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Abstract

While chain-of-thought prompting with Best-of-N (BoN) selection has become
popular for mathematical reasoning in large language models (LLMs), its linear
structure fails to capture the branching and exploratory nature of complex problem-
solving. In this work, we propose an adaptive algorithm to maximize process
reward model (PRM) scores over the intractable action space, and investigate
whether PRM-guided tree search can improve mathematical reasoning by exploring
multiple partial solution paths. Across 23 diverse mathematical problems using
Qwen2.5-Math-7B-Instruct with its associated PRM as a case study, we find that:
(1) PRM-guided tree search shows no statistically significant improvements over
BoN despite higher costs, (2) Monte Carlo tree search and beam search outperform
other PRM-guided tree search methods, (3) PRMs poorly approximate state values
and their reliability degrades with reasoning depth, and (4) PRMs generalize poorly
out of distribution. This underperformance stems from tree search’s greater reliance
on unreliable PRM scores, suggesting different reward modeling is necessary before
tree search can effectively enhance mathematical reasoning in LLMs.

1 Introduction

Mathematical reasoning involves understanding complex problems, decomposing them into manage-
able steps, and revisiting intermediate results until reaching a sound solution. Large language models
(LLMs) have shown remarkable capabilities in solving mathematical problems by breaking solutions
into reasoning steps through chain-of-thought (CoT) prompting [1, 2]. When combined with process
reward models (PRMs) that evaluate individual reasoning steps, Best-of-N (BoN) identifies the most
promising CoT from multiple candidates and has become widely adopted [3–6]. However, CoT’s
linear structure fails to capture the branching nature of mathematical reasoning, where multiple
strategies are considered, partial arguments explored, and errors necessitate backtracking [7, 8].
Moreover, restricting PRM evaluation to complete CoTs misses opportunities for dynamic guidance.

The tree-of-thought (ToT) framework [9] addresses these limitations by exploring multiple partial
reasoning paths and enabling revisions using a reward model to assess the correctness of intermediate
solutions. Yet applying ToT with PRMs presents challenges: reasoning trees exhibit intractable
branching factors and depth, while PRMs may fail to accurately evaluate intermediate steps [3].

This work proposes an adaptive algorithm to maximize PRM scores over the intractable action
space and empirically investigates whether PRM-guided tree search can improve mathematical
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reasoning in LLMs. We evaluate tree search algorithms under varying PRM quality assumptions
against BoN across 23 diverse mathematical problems, using Qwen2.5-Math-7B-Instruct and its
associated PRM as our case study. Key findings reveal that: (1) PRM-guided tree search fails to
outperform BoN despite higher costs; (2) Monte Carlo tree search and beam search outperform
other PRM-guided tree search methods; (3) PRMs poorly approximate state values and reliability
degrades with reasoning depth, suggesting credit assignment issues; and (4) PRMs exhibit limited
out-of-distribution generalization. This underperformance stems from tree search’s greater reliance
on unreliable PRM scores to guide search, whereas BoN evaluates only complete CoTs. These results
highlight the limitations of PRM-guided tree search and BoN, indicating that different reward models
may be required for mathematical reasoning.

Limitations. This work demonstrates that PRM-guided tree search fails to outperform BoN due to
PRM limitations: poor reasoning step value estimation, degraded reliability with reasoning depth,
and limited out-of-distribution generalization. While our study focuses on a single PRM-model pair,
we expect this underperformance to generalize to PRMs exhibiting similar pathologies.

2 Background

2.1 Mathematical reasoning as tree search

We formulate mathematical reasoning as search in a tree-structured Markov decision process
M = (S,A, r, t) where actions a ∈ A are reasoning steps (text ending with an end-of-reasoning-step
token), states s ∈ S := ∪Ti=0Ai are partial reasoning sequences and transitions are deterministic
t(s, a, s′) = 1[s′ = s⊕ a] (here s⊕ a denotes string concatenation). The root state is the prompt p,
and T denotes terminal states containing predictions in the ’\boxed{x}’ format. The reward function
assigns r(s) = 1 if s ∈ T contains the correct solution with valid intermediate reasoning steps, and
r(s) = 0 otherwise. The value function v(s) = r(s) + maxa∈A v(s⊕ a) indicates whether any
continuation from state s leads to a state with reward 1. A LLM πθ defines a policy a ∼ πθ(· | s),
while a process reward model fϕ(s) estimates p(v(s) = 1 | s). Our goal is finding s with r(s) = 1
using the LLM and the PRM. Since rewards are unavailable during search, the PRM’s approximation
quality determines the appropriate search strategy. We distinguish three scenarios:

Scenario 1: PRM as Value Function. If the PRM correctly ranks actions by their true
p(v(s′) = 1 | s′ = s⊕ a), optimal search recursively selects a∗ = argmaxa∈A fϕ(s⊕ a). If ac-
tions A were practically enumerable, a greedy tree search algorithm would be optimal. However,
enumerating a ∈ A is intractable and we propose an algorithm in Section 3 to adaptively resample
actions a ∼ πθ(· | s) until we are confident that we have attained maxa∈A fϕ(s⊕ a).

