios Chrysostomou, Simon Bggh, and Nestor Arana-Arexolaleiba. skrl: Mod-
ular and flexible library for reinforcement learning. Journal of Machine Learning Research, 24, 2023.

Hartmut Surmann, Christian Jestel, Robin Marchel, Franziska Musberg, Houssem Elhadj, and Mahbube
Ardani. Deep reinforcement learning for real autonomous mobile robot navigation in indoor environments.
arXiv:2005.13857, 2020.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre, Mustafa
Mukadam, Devendra Chaplot, Oleksandr Maksymets, et al. Habitat 2.0: Training home assistants to
rearrange their habitat. Advances in Neural Information Processing Systems (NeurIPS), 34:251-266,
2021.

Hamid Taheri, Seyed Rasoul Hosseini, and Mohammad Ali Nekoui. Deep reinforcement learning with en-
hanced ppo for safe mobile robot navigation. arXiv:2405.16266, 2024.

Mohammad Dehghani Tezerjani, Mohammad Khoshnazar, Mohammadhamed Tangestanizadeh, Arman
Kiani, and Qing Yang. A survey on reinforcement learning applications in slam. arXiv:2408.14518,
2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033. IEEE, 2012.

Mariusz Wisniewski, Paraskevas Chatzithanos, Weisi Guo, and Antonios Tsourdos. Benchmarking deep
reinforcement learning for navigation in denied sensor environments. arXiw:2410.14616, 2024.

Fei Xia, William B. Shen, Chengshu Li, Priya Kasimbeg, Micael Tchapmi, Alexander Toshev, Li Fei-Fei,
Roberto Martin-Martin, and Silvio Savarese. Interactive gibson benchmark (igibson 0.5): A benchmark
for interactive navigation in cluttered environments. IEEE Robotics and Automation Letters, Vol. 5, No.
2, April 2020, 2019. doi: 10.1109/LRA.2020.2965078.

Zifan Xu, Bo Liu, Xuesu Xiao, Anirudh Nair, and Peter Stone. Benchmarking reinforcement learning tech-
niques for autonomous navigation. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9224-9230, 2023. doi: 10.1109/ICRA48891.2023.10160583.

Shu-Ang Yu, Chao Yu, Feng Gao, Yi Wu, and Yu Wang. Flightbench: Benchmarking learning-based methods
for ego-vision-based quadrotors navigation. arXiv preprint arXiv:2406.05687, 2024.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations
in neural networks, 2018.

Kai Zhu and Tao Zhang. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua
Science and Technology, 26(5):674-691, 2021. doi: 10.26599/TST.2021.9010012.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martin-Martin, Abhishek Joshi, Kevin Lin, Abhiram
Maddukuri, Soroush Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and bench-
mark for robot learning. arXiv:2009.12293, 2020.

Adil Zouitine, David Bertoin, Pierre Clavier, Matthieu Geist, and Emmanuel Rachelson. RRLS: Robust
Reinforcement Learning Suite. arXiv, 2024.

A Appendix

A.1 Wheeled robots

Along with the TurtleBot2, which we selected for real-world deployment and sim-to-real evaluation, Rob-
oRAN also supports two additional wheeled robots in simulation: the Leatherback, NVIDIA’s research
platform for autonomous driving, and the JetBot, an open-source educational robot widely used for hands-
on learning in robotics and Al.

15

Published in Transactions on Machine Learning Research (11/2025)

The TurtleBot2 and JetBot both rely on a differential drive system, enabling planar movement through
independent control of left and right wheel velocities. This shared control structure supports consistent
evaluation across these platforms. In contrast, the Leatherback features an Ackermann steering mechanism,
better suited for high-speed and realistic road-like navigation. It offers advanced capabilities, including larger
actuation limits and support for real-time onboard computation, making it a promising platform for future
exploration of perceptually guided or high-speed navigation tasks. The JetBot, by comparison, is lightweight
and cost-effective, making it ideal for rapid prototyping and student-level research.

While these two additional platforms were not included in our physical experiments, they are fully integrated
into the RoboRAN framework and can be readily used to train and evaluate navigation tasks in simulation.
Figure 6 shows their simulation models rendered within Isaac Lab.

