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ABSTRACT

Medical anomaly detection (AD) is crucial for early clinical intervention, yet
it faces challenges due to limited access to high-quality medical imaging data,
caused by privacy concerns and data silos. Few-shot learning has emerged as a
promising approach to alleviate these limitations by leveraging the large-scale prior
knowledge embedded in vision-language models (VLMs). Recent advancements
in few-shot medical AD have treated normal and abnormal cases as a one-class
classification problem, often overlooking the distinction among multiple anomaly
categories. Thus, in this paper, we propose a framework tailored for few-shot
medical anomaly detection in the scenario where the identification of multiple
anomaly categories is required. We propose that separating anomalies relies on
distinct radiological signs, routinely used by clinicians to bridge knowledge and
images. To capture the detailed radiological signs of medical anomaly categories,
our framework incorporates diverse textual descriptions for each category gener-
ated by a Large-Language model, under the assumption that different anomalies in
medical images may share common radiological signs in each category. Specifi-
cally, we introduce SD-MAD, a two-stage Sign-Driven few-shot Multi-Anomaly
Detection framework: (i) Radiological signs are aligned with anomaly categories
and distinguished by amplifying inter-anomaly discrepancy; (ii) Aligned signs are
selected further to mitigate the effect of the under-fitting and uncertain-sample issue
caused by limited medical data, employing an automatic sign selection strategy
at inference. Moreover, we propose two protocols to comprehensively quantify
the performance of multi-anomaly detection. Extensive experiments illustrate the
effectiveness of our method.

1 INTRODUCTION

Medical anomaly detection (AD) has emerged as a critical area of research within the healthcare
domain Fernando et al. (2021). The detection of anomalies, such as tumors Baid et al. (2021) and
lesions Ding et al. (2022d), is essential for prompt clinical intervention. However, access to high-
quality medical imaging data remains a significant challenge due to privacy concerns and institutional
data silos, thereby highlighting the importance of few-shot learning approaches in medical anomaly
detection.

Traditional few-shot anomaly detection Sheynin et al. (2021); Huang et al. (2022) often struggles
to generalize the model from the limited data to a universal situation because of the limited prior
knowledge scale of the model. Recently, many works Huang et al. (2024); Cao et al. (2024); Gu et al.
(2024) utilize the large-scale vision-language model (VLM), such as CLIP Radford et al. (2021);
Wang et al. (2022), to help improve the generalization ability of the model in medical anomaly
detection. Similar to traditional anomaly detection methods, these approaches identify anomalies by
designing a score function that determines whether a given input is normal or abnormal (one-class
classification). However, in real-world scenarios, especially in medical imaging, it is crucial to
distinguish between different categories of anomalies, as they may correspond to varying pathological
conditions and require distinct clinical responses. For example, distinguishing between a lung tumor
and pneumonia in chest X-rays is crucial, as they require different treatment approaches: surgery or
chemotherapy for cancer Montagne et al. (2021), and antibiotics for infection Bassetti et al. (2022).
Thus, this paper aims to investigate scenarios involving the presence of diverse anomaly types by
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Figure 1: Figures (a) and (b) visualize the difference between our task and previous tasks. Figures (c)
and (d) explain a multi-anomaly scenario, and radiological signs of different medical anomalies in
the Brain MRI.

few-shot learning. The difference between the existing setting and our work is illustrated in Figure
1(a) and 1(b).

To explore the multi-anomaly scenario, we hypothesize that different anomalies in medical images
may share common radiological signs, e.g., ring-enhancing lesion can appear in pyogenic abscess,
metastasis, and high-grade glioma. Furthermore, in each category, such as abnormal density or
shape, while also exhibiting unique signs that are specific to each anomaly category. These distinct
features can provide valuable diagnostic information, enabling more accurate classification and
treatment planning. By leveraging both shared and unique patterns, we aim to improve the detection
and distinction of various anomalies in medical imaging. Based on this hypothesis, firstly, we
introduce a CLIP-based framework that explicitly (i) links each anomaly class to a small set of
textual “symptom” (signs) descriptions and measures their similarity to image features. For each
anomaly, we enumerate radiologic signs (e.g., “brain with craniotomy defect”, “brain with unclear
focal abnormality”) as prompts. As shown in Figure 1(d), aligning visual embeddings with these sign
prompts allows the model to learn fine-grained inter-anomaly distinctions. However, recent work Xia
et al. (2024); Wang et al. (2022) reveals that prompt-based alignment in medical vision–language
models can be uncertain: not all signs contribute equally, and some may even introduce noise in intra-
class matching. To address this, at inference time, we (ii) automatically select the most informative
prompts for each few-shot example Shum et al. (2023), thereby mitigating misleading matches
within the same anomaly class. By addressing both inter-anomaly and intra-anomaly challenges, our
approach delivers more accurate and reliable multi-anomaly detection under few-shot conditions.

