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Abstract

Speech editing systems aim to naturally modify speech content while preserving
acoustic consistency and speaker identity. However, previous studies often strug-
gle to adapt to unseen and diverse acoustic conditions, resulting in degraded edit-
ing performance in real-world scenarios. To address this, we propose an instance-
specific test-time training method for speech editing in the wild. Our approach em-
ploys direct supervision from ground-truth acoustic features in unedited regions
and indirect supervision in edited regions via auxiliary losses based on duration
constraints and phoneme prediction. This strategy mitigates the bandwidth discon-
tinuity problem in speech editing, ensuring smooth acoustic transitions between
unedited and edited regions. Additionally, it enables precise control over speech
rate by adapting the model to target durations via mask length adjustment during
test-time training. Experiments on in-the-wild benchmark datasets demonstrate
that our method outperforms existing speech editing systems in both objective
and subjective evaluations.

1 Introduction

Speech editing is a task that modifies speech content while preserving speaker identity and acoustic
characteristics. It plays a pivotal role in speech applications such as disfluency removal, content cre-
ation, and speech de-identification. One key application is speech de-identification, which removes
or replaces personally identifiable information such as names or credit card numbers, enabling the
production of privacy-sensitive content without re-recording. However, achieving seamless integra-
tion between the edited and unedited regions remains challenging, particularly under diverse and
unpredictable acoustic conditions. For practical deployment, it is essential that models maintain nat-
uralness and speaker-identity consistency, ensure content fidelity, and remain robust to in-the-wild
acoustic variability.

Recent advances in speech editing [1, 2, 3, 4, 5, 6, 7] have been largely enabled by the architec-
tures and principles of neural text-to-speech [8, 9, 10, 11]. Tan et al. [1] proposed an autoregressive
(AR) model that divides the audio into edited and unedited regions and merges forward and back-
ward generation results to ensure smooth acoustic transitions. Bai et al. [2] introduced a speech
editing system that demonstrated robust performance for unseen speakers by leveraging speech-text
alignment embeddings. Furthermore, Jiang et al. [3] adopt a context-aware spectrogram denoiser
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to achieve high-quality and expressive speech. Although these various approaches have achieved
promising results in restricted environments such as audiobooks, their effectiveness in real-world
speech scenarios remains largely unexplored.

Compared to controlled studio settings, speech editing in the wild is considerably more challeng-
ing, as it involves various complex factors such as background noise, reverberation, and bandwidth
mismatch. Peng et al. [4] introduced VoiceCraft, a neural codec language model for speech editing,
which improves context representation in an AR model through token rearrangement and refined
causal masking. However, it depends on large-scale datasets and lacks fine-grained control over the
prosody of the edited regions.

In this work, we propose an instance-specific test-time training (TTT) approach to address the chal-
lenges of speech editing in real-world scenarios. Our method fine-tunes a speech editing model for
each test sample at inference time, leveraging direct supervision from unedited regions and indirect
supervision from edited regions. To this end, we apply TTT in two stages, targeting the duration
predictor and the spectrogram denoiser. The duration predictor is optimized using phoneme dura-
tion loss on unedited regions and auxiliary duration losses on the edited regions, enhancing prosodic
consistency and enabling control over speech rate by adjusting the length of edited segments. The
spectrogram denoiser is optimized with reconstruction loss and phoneme classification loss, which
mitigates overfitting and improves speaker similarity and acoustic consistency under real-world con-
ditions. Experimental evaluations demonstrate that, despite being pretrained on clean speech data,
our method exhibits robust editing performance on acoustically challenging audio samples.

2 Related Work

2.1 Speech Editing

Early approaches to speech editing focused on modifying acoustic parameters rather than alter-
ing the linguistic content of speech. Traditional signal processing techniques such as PSOLA [12],
MBROLA [13], and WORLD [14] enabled prosody modification, including pitch and duration ad-
justments, by directly manipulating the waveform. However, their reliance on direct waveform ma-
nipulation limited their ability to perform linguistic edits, such as inserting or replacing words.