Figure 6: Left to right, first row Jetbot in GoToPosition, TrackVelocities, GoThroughPositions, second row
Leatherback GoThroughPositions, GoToPositionWithObstacles, GoToPose

A.2 Extended Environments and Task Variations

Although the four tasks described in the main paper are designed to evaluate core aspects of navigation, Rob-
oRAN supports more complex environments and objectives. Its modular task interface allows users to easily
introduce obstacles, moving targets, or perception-driven goals without altering the robot implementation
or training pipeline.

To demonstrate flexibility under environmental constraints, we evaluate the GoToPosition task with static
obstacles placed between the robot and its sequence of goals. Using the same reward structure and PPO
hyperparameters as in the base task, without task-specific tuning, all three robots (FloatingPlatform, King-
fisher, Turtlebot2) successfully learn to navigate around obstacles (Fig. 8). Training curves (Fig. 7) show
rapid improvement followed by stable convergence, with final mean rewards over the last 50 steps of ~93.4
(Kingfisher), ~75.4 (Turtlebot2), and ~ 73.0 (FloatingPlatform). The observation space is extended from
the base task by appending the positions of the three closest objects in addition to the original six dimensions.

Additional complex scenarios, such as manipulation-inspired tasks (e.g., push-block for wheeled robots), are
also supported but are left out of the main scope. These can be integrated with minimal code changes and
will be shared in future iterations of the framework.

A.3 Domain Randomization
We adopt a domain randomization framework as a standard tool to facilitate sim-to-real transfer, perturbing

environment and robot parameters during training. The framework supports multiple application timings:
reset-based (applied once at the start of an episode), step-based (applied at every simulation step), action-

16

Published in Transactions on Machine Learning Research (11/2025)

Training Performance Comparison: GoToPosition Task (Obstacles)

100

—-100

Mean Reward

—200

Robots
— turtlebot2
—— floatingplatform
—— kingfisher
0 200 400 600 800 1000
Training Steps

—-300

Figure 7: Training performance on GoToPosition with static obstacles for three robots. Curves show mean
and std reward over 10 seeds. All robots learn stable obstacle-avoiding behaviors; the final-50-step mean
rewards are Kingfisher ~93.4, Turtlebot2 ~75.4, and FloatingPlatform ~73.0.

Figure 8: FloatingPlatform, Kingfisher, and Turtlebot2 in GoToPositionWithObstacles

based (applied when processing control actions), and observation-based (applied when processing sensory
observations).

Table 9 summarizes the available randomization types, supported modes, application timings, and descrip-
tions. These include variations of physical parameters such as mass, center of mass (CoM), and inertia, as
well as noise and scaling in actions and observations, and exogenous disturbances in the form of wrenches.
Both stochastic (uniform/normal) and deterministic (decay, sinusoidal) patterns are supported, and modes
can be combined.

Each randomization category is parameterized to control its magnitude, distribution, affected elements, and
temporal behavior. For example, MassRandomizationCfg can vary a body’s mass according to a uniform or
normal distribution, or apply gradual decay either over time or as a function of action magnitude. Similarly,
CoMRandomizationCfg offsets the center of mass in two or three dimensions, and InertiaRandomizationCfg
perturbs the inertia tensor.

The framework also supports stochastic perturbations at the action and observation interfaces. NoisyAction-
sCfg injects bounded uniform or Gaussian noise into control commands, while ActionsRescalerCfg applies
multiplicative scaling to emulate actuator gain variability. NoisyObservationsCfg adds perturbations to
sensed state variables, with optional normalization after noise injection.

External disturbances are modeled through WrenchRandomizationCfg, which can produce sporadic “kicks”
or continuous wrenches, following uniform, Gaussian, or sinusoidal patterns. Parameters include affected
body names, force and torque ranges, kick frequencies, and waveform characteristics.

The randomization system is implemented on top of a core class (RandomizationCore) that provides
mode dispatch, timing control, environment integration, and logging facilities. Each specific randomization
type inherits from this core, specializing the parameter perturbations and application rules. Finally, the

17

Published in Transactions on Machine Learning Research (11/2025)

Table 9: Randomization types, modes, application timings, and descriptions.