Scenario 2: PRM as Terminal Signal Only. In this “worst-case we can still work with” scenario, the
PRM suffers from poor credit assignment, failing to properly estimate p(v(s) = 1 |s) for intermediate
states, yet PRM scores at terminal states still correlate with reward r. The optimal tree search
algorithm returns s∗ ∈ argmaxs∈T fϕ(s) among terminal states.

Scenario 3: PRM as Noisy Intermediate Signal. The PRM provides useful but unreliable guidance
for intermediate states. For example, it may undervalue (i.e., fϕ(s) < p(v(s) = 1 | s)) optimal inter-
mediate states leading to high-scoring terminal states, and overvalue (i.e., fϕ(s) > p(v(s) = 1 | s))
suboptimal intermediate states leading to poor terminal states. While maximizing PRM scores
generally helps to reach valuable terminal nodes, the appropriate search objective remains unclear.

2.2 Tree search baselines

Best-of-N samples N chains-of-thought from the LLM policy (i.e., separate root-to-terminal paths
with no shared intermediate state) and selects the CoT with the highest aggregated PRM score [3, 5].
Given a prompt p, we sample CoT ci = (p, a

(i)
1 , . . . , a

(i)
T ) as a

(i)
j+1 ∼ πθ(· | p ⊕ (⊕j

k=1a
(i)
k )) for

i = 1, . . . , N and return argmaxi∈{1,...,N} Ψ({fϕ(a(i)j )}Tj=1) where Ψ aggregates PRM scores.

Greedy best-first search (GBFS) expands the frontier state s ∈ F with highest heuristic value h(s)
at each step, where the frontier F contains all unexpanded states in the current search tree. Starting
from the root, we repeatedly expand s = argmaxs∈F h(s) by sampling K actions from the LLM
until reaching a terminal state. We use h(s) = fϕ(s) and depth-aware h(s) = fϕ(s) · (M − d(s)) to
favor deeper states, where M is maximum depth and d(s) is the depth of state s.
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Beam search maintains the top-N states with highest (cumulative) PRM score in a beam Bt. At each
step t, we sample actions aij ∼ πθ(· | sj) i = 1, . . . ,K for each state in the current beam sj ∈ Bt,
score states ∪Nj=1{sj ⊕ aij}Ki=1 with the PRM, and keep the N highest-scoring states for the next
beam Bt+1. For N = 1, this reduces to greedy search.

Monte Carlo tree search (MCTS) builds a search tree in four phases: (1) Select: traverse the search
tree from root to leaf selecting high-value states and balancing exploration/exploitation; (2) Expand:
add children to the selected leaf by sampling actions from πθ; (3) Rollout: run LLM policy from the
new state to a terminal state; (4) Backpropagate: update visit counts and average PRM scores of
terminal states along the path back to the root. Repeat until computational budget is depleted.

3 Methods

In this section, we propose an adaptive algorithm to solve the intractable optimization problem
a = argmaxa∈A fϕ(s⊕ a) (due to the unenumerable |A|) from Scenario 1 (see Section 2.1). We
formulate this optimization problem as a stopping problem: when should we stop sampling actions
from the policy and commit to the action with highest observed fϕ(s⊕ a)?

Maximizing over the intractable A using Gittin’s indices. At each state s, we sample independent
actions ai ∼ πθ(·|s) and evaluate PRM scores fi = fϕ(s⊕ ai). We must then decide whether to stop
and commit to the current maximum observed PRM score m = maxi fi (payoff m), or sample again
at cost c to improve the current estimate m for expected payoff Ef∼p(f |s) [max(m, f)]−c (since we se-
lect the largest value among f ∼ p(· |s) and m and incur a cost c). This is an instance of the Pandora’s
box problem [10], whose optimal strategy samples if Ef∼p(f |s) [max(m, f)]− c > m and otherwise
stops. This involves computing a Gittin’s index m∗ satisfying Ef∼p(f |s) [max(0, f −m∗)] = c,
then sampling if m∗ > m and stopping otherwise. However, p(f | s) is intractable and estimating
it requires the LLM samples we are trying to acquire sparingly. This motivates a strategy based on
surrogate modeling and posterior inference inspired by Xie et al. [11] which we discuss next.

Bayesian surrogate approximation. We approximate p(f | s) using a logit-Normal surrogate model
q(f | s,ψ) with parameters ψ. Specifically, we encode prior beliefs in p(ψ), update the posterior
p(ψ |D) ∝ q(D|s,ψ)p(ψ) with observed PRM scoresD = {fi|fi ∼ p(f |s)}, and use the posterior
predictive q(f | s,D) =

∫
q(f | s,ψ)p(ψ | D)dψ to approximate p(f | s). We then compute the

Gittin’s index m∗ by solving Ef∼q(f |s,D) [max(0, f −m)] = c under posterior beliefs q(f | s,D)
rather than p(f | s). The left-hand side is the expected improvement over m [12], a standard Bayesian
optimization acquisition function [13]. The Gittin’s index represents the threshold where expected
improvement equals cost c, thus smaller c induces more exploration. More details in Appendix A.

