
Limits of PRM-Guided Tree Search for
Mathematical Reasoning with LLMs

Tristan Cinquin∗

University of Tübingen
tristan.cinquin@uni-tuebingen.de

Geoff Pleiss
University of British Columbia & Vector Institute

geoff.pleiss@stat.ubc.ca

Agustinus Kristiadi
Western University & Vector Institute

akristi@uwo.ca

Abstract

While chain-of-thought prompting with Best-of-N (BoN) selection has become
popular for mathematical reasoning in large language models (LLMs), its linear
structure fails to capture the branching and exploratory nature of complex problem-
solving. In this work, we propose an adaptive algorithm to maximize process
reward model (PRM) scores over the intractable action space, and investigate
whether PRM-guided tree search can improve mathematical reasoning by exploring
multiple partial solution paths. Across 23 diverse mathematical problems using
Qwen2.5-Math-7B-Instruct with its associated PRM as a case study, we find that:
(1) PRM-guided tree search shows no statistically significant improvements over
BoN despite higher costs, (2) Monte Carlo tree search and beam search outperform
other PRM-guided tree search methods, (3) PRMs poorly approximate state values
and their reliability degrades with reasoning depth, and (4) PRMs generalize poorly
out of distribution. This underperformance stems from tree search’s greater reliance
on unreliable PRM scores, suggesting different reward modeling is necessary before
tree search can effectively enhance mathematical reasoning in LLMs.

1 Introduction

Mathematical reasoning involves understanding complex problems, decomposing them into manage-
able steps, and revisiting intermediate results until reaching a sound solution. Large language models
(LLMs) have shown remarkable capabilities in solving mathematical problems by breaking solutions
into reasoning steps through chain-of-thought (CoT) prompting [1, 2]. When combined with process
reward models (PRMs) that evaluate individual reasoning steps, Best-of-N (BoN) identifies the most
promising CoT from multiple candidates and has become widely adopted [3–6]. However, CoT’s
linear structure fails to capture the branching nature of mathematical reasoning, where multiple
strategies are considered, partial arguments explored, and errors necessitate backtracking [7, 8].
Moreover, restricting PRM evaluation to complete CoTs misses opportunities for dynamic guidance.

The tree-of-thought (ToT) framework [9] addresses these limitations by exploring multiple partial
reasoning paths and enabling revisions using a reward model to assess the correctness of intermediate
solutions. Yet applying ToT with PRMs presents challenges: reasoning trees exhibit intractable
branching factors and depth, while PRMs may fail to accurately evaluate intermediate steps [3].

This work proposes an adaptive algorithm to maximize PRM scores over the intractable action
space and empirically investigates whether PRM-guided tree search can improve mathematical

∗Work done while interning at the Vector Institute.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

reasoning in LLMs. We evaluate tree search algorithms under varying PRM quality assumptions
against BoN across 23 diverse mathematical problems, using Qwen2.5-Math-7B-Instruct and its
associated PRM as our case study. Key findings reveal that: (1) PRM-guided tree search fails to
outperform BoN despite higher costs; (2) Monte Carlo tree search and beam search outperform
other PRM-guided tree search methods; (3) PRMs poorly approximate state values and reliability
degrades with reasoning depth, suggesting credit assignment issues; and (4) PRMs exhibit limited
out-of-distribution generalization. This underperformance stems from tree search’s greater reliance
on unreliable PRM scores to guide search, whereas BoN evaluates only complete CoTs. These results
highlight the limitations of PRM-guided tree search and BoN, indicating that different reward models
may be required for mathematical reasoning.

Limitations. This work demonstrates that PRM-guided tree search fails to outperform BoN due to
PRM limitations: poor reasoning step value estimation, degraded reliability with reasoning depth,
and limited out-of-distribution generalization. While our study focuses on a single PRM-model pair,
we expect this underperformance to generalize to PRMs exhibiting similar pathologies.

2 Background

2.1 Mathematical reasoning as tree search

We formulate mathematical reasoning as search in a tree-structured Markov decision process
M = (S,A, r, t) where actions a ∈ A are reasoning steps (text ending with an end-of-reasoning-step
token), states s ∈ S := ∪Ti=0Ai are partial reasoning sequences and transitions are deterministic
t(s, a, s′) = 1[s′ = s⊕ a] (here s⊕ a denotes string concatenation). The root state is the prompt p,
and T denotes terminal states containing predictions in the ’\boxed{x}’ format. The reward function
assigns r(s) = 1 if s ∈ T contains the correct solution with valid intermediate reasoning steps, and
r(s) = 0 otherwise. The value function v(s) = r(s) + maxa∈A v(s⊕ a) indicates whether any
continuation from state s leads to a state with reward 1. A LLM πθ defines a policy a ∼ πθ(· | s),
while a process reward model fϕ(s) estimates p(v(s) = 1 | s). Our goal is finding s with r(s) = 1
using the LLM and the PRM. Since rewards are unavailable during search, the PRM’s approximation
quality determines the appropriate search strategy. We distinguish three scenarios:

Scenario 1: PRM as Value Function. If the PRM correctly ranks actions by their true
p(v(s′) = 1 | s′ = s⊕ a), optimal search recursively selects a∗ = argmaxa∈A fϕ(s⊕ a). If ac-
tions A were practically enumerable, a greedy tree search algorithm would be optimal. However,
enumerating a ∈ A is intractable and we propose an algorithm in Section 3 to adaptively resample
actions a ∼ πθ(· | s) until we are confident that we have attained maxa∈A fϕ(s⊕ a).

Scenario 2: PRM as Terminal Signal Only. In this “worst-case we can still work with” scenario, the
PRM suffers from poor credit assignment, failing to properly estimate p(v(s) = 1 |s) for intermediate
states, yet PRM scores at terminal states still correlate with reward r. The optimal tree search
algorithm returns s∗ ∈ argmaxs∈T fϕ(s) among terminal states.