Type Mode Name Applied At Description

Mass uniform Reset Uniform mass variation at episode start

Mass normal Reset Normal-distributed mass variation at episode start

Mass constant_time_decay Step Mass decays over time during an episode

Mass action_based_decay Step Mass decays proportionally to action magnitude

CoM uniform Reset Uniform CoM offset at episode start

CoM normal Reset Normal-distributed CoM offset at episode start

CoM spring Step Spring-like CoM behavior (placeholder)

Inertia uniform Reset Uniform inertia variation at episode start

Inertia normal Reset Normal-distributed inertia variation at episode start
Inertia decay Step Inertia decays over time

Actions uniform Reset + Action Uniform noise sampled on reset, applied during actions
Actions normal Reset + Action Normal noise sampled on reset, applied during actions
Rescaler uniform Reset + Action Uniform scaling factors sampled on reset, applied during actions
Observations uniform Reset + Observation Uniform noise sampled on reset, applied during observations
Observations normal Reset + Observation Normal noise sampled on reset, applied during observations
Wrench kick_uniform Reset + Step Sporadic uniform-distributed force/torque disturbances
Wrench kick_normal Reset + Step Sporadic normal-distributed force/torque disturbances
Wrench constant_uniform Reset + Step Constant uniform-distributed wrenches applied every step
Wrench constant_normal Reset + Step Constant normal-distributed wrenches applied every step
Wrench constant_sinusoidal Reset + Step Sinusoidally varying wrenches applied every step

framework remains compatible with perturbation utilities (e.g., rigid body material randomization, actuator
gain variation, gravity changes) from Isaac Lab. Code 1 shows a sample configuration class combining
multiple randomization types. In this example, mass is perturbed both at reset and via time decay; CoM is
randomized uniformly at reset; action commands are both noised and rescaled; and sporadic force/torque
kicks are applied to a designated body.

18

Published in Transactions on Machine Learning Research (11/2025)

I @configclass
class RobotCfg:
mass_rand_cfg
1 enable=True,
5 randomization_modes=["normal",
body_name="core",
max_delta=0.1,
mass_change_rate=-0.025

MassRandomizationCfg(

"constant_time_decay"],

9)
10 com_rand_cfg = CoMRandomizationCfg(
1 enable=True,
2 randomization_modes=["uniform"],
3 body_name="core",
4 max_delta=0.05
)

noisy_actions_cfg NoisyActionsCfg(
enable=True,
randomization_modes=["uniform"],
9 slices=[(0, 2)],
max_delta=[0.025],
clip_actions=[(-1, 1)]
)
actions_rescaler_cfg
enable=True,
5 randomization_modes=["uniform"],
slices=[(0, 2)],
rescaling_ranges=[(0.8,
clip_actions=[(-1, 1)]

ActionsRescalerCfg(

1.001,

)
wrench_rand_cfg
enable=True,
randomization_modes=["kick_uniform"],
body_name="core",
uniform_force=(0,
35 uniform_torque=(0,
push_interval=5

WrenchRandomizationCfg(

0.25),
0.05),

Code 1: Example multi-randomization configuration.

A.4 Task specific reward parameters

Table 10: Reward parameters for PPO training. Task-specific coefficients and decay values used in Equa-

tion 1.
GoToPosition GoToPose GoThroughPos. TrackVelocities
a;1 (pos) 1.0 | Bi1 (pose align) 1.0 | ¢i1 (progress) 1.0 | i1 (lin vel err) -1.0
a2 (head) 0.25 | Bj1 (lin vel) —0.05 | ¢y2 (head) 0.05 | 2 (ang vel err) —0.5
a1 (lin vel) —0.05 | Bj2 (ang vel) —0.05 | ¢;1 (lin vel) 0.0 | 73 (bonus) 0.0
ajo (ang vel) —0.1 | Bons1 (boundary) —10.0 | ¢j2 (ang vel) —0.05 | Ypps1 (boundary) —10.0
Qpns1 (bonus) —10.0 | Bpg1 (progress) 0.2 Pbns1 (bonus) —10.0 | — —
A =10 (dist) | A2 = 0.25 (head) | X3=1.0(bnd) | Ay = 1.0 (vel err)

19

Published in Transactions on Machine Learning Research (11/2025)

A.5 Algorithm hyperparameters

Table 11 summarizes the PPO hyperparameters used across all robot—task pairs. These values are derived
from our default training configuration used in all experiments.