4 Results

4.1 Experimental setup

LLM & PRM. We use the Qwen2.5-Math-7B-Instruct [4] LLM with the recommended prompting
strategy and sampling parameters, and the Qwen2.5-Math-PRM-7B process reward model [3].

Problems & metrics. We evaluate on 22 mathematical reasoning problems from Yang et al. [4] and
AIME 2025 [14]. We report mean accuracy and rank across problems with standard errors. To address
concerns about high variance in LLM evaluation [15], we test statistical significance between the
top-performing method and all others using Wilcoxon signed-rank tests (insignificant if p > 0.05).

Tree search methods. We compare Best-of-N (BoN) with N = 8 chain-of-thoughts using last,
minimum, average, product, maximum and sum aggregation functions Ψ; the proportion of answers
containing at least one correct prediction among N = 8 CoTs (PASS@N); majority voting among
predictions of N = 8 CoTs (MAJ@N); beam search with beam size N = 1 expanding the state with
highest PRM value from K policy samples (Greedy@K); beam search with beam size N = 4 from
K = 6 policy samples maximizing instantaneous (V) or cumulative (CV) PRM scores (Beam@N);
greedy best-first search with K = 8 policy samples (GBFS@K); depth-aware GBFS (GBFS_DA@K; see
Section 2); Monte Carlo tree search with K = 8 policy samples (MCTS@K) and our proposed method
from Section 3 with constant and linear cost schedules to allow more exploration early in the search
when the remaining sampling budget is large (Gittins@cost; more details in Appendix A).
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4.2 Findings

Table 1: Method mean accuracy and rank
with standard errors across problems. We
bold results which are not significantly worse
than the best (p > 0.05).

METHOD ACCURACY (P-VALUE) RANK (P-VALUE)

PASS@8 79.8 ± 4.7 (N/A) N/A

MAJ@8 71.4 ± 5.1 (0.010) 4.43 ± 0.51 (0.022)

BoN_Last@8 72.7 ± 5.1 (N/A) 3.13 ± 0.38 (N/A)
BoN_Avg@8 72.1 ± 5.0 (0.444) 3.22 ± 0.31 (0.787)
BoN_Min@8 72.2 ± 5.0 (0.711) 3.26 ± 0.32 (0.608)
BoN_Prod@8 72.0 ± 5.0 (0.408) 3.26 ± 0.40 (0.795)
BoN_Sum@8 67.6 ± 5.3 (0.000) 7.30 ± 0.72 (0.000)
BoN_Max@8 68.8 ± 5.4 (0.000) 7.35 ± 0.69 (0.000)

Greedy@6 71.6 ± 5.0 (0.043) 5.74 ± 0.76 (0.003)
Greedy@20 71.2 ± 5.0 (0.039) 5.09 ± 0.55 (0.009)

Beam@4 (V) 71.8 ± 4.9 (0.126) 3.83 ± 0.42 (0.236)
Beam@4 (CV) 71.9 ± 4.8 (0.189) 4.00 ± 0.49 (0.221)
GBFS@8 46.0 ± 4.1 (0.000) 10.09 ± 0.71 (0.000)
GBFS_DA@8 48.1 ± 4.6 (0.000) 10.00 ± 0.65 (0.000)

MCTS@8 71.2 ± 5.0 (0.987) 3.26 ± 0.69 (0.856)
Gittins@0.05 (ours) 70.5 ± 5.2 (0.012) 5.96 ± 0.59 (0.001)
Gittins@linear (ours) 71.4 ± 5.1 (0.013) 4.74 ± 0.56 (0.011)

1. PRM-guided tree search methods do not out-
perform Best-of-N despite higher costs. Best-
of-N using terminal PRM scores (BoN_Last@8)
achieves the highest mean rank and accuracy (see
Tables 1 and 4). Among Best-of-N variants, aver-
age, minimum, and product aggregations perform
comparably without significant differences. MCTS
and beam search also show no significant perfor-
mance degradation compared to the best method.
However, tree search methods incur substantially
higher computational costs, generating consider-
ably more tokens (see Generated token in Table 3).
Despite this increased cost, their final solutions
contain fewer reasoning steps and tokens than Best-
of-N solutions (see Reasoning steps and Out To-
kens in Table 3). Except for GBFS, tree search
methods reach approximately as many terminal
states as Best-of-N (see Terminal states in Table 3).

Table 2: Method mean accuracy and
rank with standard errors across
problems for tree search methods.
We bold results which are not signifi-
cantly worse than the best (p > 0.05).