Building on advances in automatic speech recognition (ASR) and neural text-to-speech (TTS) sys-
tems, research on speech editing has shifted toward detecting the target text segment to be modi-
fied and synthesizing replacement speech accordingly. Notable approaches include EditSpeech [1],
which employs bidirectional fusion for smooth boundary transitions, and A3T [2] with alignment-
aware acoustic-text pretraining. However, these models still struggle to achieve robustness under
diverse real-world conditions. More recently, VoiceCraft [4], a neural codec-based model, has been
proposed to improve robustness in the wild, but it still lacks fine-grained controllability over prosody
and duration in the edited regions. In this work, we explore methods to enhance robustness in real-
world scenarios while enabling controllable prosody, without relying on large-scale speech datasets.

2.2 Test-Time Training for Speech Editing

Test-time training (TTT) [15] is a paradigm in which a model is adapted to each test instance dur-
ing inference, typically by optimizing a self-supervised or auxiliary loss on the given input [15].
This allows the model to leverage instance-specific information, improving generalization to dis-
tribution shifts without retraining on large datasets. TTT has been successfully applied for domain
adaptation [16, 17] and speech processing tasks such as speech recognition [18] and speech enhance-
ment [19].

In the context of speech editing, TTT remains largely unexplored. The capability to fine-tune a
speech editing model on each test utterance could mitigate mismatches between training and de-
ployment conditions, particularly under diverse noise, reverberation, or bandwidth constraints. Our
work extends this idea by introducing an instance-specific TTT framework that applies direct su-
pervision on unedited regions and auxiliary constraints on edited regions, enabling prosodic control
and improved acoustic consistency in real-world speech editing scenarios.
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Figure 1: Overview of the proposed framework. In subfigure (a), LR denotes the length regulator. In
subfigure (b), M indicates the length of the edit mask, which is required for test-time training (TTT)
of the duration predictor. In subfigures (b) and (c), “Masking for TTT” refers to randomly masking
unedited regions to compute the reconstruction loss during TTT. Red boxes indicate edit regions,
and yellow boxes represent randomly masked regions for TTT. The flame icon denotes modules that
are updated during TTT, whereas the snowflake icon indicates modules whose parameters remain
frozen.

3 Method

In this section, we present our proposed method, which consists of three components: model archi-
tecture, train-time training, and test-time training. The overall framework is illustrated in Fig. 1. We
first present a backbone model for speech editing and its train-time training procedure, followed by a
detailed description of our test-time training strategy. Each component is discussed in the following
subsections.

3.1 Model Architecture

Our backbone for speech editing is built upon the architecture of FluentSpeech [3], with a key modi-
fication: we replace the non-causal WaveNet [20] used in the spectrogram denoiser with a Diffusion
Transformer (DiT) [21] to enhance context modeling and generation performance. The overall archi-
tecture of the model consists of a phoneme encoder, a variance adaptor, and a spectrogram denoiser,
as illustrated in Fig. 1(a). The phoneme encoder converts a phoneme sequence y ∈ Z1×N , where N
is the length of the phoneme sequence, into D-dimensional phoneme representations ey ∈ RD×N .
The variance adaptor, which includes a duration predictor and a pitch predictor, predicts the duration
and pitch of the masked regions to transform ey into aligned hidden representations et ∈ RD×T ,
where T is the target length of the output sequence. In this process, both the duration predictor
and the pitch predictor take ey along with the masked contextual representations, edur and epitch,
as inputs. Finally, the spectrogram denoiser takes as input the aligned hidden representation et,
the noisy mel-spectrogram xt at the diffusion timestep t, and the condition c, which consists of
the speaker embedding and the masked mel-spectrogram embedding. It then predicts the clean tar-
get mel-spectrogram x0 [3, 22] by performing the reverse process of the generator-based diffusion
model, formulated as fθ(xt, c, et, t).