Scenario 3: PRM as Noisy Intermediate Signal. The PRM provides useful but unreliable guidance
for intermediate states. For example, it may undervalue (i.e., fϕ(s) < p(v(s) = 1 | s)) optimal inter-
mediate states leading to high-scoring terminal states, and overvalue (i.e., fϕ(s) > p(v(s) = 1 | s))
suboptimal intermediate states leading to poor terminal states. While maximizing PRM scores
generally helps to reach valuable terminal nodes, the appropriate search objective remains unclear.

2.2 Tree search baselines

Best-of-N samples N chains-of-thought from the LLM policy (i.e., separate root-to-terminal paths
with no shared intermediate state) and selects the CoT with the highest aggregated PRM score [3, 5].
Given a prompt p, we sample CoT ci = (p, a

(i)
1 , . . . , a

(i)
T) as a

(i)
j+1 ∼ πθ(· | p ⊕ (⊕j

k=1a
(i)
k)) for

i = 1, . . . , N and return argmaxi∈{1,...,N} Ψ({fϕ(a(i)j)}Tj=1) where Ψ aggregates PRM scores.

Greedy best-first search (GBFS) expands the frontier state s ∈ F with highest heuristic value h(s)
at each step, where the frontier F contains all unexpanded states in the current search tree. Starting
from the root, we repeatedly expand s = argmaxs∈F h(s) by sampling K actions from the LLM
until reaching a terminal state. We use h(s) = fϕ(s) and depth-aware h(s) = fϕ(s) · (M − d(s)) to
favor deeper states, where M is maximum depth and d(s) is the depth of state s.

2

Beam search maintains the top-N states with highest (cumulative) PRM score in a beam Bt. At each
step t, we sample actions aij ∼ πθ(· | sj) i = 1, . . . ,K for each state in the current beam sj ∈ Bt,
score states ∪Nj=1{sj ⊕ aij}Ki=1 with the PRM, and keep the N highest-scoring states for the next
beam Bt+1. For N = 1, this reduces to greedy search.

Monte Carlo tree search (MCTS) builds a search tree in four phases: (1) Select: traverse the search
tree from root to leaf selecting high-value states and balancing exploration/exploitation; (2) Expand:
add children to the selected leaf by sampling actions from πθ; (3) Rollout: run LLM policy from the
new state to a terminal state; (4) Backpropagate: update visit counts and average PRM scores of
terminal states along the path back to the root. Repeat until computational budget is depleted.

3 Methods

In this section, we propose an adaptive algorithm to solve the intractable optimization problem
a = argmaxa∈A fϕ(s⊕ a) (due to the unenumerable |A|) from Scenario 1 (see Section 2.1). We
formulate this optimization problem as a stopping problem: when should we stop sampling actions
from the policy and commit to the action with highest observed fϕ(s⊕ a)?

Maximizing over the intractable A using Gittin’s indices. At each state s, we sample independent
actions ai ∼ πθ(·|s) and evaluate PRM scores fi = fϕ(s⊕ ai). We must then decide whether to stop
and commit to the current maximum observed PRM score m = maxi fi (payoff m), or sample again
at cost c to improve the current estimate m for expected payoff Ef∼p(f |s) [max(m, f)]−c (since we se-
lect the largest value among f ∼ p(· |s) and m and incur a cost c). This is an instance of the Pandora’s
box problem [10], whose optimal strategy samples if Ef∼p(f |s) [max(m, f)]− c > m and otherwise
stops. This involves computing a Gittin’s index m∗ satisfying Ef∼p(f |s) [max(0, f −m∗)] = c,
then sampling if m∗ > m and stopping otherwise. However, p(f | s) is intractable and estimating
it requires the LLM samples we are trying to acquire sparingly. This motivates a strategy based on
surrogate modeling and posterior inference inspired by Xie et al. [11] which we discuss next.

Bayesian surrogate approximation. We approximate p(f | s) using a logit-Normal surrogate model
q(f | s,ψ) with parameters ψ. Specifically, we encode prior beliefs in p(ψ), update the posterior
p(ψ |D) ∝ q(D|s,ψ)p(ψ) with observed PRM scoresD = {fi|fi ∼ p(f |s)}, and use the posterior
predictive q(f | s,D) =

∫
q(f | s,ψ)p(ψ | D)dψ to approximate p(f | s). We then compute the

Gittin’s index m∗ by solving Ef∼q(f |s,D) [max(0, f −m)] = c under posterior beliefs q(f | s,D)
rather than p(f | s). The left-hand side is the expected improvement over m [12], a standard Bayesian
optimization acquisition function [13]. The Gittin’s index represents the threshold where expected
improvement equals cost c, thus smaller c induces more exploration. More details in Appendix A.

4 Results

4.1 Experimental setup

LLM & PRM. We use the Qwen2.5-Math-7B-Instruct [4] LLM with the recommended prompting
strategy and sampling parameters, and the Qwen2.5-Math-PRM-7B process reward model [3].

Problems & metrics. We evaluate on 22 mathematical reasoning problems from Yang et al. [4] and
AIME 2025 [14]. We report mean accuracy and rank across problems with standard errors. To address
concerns about high variance in LLM evaluation [15], we test statistical significance between the
top-performing method and all others using Wilcoxon signed-rank tests (insignificant if p > 0.05).