METHOD ACCURACY (P-VALUE) RANK (P-VALUE)

Greedy@6 71.6 ± 5.0 (0.498) 3.78 ± 0.41 (0.021)
Greedy@20 71.2 ± 5.0 (0.019) 3.43 ± 0.27 (0.032)

Beam@4 (V) 71.8 ± 4.9 (0.601) 2.52 ± 0.20 (0.232)
Beam@4 (CV) 71.9 ± 4.8 (N/A) 2.57 ± 0.24 (0.286)
GBFS@8 46.0 ± 4.1 (0.000) 6.70 ± 0.34 (0.000)
GBFS_DA@8 48.1 ± 4.6 (0.000) 6.48 ± 0.30 (0.000)

MCTS@8 71.2 ± 5.0 (0.332) 2.26 ± 0.41 (N/A)
Gittins@0.05 (ours) 70.5 ± 5.2 (0.019) 4.00 ± 0.35 (0.006)
Gittins@linear (ours) 71.4 ± 5.1 (0.398) 3.09 ± 0.30 (0.048)

2. MCTS and beam search perform best among
PRM-guided tree search methods. MCTS@8 achieves
the highest mean rank among tree search methods, with
beam search variants (Beam@4 (V) and Beam@4 (CV))
performing comparably without significant differences
(p > 0.05, see Table 2). For mean accuracy, beam search
maximizing the cumulative PRM values performs best,
followed by Beam@4 (V), Greedy@6, Gittins@linear
and MCTS@8 with no significant performance gaps.

3. The PRM poorly approximates p(v(s) = 1 | s) and
reliability degrades with reasoning depth, limiting tree
search effectiveness. Methods assuming the PRM accu-
rately estimates the value across all states (Greedy@K and Gittins@cost, Scenario 1 in Section 2.1)
perform significantly worse than Best-of-N and other tree search methods (Tables 1 and 2). Increasing
policy samples (K = 6 to K = 20) or adaptive sampling (Gittins@cost) does not improve perfor-
mance. This suggests either the LLM policy cannot generate high-scoring states or the PRM cannot
identify them. Since PASS@K significantly outperforms Best-of-N, the LLM policy does generate
correct solutions but the PRM fails to rank them highly, providing evidence that the PRM poorly
approximates p(v(s) = 1 | s).
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Figure 1: Correlation of prediction cor-
rectness with PRM scores. Correlation
decreases with increasing distance in rea-
soning steps from terminal states.

Further analysis shows that point-biserial correlation of
prediction correctness with PRM scores is initially high
(≈ 0.5) near terminal states but deteriorates significantly
for early reasoning steps (≈ 0.37 at 10 steps from ter-
mination; see All data in Figure 1). These findings sug-
gest credit assignment issues in the offline reinforcement
learning of the PRM. Moreover, this pattern explains why
MCTS@8, which relies exclusively on terminal PRM scores,
achieves the best average rank among tree search methods,
and Beam@8 performs best in accuracy by tolerating locally
suboptimal steps that lead to higher-scoring future states.
This suggests that the PRM operates between Scenarios 2
and 3: terminal scores are most reliable, but intermediate
scores provide useful yet unreliable guidance.

4. The PRM shows limited out-of-distribution gener-
alization. Correlation between PRM scores and correct-
ness is consistently higher on in-distribution (ID) problems
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on which the PRM is trained (GSM8K and MATH) than out-of-distribution (OOD) tasks (others
problems; Figure 2 and Table 5). This generalization gap persists across most reasoning steps:
correlation of prediction correctness with PRM scores on ID problems is considerably larger than on
OOD tasks until ≈ 30 steps to termination, after which both ID and OOD performance converge to
similarly low correlation levels (see ID and OOD in Figure 1). This limited generalization further
constrains the practical utility of PRM-guided tree search across diverse mathematical domains.

5 Related work

Tree search with LLM self-evaluation Several works apply greedy best-first search [9], Monte
Carlo tree search [16, 17] and beam search [18] to reasoning using the LLM policy model itself
for state evaluation. Unlike these approaches, we use a process reward model trained by offline
reinforcement learning on mathematics tasks to guide search.

PRM-guided tree search Zhang et al. [3] evaluate PRM aggregation methods and greedy search,
finding greedy search generally inferior to Best-of-N. Our study extends this analysis with a more
comprehensive evaluation, including additional tree search methods (MCTS, GBFS, beam search)
and more than three times as many problems (23 vs. 7). Our findings challenge some of theirs results,
notably that last-token aggregation outperforms product aggregation on average. More importantly,
we provide evidence that PRM reliability degrades with reasoning depth, a key finding that explains
why tree search methods fail to outperform Best-of-N.

Tree search for LLM training Recent work has used MCTS within reinforcement learning
pipelines to improve both language models and PRMs. Zhang et al. [19], Wan et al. [20], Xie et al.
[21], Guan et al. [22] employ MCTS under PRM supervision to generate high-scoring reasoning
chains subsequently used to fine-tune both the policy and PRM through self-training. In contrast, our
work focuses on pretrained LLM and PRM models without fine-tuning.

6 Conclusion

We proposed an adaptive algorithm to maximize PRM scores over the intractable action space, and
empirically investigated PRM-guided tree search across 23 mathematical reasoning problems using
Qwen2.5-Math-7B-Instruct and its associated PRM. Our findings show that PRM-guided tree search
methods fail to outperform Best-of-N despite higher costs, with MCTS and beam search proving
most effective among PRM-guided tree search approaches. We identify the underlying causes:
PRMs poorly approximate state values, become less reliable with reasoning depth indicating credit
assignment issues, and exhibit limited out-of-distribution generalization restricting their broader
applicability. Tree search’s underperformance stems from its reliance on these unreliable intermediate-
step PRM scores to guide search, whereas BoN evaluates only complete CoTs. These results highlight
the limitations of both PRM-guided tree search and BoN, revealing that current PRMs lack sufficient
accuracy to guide dynamic mathematical reasoning and suggesting that different reward models may
be required.
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A Additional method details

We here provide additional details on the method presented in Section 3.