3.2 Train-Time Training

During training, following [3], the model is trained with reconstruction losses on duration, pitch,
and mel-spectrogram prediction. First, the duration and pitch losses are computed using L2 loss as
follows:

Ldur = ∥d− fdp(ey, ēdur)∥22, (1)

Lpitch = ∥p− fpp(et, ēpitch)∥22, (2)

where fdp and fpp represent the duration predictor and the pitch predictor, respectively, and p and d
are the target pitch and duration in the masked regions. ēdur and ēpitch denote masked embeddings
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provided to each predictor. This encourages the predictors to infer prosodic patterns directly from
corrupted or incomplete contextual cues. For mel-spectrogram loss, the output of the spectrogram
denoiser is computed against the ground truth mel-spectrogram using both L1 loss and structural
similarity index (SSIM) loss [23]:

Ldiff = ∥fθ(xt, c, et, t)− x0∥1 , (3)
Lssim = 1− SSIM (fθ(xt, c, et, t), x0) , (4)

where x0 denotes the ground-truth mel-spectrogram at the masked regions, and xt is the noisy mel-
spectrogram at timestep t, obtained through the forward diffusion process as formulated in [3].

Finally, the overall training objective is formulated as a weighted sum of the above components:

Ltrain = λdurLdur + λpitchLpitch + λdiffLdiff + λssimLssim, (5)

where λdur, λpitch, λdiff , and λssim are coefficients that control the relative contributions of each loss
term. This formulation ensures that the model jointly optimizes prosodic characteristics and spectral
fidelity.

3.3 Test-Time Training

We propose a test-time training (TTT) strategy to enhance prosodic and acoustic consistency at
inference time. This approach follows a commonly used instance-level TTT scheme [15], in which
the model is adapted individually for each test sample. Our method consists of two stages that fine-
tune the duration predictor and spectrogram denoiser.

3.3.1 TTT for Duration Predictor

In the first stage, TTT is applied to the duration predictor, a key module that predicts the dura-
tions within the edited region by capturing the prosodic context from the input text and surrounding
unedited regions. To adapt to variations in speaking style across different test conditions, the dura-
tion predictor is fine-tuned at test time. To facilitate TTT, we apply additional random masking to the
duration embeddings outside the edited region, as illustrated in Fig. 1(b). For each test sample, mul-
tiple input variants are created using different random masking patterns. These variants are grouped
into a batch, increasing the batch size and enabling the model to adapt using a diverse set of masked
inputs derived from the test sample. The model is then fine-tuned using a phoneme-level duration
loss, denoted as L(p)

dur, computed at these masked positions. A mask-level duration loss, L(m)
dur , is

defined with respect to the sum of the predicted phoneme-level durations within the masked region.
A sentence duration loss, L(s)

dur, is also introduced, based on the total predicted duration of the en-
tire utterance. We define the total TTT loss for the duration predictor as a weighted combination of
three L2 losses, where λp, λm, λs are the weights for phoneme-level, mask-level, and sentence-level
duration losses, respectively:

LDP
test = λpL(p)

dur + λmL(m)
dur + λsL(s)

dur. (6)

3.3.2 TTT for Spectrogram Denoiser

In the second stage, TTT is applied to the spectrogram denoiser to enhance the naturalness and
acoustic consistency of the generated speech. Similarly to the previous stage, an additional masking
strategy is applied to regions of the mel-spectrogram outside the inference mask, as illustrated in
Fig. 1(c). The spectrogram denoiser is fine-tuned by computing reconstruction losses over these
newly masked regions. To maintain intelligibility, we employ a pretrained phoneme classifier to
the predicted mel-spectrogram within the inference mask, computing a cross-entropy loss against
the aligned phoneme sequence. The total TTT loss for the spectrogram denoiser is defined as a
weighted sum of the following terms:

