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ABSTRACT

Current Large Language Model (LLM) preference optimization algorithms do not
account for temporal preference drift, which can lead to severe misalignment. To
address this limitation, we propose an offline fine-tuning algorithm Non-Stationary
Direct Preference Optimisation (NS-DPO) which models time-dependent reward
functions with a Dynamic Bradley-Terry model. NS-DPO applies exponential
weighting, by introducing a discount parameter in the loss function, which pro-
portionally focuses learning on more time-relevant datapoints. We theoretically
analyse the convergence of NS-DPO, providing upper bounds on the estimation
error and regret caused by non-stationary preferences. Finally, we demonstrate
the effectiveness of NS-DPO1 for fine-tuning LLMs in scenarios with drifting
preferences. By simulating preference drift using popular LLM reward models
and datasets accordingly, we show that NS-DPO fine-tuned LLMs remain robust
under non-stationarity, significantly outperforming baseline algorithms that ignore
temporal preference changes, without sacrificing performance in stationary cases.

1 INTRODUCTION

The application of Reinforcement Learning from Human Feedback (RLHF) to fine-tune Large
Language Models (LLMs) (Christiano et al., 2017; Stiennon et al., 2020; Ziegler et al., 2019; Ouyang
et al., 2022; Bai et al., 2022b) has lead to more precise control over the behaviour they exhibit. This
control is crucial when looking to safely deploy models in the real world (Amodei et al., 2016;
Hendrycks & Mazeika, 2022). Human preference datasets enable the training of proxy reward
models (see, e.g., RewardBench (Lambert et al., 2024)) that can accurately evaluate complex human
behaviour. These proxy reward models are used in conjunction with RL to fine-tune the LLM. Recent
works (Rafailov et al., 2024; Azar et al., 2024; Hong et al., 2024) seek to improve the efficiency
and stability of these approaches (Chaudhari et al., 2024) by training the LLM straight from human
preference data, avoiding the need to learn a proxy reward model.

A key assumption made in these preference optimization algorithms is that human preferences are
stationary, i.e., they do not change over time. However, a sudden or gradual shift in preferences can
occur due to new information becoming available (Zafari et al., 2019; Johnson & Mayorga, 2020),
changes in the demographics of the queried audience (Caldwell, 1981), or social influences and
cultural trends. As more preference datasets are gathered over long periods of time, the chance of the
data containing varying preferences increases. In such cases, algorithms that do not account for these
changes, view them as noise and treat outdated data as equally important as fresh data, often leading
to deteriorated performance. An increasing body of evidence (Zhou et al., 2024; Chen et al., 2024a)
points to data quality as being a key factor in fine-tuning performance, thus preference drift can greatly
affect the alignment of models which do not account for it (Carroll et al., 2024). The development
of preference optimization algorithms and theory to handle preference drifts are therefore crucial.

In this work, we propose Non-Stationary Direct Preference Optimization (NS-DPO), a novel
approach that uses a probabilistic Dynamic Bradley-Terry model (Cattelan et al., 2013; Bong
et al., 2020; Tian et al., 2023) to account for non-stationary drift in human preferences. NS-DPO

1For code, see https://anonymous.4open.science/r/ns-dpo-CD67/.
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Are GPUs necessary 
for AI research?

Year 2011

"Not really. CPUs are more
flexible and accessible

compared to GPUs."

Prompt

Preferred
response

...
How are GPUs considered
in the AI community?

"GPUs play a crucial role for
deep learning, due to their

special design."

Will GPUs particularly 
be in high demand?

"Because its design suits deep
learning research, the demand

for GPUs will keep rising."

"We cannot be sure about this,
as CPUs still have their own

advantages over GPUs."

Year 2023

Year 2024

Farther: less relevant Recent: more relevant

Gradient updates weighted by time distance

Uniformly weighted gradient updates

Training TestPref. optimization
DPO / IPO

NS-DPO (Non-Stationary)

Dynamic Bradley-Terry Model

Predicted
preference

Figure 1: Human preferences are dynamic and influenced by a variety of factors (e.g. environment
change and societal influence). However, standard preference optimization approaches (e.g., DPO
and IPO (Rafailov et al., 2024; Azar et al., 2024)) do not account for this non-stationarity. In contrast,
NS-DPO robustly learns on non-stationary data by using a Dynamic Bradley-Terry model, and
adjusts the loss to discount older datapoints and concentrate learning on the latest data.

re-weights each training datapoint by appropriately down-weighting older data with potentially
stale preferences and up-weighting more recent ones. We empirically show the effectiveness and
robustness of NS-DPO compared to stationary approaches, using both synthetic experiments and
datasets commonly used for fine-tuning LLMs. Our overall approach is summarised in Figure 1.

Related work. One of the primary applications of the RLHF framework is fine-tuning large language
models (LLMs) (Christiano et al., 2017; Stiennon et al., 2020; Ziegler et al., 2019; Ouyang et al.,
2022; Bai et al., 2022b). A key component of this is the Bradley-Terry model (Bradley & Terry,
1952) which learns a reward signal from paired human preferences. Rafailov et al. (2024) propose
Direct Preference Optimization (DPO), which implicitly uses the Bradley-Terry model, to fine-tune
an LLM directly from a preference dataset. A variety of alternatives to DPO have been proposed
which adapt or do not use the Bradley-Terry model (Azar et al., 2024; Amini et al., 2024; Meng
et al., 2024; Cen et al., 2024; Xu et al., 2023). Ethayarajh et al. (2024) remove paired preferences and
propose maximising a utility function. Our work is the first to consider a direct preference algorithm
using a Dynamic Bradley-Terry model.

A variety of work has also analysed the RLHF problem from a theoretical standpoint. Xiong et al.
(2024) provide suboptimiality bounds of policies in the offline, online and hybrid settings under
linear rewards. They do not directly analyse the performance of DPO, but propose it as a practical
implementation of the oracle central to their analysis. Zhu et al. (2023); Chowdhury et al. (2024)
analyse the offline preference learning and DPO settings, respectively. Chowdhury et al. (2024)
address noisy preferences with a modified version of the DPO algorithm, presenting confidence
bounds for neural policy classes and suboptimality bounds for the setting with log-linear policies.