Tree search methods. We compare Best-of-N (BoN) with N = 8 chain-of-thoughts using last,
minimum, average, product, maximum and sum aggregation functions Ψ; the proportion of answers
containing at least one correct prediction among N = 8 CoTs (PASS@N); majority voting among
predictions of N = 8 CoTs (MAJ@N); beam search with beam size N = 1 expanding the state with
highest PRM value from K policy samples (Greedy@K); beam search with beam size N = 4 from
K = 6 policy samples maximizing instantaneous (V) or cumulative (CV) PRM scores (Beam@N);
greedy best-first search with K = 8 policy samples (GBFS@K); depth-aware GBFS (GBFS_DA@K; see
Section 2); Monte Carlo tree search with K = 8 policy samples (MCTS@K) and our proposed method
from Section 3 with constant and linear cost schedules to allow more exploration early in the search
when the remaining sampling budget is large (Gittins@cost; more details in Appendix A).

3

4.2 Findings

Table 1: Method mean accuracy and rank
with standard errors across problems. We
bold results which are not significantly worse
than the best (p > 0.05).

METHOD ACCURACY (P-VALUE) RANK (P-VALUE)

PASS@8 79.8 ± 4.7 (N/A) N/A

MAJ@8 71.4 ± 5.1 (0.010) 4.43 ± 0.51 (0.022)

BoN_Last@8 72.7 ± 5.1 (N/A) 3.13 ± 0.38 (N/A)
BoN_Avg@8 72.1 ± 5.0 (0.444) 3.22 ± 0.31 (0.787)
BoN_Min@8 72.2 ± 5.0 (0.711) 3.26 ± 0.32 (0.608)
BoN_Prod@8 72.0 ± 5.0 (0.408) 3.26 ± 0.40 (0.795)
BoN_Sum@8 67.6 ± 5.3 (0.000) 7.30 ± 0.72 (0.000)
BoN_Max@8 68.8 ± 5.4 (0.000) 7.35 ± 0.69 (0.000)

Greedy@6 71.6 ± 5.0 (0.043) 5.74 ± 0.76 (0.003)
Greedy@20 71.2 ± 5.0 (0.039) 5.09 ± 0.55 (0.009)

Beam@4 (V) 71.8 ± 4.9 (0.126) 3.83 ± 0.42 (0.236)
Beam@4 (CV) 71.9 ± 4.8 (0.189) 4.00 ± 0.49 (0.221)
GBFS@8 46.0 ± 4.1 (0.000) 10.09 ± 0.71 (0.000)
GBFS_DA@8 48.1 ± 4.6 (0.000) 10.00 ± 0.65 (0.000)

MCTS@8 71.2 ± 5.0 (0.987) 3.26 ± 0.69 (0.856)
Gittins@0.05 (ours) 70.5 ± 5.2 (0.012) 5.96 ± 0.59 (0.001)
Gittins@linear (ours) 71.4 ± 5.1 (0.013) 4.74 ± 0.56 (0.011)

1. PRM-guided tree search methods do not out-
perform Best-of-N despite higher costs. Best-
of-N using terminal PRM scores (BoN_Last@8)
achieves the highest mean rank and accuracy (see
Tables 1 and 4). Among Best-of-N variants, aver-
age, minimum, and product aggregations perform
comparably without significant differences. MCTS
and beam search also show no significant perfor-
mance degradation compared to the best method.
However, tree search methods incur substantially
higher computational costs, generating consider-
ably more tokens (see Generated token in Table 3).
Despite this increased cost, their final solutions
contain fewer reasoning steps and tokens than Best-
of-N solutions (see Reasoning steps and Out To-
kens in Table 3). Except for GBFS, tree search
methods reach approximately as many terminal
states as Best-of-N (see Terminal states in Table 3).

Table 2: Method mean accuracy and
rank with standard errors across
problems for tree search methods.
We bold results which are not signifi-
cantly worse than the best (p > 0.05).

METHOD ACCURACY (P-VALUE) RANK (P-VALUE)

Greedy@6 71.6 ± 5.0 (0.498) 3.78 ± 0.41 (0.021)
Greedy@20 71.2 ± 5.0 (0.019) 3.43 ± 0.27 (0.032)

Beam@4 (V) 71.8 ± 4.9 (0.601) 2.52 ± 0.20 (0.232)
Beam@4 (CV) 71.9 ± 4.8 (N/A) 2.57 ± 0.24 (0.286)
GBFS@8 46.0 ± 4.1 (0.000) 6.70 ± 0.34 (0.000)
GBFS_DA@8 48.1 ± 4.6 (0.000) 6.48 ± 0.30 (0.000)

MCTS@8 71.2 ± 5.0 (0.332) 2.26 ± 0.41 (N/A)
Gittins@0.05 (ours) 70.5 ± 5.2 (0.019) 4.00 ± 0.35 (0.006)
Gittins@linear (ours) 71.4 ± 5.1 (0.398) 3.09 ± 0.30 (0.048)

2. MCTS and beam search perform best among
PRM-guided tree search methods. MCTS@8 achieves
the highest mean rank among tree search methods, with
beam search variants (Beam@4 (V) and Beam@4 (CV))
performing comparably without significant differences
(p > 0.05, see Table 2). For mean accuracy, beam search
maximizing the cumulative PRM values performs best,
followed by Beam@4 (V), Greedy@6, Gittins@linear
and MCTS@8 with no significant performance gaps.

3. The PRM poorly approximates p(v(s) = 1 | s) and
reliability degrades with reasoning depth, limiting tree
search effectiveness. Methods assuming the PRM accu-
rately estimates the value across all states (Greedy@K and Gittins@cost, Scenario 1 in Section 2.1)
perform significantly worse than Best-of-N and other tree search methods (Tables 1 and 2). Increasing
policy samples (K = 6 to K = 20) or adaptive sampling (Gittins@cost) does not improve perfor-
mance. This suggests either the LLM policy cannot generate high-scoring states or the PRM cannot
identify them. Since PASS@K significantly outperforms Best-of-N, the LLM policy does generate
correct solutions but the PRM fails to rank them highly, providing evidence that the PRM poorly
approximates p(v(s) = 1 | s).