We structure the evaluation protocol for the multi-category medical AD task around three layers to
capture the full spectrum of multi-anomaly detection performance: (1) assessing the model’s ability
to distinguish between normal and abnormal instances; (2) evaluating the model’s ability to perform
multi-label prediction across distinct anomaly types; and (3) assessing the model’s ability to correctly
identify the specific types of anomalies. Existing methods face challenges in adapting to the last
two protocols, primarily because their scoring functions are not designed to generalize to these task
settings.
As summarized below, our contributions are threefold:

1. Framework for few-shot multi-anomaly detection. We introduce a few-shot anomaly
detector that natively handles multiple anomaly classes within a single model, based on
learning the alignment of radiological signs and anomaly categories.

2. Inter- and intra-anomaly alignment. We align image embeddings with sets of anomaly-
specific prompts during training and, at inference, automatically select the most informative
prompts to mitigate the uncertain-sample issue in the vision–language alignment.

3. Rigorous evaluation protocol. We assess our approach on three medical imaging datasets
across the evaluation protocols of medical multi-anomaly detection. Moreover, we evaluate
SD-MAD on the general medical anomaly detection benchmark which contains 6 datasets
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for evaluation(see the Appendix). The results demonstrate consistent improvements over
state-of-the-art baselines.

2 RELATED WORK

Medical Anomaly detection. Traditional medical anomaly detection methods rely on well-curated
anomaly datasets, training on normal images and evaluating on abnormal ones Bao et al. (2024); Cai
et al. (2023); Zhang et al. (2020); Zhou et al. (2021); Xiang et al. (2023); Hassanaly et al. (2024);
Linmans et al. (2024); Graham et al. (2023). These approaches model the normal data distribution
and identify anomalies as deviations from this distribution, achieving impressive performance. Many
of these methods are designed for specific anatomical regions Ding et al. (2022c); Xu et al. (2024)
and treat anomaly detection (AD) as a one-class classification problem Bao et al. (2024); Cai et al.
(2023); Jiang et al. (2023). However, in real-world scenarios, the same individual may experience
multiple diseases affecting the same organ. Recently, the open-set AD method Zhu et al. (2024) has
shifted focus to detecting multiple anomalies instead of relying on one-class classification. These
methods require enough training data to formulate the expected distributions, which can be hard
to adapt to few-shot setting. To address the challenge of limited large-scale labeled datasets, some
approaches have explored few-shot anomaly detection techniques as follows.

Few-shot Anomaly detection. Few-shot anomaly detection has gained significant attention in recent
years due to its ability to identify rare or unseen anomalies with limited labeled data. Previous
models utilized disentangled representations of anomalies Ding et al. (2022a) or contrastive learning
mechanisms Yao et al. (2023a) to alleviate the bias, accounting for unseen anomalies. MVFA Huang
et al. (2024) utilized multi-level adaptation and a contrastive framework to improve generalization
across various medical datasets. UniVAD Gu et al. (2024) proposed a general framework to detect
anomalies across different domains with a training-free unified model. AA-CLIP Ma et al. (2025)
advanced CLIP model in a two-stage approach to enhance CLIP’s anomaly discrimination ability.
Although those methods perform well in various datasets, there is still a lack of few-shot multi-
anomaly detection for medical data.

Vision-language model. Vision-language models have demonstrated significant potential across a
range of tasks. CLIP Radford et al. (2021) excels in image-text alignment and has been successfully
applied to various applications, such as classification and text-image retrieval. To expand CLIP’s
capabilities to medical data, MedCLIP Wang et al. (2022) was introduced as a foundation for medical
image-text alignment. Based on those pre-trained foundation models, recent studies Hua et al. (2025);
Jin et al. (2025); Cao et al. (2025) in anomaly detection have leveraged pre-trained CLIP models for
language-guided anomaly detection and segmentation, achieving impressive results and highlighting
the promising potential of these models in this domain.

3 METHODOLOGY

In this section, we first formulate the problem of few-shot anomaly detection and few-shot multi-
anomaly detection in medical images. Then we propose our methods within two parts: In section 3.2,
we propose a training method with a tailored adapter for vision-language models and an inter-anomaly
representation learning loss function; In Section 3.3, we propose an inference strategy to filter the
outlier prompts, which aims to handle the intra-anomaly uncertain samples. Figure 2 shows the
overall pipeline of our model.