LSD
test = λdiffL(n)

diff + λssimL(n)
ssim + λceL(m)

ce , (7)

where the superscripts (n) and (m) indicate the newly masked region used for reconstruction loss
and the inference mask region used for phoneme classification, respectively. This joint optimization
encourages the model to produce outputs that are both acoustically consistent and intelligible.
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4 Experiments

4.1 Dataset and Preprocessing

We use the LibriTTS dataset [24], a multi-speaker English corpus containing approximately
585 hours of speech recorded at 24 kHz. For training on clean speech, we use only the
train-clean-100 and train-clean-360 subsets, totaling about 245 hours from 1,151 speak-
ers. We evaluated the model in both clean and in-the-wild conditions. The clean condition uses the
test-clean subset of LibriTTS, while the in-the-wild condition is evaluated using the GigaSpeech
test set [25], which consists of 16 kHz audio recordings from podcasts and YouTube videos. All
audio is resampled to 22.05 kHz with 16-bit quantization.

In our evaluation setup, we randomly sample 400 utterances from each test set for objective evalu-
ation, and 40 utterances for subjective evaluation. To align audio with transcripts, we use the Mon-
treal Forced Aligner (MFA) [26]. For waveform synthesis from mel-spectrograms, we adopt the
pretrained UNIVERSAL V1 HiFi-GAN vocoder1 [27], which uses a 1024-point fast Fourier trans-
form (FFT), a 256-sample hop size, a 1024-sample window length, and 80 mel-filterbanks covering
the frequency range from 0 to 8 kHz. In addition, pitch contours are extracted using Parselmouth2.

4.2 Experimental Setup

Our proposed speech editing model consists of three main components: a phoneme encoder, a vari-
ance adaptor, and a spectrogram denoiser. The spectrogram denoiser adopts Diffusion Transformer
(DiT) blocks with zero-initialized adaptive Layer Normalization, configured with 12 Transformer
layers, 6 attention heads, and a hidden dimension of 384. All other settings follow [3]. The total
number of parameters is approximately 44M, increasing to 46M when including the phoneme clas-
sifier used for test-time training (TTT). The phoneme classifier follows the architecture introduced
by [28], comprising two feed-forward Transformer blocks [9] followed by a linear projection layer.
It is trained jointly with the baseline model, but optimized separately using cross-entropy loss to
predict the aligned phoneme sequence. More detailed descriptions of the model configuration are
provided in Appendix A.

For training, we use 8 diffusion steps (T = 8), a batch size of 32, and the Adam optimizer with a
learning rate of 2× 10−4. The model is trained for 700K iterations on a single NVIDIA A40 GPU.
Each TTT stage consists of 200 fine-tuning steps with the same batch size and optimizer. Only
the duration predictor or the spectrogram denoiser is updated during TTT, with all other components
remaining frozen. The learning rates for the masked duration predictor and the spectrogram denoiser
are set to 2× 10−4 and 5× 10−5, respectively. We apply 80% phoneme-level masking during both
training and TTT. During TTT, however, masking is applied only to unedited regions. We set λp,
λm, and λs all to 1.0, and λdur, λpitch, λdiff , λssim, and λce to 1.0, 1.0, 0.5, 0.5, and 1.0, respectively.

4.3 Baselines

To evaluate the effectiveness of our proposed method, we compare it against two baseline systems:
FluentSpeech [3] and VoiceCraft [4]. FluentSpeech is a non-autoregressive framework that incor-
porates a variance adaptor and a spectrogram denoiser for speech editing. Trained on the same
LibriTTS clean subsets as our model, we directly use its official implementation3. In contrast, Voice-
Craft adopts a large-scale autoregressive transformer architecture for speech editing. It is pretrained
with 830M parameters on the GigaSpeech XL corpus [25], which contains approximately 10,000
hours of diverse audio data from podcasts and YouTube videos. We employ the released official
model4 for evaluation, representing a large-scale pretraining baseline that contrasts with our frame-
work trained solely on LibriTTS clean subsets.