0 10 20 30 40 50
Reasoning steps to terminal state

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

All data
In-distribution
Out-of-distribution

Figure 1: Correlation of prediction cor-
rectness with PRM scores. Correlation
decreases with increasing distance in rea-
soning steps from terminal states.

Further analysis shows that point-biserial correlation of
prediction correctness with PRM scores is initially high
(≈ 0.5) near terminal states but deteriorates significantly
for early reasoning steps (≈ 0.37 at 10 steps from ter-
mination; see All data in Figure 1). These findings sug-
gest credit assignment issues in the offline reinforcement
learning of the PRM. Moreover, this pattern explains why
MCTS@8, which relies exclusively on terminal PRM scores,
achieves the best average rank among tree search methods,
and Beam@8 performs best in accuracy by tolerating locally
suboptimal steps that lead to higher-scoring future states.
This suggests that the PRM operates between Scenarios 2
and 3: terminal scores are most reliable, but intermediate
scores provide useful yet unreliable guidance.

4. The PRM shows limited out-of-distribution gener-
alization. Correlation between PRM scores and correct-
ness is consistently higher on in-distribution (ID) problems

4

on which the PRM is trained (GSM8K and MATH) than out-of-distribution (OOD) tasks (others
problems; Figure 2 and Table 5). This generalization gap persists across most reasoning steps:
correlation of prediction correctness with PRM scores on ID problems is considerably larger than on
OOD tasks until ≈ 30 steps to termination, after which both ID and OOD performance converge to
similarly low correlation levels (see ID and OOD in Figure 1). This limited generalization further
constrains the practical utility of PRM-guided tree search across diverse mathematical domains.

5 Related work

Tree search with LLM self-evaluation Several works apply greedy best-first search [9], Monte
Carlo tree search [16, 17] and beam search [18] to reasoning using the LLM policy model itself
for state evaluation. Unlike these approaches, we use a process reward model trained by offline
reinforcement learning on mathematics tasks to guide search.

PRM-guided tree search Zhang et al. [3] evaluate PRM aggregation methods and greedy search,
finding greedy search generally inferior to Best-of-N. Our study extends this analysis with a more
comprehensive evaluation, including additional tree search methods (MCTS, GBFS, beam search)
and more than three times as many problems (23 vs. 7). Our findings challenge some of theirs results,
notably that last-token aggregation outperforms product aggregation on average. More importantly,
we provide evidence that PRM reliability degrades with reasoning depth, a key finding that explains
why tree search methods fail to outperform Best-of-N.

Tree search for LLM training Recent work has used MCTS within reinforcement learning
pipelines to improve both language models and PRMs. Zhang et al. [19], Wan et al. [20], Xie et al.
[21], Guan et al. [22] employ MCTS under PRM supervision to generate high-scoring reasoning
chains subsequently used to fine-tune both the policy and PRM through self-training. In contrast, our
work focuses on pretrained LLM and PRM models without fine-tuning.

6 Conclusion

We proposed an adaptive algorithm to maximize PRM scores over the intractable action space, and
empirically investigated PRM-guided tree search across 23 mathematical reasoning problems using
Qwen2.5-Math-7B-Instruct and its associated PRM. Our findings show that PRM-guided tree search
methods fail to outperform Best-of-N despite higher costs, with MCTS and beam search proving
most effective among PRM-guided tree search approaches. We identify the underlying causes:
PRMs poorly approximate state values, become less reliable with reasoning depth indicating credit
assignment issues, and exhibit limited out-of-distribution generalization restricting their broader
applicability. Tree search’s underperformance stems from its reliance on these unreliable intermediate-
step PRM scores to guide search, whereas BoN evaluates only complete CoTs. These results highlight
the limitations of both PRM-guided tree search and BoN, revealing that current PRMs lack sufficient
accuracy to guide dynamic mathematical reasoning and suggesting that different reward models may
be required.

Acknowledgments and Disclosure of Funding

GP is supported by the Canada CIFAR AI Chair program. The authors are grateful to Johannes Zenn
for many insightful discussions that helped shape the direction of this project, and to both Johannes
Zenn and Arsen Sheverdin for their careful reading of the manuscript and valuable feedback that
improved its clarity and presentation. The computational resources used in this work were provided,
in part, by the Province of Ontario, the Government of Canada through CIFAR, and by companies
sponsoring the Vector Institute2.

2[https://vectorinstitute.ai/partnerships/

5

[https://vectorinstitute.ai/partnerships/

Bibliography

[1] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

[2] Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot?
chain-of-thought helps mainly on math and symbolic reasoning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=w6nlcS8Kkn.

[3] Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in
mathematical reasoning, 2025. URL https://arxiv.org/abs/2501.07301.

[4] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

[5] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=v8L0pN6EOi.

[6] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process- and outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

[7] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. In Workshop on Reasoning and Planning for Large Language Models, 2025.
URL https://openreview.net/forum?id=LdH0vrgAHm.

[8] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,

6

https://openreview.net/forum?id=w6nlcS8Kkn
https://openreview.net/forum?id=w6nlcS8Kkn
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2409.12122
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2211.14275
https://openreview.net/forum?id=LdH0vrgAHm

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

[9] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023.

[10] Martin L. Weitzman. Optimal search for the best alternative. Econometrica, 47(3):641–654,
1979. URL https://onlinelibrary.wiley.com/doi/abs/0012-9682(197905)47:3&
lt;641:OSFTBA>2.0.CO;2-1.

[11] Qian Xie, Raul Astudillo, Peter I. Frazier, Ziv Scully, and Alexander Terenin. Cost-aware
bayesian optimization via the pandora’s box gittins index. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=Ouc1F0Sfb7.