Table 11: PPO hyperparameters used in all experiments.

Parameter Value

Rollouts per update 32

Learning epochs per update 8

Mini-batches per epoch 8

Discount factor () 0.99

GAE parameter () 0.95

Learning rate 5x 1074

Learning rate scheduler KLAdaptiveLR (threshold = 0.008)
State/value preprocessors RunningStandardScaler
Gradient norm clipping 1.0

Clipping ratio (e) 0.2

Value function clip 0.2

Clip predicted values True

Value loss coefficient 2.0

Entropy loss coefficient 0.0

KL threshold (early stop) 0.0

Time-limit bootstrap False

A.6 Field tests repeated experiments

In this section we provide additional details from the field trials. Figure 9 shows multiple trajectories for
different combinations of robots and tasks, and Figure 10 provides additional metrics for the GoToPosition
task across all three evaluated robots: FloatingPlatform, Kingfisher, and Turtlebot2. In these trials, obser-
vations are affected by onboard sensor noise and real-world environmental factors. The results highlight the
consistency and cross-platform transferability of the learned policies under realistic operating conditions.

The Turtlebot2 (Fig. 9a) exhibits consistent, nearly straight-line paths with minimal deviation across trials.
The differential drive system enables precise low-speed control, resulting in rapid and stable goal convergence.
The small variability between runs is attributed to minor noise in velocity execution and sensor estimates.

In the case of the Kingfisher (Fig. 9b), trajectories show larger variance and slower convergence, particularly
in the final approach phase. This behavior reflects the platform’s higher inertia and complex drag-dominated
dynamics, which lead to increased difficulty in performing precise maneuvers, especially under subtle envi-
ronmental disturbances such as wind or current. These results suggest opportunities to reduce the sim-to-real
gap through improved dynamics modeling.

For the FloatingPlatform (Fig. 9¢), trajectories remain tight and exhibit rapid convergence to the target
position, with small lateral overshoots likely due to inertia and the discrete nature of thrust control. Despite
minor oscillations near the goal, all runs demonstrate high repeatability and stable stopping behavior.

Across all platforms, the consistency of trajectory profiles is mirrored by relatively low action variability
during the task, confirming that policies rely on smooth and robust control strategies even under unstruc-
tured real-world conditions. These results reinforce the generalization of our learned policies in real-world
deployments across different mobility systems, especially when operating under noisy sensing, actuation, and
environmental disturbances.

20

Published in Transactions on Machine Learning Research (11/2025)

Task: GoThroughPositions

Trajectory

Task: GoToPose

Task: GoToPosition

Trajectory Trajectory
2.0 3 3
®
15 4
2
Lo 2
1
0.5
E E E
< s 1 <
g o g) 8
3 3 3
4 4 4
> _os > >
0 -1
-1.0
-2
-15
5 \
-2.0 -3
o 1 2 3 4 [1 2 3 4 -1 o} 1 2 3 4 5
X Position (m) X Position (m) X Position (m)
(a) Turtlebot Trajectories
Task: GoThroughPositions Task: GoToPosition Task: TrackVelocities
Trajectory Trajectory Trajectory
6
10.0
10
75
4
5.0 5
2
= 25 — —
£ £ £
< < <
S S S
g oo g g o
& & &
> > >
-2.5
= =
-5.0
-15 4) ‘.‘é\\\
-10
-10.0 T T T T T T T T T T T T T T T
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0] 2 4 6 8 10
X Position (m) X Position (m) X Position (m)
(b) Kingfisher Trajectories
Task: GoToPose Task: GoToPosition Task: TrackVelocities
Trajectory Trajectory Trajectory
0.5
0.5 T
-0.5
0.0 0.0
~05 ~ e
0.5 . /‘_Vd
-1.0
-1.0 -1.0
E E E
< < <
2 -5 2 -15 2
8 3 g1
S S -
2.0 -2.0
25 -2.5 N -2.0
-3.0 -3.0
-35 35 2.5
1 2 E 4 1 z H 4 15 20 2’5 30 35
X Position (m) X Position (m) X Position (m)

(c) Floating Platform Trajectories

Figure 9: Robot trajectories in real-world experiments. In all graphs, the colored dotted lines represent the
robot trajectories, with different colors corresponding to different runs. For the tasks GoThroughPositions,
GoToPose, and GoToPosition, the circles indicate the final targets. For TrackVelocities, the black dots
denote target positions generated by a trajectory generator.