3.1 PROBLEM FORMULATION

Few-shot medical anomaly detection: Following the setting of previous work Huang et al. (2024)
on few-shot medical anomaly detection, the few-shot training samples can be presented as Dfew =
{(xi, ci, si)}Ki ,

where K is the number of samples, xi is the i-th image, the corresponding image-level label
ci ∈ {0, 1}, and the pixel-level label si ∈ {0, 1}h×w is a binary mask with the same size h× w as
the image xi. For a given test image xtest, image-level and pixel-level medical anomaly detection are
evaluated with the corresponding image labels ctest and pixel labels stest.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The pipeline of SD-MAD. In the framework, the training phase is designed to amplify
inter-anomaly discrepancies, and the inference stage aims to handle the uncertain-sample problem in
each anomaly category.

Few-shot medical anomaly detection with multiple anomaly categories: Similar to the setting
of few-shot medical anomaly detection, few-shot training samples can be presented as D̂few =
{(xi, ci)}Ki , where ci ∈ {0, 1}d is a d-dimensional label. Since it is hard to access the pixel-level
labels for the multi-anomaly medical datasets, we do not consider the pixel-level label in this setting.
Thus, given a test image xtest, only image-level medical anomaly detection is evaluated with the
corresponding image labels ctest in the scenarios where multiple anomaly categories exist.

3.2 TRAINING: AMPLIFY INTER-ANOMALY DISCREPANCY

Shift Adapter. To preserve the large-scale prior knowledge encoded in CLIP, we propose a shift
adapter designed to effectively aggregate learning signals from few-shot samples while retaining the
original prior information. The shift adapter is used for both image and text encoders, which is shown
as our pipeline in Figure 2.

Considering the feature f̂ in
i is input of the adapter, which is also the output of the i-th transformer

layer, the output of the adapter at the i-th transformer layer is

f̂ada
i = α(W 2

i α(W
1
i f̂

in
i )), (1)

where W 1
i and W 2

i are trainable linear weights of the adapter at the i-th transformer layer, α is the
activation function.

Inspired from residual learning methods He et al. (2016), we integrate the output of the original
transformer layer f̂out

i with f̂ada
i by inner interpolation as follows:

fout
i = λf̂out

i + (1− λ)f̂ada
i , (2)

where λ is the hyperparameter to control the interpolation ratio. To avoid the overfitting caused by
the limited number of few-shot samples, we restrict the application of the adapter to four layers in the
image encoder and one layer in the text encoder.
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Inter-anomaly Loss. The text-vision alignment in CLIP depends on this contrastive learning insight
with the cosine similarity. From the view of contrastive learning Oord et al. (2018); Schroff et al.
(2015), the distance of the positive image-text pairs should be smaller than the distance of negative
text-image pairs. Towards this end, existing work directly minimize the cosine distance between the
positive image-text pairs to align the text and image features as follows:

Limg−text = min
θ

∑
i∈[1,Nc]

d(f c
img, f

c
text,i). (3)

Here, d(·, ·) denotes the cosine distance between two input vectors, θ is the trainable parameters,
image feature f c

img and detailed-description text features f c
text,i belong to anomaly category c ∈ C of

the given image, Nc is the number of text prompts corresponding to category c.

It is important to note that Equation 3 does not account for the distances of negative pairs. This is
because simply increasing the distance between negative pairs provides limited utility in enabling
the model to accurately identify the anomaly categories. For instance, given an abnormal image
exhibiting only the anomaly of a lesion, the prediction may still fail despite strong alignment of
positive pairs, as the model may erroneously assign high similarity scores to irrelevant categories,
resulting in false positives. To handle this issue, we introduce an anchor feature fanchor that serves to
define the boundary between normal and abnormal images. Thus, the following relationship should
be satisfied.

Remark 3.1 Given an image feature belonging to category c, we have

sup
i∈[1,Nc]

d(f c
img, f

c
text,i) ≤ d(fc

img, fanchor) ≤ inf
k ̸=c,j∈[1,Nk]

d(f c
img, f

k
text,j)

Given the image feature f c
img and category c, Remark 3.1 indicates that fanchor serves as the

hyperplane to separate the subspace of category c and other categories. To distinguish the difference
between the normal category and other anomalies simultaneously, we set the fanchor as the feature of
the text prompt corresponding to normal images. According to Remark 3.1, we propose the following
loss:

d̂cpositive,i = max(0, d(f c
img, f

c
text,i)− d(f c

img, fanchor))

d̂c,knegative,j = max(0, d(f c
img, f

c
anchor)− d(f c

img, f
k
text,j))

Lanchor = min
θ

∑
i∈[1,Nc]

d̂cpositive,i +
∑

k ̸=c,j∈[1,Nk]

d̂c,knegative,j (4)

As discussed above, the overall loss for amplifying the inter-anomaly discrepancy is

L = Limg−text + Lanchor (5)

3.3 INFERENCE: MITIGATE INTRA-ANOMALY UNCERTAIN-SAMPLE ISSUE

During the inference stage, image features from the test set are evaluated against the text prompt
features corresponding to each anomaly category. However, the limited number of few-shot training
samples, combined with uncertainty in medical vision-language Xia et al. (2024), may cause under-
fitted features that fail to capture anomaly characteristic-specific information. Thus, to address this
issue, we divided our inference stage into two parts as follows.