[12] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13:455–492, 12 1998.
doi:10.1023/A:1008306431147.

[13] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

[14] Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev.
Matharena: Evaluating llms on uncontaminated math competitions, February 2025. URL
https://matharena.ai/.

[15] Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu,
and Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths
to reproducibility, 2025. URL https://arxiv.org/abs/2504.07086.

[16] Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4
level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024.
URL https://arxiv.org/abs/2406.07394.

[17] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023. URL https://openreview.
net/forum?id=VTWWvYtF1R.

[18] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe
Xie. Self-evaluation guided beam search for reasoning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
Bw82hwg5Q3.

[19] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-
MCTS*: LLM self-training via process reward guided tree search. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=8rcFOqEud5.

[20] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and
training. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

[21] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

[22] Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and
Mao Yang. rstar-math: Small LLMs can master math reasoning with self-evolved deep
thinking. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=5zwF1GizFa.

7

https://arxiv.org/abs/2501.12948
https://onlinelibrary.wiley.com/doi/abs/0012-9682(197905)47:3<641:OSFTBA>2.0.CO;2-1
https://onlinelibrary.wiley.com/doi/abs/0012-9682(197905)47:3<641:OSFTBA>2.0.CO;2-1
https://openreview.net/forum?id=Ouc1F0Sfb7
https://openreview.net/forum?id=Ouc1F0Sfb7
https://doi.org/10.1023/A:1008306431147
https://matharena.ai/
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2406.07394
https://openreview.net/forum?id=VTWWvYtF1R
https://openreview.net/forum?id=VTWWvYtF1R
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=5zwF1GizFa

[23] Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[24] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[25] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[27] Vector Institute. Vector-Inference: Efficient llm inference on slurm clusters, 2025. URL https:
//github.com/VectorInstitute/vector-inference. GitHub repository, accessed 2025-
09-04.

8

https://doi.org/10.1038/s41592-019-0686-2
https://github.com/VectorInstitute/vector-inference
https://github.com/VectorInstitute/vector-inference

A Additional method details

We here provide additional details on the method presented in Section 3.

Maximizing over the intractable A using Gittin’s indices. At each state s, we sample independent
actions from the policy a ∼ πθ(· | s) and evaluate f = fϕ(s⊕ a), which induces the distribution

p(f = f | s) =
∑
a∈A

1(f = fϕ(s⊕ a))πθ(a | s). (A.1)

After sampling i actions from the policy, let mi = maxj≤i fj denote the maximum PRM score
observed so far. We face a choice between two actions:

1. Sample a new action ai+1 ∼ π(· | s), observe fi+1 = fϕ(s⊕ ai+1), and incur cost c
2. Stop and commit to the current best action with score mi

The expected payoff for sampling is Ef∼p(f |s) [max(mi, f)]− c, while stopping yields payoff mi.
The optimal policy samples when the sampling payoff exceeds the stopping payoff:

Ef∼p(f |s) [max(mi, f)]− c > mi (A.2)

⇔ Ef∼p(f |s) [max(0, f −mi)] > c (A.3)

The Gittins index m∗
i is defined as the unique solution to

Ef∼p(f |s) [max(0, f −m∗
i)] = c (A.4)

The optimal policy samples if m∗
i > mi and stops otherwise [10]. However, computing this

expectation requires knowledge of p(f | s) which is intractable due to the summation over the action
space A (see Equation (A.1)). Since estimating this distribution would require the very LLM samples
we aim to collect sparingly, we develop a Bayesian surrogate approach inspired by Xie et al. [11]
which we discuss next.

Bayesian surrogate modeling We approximate p(f | s) using a surrogate model q(f | s,ψ) with
parameters ψ. Specifically, we encode our prior beliefs in p(ψ), then update the posterior p(ψ |
D) ∝ q(D|s,ψ)p(ψ) with observationsD = {fi|fi ∼ p(f |s)} before using the posterior predictive
q(f | s,D) =

∫
q(f | s,ψ)p(ψ | D)dψ to approximate p(f | s). We then compute the Gittin’s index

m∗
i under posterior beliefs q(f | s,D) rather than p(f | s) by solving

Ef∼q(f |s,D) [max(0, f −mi)] = c (A.5)

The left-hand side of Equation (A.5) is the expected improvement over the current maximum m [12],
a standard Bayesian optimization acquisition function [13]. The Gittin’s index m∗ represents the
threshold where expected improvement equals cost c, thus smaller c induces more exploration. More
details in Algorithm 1.

Adaptive cost scheduling. To balance exploration and exploitation over the search horizon, we
employ time-varying costs:

c(n) = c1 + (c2 − c1)× n/B (A.6)
where c1 < c2 are initial and final costs, B is the total sampling budget, and n is the current sample
count. This schedule promotes exploration early during search when the remaining sampling budget
is large and exploitation as resources diminish.

Logit-Normal surrogate model Let Dn = {fi}ni=1 where fi ∈ [0, 1] be a collection of observa-
tions from p(f = f | s) at a given state s. We consider a logit-Normal likelihood model for our
observations i.e.

q(f | s) = N
(
logit(f);µ, σ2

) 1

f(1− f)
(A.7)

where 1
f(1−f) adjusts for the change of variable. We then specify a Normal-inverse-Gamma prior on

the likelihood parameters µ and σ2 i.e.

q(µ, σ2) = N
(
m0, v0σ

2
)
IG(α0, β0) (A.8)

9

Algorithm 1 Adaptive PRM-guided tree search using Gittin’s indices and surrogate modeling.