Parameter drift has been widely studied in the bandit literature. Cheung et al. (2019) propose using a
sliding window to estimate parameters with data points close to the current timestep, whilst Bogunovic
et al. (2016); Zhao et al. (2020) investigate a restarting strategy. Similarly to the strategy of Russac et al.
(2019), we use an exponentially weighted discounting term to re-weight points close to the current
timestep. Faury et al. (2021); Wang et al. (2023) apply this approach to the case of generalised linear
bandits first proposed by Filippi et al. (2010). Pacchiano et al. (2021); Saha (2021); Mehta et al. (2023)
focus on the duelling bandit setting, where only preference feedback between two actions is provided
by the environment. In this work, we provide the first theoretical guarantees for the popular offline
setting where the true reward parameter (used to label training data) is allowed to change over time.

Main contributions. We propose NS-DPO, a direct preference optimization method that accounts
for non-stationary preferences in the dataset via a Dynamic Bradley-Terry model. NS-DPO modifies
the training loss with a single exponential weighting parameter γ, and thus represents a simple and
practical extension of the popular DPO algorithm. We provide an upper bound on the regret of
NS-DPO for log-linear policies given standard data coverage assumptions used in offline learning.
To explore the performance of NS-DPO, we construct non-stationary preference datasets from a
variety of existing popular datasets; including GlobalOpinionsQA (Durmus et al., 2023), Helpful &
Harmless (Dai et al., 2024), and UltraFeedback (Cui et al., 2023). We demonstrate that NS-DPO
significantly outperforms stationary DPO and other relevant baselines on these non-stationary datasets
with varying degrees of preference drift on Llama models Touvron et al. (2023); Dubey et al. (2024).
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2 PRELIMINARIES

Stationary RLHF. In the stationary RLHF setting (Ziegler et al., 2019; Ouyang et al., 2022), the
goal is to find a suitable LLM policy π, whose response a, to a prompt x, maximise a reward function
r(x, a), i.e.,

J (π) = Ex∼X ,a∼π

[
r(x, a)− τDKL[π(·|x)∥πref(·|x)]

]
. (1)

Here, the KL-divergence prevents the learnt policy from deviating too far from some reference
policy πref , that has characteristics we wish to preserve in the final model. This is controlled by the
parameter τ > 0. In practical settings, human feedback is too complex to capture in a hand designed
reward model, and we resort to learning a model from human preference data.

Bradley-Terry Model. A human preference dataset consists of prompts and two possible responses
D = {(xi, ai, a

′
i)}i∈[n], where ai is the response preferred to a′i, and n is the number of datapoints.

To learn a reward model from this dataset, we assume the preferences are generated by a Bradley-Terry
(BT) model (Bradley & Terry, 1952) where the probability that ai is preferred to a′i is

p(ai ≻ a′i|xi) = σ(r(xi, ai)− r(xi, a
′
i)). (2)

In Equation (2), σ(·) is the logistic sigmoid function and r(x, a) is the reward model of human
preferences we do not have access to and wish to learn. We parameterise the reward, typically as
a single layer MLP on the last layer of the reference policy model πref (Ziegler et al., 2019), and
then learn the parameters using a maximum likelihood estimator. An LLM can then be fine-tuned
on the objective in Equation (1) using Reinforcement Learning (RL). It is important to note that
the BT model captures many of the inherent assumptions we make about our data, which include
the stationary nature of the underlying data generating process.

Direct Preference Optimization. Recent work by (Rafailov et al., 2024) avoids the training of
an explicit reward model in the stationary RLHF process by optimizing the LLM policy directly
from human preference data. To do this, the analytical solution to the stationary RLHF objective is
rearranged into Equation (1) to derive an implicit reward

r(x, a) = τ log
π(a|x)
πref(a|x)

+ τ logZ(x), (3)

where Z(x) is a normalisation constant. This is substituted into the negative log likelihood of the
Bradley-Terry model (see Equation (2)) resulting in the direct preference optimization (DPO) objective

L(π) =
∑

(x,a,a′)∈D

− log σ

(
τ log

π(a|x)
πref(a|x)

− τ log
π(a′|x)
πref(a′|x)

)
. (4)

All the methods introduced in this section, including DPO, are all stationary as they assume the
reward model does not change with time. However, this assumption does not hold when training
on real-world data. The changes in preferences over time, captured in the dataset, appear as label
noise to the stationary methods.

3 LEARNING UNDER PREFERENCE DRIFT

To address the problem of preference drift, in datasets collected over a period of time, we propose Non-
Stationary Direct Preference Optimization (NS-DPO). NS-DPO incorporates the Dynamic Bradley-
Terry model, which includes a non-stationary reward model r(x, a, t). Here t ∈ {1, . . . , T − 1}
denotes a time step in the past, and T ∈ N+ denotes the current time step, where we are evaluating
the trained policy. Under the Dynamic Bradley-Terry model, the probability of response ai being
preferred to a′i is

p(ai ≻ a′i|xi, ti) = σ(r(xi, ai, ti)− r(xi, a
′
i, ti)), (5)

where in addition to the prompts and responses, we assume the dataset has temporal information
about when the human preference between the two responses is expressed, D = {(xi, ai, a

′
i, ti}i∈[n].

For the ease of indexing datapoints, we assume ti ≤ tj if i < j.

Rather than making an explicit assumption on how the reward function varies over time, we consider
a setting in which the degree the reward can change is upper bounded. This is a mild assumption

3
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on the temporal variation, and allows the reward to vary drastically at any point in time over all
T − 1 steps over which our training data is recorded. We formalise this in Assumption 3 (Section 4),
and use it to show that the convergence of NS-DPO depends upon the upper bound of the allowed
drift. An approach to learning in this setting is via an exponentially weighted maximum likelihood
estimator (Faury et al., 2021; Russac et al., 2019; Wang et al., 2023), where the datapoints are
re-weighted such that losses incurred at the most recent datapoints are prioritised.

To learn a suitable reward model in this setting, we define the reward at time step T as r(x, a, T ) ∈ R,
where R is the space of reward values. We estimate the reward function at timestep T , by maximising
the exponentially weighted negative log-likelihood of the Dynamic Bradley-Terry model:

LDBT (r) =
∑

(xi,ai,a′
i,ti)∈D

−γT−ti−1 log σ (r(xi, ai, T )− r(xi, a
′
i, T )) . (6)

In Equation (6), γ ∈ (0, 1) controls the rate at which older datapoints are discounted. The loss
recovers the stationary Bradley-Terry model as γ → 1.