Sign Selection. As we discussed above, each anomaly category contains several prompt features
corresponding to the anomaly signs. Thus, there should be a labeling function htext(·) satisfied
htext(f

c
text) = c. Therefore, we have the definition of the distance between given text feature ftext

and category c in the following.

Definition 3.2 Given a text feature ftext, the distance between the prompt feature ftext and the
decision region of the anomaly category c is

Dinf (ftext, c) = inf
{f ′

text|h(f ′
text)=c,f ′

text ̸=ftext}
d(f ′

text, ftext)

5
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Definition 3.2 provides a definition of distance between the prompt feature ftext and the decision
region {f ′

text|h(f ′
text) = c)}. For the ideal situation, we have the following relation.

Remark 3.3 Given a text feature f c
text belonging to category c, we have

Dinf (f
c
text, c) < δ

Where δ ≜ infk ̸=c,k∈C Dinf (f
c
text, k)

As shown in Figure 2, the outlier text features in each category may break the relation in Remark 3.3.
However, in the inference time, the text features are fixed. Thus, we propose to modify the labeling
function h(·) to mitigate this problem.

Given a text feature f c
text which satisfies h(f c

text) = c, the new labeling function is defined as

hnew(f
c
text) =

{
c if Dinf (f

c
text, c) < δ,

−1 else. (6)

The Equation 6 indicates that the new labeling function hnew(·) discards the distorted features that
break the relation in Remark 3.3 for each anomaly category. The sign selection process can be viewed
in Fig. 2 (2). This labeling function is used for the score function design, which we will discuss in
the following.

Inference. Unlike previous methods Huang et al. (2024); Jeong et al. (2023), which focus solely on
evaluating the Area Under the Receiver Operating Characteristic curve (AUROC) using a continuous
scoring function, we additionally consider scenarios that require binary predictions. For the binary
prediction, the anchor feature is required for the evaluation.

Scenario 1: Continuous scoring function without anchor feature. Without anchor feature, for the
given category c and the image feature fimg , the score function corresponding to c is

sc(fimg) = sup
hnew(ftext)=c

cosine similarity(fimg, ftext). (7)

As we discussed in Section 3.1, the label of image x is a vector c. Thus, the score vector corresponding
to c is sc = {sci(fimg)}Ki=1, where K is the number of anomaly categories.

Scenario 2: Binary prediction with anchor feature. With the anchor feature, we can achieve the
binary prediction for each anomaly category. The prediction pc for category c with a give image
feature fimg is

pc(fimg) =

{
1 if Ic(fimg) > cosine similarity(fimg, fanchor),
0 else. (8)

, where Ic(fimg) ≜ infhnew(ftext)=c cosine sim(fimg, ftext). The precision vector corresponding
to c is pc = {pci(fimg)}Ki=1. This prediction can be used for the evaluation with the Hamming score
and the subset accuracy score.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation protocols We introduce three evaluation protocols: 1) for general anomaly detection,
following previous works Huang et al. (2024); Jeong et al. (2023), we quantify the performance with
area under the receiver operating curve (AUROC) metric on image- and pixel-level; 2)We introduce
Hamming score and subset accuracy to evaluate the performance on multi-label prediction on the
task of multi-anomaly detection; 3) We exploit the AUROC metric for each class to evaluate the
performance on the specific types of anomalies. Specifically, given the anomaly type c, the binary
label is set as 1 for the images belonging to type c, and 0 for the others.

For general medical few-shot anomaly detection, we follow the benchmark setting of previous few-
shot medical anomaly detection Huang et al. (2024); Bao et al. (2024). Since the general medical
does not align with our principal research target, we report the experimental results in the appendix.

6
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For multi-anomaly medical few-shot medical anomaly detection, we introduce two evaluation pro-
tocols: Integrated Anomaly Detection: To evaluate the model’s ability to perform multi-label
prediction across distinct anomaly types, we introduce the Hamming score and subset accuracy as
the evaluation metrics. The detail of the two metrics is presented in the Appendix.; Anomaly-wise
Detection: To assess the model’s ability to correctly identify the specific types of anomalies, we
introduce the anomaly-aware AUROC (Area Under the Receiver Operating Characteristic Curve) as
the evaluation metric in this protocol.