1: function GITTINS(fϕ, πθ, T, s, K, c)
2: repeat
3: D ← ∅
4: repeat
5: D ← D ∪ {(si, fϕ(si)) | ai ∼ πθ(· | s), si = s⊕ ai}Ki=1 ▷ Sample from LLM
6: m← max(s,f)∈D f ▷ Update current observed maximum
7: Compute posterior predictive q(f | s,D) ▷ Update posterior beliefs
8: Compute Gittin’s index m∗ by solving Eq(f |D) [max(0, f −m∗)] = c using bisection
9: until m∗ > m

10: s← max(s,f)∈D f ▷ Update current state
11: until s ∈ T
12: return s

The model is conjugate and both the posterior and the predictive posterior are available in closed
form. The prior is chosen to yield a maximally uniform predictive prior.

The prior predictive is

q(f | µ, σ2) =

∫
q(r | µ, σ2)q(µ, σ2)dµdσ2 = T 2a0

(
f ;m0,

b0(1 + v0)

a0

)
1

f(1− f)
(A.9)

The posterior is then

q(µ, σ2 | D) =
∏n

i=1 q(fi | s)q(µ, σ2)∫ ∏n
i=1 q(fi | s)q(µ, σ2)dµdσ2

(A.10)

=
C
∏n

i=1N
(
logit(fi);µ, σ

2
)
q(µ, σ2)

C
∫ ∏n

i=1N (logit(fi);µ, σ2)q(µ, σ2)dµdσ2
(A.11)

=

∏n
i=1N

(
logit(fi);µ, σ

2
)
q(µ, σ2)∫ ∏n

i=1N (logit(fi);µ, σ2)q(µ, σ2)dµdσ2
(A.12)

= N
(
mn, vnσ

2
)
IG(αn, βn) (A.13)

where C =
∏n

i=1
1

fi(1−fi)
, v−1

n = v−1
0 +n, mn = v−1

n (v−1
0 m0 +

∑n
i=1 logit(fi)), an = a0 +n/2

and bn = b0 +
1
2 [m

2
0v

−1
0 +

∑n
i=1 logit(fi)

2 −m2
nv

−1
n].

The predictive posterior is

q(f | D) =
∫

q(f | µ, σ2)q(µ, σ2 | D)dµdσ2 = T 2an

(
f ;mn,

bn(1 + vn)

an

)
1

f(1− f)
(A.14)

Furthermore, the marginal likelihood has an analytical formulation:

q(D |m0, v0, a0, b0) =

∫ n∏
i=1

q(fi | s)q(µ, σ2)dµdσ2 (A.15)

=

[
n∏

i=1

1

fi(1− fi)

][∫ n∏
i=1

q(logit(fi) | s)q(µ, σ2)dµdσ2

]
(A.16)

= C

[
v
1/2
n ba0

0 Γ(an)

v
1/2
0 ban

n Γ(a0)πn/22n

]
(A.17)

where C =
∏n

i=1
1

fi(1−fi)
.

Implementation details We estimate the expectation Eq [max(0, f −m)] using quadrature repa-
rameterizing the integral to logit-space

Eq [max(0, f −m)] =

∫ 1

m

(f −m)q(f | D)df (A.18)

10

=

∫ logit(1)

logit(m)

(logit−1(l)−m)q(l | D)dl (A.19)

where l = logit(f). We solve for the Gittin’s index m∗ using bissection search as done in Xie et al.
[11]. Since the observations f take values in [0, 1], we shrink them using fi = ϵ+ (1− 2ϵ)fϕ(si) to
avoid singularities at 0 and 1.

B Additional experimental setup details

Models and hyperparameters. We use Qwen2.5-Math-7B-Instruct [23] as our base language
model, where actions a ∈ A correspond to text sequences terminated by ’\n\n’. For process reward
modeling, we use Qwen2.5-Math-PRM-7B trained on MATH and GSM8K problems [3]. Following
the recommended configuration [23], we set temperature=0.7, top_p=0.8, and repetition_penalty=1.05
for text generation.

Implementation. Gittins indices are computed via bisection search and numerical integration
performed using SciPy [24]. Tree structures are managed through NetworkX [25]. Models are served
using vLLM [26] with our inference pipeline adapted from vector-inference [27]. Evaluation follows
the protocol established by Yang et al. [4] using their official codebase.3

Computational resources. All experiments are conducted on NVIDIA RTX 6000 and A40 GPUs,
with each model deployed on a single GPU.

C Additional experimental results

Table 3: Performance metrics across 23 problems: mean accuracy with standard-error, mean
rank with standard-error, reasoning steps, generated tokens (Gen.), output tokens (Out.), and
terminal state coverage. Bold entries indicate no significant difference from the best method
(p > 0.05). Best-of-N with terminal PRM scores (BoN_Last@8) perform best, while tree search
methods (MCTS, beam search) match accuracy but require substantially higher computational cost.

METHOD ACCURACY RANK REASONING STEPS GEN. TOKENS (×107) OUT. TOKENS (×107) TERMINAL STATE (%)

PASS@8 79.8 ± 4.7 (N/A) N/A 9.7 8.2 8.2 98.2

MAJ@8 71.4 ± 5.1 (0.010) 4.43 ± 0.51 (0.022) 9.7 8.2 8.2 98.2
BoN_Last@8 72.7 ± 5.1 (N/A) 3.13 ± 0.38 (N/A) 9.7 8.2 8.2 98.2
BoN_Avg@8 72.1 ± 5.0 (0.444) 3.22 ± 0.31 (0.787) 9.7 8.2 8.2 98.2
BoN_Min@8 72.2 ± 5.0 (0.711) 3.26 ± 0.32 (0.608) 9.7 8.2 8.2 98.2
BoN_Prod@8 72.0 ± 5.0 (0.408) 3.26 ± 0.40 (0.795) 9.7 8.2 8.2 98.2
BoN_Sum@8 67.6 ± 5.3 (0.000) 7.30 ± 0.72 (0.000) 9.7 8.2 8.2 98.2