Maximizing over the intractable A using Gittin’s indices. At each state s, we sample independent
actions from the policy a ∼ πθ(· | s) and evaluate f = fϕ(s⊕ a), which induces the distribution

p(f = f | s) =
∑
a∈A

1(f = fϕ(s⊕ a))πθ(a | s). (A.1)

After sampling i actions from the policy, let mi = maxj≤i fj denote the maximum PRM score
observed so far. We face a choice between two actions:

1. Sample a new action ai+1 ∼ π(· | s), observe fi+1 = fϕ(s⊕ ai+1), and incur cost c
2. Stop and commit to the current best action with score mi

The expected payoff for sampling is Ef∼p(f |s) [max(mi, f)]− c, while stopping yields payoff mi.
The optimal policy samples when the sampling payoff exceeds the stopping payoff:

Ef∼p(f |s) [max(mi, f)]− c > mi (A.2)

⇔ Ef∼p(f |s) [max(0, f −mi)] > c (A.3)

The Gittins index m∗
i is defined as the unique solution to

Ef∼p(f |s) [max(0, f −m∗
i )] = c (A.4)

The optimal policy samples if m∗
i > mi and stops otherwise [10]. However, computing this

expectation requires knowledge of p(f | s) which is intractable due to the summation over the action
space A (see Equation (A.1)). Since estimating this distribution would require the very LLM samples
we aim to collect sparingly, we develop a Bayesian surrogate approach inspired by Xie et al. [11]
which we discuss next.

Bayesian surrogate modeling We approximate p(f | s) using a surrogate model q(f | s,ψ) with
parameters ψ. Specifically, we encode our prior beliefs in p(ψ), then update the posterior p(ψ |
D) ∝ q(D|s,ψ)p(ψ) with observationsD = {fi|fi ∼ p(f |s)} before using the posterior predictive
q(f | s,D) =

∫
q(f | s,ψ)p(ψ | D)dψ to approximate p(f | s). We then compute the Gittin’s index

m∗
i under posterior beliefs q(f | s,D) rather than p(f | s) by solving

Ef∼q(f |s,D) [max(0, f −mi)] = c (A.5)

The left-hand side of Equation (A.5) is the expected improvement over the current maximum m [12],
a standard Bayesian optimization acquisition function [13]. The Gittin’s index m∗ represents the
threshold where expected improvement equals cost c, thus smaller c induces more exploration. More
details in Algorithm 1.

Adaptive cost scheduling. To balance exploration and exploitation over the search horizon, we
employ time-varying costs:

c(n) = c1 + (c2 − c1)× n/B (A.6)
where c1 < c2 are initial and final costs, B is the total sampling budget, and n is the current sample
count. This schedule promotes exploration early during search when the remaining sampling budget
is large and exploitation as resources diminish.

Logit-Normal surrogate model Let Dn = {fi}ni=1 where fi ∈ [0, 1] be a collection of observa-
tions from p(f = f | s) at a given state s. We consider a logit-Normal likelihood model for our
observations i.e.

q(f | s) = N
(
logit(f);µ, σ2

) 1

f(1− f)
(A.7)

where 1
f(1−f) adjusts for the change of variable. We then specify a Normal-inverse-Gamma prior on

the likelihood parameters µ and σ2 i.e.

q(µ, σ2) = N
(
m0, v0σ

2
)
IG(α0, β0) (A.8)
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Algorithm 1 Adaptive PRM-guided tree search using Gittin’s indices and surrogate modeling.

1: function GITTINS(fϕ, πθ, T, s, K, c)
2: repeat
3: D ← ∅
4: repeat
5: D ← D ∪ {(si, fϕ(si)) | ai ∼ πθ(· | s), si = s⊕ ai}Ki=1 ▷ Sample from LLM
6: m← max(s,f)∈D f ▷ Update current observed maximum
7: Compute posterior predictive q(f | s,D) ▷ Update posterior beliefs
8: Compute Gittin’s index m∗ by solving Eq(f |D) [max(0, f −m∗)] = c using bisection
9: until m∗ > m

10: s← max(s,f)∈D f ▷ Update current state
11: until s ∈ T
12: return s

The model is conjugate and both the posterior and the predictive posterior are available in closed
form. The prior is chosen to yield a maximally uniform predictive prior.