Offline Non-Stationary Direct Preference Optimization. The derivation of NS-DPO follows as pre-
viously shown in Section 2 for the stationary case. We first define the RLHF objective at timestep T as

JT (π) = Ex∼X ,a∼π

[
r(x, a, T )− τDKL[π(·|x)∥πref(·|x)]

]
, (7)

where we are interested in maximising the reward function r(x, a, T ) that reflects human preferences
in the present (i.e., the current time step). We note the prompt distribution X and the reference model
πref do not vary with time. As we consider the reward model at T , we derive an implicit reward of
the same form as Equation (3). This relates the optimal policy and reward function of Equation (7) as

r(x, a, T ) = τ log
π∗
T (a|x)

πref(a|x)
+ τ logZ∗

T (x), (8)

where π∗
T is the optimal policy that optimises Equation (7) and Z∗

T denotes the normalisation constant
of π∗

T . We then parameterise the policy π in Equation (7) using the parameter θT , which enables
expressing the implicit reward with respect to the parameter as

rθT (x, a, T ) = τ log
πθT (a|x)
πref(a|x)

+ τ logZθT (x), (9)

where ZθT denotes the normalisation constant of πθT . We apply Equation (9) into the exponentially
weighted negative log likelihood in Equation (6) to derive the NS-DPO objective

LNS(θT ) =
∑

(xi,ai,a′
i,ti)∈D

−γT−ti−1 log σ

(
τ log

πθT (ai|xi)

πref(ai|xi)
− τ log

πθT (a
′
i|xi)

πref(a′i|xi)

)
. (10)

4 THEORETICAL ANALYSIS OF OFFLINE NON-STATIONARY DPO

In this section, we analyse the performance of NS-DPO in the offline setting. We assume the use of
log-linear policies, and present how the preference drift affects the estimation error and regret bound
of the algorithm. We provide the sample complexity of the algorithm, which recovers O(n−1/2)
when the preferences are stationary. See Appendix E for further details.

Policy Class. We use the policies parameterised by θ ∈ Θ ⊂ Rd of the following form

Π =

{
πθ(a|x) =

exp(fθ(x, a))∑
a′∈A exp(fθ(x, a′))

}
, (11)

where fθ(x, a) ∈ R is a differentiable function. For our analysis, we consider the case of log-linear
policies where fθ is linear: fθ(x, a) = ϕ(x, a)⊺θ, and the feature map ϕ(x, a) is a d-dimensional
vector. This is motivated by the reward model introduced in Ziegler et al. (2019) where the last hidden
layer of the LLM is used as the feature embedding function ϕ(x, a).

Loss Function with ℓ2 regulariser. For the analysis of log-linear policies, we regularise the NS-DPO
loss with squared ℓ2-norm of θ, τ2 and a non-linearity coefficient cσ,τ (explained in Appendix E):

LNS
reg(θ) =

1

n
LNS(θ) +

λcσ,ττ
2

2
∥θ∥2 . (12)
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Performance measure and Optimal Policy. Let θ̃T ∈ Θ denote the parameter that minimises the
(regularised) NS-DPO loss defined in Equation (12). We assess the performance of the policy πθ̃T

,
using the difference of non-stationary RLHF objectives between πθ̃T

and π∗
T in Equation (7):

Roff
T = JT (π

∗
T )− JT (πθ̃T

)

= Ex∼X

[
Ea∼π∗

T (·|x)[r(x, a, T )]− τDKL[π
∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[r(x, a

′, T )] + τDKL[πθ̃T
(·|x)∥πref(·|x)]

]
. (13)

Here r(·, ·, T ) denotes the true reward function at time T , and π∗
T denotes the optimal policy against

which we compare the performance of our algorithm. Given a reference policy πref , the optimal
policy is defined as the policy which optimises the RLHF objective at time step T

π∗
T = argmax

π∈Π
Ex∼X ,a∼π

[
r(x, a, T )− τDKL[π(·|x)∥πref(·|x)]

]
. (14)

Similarly, we can define the parameter θ∗t of the optimal policy in each time step t ∈ [T ]

θ∗t = argmax
θt∈Θ

Ex∼X ,a∼π

[
r(x, a, t)− τDKL[πθt(·|x)∥πref(·|x)]

]
. (15)

We now introduce further assumptions on the setting. In order to make the learning process possible,
we bound the 2-norm of the feature and parameter spaces.
Assumption 1. (Boundedness) The parameters and features are bounded: θ ∈ Θ where Θ = {θ ∈
Rd | ∥θ∥2 ≤ W} and Φ = {ϕ(x, a) ∈ Rd | ∥ϕ(x, a)∥2 ≤ L}.

It is known that an equivalence class of reward models leads to the same preferences under the
Bradley-Terry model (Rafailov et al., 2024). This is similarly true in the case of the Dynamic
Bradley-Terry model, because the implicit reward of NS-DPO, shown in Equation (8), relates the
reward to the policy parameters θ. We thus construct the following constraint on the policy class
to properly specify the problem (Chowdhury et al., 2024).
Assumption 2. (Identifiability) The optimal policy in each time step t corresponds to a single
parameter in Θ, which satisfies Equation (15): 1⊺dθ

∗
t = 0 ∀t ∈ [T ], where 1⊺

d ∈ Rd is a vector of 1s.

We consider the setting where the true underlying parameter θ∗t ∈ Θ,∀t ∈ [T ] of the optimal policy
π∗ is changing at each time step. We do not constrain how the optimal parameter changes, but instead
upper bound the possible parameter drift allowed in the environment up to time step T . This upper
bound is known as the variation budget.
Assumption 3. (Variation Budget Bound) The parameter drift of θ∗t ∈ Θ across T timesteps is upper
bounded as

∑T−1
t=1 ∥θ∗t+1 − θ∗t ∥2 ≤ BT where BT > 0 is a known constant.

In the offline setting, our learning is constrained by the available dataset D. A standard assumption
in the offline learning literature is that of data coverage (Chowdhury et al., 2024; Zhu et al.,
2023). The data coverage assumption ensures that the reference policy πref suitably explores the
space of plausible responses of the optimal policy. We define the population covariance matrix as
Σπ = E[ϕ(x, a)ϕ(x, a)⊺]− E[ϕ(x, a)]E[ϕ(x, a)]⊺, where the expectation is calculated over samples
x ∼ X , a ∼ π(·|x). The condition number κπ compares the coverage of the two policies π and πref

∀π ∈ Π : κπ = sup
v∈Rd

v⊺Σπv

v⊺Σπref
v
=

λmax(Σπ)

λmin(Σπref
)
, (16)

while we use κ = maxπ κπ to denote the maximum value of κπ. The definition of κπ requires that
the reference policy sufficiently explores the feature space, which leads to the following assumption.
Assumption 4. (Feature Coverage) The reference policy πref satisfies λmin(Σπref

) > 0.