1https://github.com/jik876/hifi-gan
2https://github.com/YannickJadoul/Parselmouth
3https://github.com/Zain-Jiang/Speech-Editing-Toolkit
4https://github.com/jasonppy/VoiceCraft
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Table 1: Speech editing performance on LibriTTS and GigaSpeech test sets. “Proposed” uses test-
time training (TTT). “DP” and “SD” denote Duration Predictor and Spectrogram Denoiser, respec-
tively.

System Data (hr) Params WER ↓ SIM ↑ MCD ↓ MOS±CI ↑
Test Set: LibriTTS clean

FluentSpeech LibriTTS(245) 24M 4.35 0.765 4.38 3.94±0.04

VoiceCraft GigaSpeech(10,000) 830M 5.22 0.778 4.39 3.99±0.04

Proposed LibriTTS(245) 46M 4.13 0.815 4.02 4.02±0.04

w/o TTT for DP LibriTTS(245) 46M 4.21 0.811 4.22 4.00±0.03

w/o TTT for SD LibriTTS(245) 44M 4.20 0.789 4.01 4.02±0.04

w/o TTT for Both LibriTTS(245) 44M 4.24 0.792 4.26 4.01±0.03

Ground Truth - - 4.24 - - 4.11±0.03

Test Set: GigaSpeech

FluentSpeech LibriTTS(245) 24M 17.88 0.662 6.16 3.69±0.04

VoiceCraft GigaSpeech(10,000) 830M 20.72 0.758 6.13 3.86±0.04

Proposed LibriTTS(245) 46M 16.88 0.725 5.60 3.87±0.04

w/o TTT for DP LibriTTS(245) 46M 16.85 0.711 5.92 3.86±0.04

w/o TTT for SD LibriTTS(245) 44M 17.46 0.687 5.64 3.79±0.04

w/o TTT for Both LibriTTS(245) 44M 17.15 0.688 5.98 3.75±0.04

Ground Truth - - 16.78 - - 3.88±0.04

Table 2: Ablation study of test-time training components in the Duration Predictor on the Gi-
gaSpeech test set.

Method WER ↓ SIM ↑ MCD ↓ CMOS ↑
TTT for Duration Predictor 17.46 0.687 5.64 0

w/o Mask Duration Loss (MDL) 17.49 0.681 5.80 −0.31
w/o MDL and Sentence Duration Loss 17.91 0.683 6.08 −0.34

4.4 Evaluation Metrics

For evaluation, we follow the setup of [2], where the middle third of each evaluation utterance is
masked and reconstructed using the original transcript, allowing for comparison between the ground-
truth and the reconstructed audio. Objective metrics include word error rate (WER)5 [29], speaker
similarity (SIM)6 [30], and mel-cepstral distortion (MCD) [31]. For subjective evaluation, we use
mean opinion score (MOS) and comparative MOS (CMOS) [32], while a detailed description of the
evaluation protocol and results is provided in Appendix B.

5 Results

5.1 Performance Evaluation

Table 1 summarizes the performance of our proposed method, the baselines, and ablated variants
across both LibriTTS and GigaSpeech test sets. We report results using the objective and subjective
metrics described in Section 4.4.

On the LibriTTS clean test set, our model achieves the best overall performance compared to the
baselines across all metrics. It records the lowest WER (4.13) and MCD (4.02), while attaining
the highest SIM (0.815) and MOS (4.02), outperforming both FluentSpeech and VoiceCraft despite
being trained only on 245 hours of clean data. This demonstrates the effectiveness of our framework
under clean conditions.

5https://huggingface.co/facebook/hubert-large-ls960-ft
6https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
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Table 3: Ablation study of test-time training components in the Spectrogram Denoiser on the Gi-
gaSpeech test set.