As previous few-shot anomaly detection methods can not handle the multi-category scenarios, we only
compare the baseline model CLIP Radford et al. (2021) and the vision-language model tailored for
medical image MedCLIP Wang et al. (2022). We conduct the one-shot setting for the multi-anomaly
detection, aligning with the practical constraint that rare-disease data are difficult to obtain.

Dataset The experiments on multi-anomaly detection are built from the 3 datasets: ChestX-ray8Wang
et al. (2017b), OCT17 Kermany et al. (2018), and brain data in fastMRI+ Zhao et al. (2022); Zbontar
et al. (2018). ChestXray8 contains 14 anomalies in chest X-ray images, and OCT-17 contains 3
anomalies in retinal optical coherence tomography images. For brain MRI data in FastMRI+, we
select 6 anomaly categories and the same slice-level images, namely slice 0, 5 and 10, for the
multi-anomaly detection tasks. We visualize different slices in the Appendix.

Training details We select CLIP with ViT-L/14 Dosovitskiy et al. (2020) as the backbone model
with the size of input as 240×240. We employ our shift adapter to the 6-,8-,18- and 24-th layers in
the transformer of the CLIP image encoder and to the last layer to the transformer of the CLIP text
encoder. Every training process is conducted in 50 epochs. The training process requires 4000 Mib
GPU memory for the model. The experiments are conducted on an A100 GPU.

4.2 EXPERIMENTS ON CHESTX-RAY8

We conduct the multi-anomaly-detection under two settings, namely Integrated Anomaly Detection
and Anomaly-aware Detection. The experimental results are shown in Table 1. The detailed
experiments for Anomaly-aware Detection can be viewed in the Appendix.

As shown in Table 1, our method significantly improves the performance of the CLIP model. Particu-
larly, our training strategy contributes most to the improvements. In addition, MedCLIP performs
better than the original CLIP, suggesting that incorporating domain-specific prior knowledge in
multi-modal pretraining is meaningful for performance improvement in downstream tasks.

Table 1: The multi-anomaly detection results of the experiments on ChestX-ray8. The first row
displays the results under the protocol of integrated anomaly detection, with an averaged AUROC
score (Avg. AUROC). The category-wise results are provided in the Appendix. The last two rows
display the results under the anomaly-aware detection protocol with Hamming score and subsect
accuracy(Subset Acc.).“SS” is short for “Sign Selection”.

CLIP MedCLIP Ours (no SS) Ours (full model)
Avg. AUROC(%) 48.3 52.4 56.0 57.5
Hamming score(%) 4.4 18.3 95.2 95.6
Subset Acc.(%) 0 0.1 56.2 59.1

4.3 EXPERIMENTS ON OCT-17

We conduct the experiments under the Anomaly-aware Detection setting on OCT-17 dataset, which is
shown in Table 2. As each image in OCT-17 exhibits only one anomaly class, co-occurrence does
not arise. Accordingly, the Anomaly-aware Detection setting is adequate to assess multi-anomaly
detection performance on OCT-17.

As shown in Table 2, our method can significantly improve the performance of multi-anomaly detec-
tion on average. The drop in performance on the anomaly CNV without sign-selection demonstrates
the uncertainty problem in the training process. Our sign-selection procedure mitigates this issue
by discarding outlier signs. This can, however, reduce performance in certain anomaly, e.g., DME,

7
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Table 2: The experimental results under anomaly-aware detection protocol on OCT-17 dataset. We
report the results over 3 anomalies, namely CNV(Choroidal Neo-vascularization, DME(Diabetic
Macular Edema), and Drusen. Avg. is short for average.”SS” is short for ”Sign Selection”.

Anomaly CLIP MedCLIP Ours (no SS) Ours (full model)
CNV 70.8 58.8 61.4 91.7
DME 60.3 36.6 81.5 71.3
Drusen 32.4 64.4 60.1 79.5
Avg. 54.5 53.3 67.7 80.8

where discarded signs may help to identify negative samples. Nevertheless, the method outperforms
competing models on average.

4.4 EXPERIMENTS ON FASTMRI+

We evaluate the generalization ability of our model under different scenarios of brain MRI images
in FastMRI+. Specifically, we evaluate the performance in different slices, namely slices 0,5, and
10. We demonstrate our experimental results under two multi-anomaly detection protocols in the
following.