In a time-varying setting, the quality of the dataset D also depends upon its temporal coverage. We
use the following assumptionm which also guarantees a minimal amount of data in each time step.
Having enough data in each time step is motivated by the fact that we are assuming no knowledge
of the dynamics of the actual preference drift. Note that Θ(T ) in the assumption is the notation for
the complexity, which is different from the parameter set Θ in Assumption 1.
Assumption 5. (Temporal Coverage) For each time step t ∈ [T − 1], the number of datapoints in the
training set is between m and m̄, where m > 0 and m̄ > m are constants (i.e., n = Θ(T )).
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4.1 THEORETICAL RESULTS

Estimation Error. To bound the expected regret of the policy trained with NS-DPO, bounding
the difference between the optimal and the learnt parameter is required. To analyse the parameter
estimation error, we define the discounted covariance matrix of the offline dataset as

Σ̂ =
1

n

n∑
i=1

γT−ti−1(ϕ(xi, ai)− ϕ(xi, a
′
i))(ϕ(xi, ai)− ϕ(xi, a

′
i))

⊺. (17)

Under the assumptions from Section 4, we introduce bounds on the estimation error of the parameter
θ̃T , which minimises the NS-DPO loss in Equation (12), with respect to the true parameter θ∗T and Σ̂:

∥θ∗T − θ̃T ∥Σ̂+λI , (18)

where λ > 0 is introduced to guarantee the inversion of the matrix Σ̂ + λI . The upper bound
on the estimation error is shown in Theorem 1 and a detailed proof of the result is provided in
Appendix E.1. Our analysis differs from the stationary case (Chowdhury et al., 2024), as we consider
the temporally discounted datapoints in the NS-DPO loss. This is reflected in the covariance matrix
Σ̂ by the inclusion of the γT−ti−1 term, which decreases the influence of observations that happened
further in the past. As part of our analysis, we separate the estimation error into a learning term and
tracking term. This tracking term accounts for the error introduced by the non-stationary nature of
the environment, depending upon BT and the choice of γ in the algorithm to upper bound it. We
outline a suitable choice for γ below.

Theorem 1. (Estimation error of θ̃T .) Let δ ∈ (0, 1], λ > 0, τ > 0. Let θ̂T denote the minimiser of
the NS-DPO loss defined in Equation (12). Let θ̃T ∈ Θ denote the parameter obtained by performing
the parameter projection procedure on θ̂T . Then with probability at least 1− δ:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

(19)

where C1 > 0 is a constant.

Expected Regret Bound. Starting from the definition of the expected regret in Equation (13),
the regret can be expressed with the estimation error in Equation (19). We then use our results in
Theorem 1 to complete the analysis. The details of the regret analysis are deferred to Appendix E.2.

Theorem 2. (Regret bound of θ̃T ) Let δ ∈ (0, 1
2 ], τ > 0. Let θ̃T denote the parameter in Θ which

minimises the NS-DPO loss (Equation (12)) on an offline dataset. The following bound holds with
probability at least 1− 2δ and when λ ≥ C

√
d log(4d/δ)/n:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT

)2

,

where C1 > 0 denotes a constant. When γ = 1−
(
BT

T

)3/4
, Roff

T satisfies:

Roff
T = Õ

(
d B

3/4
T n−1/4

)
.

Standard offline bandits and RL algorithms assuming the stationarity of the underlying scalar-valued
reward achieve O(n−1/2) regret (Wang et al., 2021; Zhan et al., 2024; Qiao & Wang, 2024; Cen
et al., 2024). For stationary preference-based rewards, Chowdhury et al. (2024) show an O(n−1/4)
regret/sub-optimality gap for DPO algorithm, whereas Nika et al. (2024) obtain an O(n−1/2)
regret. Unlike these prior work assuming stationary preferences, NS-DPO uses the discount weight
γ = 1 −

(
BT

T

)3/4
to address the non-stationarity in the dataset, which results in the regret bound

above. However, our approach is general enough to capture the stationary setting, which corresponds
to BT → 0. By setting γ = 1 −

(
BT

T

)α
with 0 < α < 2

3 , we show that the tracking term in the
estimation error bound goes to zero. Corollary 3, shows that the widely considered stationary setting
is a special case of NS-DPO. We provide the detailed proof in Appendix E.3.

6
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Corollary 3. (Regret bound under stationary preferences) Let BT → 0, δ ∈ (0, 1
2 ], τ > 0. Let

θ̃T ∈ Θ denote the minimiser of the NS-DPO loss (Equation (12)). Then, for λ ≥ C
√
d log(4d/δ)/n,

some constant C1 > 0, γ = 1−
(
BT

T

)α
and 0 < α < 2/3, we have with probability at least 1− 2δ:

lim
BT→0

Roff
T <

4τκm̄

m

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

,

and recover the complexity of Roff
T = O(n− 1

2 ) under stationary preferences.

5 EXPERIMENTS

In this section, we empirically evaluate NS-DPO’s ability to learn under preference drift. We first
show that NS-DPO outperforms DPO in the log-linear policy setting, supporting our theoretical results
introduced in Section 4.1. We then analyse how NS-DPO performs under different types of preference
drift and under different strengths of preference change using the Llama2 LLM (Touvron et al., 2023)
and the Llama3 LLM (Dubey et al., 2024). We provide the code2 used for the experiments.

5.1 EXPERIMENTAL SETUP

5.1.1 SYNTHETIC EXPERIMENTS

To analyse the performance of NS-DPO in the log-linear policy class, we construct a synthetic
environment with a known feature space and preference drift. We use the feature space from (Li
et al., 2023), where x ∈ X = [0, 1]dx , a ∈ A = [na]. The dimensions of the feature space and the
policy parameter are both 2 · dx. We use dx = 4, dθ = 8, |A| = 16 for all synthetic experiments.

Non-stationary Dataset. To construct a dataset D = {x, a, a′, t}ni=1, we randomly sample x ∼ X
and a1, a2 ∼ A. We assign 20 datapoints per time step ∀t ∈ [100]. We sample 100 datapoints for
evaluation at T = 101. To introduce preference drift, we follow an approach similar to Faury et al.
(2021). We sample the preferences over a1 and a2 from the class of log-linear policies given in
Equation (11), parameterised by θ∗t . We denote preferred response as a and the rejected response
as a′. When t < 33, we set the optimal parameter θ∗t = (1, 0, 1, 0, 1, 0, 1, 0)⊺. For t > 66, we
set θ∗t = (0, 1, 0, 1, 0, 1, 0, 1)⊺. For 33 ≤ t ≤ 66, we rotate θ∗t smoothly between the two. For full
details on the feature space and rotation see Appendix D.5.