Method WER ↓ SIM ↑ MCD ↓ CMOS ↑
TTT for Spectrogram Denoiser 16.85 0.711 5.92 0

Replacing CE Loss with CTC Loss 18.76 0.696 5.98 −0.54
w/o Phoneme Classifier 20.77 0.704 5.97 −0.59

On the more challenging GigaSpeech test set, our method consistently surpasses FluentSpeech
across all metrics and remains competitive with VoiceCraft, which benefits from large-scale pre-
training on 10,000 hours of data. Specifically, our model achieves lower WER (16.88 vs. 17.88) and
MCD (5.60 vs. 6.13), as well as higher MOS (3.87 vs. 3.69) compared to FluentSpeech. Compared
to VoiceCraft, our system performs better in WER, MCD, and MOS, with only a slightly lower
SIM (0.725 vs. 0.758). These results highlight the competitiveness of our approach even without
large-scale pretraining. To support subjective evaluation, corresponding audio samples are available
online7.

To confirm the effect of test-time training (TTT), we conducted ablation studies by removing TTT
from the duration predictor (DP), the spectrogram denoiser (SD), or both modules. Disabling TTT
for the duration predictor increases MCD, likely due to unnatural speech rhythm that in turn degrades
spectral quality. Removing TTT for SD leads to reduced speaker similarity, indicating that TTT
enhances acoustic coherence. When TTT is removed entirely, performance drops across all metrics,
underscoring the importance of test-time adaptation for robust speech editing in the wild.

5.2 Ablation Studies on Test-Time Training Components

We conduct ablation experiments on the GigaSpeech test set to examine the contribution of indi-
vidual components within our instance-specific test-time training (TTT) framework, focusing on the
duration predictor and the spectrogram denoiser.

5.2.1 Duration Predictor

Table 2 presents the results of TTT applied to the duration predictor. With TTT enabled for the
duration predictor, the system achieves the best overall performance within this ablation setting,
striking a consistent balance among WER, SIM, MCD, and CMOS. Removing mask-level dura-
tion loss (MDL) leads to only marginal changes in WER and SIM, but noticeably increases MCD
(5.64 → 5.80) and decreases CMOS (0 → −0.31), suggesting a decline in spectral fidelity and per-
ceived naturalness. Further removing sentence-level duration loss results in additional degradation
in WER (17.49 → 17.91) and MCD (5.80 → 6.08), indicating that sentence-level control helps sta-
bilize temporal alignment at a global level. These findings highlight the complementary effects of
both loss terms in enhancing prosodic stability during TTT.

5.2.2 Spectrogram Denoiser

As shown in Table 3, we further investigate the contributions of the spectrogram denoiser compo-
nents in the TTT framework. Replacing the cross-entropy (CE) loss with connectionist temporal
classification (CTC) loss [33] leads to considerable degradation in WER (16.85 → 18.76), SIM
(0.711 → 0.696), and CMOS (0 → −0.54). Furthermore, removing the phoneme classification
branch entirely results in even worse performance, with WER increasing to 20.77 and CMOS drop-
ping to −0.59. These results highlight the importance of phoneme classification for intelligibility
and acoustic consistency in real-world conditions.

5.3 Visualizations

To qualitatively analyze the effect of test-time training, we provide spectrogram visualizations. Fig-
ure 2 demonstrates the controllability of speech rate achieved by applying TTT to the duration
predictor. The middle row corresponds to the original sentence duration, while the top and bottom

7https://rlataewoo.github.io/ttt-editor
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0 1 2 3 4 5 6 7 8

Figure 2: Mel-spectrograms of generated speech at different speech rates using TTT for the duration
predictor. The middle row represents the original sentence duration, while the top and bottom rows
show −20% and +20% adjustments, respectively. Red boxes indicate the edited regions.

(a) Ground Truth (b) FluentSpeech (c) Ours (w/o TTT) (d) Ours (w/ TTT)

Figure 3: Linear spectrograms of ground-truth and generated speech from different systems. The top
panel shows the full spectrogram, while the bottom panel highlights the corresponding regions with
red boxes.

rows represent −20% and +20% adjustments, respectively. We observe that TTT enables clear and
consistent modifications of speech tempo, without requiring additional duration control modules as
in prior approaches [34, 35]. These results confirm that TTT provides effective instance-specific
prosodic control.