Table 3: The experimental results under the Integrated Anomaly Detection protocol on FastMRI+.
The evaluation metrics are Hamming score and subset accuracy. ”SS” is short for ”Sign Selection”

Clip MedClip Ours (no SS) Ours (full model)

slice 0 Hamming(%)↑ 80.2 77.1 85.8 87.2
Subset acc.(%)↑ 0.4 18.5 34.6 60.8

slice 5 Hamming(%)↑ 77.6 63.5 72.7 76.5
Subset acc.(%) 0 0 29.0 27.3

slice10 Hamming(%)↑ 78.3 73.2 73.8 79.2
Subset acc.(%)↑ 0 1.9 19.8 21.7

Integrated Anomaly Detection Table 3 shows the results under the protocol of integrated anomaly
detection on FastMRI+ dataset. As shown in the table, our full model demonstrates superior perfor-
mance compared to the other methods in most cases. In slices 0 and 10, our method consistently
outperforms other models. We find that the good performance on CLIP in slice 5 is attributed to
excellent recognition of craniotomy, which is clearer and easier to recognize in slice 5. The detailed
Anomaly-aware detection in the Appendix can also illustrate this phenomenon. Our method balances
the decision region across anomalies, which leads to a modest performance drop.

Anomaly-aware Detection As Table 4 shows, our methods significantly improve the average
performance for every slice. The consistent improvement over different slices also illustrates the
generalization ability of our method under the Anomaly-aware detection protocol.

Table 4: The experimental results under the Anomaly-aware Detection protocol on FastMRI+. We
report the average AUROC for each slice. Detailed results for each anomaly can be viewed in the
Appendix. ”SS” is short for ”Sign Selection”.

CLIP MedCLIP Ours(no SS) Ours(full model)
Slice 57.5 50.3 67.3 68.2

Slice 5 60.3 51.6 63.0 63.9
Slice 10 60.5 47.1 67.1 61.5

4.5 VISUALIZATION OF IMAGE-TEXT SIMILARITY

To evaluate the alignment of our method, we visualize the alignment in Figure 3. As the figure shows,
our training method promotes the alignment between abnormal images and corresponding prompts.
However, some prompts may exhibit overconfidence in a false category. For instance, in Figure

8
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3b, the characteristic surgical scaring has equally high similarities between both Craniotomy and
Posttreatment change images. This phenomenon may result in uncertain samples for the prediction,
which leads us to propose the sign selection method.

(a) Heatmap on vanilla CLIP (b) Heatmap on CLIP with our train-
ing method

(c) Correspondence between
prompts and anomaly categories

Figure 3: Visualization of image-text similarity heatmaps. (a) visualizes the heatmap on vanilla CLIP,
(b) visualizes the heatmap on our trained model. The correspondence between prompts and anomaly
categories is provided in (c).

4.6 ABLATION STUDY ON λ

To evaluate the effect of the hyperparameter in the Shift Adapter, we conducted ablation studies
for λ on the multi-label prediction with the 5th slice. Figure 4 shows the experimental results. The
figure does not exhibit significant impacts on the performance when λ changes, which shows the
robustness of the learnable adapter. In addition, we find that there is a trade-off between Hamming
score and Subset accuracy when λ increases. We assume that it is because the increase of λ
may cause slight overfitting to the few-shot samples. Therefore, the model may produce fewer
predictions in the presence of intra-class variation within the same anomaly type. While this may
lead to a reduction in Hamming score, it could potentially enhance the overall prediction accuracy.
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20
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%

)
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Subset Accuracy

Figure 4: The ablation study on λ. We con-
duct the experiments on the multi-label pre-
diction task with two metrics, namely Ham-
ming score and Subset accuracy.

5 CONCLUSION AND LIMITATION

In this paper, we introduce a novel setting for medical
anomaly detection, termed multi-anomaly detection.
Unlike previous settings that typically assume a sin-
gle anomaly per image, multi-anomaly detection is
designed to address scenarios where multiple anoma-
lies co-exist within the same clinical image. Building
on this new task, we propose a method based on a
vision-language model (VLM) for both inter- and
intra-anomaly alignment. Specifically, we propose an
inter-anomaly loss to amplify the inter-anomaly dis-
crepancy and update the CLIP model with trainable
Shift Adapters. In addition, we design a sign selec-
tion method to mitigate the intra-anomaly uncertainty at the inference stage. To thoroughly evaluate
the performance of our method in the task of multi-anomaly detection, besides the general setting in
anomaly detection, we propose two more evaluation protocols, namely multi-label prediction and
category-wise AUROC. The extensive experiments illustrate the effectiveness of our method.

Limitation Even if our proposed method can effectively address the multi-anomaly detection task,
there are still limitations, which mainly rely on the correspondence between the prompt and the
anomaly categories. Some prompts may correspond to more than one anomaly type, which may
result in false predictions if we ignore this nature. Addressing this ambiguity in prompt-anomaly
correspondence will be the focus of our future work.

9
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A APPENDIX 1: LLM USAGE

Large language models (LLMs) were used only for minor editorial tasks, such as refining grammar
and improving linguistic clarity. Moreover, LLMs are also utilized during the procedure of generating
candidate physiological signs.