BoN_Max@8 68.8 ± 5.4 (0.000) 7.35 ± 0.69 (0.000) 9.7 8.2 8.2 98.2

Greedy@6 71.6 ± 5.0 (0.043) 5.74 ± 0.76 (0.003) 8.9 5.6 0.9 97.9
Greedy@20 71.2 ± 5.0 (0.039) 5.09 ± 0.55 (0.009) 8.8 18.7 0.9 98.2

Beam@4 (V) 71.8 ± 4.9 (0.126) 3.83 ± 0.42 (0.236) 9.2 20.2 0.9 98.7
Beam@4 (CV) 71.9 ± 4.8 (0.189) 4.00 ± 0.49 (0.221) 9.4 21.0 0.9 96.5

GBFS@8 46.0 ± 4.1 (0.000) 10.09 ± 0.71 (0.000) 5.3 65.2 0.5 52.7
GBFS_DA@8 48.1 ± 4.6 (0.000) 10.00 ± 0.65 (0.000) 5.8 68.0 0.5 57.1

MCTS 71.2 ± 5.0 (0.987) 3.26 ± 0.69 (0.856) 8.8 89.4 0.7 97.8

Gittins@0.05 (ours) 70.5 ± 5.2 (0.012) 5.96 ± 0.59 (0.001) 9.5 9.0 0.9 98.3
Gittins@linear (ours) 71.4 ± 5.1 (0.013) 4.74 ± 0.56 (0.011) 9.5 14.3 0.9 98.5

3https://github.com/QwenLM/Qwen2.5-Math

11

https://github.com/QwenLM/Qwen2.5-Math

Table 4: Accuracy by dataset with means and standard errors. Bold indicates best performance
per dataset. Bottom rows show overall means and win counts across problems.

DATASET PASS@8 MAJ@8 BoN_Last@8 BoN_Avg@8 BoN_Min@8 BoN_Prod@8 BoN_Sum@8 BoN_Max@8 Greedy@6 Greedy@20 Gittins@0.05 (ours) Gittins@linear (ours) Beam@4 (V) Beam@4 (CV) GBFS@8 GBFS_DA@8 MCTS@8

AIME25 20.0 13.3 13.3 16.7 16.7 20.0 13.3 6.7 16.7 10.0 13.3 16.7 20.0 16.7 6.7 3.3 23.3
AIME24 23.3 16.7 16.7 20.0 20.0 20.0 16.7 10.0 16.7 26.7 16.7 13.3 16.7 30.0 6.7 13.3 26.7
AMC23 82.5 60.0 70.0 67.5 70.0 70.0 62.5 62.5 62.5 62.5 55.0 70.0 67.5 65.0 40.0 37.5 65.0
SAT_MATH 100.0 96.9 100.0 100.0 100.0 100.0 93.8 93.8 100.0 96.9 100.0 96.9 96.9 96.9 62.5 75.0 96.9
AQUA 94.1 78.0 76.0 76.0 75.6 76.0 73.2 74.4 79.5 79.5 78.0 75.5 77.6 79.5 63.8 63.0 68.3
ASDIV 96.7 95.8 96.0 96.0 95.9 96.0 95.9 95.5 96.1 96.0 95.8 95.8 96.0 95.8 70.7 76.1 96.0
CARP_EN 63.1 61.8 61.7 61.9 62.0 62.0 61.7 61.5 61.0 61.2 61.1 61.1 61.1 61.5 36.1 39.2 61.5
CMATH 95.3 92.7 93.2 93.8 94.0 94.0 92.2 92.2 92.3 93.2 92.8 93.3 93.0 93.5 69.8 73.5 94.0
CN_MIDDLE_SCHOOL 82.2 78.2 80.2 79.2 79.2 79.2 76.2 76.2 80.2 78.2 77.2 77.2 77.2 78.2 54.5 61.4 79.2
GAOKAO_MATH_CLOZE 81.4 76.3 78.0 78.0 78.0 78.0 72.9 76.3 78.0 76.3 76.3 79.7 78.8 77.1 47.5 57.6 75.4
GAOKAO_MATH_QA 94.6 73.5 75.8 77.8 77.2 77.5 56.1 73.5 68.4 70.4 72.9 72.9 70.9 63.8 52.1 56.4 75.5
GAOKAO2023EN 80.8 72.2 73.0 71.9 72.2 71.4 69.9 67.0 69.4 69.6 69.6 71.7 71.7 70.1 36.6 40.5 75.6
GAOKAO2024_I 71.4 57.1 57.1 50.0 57.1 50.0 42.9 57.1 64.3 64.3 64.3 57.1 57.1 57.1 42.9 35.7 64.3
GAOKAO2024_II 85.7 64.3 71.4 64.3 57.1 57.1 50.0 50.0 71.4 57.1 57.1 64.3 64.3 64.3 35.7 28.6 57.1
GAOKAO2024_MIX 79.1 72.5 73.6 71.4 71.4 71.4 59.3 71.4 65.9 68.1 64.8 67.0 68.1 69.2 46.2 36.3 79.4
GSM8K 97.7 96.6 96.4 96.4 96.4 96.4 96.1 95.7 96.1 96.0 95.6 96.0 96.7 96.6 46.3 54.4 96.7
MAWPS 98.8 98.5 98.4 98.5 98.5 98.5 98.4 98.3 98.1 98.3 98.4 98.4 98.5 98.3 72.5 81.7 98.4
MINERVA_MATH 48.9 41.5 39.3 40.1 40.1 39.3 37.1 36.0 38.2 38.2 39.3 37.9 40.8 40.4 14.0 15.1 42.1
MMLU_STEM 90.2 72.9 74.0 73.4 73.7 72.9 69.0 70.2 72.0 72.4 72.2 74.0 73.6 73.5 54.6 43.0 31.7
SVAMP 96.7 94.6 95.0 95.1 95.2 95.1 94.2 93.4 94.9 95.6 95.5 95.9 95.6 95.7 68.7 76.4 96.8
TABMWP 98.6 96.1 96.4 96.5 96.4 96.9 95.0 94.6 95.5 96.0 95.3 96.1 96.6 96.7 63.3 68.3 96.2
OLYMPIADBENCH 61.9 44.7 48.4 47.3 46.1 46.7 42.1 42.7 44.1 45.5 43.3 44.9 46.1 46.1 21.6 21.9 47.9
MATH 92.3 87.0 88.2 87.6 87.5 87.3 85.5 84.5 86.0 86.4 86.7 86.4 86.7 86.8 44.7 48.8 89.1
AVERAGE 79.8 ± 4.7 71.4 ± 5.1 72.7 ± 5.1 72.1 ± 5.0 72.2 ± 5.0 72.0 ± 5.0 67.6 ± 5.3 68.8 ± 5.4 71.6 ± 5.0 71.2 ± 5.0 70.5 ± 5.2 71.4 ± 5.1 71.8 ± 4.9 71.9 ± 4.8 46.0 ± 4.1 48.1 ± 4.6 71.2 ± 5.0