To further assess the effect of TTT, Fig. 3 illustrates its application to the spectrogram denoiser.
In real-world scenarios, bandwidth mismatches between edited and unedited regions often result
in perceptual discontinuities. Our method alleviates this issue by adapting the model to the acous-
tic conditions of the input, leading to smoother transitions and enhanced spectral coherence. As
shown in Fig. 3(b), FluentSpeech exhibits prominent bandwidth mismatches at the edited regions,
producing audible discontinuities. Ours without TTT (Fig. 3(c)) partially mitigates these artifacts,
benefiting from the DiT-based denoiser which captures longer-range acoustic context compared to
the WaveNet architecture used in FluentSpeech. Finally, with TTT applied (Fig. 3(d)), our model fur-
ther adapts to input-specific conditions, resulting in the smoothest transitions and the most coherent
spectral structure across the edited and unedited regions.

6 Conclusion

In this work, we introduce an instance-specific test-time training framework for speech editing un-
der real-world conditions. Our method leverages ground-truth supervision from unedited regions
together with auxiliary objectives in edited regions, enhancing both prosodic stability and acous-
tic consistency. The framework also enables fine-grained control of speech rate through duration
adaptation, without requiring explicit duration control modules. Experiments on LibriTTS and Gi-
gaSpeech demonstrate that our approach consistently outperforms prior systems across objective and
subjective metrics. These results highlight the effectiveness of test-time training for speech editing
and demonstrate that, even with limited training data, our framework generalizes well to unseen and
diverse conditions, indicating strong potential for real-world adoption.
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A Model Configuration

Table 4: Hyperparameters of the proposed model.

Layer Hyperparameter Setting

Text Encoder

Phoneme Embedding 192
Encoder Layers 4
Encoder Hidden 192
Encoder Heads 2
Encoder Conv1D Kernel 5
Encoder Conv1D Filter Size 768
Encoder Dropout 0.0

Duration Predictor

Predictor Conv1D Kernel 5
Predictor Layers 3
Predictor Conv1D Filter Size 192
Predictor Dropout 0.2

Pitch Predictor

Predictor Conv1D Kernel 5
Predictor Layers 5
Predictor Conv1D Filter Size 192
Predictor Dropout 0.2

Mel Encoder Encoder Hidden 192

Spectrogram Denoiser

Diffusion Embedding 384
DiT Blocks 12
Denoiser Hidden 384
Denoiser Heads 6
Denoiser MLP Hidden 1536
Denoiser Dropout 0.1

Phoneme Classifier

Classifier Layers 2
Classifier Hidden 256
Classifier Heads 2
Classifier Conv1D Kernel 3
Classifier Conv1D Filter Size 1024
Classifier Dropout 0.5

Total Number of Parameters 45.9M

B Subjective Evaluation

We conducted subjective evaluation using Amazon Mechanical Turk (MTurk) 8, in terms of both
mean opinion score (MOS) and comparative MOS (CMOS). All audio samples were resampled
to 22.05 kHz for evaluation. We recruited 40 U.S.-based crowd workers for each test, ensuring
that each participant was instructed to submit ratings independently in a quiet environment using
headphones. For the MOS test, participants rated the naturalness of each audio sample on a five-point
Likert scale with 0.5 increments ranging from 1 (completely unnatural) to 5 (completely natural).
As illustrated in Figure 4(a), the transcript was provided alongside the audio, with edited segments
highlighted in red, and workers were instructed to pay particular attention to the smoothness of
transitions between original and synthesized segments. For the CMOS test, workers were presented
with a pair of utterances: a reference audio and a corresponding sample audio, and they were asked
to compare the naturalness of the two, focusing on the seamlessness of transitions between original
and synthesized parts on a scale ranging from −3 (reference much better) to +3 (sample much
better), with 0 indicating equal naturalness, as shown in Figure 4(b).