Algorithms for Synthetic Experiments. We compare NS-DPO with DPO and SW-DPO in synthetic
experiments. SW-DPO uses a "sliding" window to only consider points close to the current timestep
T , which is commonly used in the non-stationary bandit literature (Garivier & Moulines, 2008). We
test the performance of NS-DPO and SW-DPO over several values of γ ∈ {0.7, 0.9} and window
size w ∈ {33, 50}. The regularisation coefficient is τ = 1.0 for all algorithms. We normalise
the scale of the gradient for each method to address the differences caused by the application of
exponential weighting and sliding window. For the reference policies, we use a uniform policy,
whose parameter θref ∈ Rd is a zero vector.

Evaluation Metrics. To analyse the performance of the algorithms, we use the reward accuracy
of the trained policies. The reward accuracy is computed by the portion of test response pairs with
correctly estimated preferences, using the implicit rewards defined in Equation (8). For each tested
algorithm, we report averaged results of the experiments across 10 different random seeds.

5.1.2 LARGE LANGUAGE MODEL EXPERIMENTS

To test the performance of NS-DPO in an LLM setting, we create three preference datasets with
known and controlled preference drift.

Creating Non-Stationary Preference Datasets To create datasets with varying preference drift,
we select two reward models r1, r2 that result in different preferences for the responses a and a′.
We assign each datapoint an arbitrary time across 100 timesteps t ∈ [100] and adjust the response

2https://anonymous.4open.science/r/ns-dpo-CD67/
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Figure 2: Synthetic experiment results with dx = 4, |A| = 16. The shaded area represents the standard
deviation of each algorithm. [Left] NS-DPO and SW-DPO successfully addresses the non-stationarity present
in the dataset, while stationary DPO fails to do so. NS-DPO shows faster training than SW-DPO, even compared
to the case where the value of the window parameter w for SW-DPO is set to the optimal value of 33. [Right]
An ablation study on how different values of the discount factor γ affect the training of NS-DPO. As the value
of γ becomes larger, the final test accuracy of the policy is achieved in fewer training steps.

preference according to two main modes of preference change, sudden or gradual. For sudden
preference change, we select a change point tcp ∈ [100] for datapoints with a time before tcp we
assign preferences based on r1 and for points after tcp we assign preferences based on reward model
r2. For gradual preference change, we linearly interpolate the reward of each prompt response pair
(x, a) over some subset of the timesteps Tgrad ⊂ [100] (see Appendix D.2). Finally, we also adjust
how the strength of preference change affects the performance of NS-DPO. We introduce ρdiff ,
which is the portion of datapoints included in the dataset whose preferences change when assigning
preferences according to r2 instead of r1. We provide further details in Appendix D.1.

Datasets. We created non-stationary preference datasets for the GlobalOpinionsQA dataset (Durmus
et al., 2023), Ultrafeedback dataset (Cui et al., 2023) using PAIRRM (Jiang et al., 2023) and
ARMORM (Wang et al., 2024) reward models, and Helpful Harmless dataset (Bai et al., 2022a) using
the helpsteer-helpfulness and beavertails-is_safe outputs of the ARMORM model. We will make
the datasets available as open-source.

Language Models. We use Llama-2-7b-chat-hf 3 and Llama-3.2-1b 4 (Touvron et al.,
2023; Dubey et al., 2024) for both fine-tuning and the reference model. To reduce the compute
demands of fine-tuning Llama-2-7b-chat-hf, we train LoRA weights (Hu et al., 2022) (see
Appendix D.4 for further details). We fine-tune all parameters of Llama-3.2-1b.

Evaluation Metrics. To compare the performance of NS-DPO and the baseline algorithms in LLM
datasets, we use reward accuracy as we do in synthetic experiments.

Algorithms for the LLM experiments. We compare NS-DPO against baselines including stationary
DPO and IPO. We also construct an In-Context Learning (ICL) algorithm referred to as tDPO, in
which information about the time step is appended to the prompts of the data. All algorithms use
the same supervised fine-tuned (SFT) model as the reference model. We use the SFT procedure
from Rafailov et al. (2024), training the model on the preferred responses in the dataset. NS-DPO
uses τ = 0.1 and γ = 0.95 for fine-tuning Llama-2-7b-chat-hf with 2C NSGO dataset and
UltraFeedback dataset. For Time Varying Helpful-Harmless (TV-HH) dataset, we adjust the value of
γ as γ = 1− ( 1

100−tcp
) log(100). For fine-tuning Llama-3.2-1b, we use τ = 1.0 and γ = 0.85.

5.2 EXPERIMENT RESULTS

How does NS-DPO perform when specialised to log-linear policy classes? We present synthetic
experiment results to compare the behaviour of NS-DPO and other algorithms with log-linear policies.
As shown in the left image of Figure 2, when compared to NS-DPO and SW-DPO, DPO shows the
worst performance with respect to the test data. Both NS-DPO and SW-DPO, which account for the
preference drift present in the data, show significantly better performance. SW-DPO achieves similar
performance to NS-DPO in the later stages of training, but NS-DPO achieves this performance in
fewer training steps. As NS-DPO only varies the weights of datapoints, rather than removing them

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/meta-llama/Llama-3.2-1B
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Figure 4: Llama-2-7b-chat-hf experiment results using 2C NSGO dataset. [Left] Opinion drift from the
US to Germany. [Middle] Opinion drift from the US to Japan. [Right] Opinion drift from the US to Brazil.
NS-DPO stays robust to the non-stationarity present in the dataset and achieves reward accuracies above 60%,
while stationary methods show dropped reward accuracies of around 55%. Including the time steps in the prompt
(tDPO) does not help meaningfully improve the performance of stationary DPO.

entirely, it can still leverage the information of datapoints in the earlier time steps. The right image
of Figure 2 shows a comparison of different values of γ, ranging from 0.3 to 0.9. The results show
that the performance of NS-DPO is stable in terms of the final test accuracy across a large range
of values, γ ∈ [0.5, 0.9]. As the value of γ is reduced, only points closest to the current time step
contribute significantly to the gradient update of the model. Thus as γ decreases, NS-DPO requires
more training steps for the reward accuracy on the test set to converge.

In summary: NS-DPO outperforms the stationary DPO method, and achieves the same performance
as other non-stationary baseline approaches in fewer training steps. The final performance of
NS-DPO is robust to the value of γ across a wide range of values.
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Figure 3: Training curves of NS-DPO
and DPO trained with the UltraFeedback
dataset without preference drift (tcp = 0).
Llama-2-7b-chat-hf is used. NS-
DPO matches the performance of DPO
even in stationary settings.