B APPENDIX 2: DETAILED DESCRIPTION OF MULTI-ANOMALY DETECTION
DATASET

We adopt the Brain MRI dataset in FastMRI Zhao et al. (2022); Zbontar et al. (2018). The dataset
consists of 3D Brain MRI models with 16 slices in each model. Each slice can be presented as an
image. Figure 4 visualizes the 16 slices of a normal sample in FastMRI. We select slices 0, 5, and 10
to show the performance of the methods over different parts of Brain MRI.
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slice 0 slice 1 slice 2 slice 3

slice 4 slice 5 slice 6 slice 7

slice 8 slice 9 slice 10 slice 11

slice 12 slice 13 slice 14 slice 15

Figure 5: Visualization of data sample in FastMRI

C APPENDIX 3: EVALUATION METRICS

The Hamming score is calculated as follows:

Hamming score = 1− 1

NK

N∑
i=1

K∑
j=1

I(pij ̸= cij)

where N is the number of samples, K is the number of different categories, pji is the predication for
the j-th category in the i-th sample image, cij is the ground-truth label of the j-th category in the i-th
sample and I is the characteristic function. The introduced Hamming score indicates the proportion
of incorrect predictions compared with all predictions. Obviously, the larger the Hamming score is,
the smaller the proportion is.

To measure the full correctness of the prediction, we also introduce the subset accuracy as follows:

Subset accuracy =
1

N

N∑
i=1

I(pi = ci)
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Where N is the number of samples, pi is the prediction vector of the i-th sample, ci is the ground
truth label vector of the i-th sample and I is the characteristic function. The subset accuracy measures
the proportion of samples for which the entire predicted label vector exactly matches the true label
vector. This is a more restricted metric, as even a single incorrectly predicted label causes a zero
value for the corresponding sample.

D APPENDIX 4: GENERAL FEW-SHOT MEDICAL ANOMALY DETECTION

Table 5: Comparison on general anomaly detection. “Avg.” is short for “average”.

Dataset DRA BGAD MVFA WinCLIP AnomalyCLIP InCTRL Ours

Img-level (AUROC %)

BrainMRI 80.6 83.6 92.4 66.8 90.9 89.5 91.4
LiverCT 59.6 72.5 81.2 67.2 92.4 90.1 86.9
RESC 90.9 86.2 96.2 88.8 95.3 96.1 95.2
HIS 68.7 - 82.7 67.5 87.5 80.6 81.6
ChestXRay 75.8 - 82.0 70.0 86.7 76.4 82.7
OCT 99.0 - 99.4 97.9 99.1 98.9 99.8

Pixel-level (AUROC %)
BrainMRI 74.8 92.7 97.3 94.1 98.9 - 96.5
LiverCT 71.8 98.9 99.7 96.8 99.4 - 99.5
RESC 77.3 93.8 99.0 96.7 97.7 - 99.0
Avg. 77.6 88.0 92.2 82.9 94.2 - 92.5

Dataset: For general medical anomaly detection, we follow the BMAD benchmark Bao et al. (2024),
which includes 6 datasets: Brain MRI Baid et al. (2021); Bakas et al. (2017); Menze et al. (2014),
Liver CT Bilic et al. (2023); Landman et al. (2015), retinal OCT Kermany et al. (2018); Hu et al.
(2019), Chest X-ray Wang et al. (2017a), and Digital Histopathology Bejnordi et al. (2017). Among
these datasets, both image- and pixel-level metrics are evaluated for BrainMRI Baid et al. (2021);
Bakas et al. (2017); Menze et al. (2014), LiverCT Bilic et al. (2023); Landman et al. (2015), and
RESC Hu et al. (2019). For the other datasets, namely OCT17 Kermany et al. (2018), ChestXray Wang
et al. (2017a) and HIS Bejnordi et al. (2017), only image-level scores are evaluated.

Experiments: We first evaluate our method under the setting of general few-shot anomaly detection.
We conduct the 4-shot experiments with state-of-the-art few-shot medical anomaly detection methods,
MVFA Huang et al. (2024), and other few-shot anomaly detection methods, namely BRA Ding et al.
(2022b) and BGAD Yao et al. (2023b). To adapt our method to pixel-level score, we combine our
method with MVFA. Specifically, we aggregate our inter-anomaly loss with the losses of MVFA.
Following MVFA, we conduct the experiments under the 4-shot setting.