The prior predictive is

q(f | µ, σ2) =

∫
q(r | µ, σ2)q(µ, σ2)dµdσ2 = T 2a0

(
f ;m0,

b0(1 + v0)

a0

)
1

f(1− f)
(A.9)

The posterior is then

q(µ, σ2 | D) =
∏n

i=1 q(fi | s)q(µ, σ2)∫ ∏n
i=1 q(fi | s)q(µ, σ2)dµdσ2

(A.10)

=
C
∏n

i=1N
(
logit(fi);µ, σ

2
)
q(µ, σ2)

C
∫ ∏n

i=1N (logit(fi);µ, σ2)q(µ, σ2)dµdσ2
(A.11)

=

∏n
i=1N

(
logit(fi);µ, σ

2
)
q(µ, σ2)∫ ∏n

i=1N (logit(fi);µ, σ2)q(µ, σ2)dµdσ2
(A.12)

= N
(
mn, vnσ

2
)
IG(αn, βn) (A.13)

where C =
∏n

i=1
1

fi(1−fi)
, v−1

n = v−1
0 +n, mn = v−1

n (v−1
0 m0 +

∑n
i=1 logit(fi)), an = a0 +n/2

and bn = b0 +
1
2 [m

2
0v

−1
0 +

∑n
i=1 logit(fi)

2 −m2
nv

−1
n ].

The predictive posterior is

q(f | D) =
∫

q(f | µ, σ2)q(µ, σ2 | D)dµdσ2 = T 2an

(
f ;mn,

bn(1 + vn)

an

)
1

f(1− f)
(A.14)

Furthermore, the marginal likelihood has an analytical formulation:

q(D |m0, v0, a0, b0) =

∫ n∏
i=1

q(fi | s)q(µ, σ2)dµdσ2 (A.15)

=

[
n∏

i=1

1

fi(1− fi)

][∫ n∏
i=1

q(logit(fi) | s)q(µ, σ2)dµdσ2

]
(A.16)

= C

[
v
1/2
n ba0

0 Γ(an)

v
1/2
0 ban

n Γ(a0)πn/22n

]
(A.17)

where C =
∏n

i=1
1

fi(1−fi)
.

Implementation details We estimate the expectation Eq [max(0, f −m)] using quadrature repa-
rameterizing the integral to logit-space

Eq [max(0, f −m)] =

∫ 1

m

(f −m)q(f | D)df (A.18)
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=

∫ logit(1)

logit(m)

(logit−1(l)−m)q(l | D)dl (A.19)

where l = logit(f). We solve for the Gittin’s index m∗ using bissection search as done in Xie et al.
[11]. Since the observations f take values in [0, 1], we shrink them using fi = ϵ+ (1− 2ϵ)fϕ(si) to
avoid singularities at 0 and 1.

B Additional experimental setup details

Models and hyperparameters. We use Qwen2.5-Math-7B-Instruct [23] as our base language
model, where actions a ∈ A correspond to text sequences terminated by ’\n\n’. For process reward
modeling, we use Qwen2.5-Math-PRM-7B trained on MATH and GSM8K problems [3]. Following
the recommended configuration [23], we set temperature=0.7, top_p=0.8, and repetition_penalty=1.05
for text generation.

Implementation. Gittins indices are computed via bisection search and numerical integration
performed using SciPy [24]. Tree structures are managed through NetworkX [25]. Models are served
using vLLM [26] with our inference pipeline adapted from vector-inference [27]. Evaluation follows
the protocol established by Yang et al. [4] using their official codebase.3

Computational resources. All experiments are conducted on NVIDIA RTX 6000 and A40 GPUs,
with each model deployed on a single GPU.

C Additional experimental results

Table 3: Performance metrics across 23 problems: mean accuracy with standard-error, mean
rank with standard-error, reasoning steps, generated tokens (Gen.), output tokens (Out.), and
terminal state coverage. Bold entries indicate no significant difference from the best method
(p > 0.05). Best-of-N with terminal PRM scores (BoN_Last@8) perform best, while tree search
methods (MCTS, beam search) match accuracy but require substantially higher computational cost.

METHOD ACCURACY RANK REASONING STEPS GEN. TOKENS (×107) OUT. TOKENS (×107) TERMINAL STATE (%)

PASS@8 79.8 ± 4.7 (N/A) N/A 9.7 8.2 8.2 98.2

MAJ@8 71.4 ± 5.1 (0.010) 4.43 ± 0.51 (0.022) 9.7 8.2 8.2 98.2
BoN_Last@8 72.7 ± 5.1 (N/A) 3.13 ± 0.38 (N/A) 9.7 8.2 8.2 98.2
BoN_Avg@8 72.1 ± 5.0 (0.444) 3.22 ± 0.31 (0.787) 9.7 8.2 8.2 98.2
BoN_Min@8 72.2 ± 5.0 (0.711) 3.26 ± 0.32 (0.608) 9.7 8.2 8.2 98.2
BoN_Prod@8 72.0 ± 5.0 (0.408) 3.26 ± 0.40 (0.795) 9.7 8.2 8.2 98.2
BoN_Sum@8 67.6 ± 5.3 (0.000) 7.30 ± 0.72 (0.000) 9.7 8.2 8.2 98.2

BoN_Max@8 68.8 ± 5.4 (0.000) 7.35 ± 0.69 (0.000) 9.7 8.2 8.2 98.2

Greedy@6 71.6 ± 5.0 (0.043) 5.74 ± 0.76 (0.003) 8.9 5.6 0.9 97.9
Greedy@20 71.2 ± 5.0 (0.039) 5.09 ± 0.55 (0.009) 8.8 18.7 0.9 98.2