How robust and effective is NS-DPO under varying
strengths of sudden preference drift? We conduct two
LLM experiments to investigate how varied strengths of
sudden preference drift affect the NS-DPO’s performance.
Firstly, we vary ρdiff , the portion of datapoints with
preferences that change, at three different change points
on the non-stationary UltraFeedback Dataset introduced in
Section 5.1. Secondly, we vary the change point for three
different values of ρdiff on the TV-HH dataset. Stationary
preference algorithms treat non-stationary preferences as
label noise in the data. As ρdiff is increased, the level
of noise observed by the stationary algorithms increase,
leading to worse performance. We show this in Figure 10
and Figure 5 where for high values of ρdiff , when the change
point is close to the present, the difference in performance between NS-DPO and the baseline
algorithms can be as much as 20%. We also see NS-DPO outperfoming stationary DPO in Figure 6,
where all the parameters of Llama-3.2-1b are fine-tuned. Datasets with a change point that occurs
close to the present have very few examples of the new preference distribution. Because of this,
stationary algorithms learn the old preference distribution, as that is mostly represented in the data.
The low performance of the baseline algorithms on the binary classification of preferences at test time
demonstrates this empirically. Note that the performance of NS-DPO matches that of DPO even when
the preference shift in the dataset is not significant, ρdiff ≤ 0.7. This observation is further supported
by Figure 3, where NS-DPO matches the performance of stationary DPO in a dataset with no
preference drift. These results show that NS-DPO is robust against strong preference drift in offline
datasets and matches the performance of stationary algorithms when the preference drift is trivial.

In summary: Standard preference learning approaches fail under strong preference drift, learning
equally from old and recent preferences. NS-DPO is robust in these settings, and matches the
performance of stationary approaches when the preference drift is small or non-existent.

How does NS-DPO perform under gradual preference drifts? Here we investigate how LLMs
trained with NS-DPO perform when preference drift happens gradually over time. In Figure 7, we
see that NS-DPO outperforms the DPO reward accuracy by over 10% on the TV-HH dataset with
gradual preference drift. We note that the performance of NS-DPO is dependent upon the value of γ
chosen, however both approaches outperform the stationary baseline. The experiment results on the
2C NSGO dataset, which also simulates a gradual drift of preferences, are given in Figure 4. NS-DPO
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Figure 5: NS-DPO consistently outperforms DPO and IPO as the change point, tcp nears the present T = 101
for varying strengths of preference shift on the TV-HH dataset using the Llama-2-7b-chat-hf model.
[Left] ρdiff = 0.7. [Middle] ρdiff = 0.8. [Right] ρdiff = 0.9. We note that as the value of tcp increases, the
performance difference between NS-DPO and the baselines increases. This is because as the change point
moves closer to the present time step, the number of samples available from the updated preference distribution
decreases. NS-DPO discounts samples with old preferences, focusing learning upon the small number of samples
with up-to-date preference labels.
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Figure 6: NS-DPO effectively fine-tunes all the parameters of Llama-3.2-1b. The data shows UltraFeedback
dataset with ρdiff = 0.7 on the left and ρdiff = 1.0 on the right, with varying change points.

shows significantly better performance compared to stationary DPO, showing a performance gap of
nearly 10% in reward accuracy. This difference is mainly caused by stationary methods failing to
efficiently learn from datapoints at later time steps. tDPO, which trains the policy with time step
information appended to the prompt, does not show a significant difference from stationary DPO.

In summary: NS-DPO outperforms stationary approaches when preferences change gradually over
multiple time steps instead of at a specific change point.

6 CONCLUSION
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Figure 7: NS-DPO outperforms DPO
in settings where preference drift oc-
curs slowly across multiple timesteps.
Here we compare NS-DPO and DPO
on the TV-HH dataset with a gradual
preference shift.

In this work we propose NS-DPO, a practical and provably ef-
ficient approach for preference optimization on non-stationary
offline datasets. With standard assumptions, we provide a the-
oretical analysis on the performance of NS-DPO in the case
of log-linear policies. NS-DPO achieves a sample complexity
of O(n−1/4), and as BT → 0 the complexity of the regret
recovers O(n−1/2), found in the stationary setting. We further
support this result with a suit of empirical results on a syn-
thetic setting. We also investigate the application of NS-DPO
to LLMs, create several non-stationary preference datasets, and
show that NS-DPO shows superior performance to standard
preference optimization algorithms and In Context Learning
approaches on these datasets. Even in stationary settings, NS-
DPO matches the performance of stationary algorithms. This
motivates the usefulness of our approach when the existence of preference drift in a dataset is un-
known, as applying NS-DPO will not hurt performance even if the preference drift is too small
to matter. Our approach can be easily extended to the online setting where data is sequentially
provided as time passes. NS-DPO can also be adapted to learn at a time step that is not the present
by discounting both past and future preference as a function of their distance from the time step of
interest. We leave these ideas for future work.
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A APPENDIX CONTENTS

In Appendix B, we provide further related works on DPO algorithms, different alignment settings,
and a discussion of works that consider time varying alignment problems. Appendix C analyses
the gradient of the NS-DPO objective. Appendix D explains the details of experiments conducted,
including the creation of non-stationary datasets for LLM experiments and the behaviour of NS-DPO
and SW-DPO in the synthetic setting. We provide proofs of our theoretical analysis in Appendix E
step by step. In-depth derivations necessary for deriving the learning error are separately presented in
Appendix E.4.

B FURTHER RELATED WORKS

Recent interest in the alignment of LLMs has lead to a wide variety of works. We briefly discuss
further works that focus upon direct preference alignment algorithms.

Several approaches examine preference optimisation from a game theory perspective, avoiding the
implicit assumptions of the BT model. In these settings the current policy plays against previous
versions to further improve performance (Swamy et al., 2024; Rosset et al., 2024; Wu et al., 2024b;
Yuan et al., 2024; Chen et al., 2024b; Pang et al., 2024; Munos et al., 2024). Xu et al. (2023) propose
a cringe loss based objective whilst Hong et al. (2024); Pentyala et al. (2024); Hua et al. (2024) try to
combine the supervised fine-tuning and preference optimization steps. Hong et al. (2024); Hua et al.
(2024) propose a single training objective to do this and Pentyala et al. (2024) examine combining
two different models trained on an SFT and direct preference objective respectively. Finally, Lu et al.
(2024) propose a meta algorithm which uses an LLM to optimize the form of the direct preference
learning objective itself.