Previous CLIP-based methods, such as WinCLIPJeong et al. (2023) and AnomalyCLIPZhou et al.
(2023), were primarily designed for single-anomaly detection. Thus, we can only compare them on
the general medical anomaly detection benchmark, which we show as follows. As Table 5 shows,
even though our methods are not designed for the general few-shot anomaly detection, we still
outperform other methods. The results of WinCLIP are reported by MVFA. Since InCTRL Zhu &
Pang (2024) can not output the pixel-level prediction, we only report the image-level results. Note
that, during the training stage, AnomalyCLIP requires the full normal and abnormal data and InCTRL
requires full normal images, which is different from our few-shot setting in the experiments. Due to
the difficulty of accessing medical data, the methods requiring a large amount of data are not suitable
for medical anomaly detection in practice. Even with only 4-shot training, our method surpasses the
methods requiring much more training data, such as AnomalyCLIP and InCTRL, in some cases, like
OCT.

E APPENDIX 5: DETAILS OF EXPERIMENTS ON CHESTX-RAY8

We provide the detailed results on ChestX-ray8 under the Anomaly-aware detection protocol in Table
6, which is an extension of Table 1.
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Table 6: Experimental results of each anomaly in ChestX-ray8.

Abnormality CLIP MedCLIP Ours (no SS) Ours (full model)
Atelectasis 46.6 56.1 60.9 60.9
Fibrosis 53.6 49.0 48.2 51.2
Mass 43.5 49.2 49.3 50.7
Infiltration 50.1 54.7 52.6 49.5
Nodule 48.6 44.1 50.4 49.7
Effusion 47.8 58.9 61.2 63.3
Pleural Thickening 48.0 53.2 53.3 60.6
Pneumothorax 46.7 53.3 51.8 60.5
Emphysema 53.2 47.6 69.1 66.8
Cardiomegaly 55.3 50.3 55.5 55.0
Consolidation 46.5 59.9 57.4 58.3
Pneumonia 48.3 50.1 52.0 49.0
Edema 43.6 64.6 64.8 74.6
Hernia 44.7 42.9 57.4 55.2
Avg. 48.3 52.4 56.0 57.5

F APPENDIX 6: DETAILS OF EXPERIMENTS ON FASTMRI++

We provide the detailed results on FastMRI+ dataset under the protocol of anomaly-aware detection
in Table 7. Since the label Small vessel chronic white matter ischemic change can not be achieved in
slices 5 and 10, we only evaluate 5 categories within these two slices.

Table 7: The results of the experiments on category-wise AUROC. The reported results are AUROC
score (%). We also report average (Avg.) results for each slice. ”Small vessel ischemic change”
corresponds to the label ” Small vessel chronic white matter ischemic change” in the FastMRI+
dataset. ”SS” and ”Avg.” are short for ”Sign Selection” and ”average” respectively.

CLIP MedCLIP Ours(no SS) Ours(full model)

slice 0

Craniotomy 42.7 50.0 68.2 70.9
Posttreatment change 73.5 51.1 67.3 71.7
Nonspecific lesion 56.8 44.3 65.1 56.7
Dural thickening 44.6 48.5 58.9 57.5
Enlarged ventricles 65.3 68.7 62.5 71.9
Small vessel ischemic change 62.1 39.4 81.7 80.3
Avg. 57.5 50.3 67.3 68.2

slice 5

Craniotomy 67.2 46.9 55.0 55.4
Posttreatment change 59.4 51.7 63.9 62.4
Nonspecific lesion 47.9 44.2 64.9 64.9
Dural thickening 51.1 63.9 64.5 57.4
Enlarged ventricles 76.1 51.3 66.6 79.3
Avg. 60.3 51.6 63.0 63.9

slice 10

Craniotomy 48.3 43.0 51.6 62.4
Posttreatment change 61.1 58.2 40.6 46.6
Nonspecific lesion 37.5 45.6 71.3 58.0
Dural thickening 57.7 48.8 72.2 69.9
Enlarged ventricles 98.1 40.1 100 70.5
Avg. 60.5 47.1 67.1 61.5

G APPENDIX 7: BROADER IMPACTS

Medical anomaly detection has the potential to improve diagnostic accuracy and increase access to
quality healthcare significantly. This is particularly critical in resource-constrained environments
where access to experienced specialists may be limited.
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In this work, we extend conventional anomaly detection frameworks to address multi-anomaly
scenarios, where multiple co-existing or interacting abnormalities may be present within a single
medical image. Such scenarios more accurately reflect real-world clinical conditions and require
models to detect, localize, and differentiate diverse pathological patterns simultaneously.

At a societal level, this advancement can help reduce the diagnostic burden in under-resourced
healthcare systems by facilitating earlier and more comprehensive detection of complex diseases.
Therefore, we believe our contribution is of substantial value to the medical domain, with the potential
to support more informed clinical decisions and promote equitable access to diagnostic tools.
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