8https://www.mturk.com/
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(a) Mean opinion score (MOS) instruction.

(b) Comparative mean opinion score (CMOS) instruction.

Figure 4: Instruction interfaces for subjective evaluation tasks.

C Limitations and Future Work

Despite the promising results, our framework has several limitations that warrant further investiga-
tion. First, test-time training (TTT) introduces additional computational overhead, which obstructs
real-time deployment in latency-sensitive scenarios. Moreover, while our method demonstrates ro-
bustness across diverse conditions, performance degradation may still occur under extreme noise,
highly divergent accents, or when only very limited unedited regions are available for supervision.
Finally, controllability in our system is primarily restricted to speech rate, leaving other prosodic
factors less explored.

Future work will focus on addressing these challenges. One promising direction is the development
of parameter-efficient or meta-learning-based TTT approaches that enable faster adaptation suitable
for real-time applications. Extending controllability beyond duration to aspects such as pitch, en-
ergy, and style is another important avenue. Furthermore, exploring cross-lingual and low-resource
scenarios will broaden the applicability of our framework.

D Broader Impacts

The proposed test-time training framework for speech editing has the potential to substantially im-
pact both research and real-world applications. By enhancing prosodic stability and acoustic consis-
tency in edited speech, it enables more natural and controllable audio synthesis for content creation,
personalized media production, and accessibility technologies. Moreover, its ability to adapt to un-
seen conditions without large-scale retraining makes it suitable for deployment in diverse scenarios,
including low-resource settings where data collection is challenging.

On the other hand, the technology carries risks of misuse, particularly in creating deceptive or harm-
ful audio such as deepfakes. To mitigate these concerns, it is essential to develop safeguards includ-
ing provenance tracking, watermarking, and detection systems, and to communicate transparently
about the framework’s capabilities and limitations. Overall, this work highlights both the societal
benefits of more robust and controllable speech editing and the importance of proactive measures to
ensure its ethical and responsible deployment.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the main contribution: im-
proving speech editing in the wild through instance-specific test-time training. These claims
are supported by the experimental results in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses limitations in Appendix C, including addi-
tional computational overhead for test-time training, performance degradation under ex-
treme noise or heavy accents, and limited controllability to speech rate.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers dis-
cover limitations that aren’t acknowledged in the paper. The authors should use their
best judgment and recognize that individual actions in favor of transparency play an
important role in developing norms that preserve the integrity of the community. Re-
viewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not provide formal theoretical results or proofs; it focuses on
model design and empirical validation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The datasets, model architecture, training settings, and evaluation protocols
are described in detail (Sections 3–4, Appendix A). Public code repositories (HiFi-GAN,
FluentSpeech) are also referenced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The proposed model and code are not publicly released. Baseline implemen-
tations (HiFi-GAN, FluentSpeech) are used from official repositories, but our framework
is not open-sourced at this stage.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed training and test configurations, including hyperparameters, opti-
mizer settings, masking ratios, GPU type, and training iterations, are provided in Section 4
and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Subjective MOS scores are reported with 95% confidence intervals.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are specified, including a single NVIDIA A40 GPU,
training iterations (700K), parameter counts (46M), and batch size (32).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative so-
cietal impacts of the work performed?
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Answer: [Yes]
Justification: The broader societal impacts, including both positive and negative aspects,
are discussed in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Safeguards such as watermarking, provenance tracking, and detection mech-
anisms are discussed as essential for responsible use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets (LibriTTS, GigaSpeech) and external codebases (HiFi-GAN,
VoiceCraft, FluentSpeech) are properly cited with references and usage conditions.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: No new datasets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, lim-
itations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [Yes]

Justification: Appendix B provides full evaluation instructions, screenshots, and details on
the Amazon Mechanical Turk setup for subjective evaluations.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The listening test does not involve sensitive data collection and does not re-
quire IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models were used as an essential or original part of the
core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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