21

Published in Transactions on Machine Learning Research (11,/2025)

FloatingPlatform - Task: GoToPosition Kingfisher - Task: GoToPosition Turtlebot - Task: GoToPosition
Distance Error Over Time Distance Error Over Time Distance Error Over Time

[] [] ¢ ——
\\ \
—— Goal1 | —— Goal 1 | —— Goal1
\ Goal 2 Goal 2 |

— Goal 3 |

-

w

o

~—— Goal 4
Goal 5

\ ~—— Goal 6 |
\\ Goal 7
i Goal 8 |

~ = = |

N Goal 9 7 x R Goal 9 \ Goal 9
\h-—:"g — - —) \>§§ WSS \]

Time (s) ‘ ‘ Time (s) ‘ ‘ Time (s)

Distance Error (m)
~ w
/
@ @
g g
2 2
& o=
Distance Error (m)
-

Vi

Distance Error (m)
~
@
&
|53
-

~

Actions Over Time Actions Over Time Actions Over Time

L

T ﬁme(s) T T T T T T T T ﬁmé(s) T T T T T T T ﬁmé(s)

0.8
0.5

I3
B3

0.0

<
S

Actions (a.u.)
Actions (a.u.)
Actions (a.u.)

I
o

I3
o

Action Differences Over Time Action Differences Over Time

3 3 306
2 e 2
5 3 04 5
206 2 g

o 03 804
g g £
F co02 H

2 2 202
3 g 3
T 2ol <

0.0 0.0 0.0

Time (s) Time (s) Time (s)
Accumulated Action Difference Over Time Accumulated Action Difference Over Time Accumulated Action Difference Over Time
120 *

40
-~ W, =25 ~
3 100 3 3
k) - s s

0
- 520 s
ki ki 5 k3
i~ 60 T i~

g g g2
) go g
c € c

10
S 2 s S

0 0 0

T T
0 5 0 15 20 25 30 33 40 0 5 10 15 20 25 30 3 40 0 5 10 15 20 25 30
Time (s) Time (s) Time (s)
(a) Floating Platform (b) Kingfisher (¢) Turtlebot2

Figure 10: Repeated field trials of the GoToPosition task across three robotic platforms. (10a) Floating-
Platform: The metrics demonstrate consistent convergence, and the actions highlight the use of discrete
thrust commands. The thrusters are engaged continuously to maintain position and prevent drift after reach
the goal. (10b) Kingfisher: The metrics indicate that the policy often overshoots the goal, triggering cor-
rective actions and suggesting potential improvements to the dynamics model to reduce the sim-to-real gap.
(10c) Turtlebot2: The differential-drive system yields stable and repeatable trajectories with small final
distance errors. In two experiments, it shows oscillating actions after reaching the target position, which
indicates noisy position estimation.

A.7 Customization of Environments

The framework is built on a modular and extensible architecture that significantly streamlines the process
of adding new robots or tasks. This design eliminates the need to create a new environment from scratch
for each addition. The core of this system is the use of factories within the environments directory, which
dynamically generate the necessary components.

The file structure demonstrates this clear separation of concerns:

22

Published in Transactions on Machine Learning Research (11/2025)

e robots: Contains the code for different robot models. To add a new robot, you simply create a new
Python file (e.g., robot__2.py) that inherits from robot_core.py.

o tasks: Houses the definitions for various tasks. Adding a new task involves creating a new file (e.g.,
task_2.py) that extends task core.py

source
isaaclab_task

| direct <-- Isaac Lab code

managed <-- Isaac Lab code

rans <-- Our Framework starts here
| domain_randomization
environments

| Single

| | single_env.py <-- NO CHANGES NEEDED
| | Agents

| | | skrl

| | | rl_games

| | | rsl_rl

robots

| robot_core.py

| FloatingPlatform.py

|

|

new_robot_1.py <-- add here
robots_cfg
tasks
| task_core.py
| GoToPosition.py
...
| new_task_1.py <-- add here
tasks_cfg
utils

Code 2: Folder structure of our framework integrated inside Isaac Lab.