BEST COUNT N/A 1/23 5/23 2/23 4/23 5/23 0/23 0/23 4/23 0/23 1/23 3/23 1/23 1/23 0/23 0/23 6/23

Last Avg Min Prod Sum Max
0.0

0.5

1.0

C
or

re
la

tio
n

0.56 0.55 0.57 0.53

0.02
0.21

0.70 0.72 0.70
0.59

0.09
0.20

0.50 0.49 0.53 0.52

-0.02

0.22

All data In-distribution Out-of-distribution

Figure 2: Point-biserial correlation between PRM score aggregation methods and solution
correctness. Minimum aggregation shows highest correlation, followed by last reasoning-step
scoring. Correlation is consistently higher on in-distribution (ID) problems on which the PRM is
trained (GSM8K and MATH) than out-of-distribution (OOD) tasks.

0.0 0.5 1.0
Last PRM score

0

20

D
en

si
ty

0.0 0.5 1.0
Average of PRM scores

0

20

0.0 0.5 1.0
Minimum of PRM scores

0

10

0.0 0.5 1.0
Product of PRM scores

0

10

D
en

si
ty

0 500
Sum of PRM scores

0.000

0.025

0.0 0.5 1.0
Maximum of PRM scores

0

20 Correct
Incorrect

Figure 3: PRM score distributions by aggregation method, conditioned on prediction correct-
ness. Last, average, minimum, and product aggregations effectively separate correct from incorrect
predictions.

12

Table 5: Point-biserial correlations between PRM aggregation methods and prediction cor-
rectness by dataset. Bold indicates best performance per dataset. Correlations vary substantially
across problems, with optimal aggregation being dataset-dependent. Overall, minimum aggregation
performs best, followed by last-step scoring.

DATASET BoN_Last@8 BoN_Avg@8 BoN_Min@8 BoN_Prod@8 BoN_Sum@8 BoN_Max@8

AIME25 0.494 0.474 0.582 0.444 0.283 0.095
AIME24 0.623 0.597 0.680 0.487 0.529 0.151
AMC23 0.668 0.700 0.726 0.626 0.170 0.280
SAT_MATH 0.690 0.375 0.487 0.330 0.069 0.039
AQUA 0.309 0.309 0.342 0.306 0.106 0.291
ASDIV 0.447 0.466 0.450 0.424 -0.049 0.116
CARP_EN 0.137 0.149 0.154 0.150 -0.026 0.060
CMATH 0.557 0.559 0.627 0.637 0.063 0.200
CN_MIDDLE_SCHOOL 0.432 0.419 0.465 0.444 -0.161 0.119
GAOKAO_MATH_CLOZE 0.455 0.500 0.555 0.482 0.094 0.098
GAOKAO_MATH_QA 0.510 0.454 0.546 0.488 -0.016 0.216
GAOKAO2023EN 0.561 0.590 0.602 0.540 0.148 0.175
GAOKAO2024_I 0.285 0.275 0.438 0.337 -0.064 0.126
GAOKAO2024_II 0.376 0.447 0.545 0.584 0.048 0.094
GAOKAO2024_MIX 0.482 0.422 0.495 0.343 0.081 0.187
GSM8K 0.560 0.595 0.597 0.565 0.099 0.120
MAWPS 0.333 0.379 0.322 0.296 0.015 0.091
MINERVA_MATH 0.349 0.416 0.477 0.474 -0.022 0.183
MMLU_STEM 0.360 0.280 0.281 0.266 0.085 0.182
SVAMP 0.700 0.706 0.694 0.673 0.109 0.239
TABMWP 0.542 0.591 0.588 0.570 0.090 0.211
OLYMPIADBENCH 0.571 0.603 0.635 0.578 0.213 0.145
MATH 0.708 0.718 0.703 0.585 0.130 0.200

BEST COUNT 2/23 5/23 14/23 2/23 0/23 0/23

AVERAGE 0.557 0.550 0.575 0.533 0.024 0.209

13

	1 Introduction
	2 Background
	2.1 Mathematical reasoning as tree search
	2.2 Tree search baselines

	3 Methods
	4 Results
	4.1 Experimental setup
	4.2 Findings

	5 Related work
	6 Conclusion
	Bibliography
	A Additional method details
	B Additional experimental setup details
	C Additional experimental results