An orthogonal direction of work is the online setting (Qi et al., 2024; Zhang et al., 2024; Guo et al.,
2024; Xie et al., 2024), where feedback is returned by a human labeler or superior model. Khaki
et al. (2024); Liu et al. (2024) adapt the offline settings using techniques such as rejection sampling
to approximate an online setting. In this work we only consider the offline setting for simplicity,
however the approach we propose can easily be adapted to the online setting. Other important
directions of research include safety and robustness. Dai et al. (2024); Ramesh et al. (2024); Wu
et al. (2024a) consider robust settings where safety or group information is known at training time
and Dai et al. (2024) analyse a constrained optimization problem through the lens of safety in LLMs.
Whilst these approaches look to address a wide range of settings, our work is the first to provide
a solution to the case of non-stationary preferences.

Carroll et al. (2024) consider how to correctly align LLMs under preference drift, showing several
possible goals for alignment in an online setting. Whilst in the online non-stationary setting the LLM
can adapt to the changing preferences of the user, our setting considers aligning the model on an
offline dataset before deploying the static model to users at test time. As such our approach is most
similar to the Privileged Reward and Initial Reward settings Carroll et al. (2024) proposes, as we
determine that the preferences exhibited in the present are the most important (Privileged Reward)
and future users will interact with a model aligned to preferences from their past (Initial Reward).

C ANALYSIS OF NS-DPO GRADIENT

Here we analyse the gradient of the NS-DPO loss objective. The gradient of Equation (10) with
respect to the model parameters θ is as follows:

∇θLNS(θ) =
∑

(xi,ai,a′
i,ti)∈D

−τγT−ti−1σ (−hθ(xi, ai, a
′
i))︸ ︷︷ ︸

Gradient scaling

(∇θ log πθ(ai|xi)−∇θ log πθ(a
′
i|xi))︸ ︷︷ ︸

Gradient Direction

.

(20)
The gradient of the NS-DPO objective consists of two terms. The first term σ (−hθ(xi, ai, a

′
i))

scales the gradient update, which increases when the model incorrectly prefers response a′i to ai and
decreases when the model correctly predicts the response preference. NS-DPO only adjusts the
scaling term of the gradient by discounting the scaling term further when points are temporally far
away from T . The second term, ∇θ log πθ(ai|xi)−∇θ log πθ(a

′
i|xi), controls the direction of the

gradient update.
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In the case of stationary preferences in the dataset (points whose preference does not change at any
time ti), the gradient of these points is still applied to the parameters θ by the NS-DPO Loss with
scaling by the term γT−ti−1. Whilst this downweights these gradients this is price of not knowing
which points have changing preferences and which points have fixed preferences within our setting.
When we know that there is no preference drift, we set the value of γ to 1 to remove discounts (see
Appendix E.3).

D FURTHER EXPERIMENT DETAILS

D.1 CONTROLLING THE STRENGTH OF PREFERENCE DRIFT

In this section, we give more details on how ρdiff is calculated, which is used to control the degree of
preference drift as reward models are changed in the experiments. We first note that when t < tcp,
old reward model is used to evaluate the preference of the given prompt-response pair, while we use
new reward model to evaluate datapoints with t ≥ tcp:

r(x, a, t) =

{
rold(x, a), if t < tcp
rnew(x, a), if t ≥ tcp.

We then use ooldi and onewi to denote the preference given by old and new reward model respectively,
on the response pairs (ai, a′i) of prompt xi:

ooldi ∼ σ(rold(xi, ai)− rold(xi, a
′
i)),

onewi ∼ σ(rnew(xi, ai)− rnew(xi, a
′
i)).

Using ooldi and onewi , we calculate the portion of datapoints whose preferences differ between the old
and new reward models:

ρdiff =
1

n

n∑
i

1(ooldi ̸= onewi ). (21)

If the value of ρdiff is large, it means that the preference drift from the old reward model to the new
reward model is happening stronger in the dataset. When tcp is fixed for the dataset, which means
that the number of datapoints from each reward model is fixed, datasets with higher ρdiff will result in
worse performance of the algorithms. This is because more datapoints evaluated with the old reward
model will have conflicting preference with the new reward model, causing harm to learning the true
preference.
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D.2 NON-STATIONARY PREFERENCE DATASET CREATION
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Figure 8: The correlation of
different preference labels
generated by rewards from the
ARMORM reward model on the
Helpful Harmless harmless-base
dataset (Bai et al., 2022a). We
observed that concepts such as
safety and helpfulness have more
correlated preferences, whilst
the helpsteer-coherence reward
model is un-correlated with the
other models we analysed.

1) NSGO Datasets. We modify the GlobalOpinionQA dataset5 (Dur-
mus et al., 2023) to create a time varying dataset. GlobalOpinionQA
consists of questions regarding global issues, different responses,
and preferences from several countries represented as a probability
vector. We copy the questions and responses to create multiple time
steps t ∈ [100]. We then vary the preferences with time by linearly
interpolating between the preferences of two different countries.
This simulates gradual preference drifts that can be caused by demo-
graphic shift or a series of external events. We generate preference
drift using three pairs of countries. In each pair the starting country
is the US, and the ending country is either Brazil, Japan or Germany.
The preferences at the first and last time step correspond to either
country in the pair. The last time step is held out as a test dataset and
treated as the current time T = 101. We divide the prompt-response
pairs so that training and test data do not share any prompts.

2) UltraFeedback Datasets. Using the prompts and response
candidates of UltraFeedback6 (Cui et al., 2023), we obtain
preferences from two different reward models, PAIRRM7(Jiang
et al., 2023) and ARMORM8 (Wang et al., 2024). The datapoints
in the training set are randomly assigned to one of t ∈ [100] time
steps, and assigned preferences of PAIRRM if the time step t is
earlier than the change point tcp ∈ {51, 66, 81}. We assign the
preferences of ARMORM for the datapoints with time steps t ≥ tcp
and datapoints in the test set with T = 101. To test the effect of varied degrees of preference drift,
we also vary the portion of datapoints whose preferences flip as reward model changes. We denote
this portion as ρdiff and use ρdiff ∈ {0.7, 0.9, 0.95, 1.0} to create both training and test data. We
use 10k datapoints for training and 500 datapoints for testing.