This approach ensures that the fundamental environment code remains unchanged. By inheriting from a
core class and adding the new component (be it a new task or a new robot) to its corresponding folder, the
framework automatically integrates it. This not only reduces development time by needing to write less code
but also minimizes the risk of introducing errors into the core environment.

Code 3 shows the structure of the environment with the API for the robot and tasks.

class SingleEnv(DirectRLEnv):
cfg: SingleEnvCfg

def _configure_gym_env_spaces (self):
"""Configure the action and observation spaces for the Gym environment."""
observation space (unbounded since we don’t impose any limits)
super () . _configure_gym_env_spaces ()

self.single_action_space, self.action_space = self.robot_api.
configure_gym_env_spaces ()
self.actions = sample_space(self.single_action_space, self.sim.device, batch_size=

self .num_envs, fill_value=0)

def _setup_scene(self):

self .robot = Articulation(self.robot_cfg.robot_cfg)

self .robot_api = ROBOT_FACTORY (
self.cfg.robot_name,
scene=self.scene,
robot_cfg=self.robot_cfg,
robot_uid=0,
num_envs=self.num_envs,
decimation=self.cfg.decimation,
device=self.device,

23

Published in Transactions on Machine Learning Research (11/2025)

)

self.task_api = TASK_FACTORY (
self.cfg.task_name,
scene=self.scene,
task_cfg=self.task_cfg,
task_uid=0,
num_envs=self.num_envs,
device=self.device,

self.task_api.register_robot (self.robot_api)
self.task_api.register_sensors ()

add ground plane

spawn_ground_plane (prim_path="/World/ground", cfg=GroundPlaneCfg())

clone, filter, and replicate

self .scene.clone_environments (copy_from_source=False)

self .scene.filter_collisions(global_prim_paths=[])

add articultion to scene

self .scene.articulations[self.cfg.robot_name] = self.robot

add lights

light_cfg = sim_utils.DomelLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75))
light_cfg.func("/World/Light", light_cfg)

def _pre_physics_step(self, actions: torch.Tensor) -> None:
self .robot_api.process_actions (actions)

def _apply_action(self) -> None:
self.robot_api.apply_actions ()

def _get_observations(self) -> dict:
task_obs = self.task_api.get_observations ()
observations = {"policy": task_obs}
return observations

def _get_rewards(self) -> torch.Tensor:
return self.task_api.compute_rewards ()

def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]:
robot_early_termination, robot_clean_termination = self.robot_api.get_dones ()
task_early_termination, task_clean_termination = self.task_api.get_dones()

time_out = self.episode_length_buf >= self.max_episode_length - 1
early_termination = robot_early_termination | task_early_termination
clean_termination = robot_clean_termination | task_clean_termination | time_out
return early_termination, clean_termination
Code 3: Demonstration of how the environment interacts with the robot and task components through the
API. This dynamic instantiation ensures that the environment is not hard-coded for a specific robot or task.
This modularity not only reduces development time but also enhances maintainability and robustness by
isolating component-specific code from the core simulation loop.

A.7.1 Algorithmic variation

In addition, thanks to the workflow inherited from Isaac Lab, users can easily select a different learning
library or algorithm by modifying the configuration files rather than the code itself. As illustrated in Code 2,
the Agents directory organizes all configuration files where training settings are specified. Swapping PPO
for another algorithm (such as SAC or TRPO) simply involves changing a single entry in the corresponding
YAML file, making the framework agnostic to the underlying learning implementation.

24

	Introduction
	Related Work
	RoboRAN Overview
	Robots
	Tasks
	Reward Formulation
	Domain Randomization
	Training
	Deployment
	Relation to Isaac Lab

	Simulation Results
	Experimental Setup
	Training Efficiency and Learning Trends
	Task Success and Performance Analysis
	Discussions

	Sim-To-Real Results
	Overview and Setup
	Field Results and Task Trends
	Sim-to-Real Comparison
	Discussions

	Conclusions
	Appendix
	Wheeled robots
	Extended Environments and Task Variations
	Domain Randomization
	Task specific reward parameters
	Algorithm hyperparameters
	Field tests repeated experiments
	Customization of Environments
	Algorithmic variation