Beam@4 (V) 71.8 ± 4.9 (0.126) 3.83 ± 0.42 (0.236) 9.2 20.2 0.9 98.7
Beam@4 (CV) 71.9 ± 4.8 (0.189) 4.00 ± 0.49 (0.221) 9.4 21.0 0.9 96.5

GBFS@8 46.0 ± 4.1 (0.000) 10.09 ± 0.71 (0.000) 5.3 65.2 0.5 52.7
GBFS_DA@8 48.1 ± 4.6 (0.000) 10.00 ± 0.65 (0.000) 5.8 68.0 0.5 57.1

MCTS 71.2 ± 5.0 (0.987) 3.26 ± 0.69 (0.856) 8.8 89.4 0.7 97.8

Gittins@0.05 (ours) 70.5 ± 5.2 (0.012) 5.96 ± 0.59 (0.001) 9.5 9.0 0.9 98.3
Gittins@linear (ours) 71.4 ± 5.1 (0.013) 4.74 ± 0.56 (0.011) 9.5 14.3 0.9 98.5

3https://github.com/QwenLM/Qwen2.5-Math
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Table 4: Accuracy by dataset with means and standard errors. Bold indicates best performance
per dataset. Bottom rows show overall means and win counts across problems.

DATASET PASS@8 MAJ@8 BoN_Last@8 BoN_Avg@8 BoN_Min@8 BoN_Prod@8 BoN_Sum@8 BoN_Max@8 Greedy@6 Greedy@20 Gittins@0.05 (ours) Gittins@linear (ours) Beam@4 (V) Beam@4 (CV) GBFS@8 GBFS_DA@8 MCTS@8

AIME25 20.0 13.3 13.3 16.7 16.7 20.0 13.3 6.7 16.7 10.0 13.3 16.7 20.0 16.7 6.7 3.3 23.3
AIME24 23.3 16.7 16.7 20.0 20.0 20.0 16.7 10.0 16.7 26.7 16.7 13.3 16.7 30.0 6.7 13.3 26.7
AMC23 82.5 60.0 70.0 67.5 70.0 70.0 62.5 62.5 62.5 62.5 55.0 70.0 67.5 65.0 40.0 37.5 65.0
SAT_MATH 100.0 96.9 100.0 100.0 100.0 100.0 93.8 93.8 100.0 96.9 100.0 96.9 96.9 96.9 62.5 75.0 96.9
AQUA 94.1 78.0 76.0 76.0 75.6 76.0 73.2 74.4 79.5 79.5 78.0 75.5 77.6 79.5 63.8 63.0 68.3
ASDIV 96.7 95.8 96.0 96.0 95.9 96.0 95.9 95.5 96.1 96.0 95.8 95.8 96.0 95.8 70.7 76.1 96.0
CARP_EN 63.1 61.8 61.7 61.9 62.0 62.0 61.7 61.5 61.0 61.2 61.1 61.1 61.1 61.5 36.1 39.2 61.5
CMATH 95.3 92.7 93.2 93.8 94.0 94.0 92.2 92.2 92.3 93.2 92.8 93.3 93.0 93.5 69.8 73.5 94.0
CN_MIDDLE_SCHOOL 82.2 78.2 80.2 79.2 79.2 79.2 76.2 76.2 80.2 78.2 77.2 77.2 77.2 78.2 54.5 61.4 79.2
GAOKAO_MATH_CLOZE 81.4 76.3 78.0 78.0 78.0 78.0 72.9 76.3 78.0 76.3 76.3 79.7 78.8 77.1 47.5 57.6 75.4
GAOKAO_MATH_QA 94.6 73.5 75.8 77.8 77.2 77.5 56.1 73.5 68.4 70.4 72.9 72.9 70.9 63.8 52.1 56.4 75.5
GAOKAO2023EN 80.8 72.2 73.0 71.9 72.2 71.4 69.9 67.0 69.4 69.6 69.6 71.7 71.7 70.1 36.6 40.5 75.6
GAOKAO2024_I 71.4 57.1 57.1 50.0 57.1 50.0 42.9 57.1 64.3 64.3 64.3 57.1 57.1 57.1 42.9 35.7 64.3
GAOKAO2024_II 85.7 64.3 71.4 64.3 57.1 57.1 50.0 50.0 71.4 57.1 57.1 64.3 64.3 64.3 35.7 28.6 57.1
GAOKAO2024_MIX 79.1 72.5 73.6 71.4 71.4 71.4 59.3 71.4 65.9 68.1 64.8 67.0 68.1 69.2 46.2 36.3 79.4
GSM8K 97.7 96.6 96.4 96.4 96.4 96.4 96.1 95.7 96.1 96.0 95.6 96.0 96.7 96.6 46.3 54.4 96.7
MAWPS 98.8 98.5 98.4 98.5 98.5 98.5 98.4 98.3 98.1 98.3 98.4 98.4 98.5 98.3 72.5 81.7 98.4
MINERVA_MATH 48.9 41.5 39.3 40.1 40.1 39.3 37.1 36.0 38.2 38.2 39.3 37.9 40.8 40.4 14.0 15.1 42.1
MMLU_STEM 90.2 72.9 74.0 73.4 73.7 72.9 69.0 70.2 72.0 72.4 72.2 74.0 73.6 73.5 54.6 43.0 31.7
SVAMP 96.7 94.6 95.0 95.1 95.2 95.1 94.2 93.4 94.9 95.6 95.5 95.9 95.6 95.7 68.7 76.4 96.8
TABMWP 98.6 96.1 96.4 96.5 96.4 96.9 95.0 94.6 95.5 96.0 95.3 96.1 96.6 96.7 63.3 68.3 96.2
OLYMPIADBENCH 61.9 44.7 48.4 47.3 46.1 46.7 42.1 42.7 44.1 45.5 43.3 44.9 46.1 46.1 21.6 21.9 47.9
MATH 92.3 87.0 88.2 87.6 87.5 87.3 85.5 84.5 86.0 86.4 86.7 86.4 86.7 86.8 44.7 48.8 89.1
AVERAGE 79.8 ± 4.7 71.4 ± 5.1 72.7 ± 5.1 72.1 ± 5.0 72.2 ± 5.0 72.0 ± 5.0 67.6 ± 5.3 68.8 ± 5.4 71.6 ± 5.0 71.2 ± 5.0 70.5 ± 5.2 71.4 ± 5.1 71.8 ± 4.9 71.9 ± 4.8 46.0 ± 4.1 48.1 ± 4.6 71.2 ± 5.0

BEST COUNT N/A 1/23 5/23 2/23 4/23 5/23 0/23 0/23 4/23 0/23 1/23 3/23 1/23 1/23 0/23 0/23 6/23

Last Avg Min Prod Sum Max
0.0

0.5

1.0

C
or

re
la

tio
n

0.56 0.55 0.57 0.53

0.02
0.21

0.70 0.72 0.70
0.59

0.09
0.20

0.50 0.49 0.53 0.52

-0.02

0.22

All data In-distribution Out-of-distribution

Figure 2: Point-biserial correlation between PRM score aggregation methods and solution
correctness. Minimum aggregation shows highest correlation, followed by last reasoning-step
scoring. Correlation is consistently higher on in-distribution (ID) problems on which the PRM is
trained (GSM8K and MATH) than out-of-distribution (OOD) tasks.
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Figure 3: PRM score distributions by aggregation method, conditioned on prediction correct-
ness. Last, average, minimum, and product aggregations effectively separate correct from incorrect
predictions.
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Table 5: Point-biserial correlations between PRM aggregation methods and prediction cor-
rectness by dataset. Bold indicates best performance per dataset. Correlations vary substantially
across problems, with optimal aggregation being dataset-dependent. Overall, minimum aggregation
performs best, followed by last-step scoring.

DATASET BoN_Last@8 BoN_Avg@8 BoN_Min@8 BoN_Prod@8 BoN_Sum@8 BoN_Max@8

AIME25 0.494 0.474 0.582 0.444 0.283 0.095
AIME24 0.623 0.597 0.680 0.487 0.529 0.151
AMC23 0.668 0.700 0.726 0.626 0.170 0.280
SAT_MATH 0.690 0.375 0.487 0.330 0.069 0.039
AQUA 0.309 0.309 0.342 0.306 0.106 0.291
ASDIV 0.447 0.466 0.450 0.424 -0.049 0.116
CARP_EN 0.137 0.149 0.154 0.150 -0.026 0.060
CMATH 0.557 0.559 0.627 0.637 0.063 0.200
CN_MIDDLE_SCHOOL 0.432 0.419 0.465 0.444 -0.161 0.119
GAOKAO_MATH_CLOZE 0.455 0.500 0.555 0.482 0.094 0.098
GAOKAO_MATH_QA 0.510 0.454 0.546 0.488 -0.016 0.216
GAOKAO2023EN 0.561 0.590 0.602 0.540 0.148 0.175
GAOKAO2024_I 0.285 0.275 0.438 0.337 -0.064 0.126
GAOKAO2024_II 0.376 0.447 0.545 0.584 0.048 0.094
GAOKAO2024_MIX 0.482 0.422 0.495 0.343 0.081 0.187
GSM8K 0.560 0.595 0.597 0.565 0.099 0.120
MAWPS 0.333 0.379 0.322 0.296 0.015 0.091
MINERVA_MATH 0.349 0.416 0.477 0.474 -0.022 0.183
MMLU_STEM 0.360 0.280 0.281 0.266 0.085 0.182
SVAMP 0.700 0.706 0.694 0.673 0.109 0.239
TABMWP 0.542 0.591 0.588 0.570 0.090 0.211
OLYMPIADBENCH 0.571 0.603 0.635 0.578 0.213 0.145
MATH 0.708 0.718 0.703 0.585 0.130 0.200

BEST COUNT 2/23 5/23 14/23 2/23 0/23 0/23

AVERAGE 0.557 0.550 0.575 0.533 0.024 0.209
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