3) Time Varying Helpful Harmless Datasets. Using the harmless-base subset of the Helpful
Harmless dataset9(Bai et al., 2022a), we create a time varying preference dataset. To do so, we use
two reward models, the helpsteer-helpfulness and beavertails-is_safe outputs from the ARMORM
model (Wang et al., 2024). Figure 8 shows that these rewards result in different preferences on
the harmless-base dataset. We then assign each datapoint in the dataset a random time value from
t ∈ [100]. We construct two methods to assign preferences using the time step information: change
point preference shift and gradual variation. Under the change point preference shift, datapoints are
assigned preferences according to helpsteer-helpfulness before the change point tcp and beavertails-
is_safe after the change point. Under gradual variation, we use the following reward model

r(x, y, t)=


r0(x, y) t < 33

r0(x, y)
(t−33)

33 + r1(x, y)
(
1− t−33

33

)
33 ≤ t < 66

r1(x, y) t ≥ 66,

where r0 is the helpsteer-helpfulness reward and r1 is the beavertails-is_safe reward. We use this
type of schedule for gradual change to simulate preference drifts that happens gradually over a
finite time horizon. We use 15k points for training and 2k for testing. We use reward models for
helpfulness and safety, as these are both desired properties of an LLM but often result in differing
preferences; for example, rewarding helpfulness can often lead to unsafe outputs when an LLM is
asked a dubious question, like how to best rob a store.

5https://huggingface.co/datasets/Anthropic/llm_global_opinions
6We modify the binarized version of UltraFeedback.
7https://huggingface.co/llm-blender/PairRM
8https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
9https://huggingface.co/datasets/Anthropic/hh-rlhf
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Figure 9: [Left] Performance of NS-DPO with values of γ > 0.9. NS-DPO shows robust performance with
respect to the value of γ, while it starts resembling the performance of stationary DPO as the value approaches
very close to 1, γ > 0.97. [Right] Expected RLHF objective gap of SW-DPO in the same experiments. The
performance of SW-DPO improves as the value of w gets closer to 33, when the algorithm is only learning from
datapoints where the preference distribution stays stationary in the given setting. The setting with w = 10 also
shows final performance similar to the case of w = 33, but it shows slower training because of the reduced
amount of data used for training.

D.3 THE TWO COUNTRIES (2C) NON-STATIONARY GLOBAL OPINIONS DATASET

To test NS-DPO, we create a synthetic non-stationary dataset in which the temporal trends are known.
To do this, we use the GlobalOpinionsQA dataset (Durmus et al., 2023). We preprocess the dataset
in three major ways.

Binary Preferences. We convert the dataset to a dataset of binary preferences. For each set of prompt
and responses, we create a row for each possible combination of prompt and binary response pairs.
We calculate the preference probability for these response pairs as follows. Assuming the non-binary
responses follow a Plackett-Luce preference framework, we can find the reward associated with
responses (up to an additive constant) by taking the log of the preference probability. We can then
take the sigmoid of these responses to find a normalised binary preference.

Country Filter. We filter the dataset down to the following countries: Nigeria, Egypt, India, China,
Japan, Germany, France, Spain, United States, Canada, Brazil, Argentina, Australia and New Zealand.

Country Level Prompts. We filter the dataset such that each row of the dataset is the prompt,
response, preference probability of a single country.

After the preprocessing, we copy the dataset and assign a different timestep to each unique instance of
(prompt, response, preference). We simulate the drift in preferences by using preference probabilities
of two countries, shifting from one to another over time. Out of 100 time steps in the training
dataset, the first 33 time steps consisted of preference probabilities from the US. Preference labels
sampled from the last 33 time steps are from probabilities of the target country. We use Germany,
Japan and Brazil as target countries, creating three different datasets. In the intermediate 33 time
steps, preference labels are sampled from interpolated probabilities between these two countries. To
introduce sufficient shift in preferences, we selected responses in which probabilities for the same
response from two countries differed at least by 0.2. We subsampled prompt-response pairs down
to 10,000 datapoints, allowing each time step to consist of different prompts and responses. For
evaluation, we used prompts and response candidates that are not present in the training data.

D.4 COMPUTE RESOURCES USES

To run the LLM experiments, we use A100 GPUs with 40GB VRAM. The synthetic experiments are
run locally on a laptop without using GPUs.

D.5 SYNTHETIC EXPERIMENTS

We give further details about the setting of synthetic experiments. To analyse the performance of
NS-DPO in the log-linear policy class, we construct a synthetic environment with a known feature
space and preference drift. We use the feature space from (Li et al., 2023), where x ∈ X = [0, 1]dx ,
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Figure 10: Experiment results conducted on UltraFeedback dataset with preference drift.[Left] ρdiff = 0.7.
[Center Left] ρdiff = 0.9. [Center Right] ρdiff = 0.95. [Right] ρdiff = 1.0. As ρdiff , the percentage of
training datapoints with flipped preference increases, DPO fails to learn the preference distribution at T = 101.
Meanwhile, NS-DPO shows robust performance under various values of ρdiff , maintaining reward accuracies
above 50%. As tcp, the change point of the reward model happens later in time, the gap between stationary
approaches and NS-DPO gets larger. The experiments are run under a reward model shift from PAIRRM to
ARMORM. Llama-2-7b-chat-hf is used, and the training dataset consists of 100 time steps.

a ∈ A = [na] and ϕ(x, a) is computed as

ϕ(x, a) =

[
(a+1)·cos(x0 ·π),

1

a+ 1
·sin(x0 ·π), · · · , (a+1)·cos(xdx−1 ·π),

1

a+ 1
·sin(xdx−1 ·π)

]
.

(22)
The dimensions of the feature space and the policy parameter are both 2 · dx. We use dx = 4, dθ =
8, |A| = 16 for all synthetic experiments.

Non-stationary Dataset. To construct a dataset D = {x, a, a′, t}ni=1, we randomly sample x ∼ X
and a1, a2 ∼ A. We assign 20 datapoints per time step ∀t ∈ [100]. We sample 100 datapoints for
evaluation at T = 101. To introduce preference drift, we follow an approach similar to Faury et al.
(2021). We sample the preferences over a1 and a2 from the class of log-linear policies given in
Equation (11), parameterised by θ∗t . We denote preferred response as a and the rejected response as
a′. When t ≤ 33, we set the optimal parameter as θ∗t = (1, 0, 1, 0, 1, 0, 1, 0)⊺. Between 34 ≤ t ≤ 66,
the parameter θ∗t varies as

θ∗t =
[
cos( t−33

33 · π
2 ), sin(

t−33
33 · π

2 ), . . . , cos(
t−33
33 · π

2 ), sin(
t−33
33 · π

2 )
]⊺

. (23)

For the remaining time steps 67 ≤ t ≤ 100, we use θ∗t = (0, 1, 0, 1, 0, 1, 0, 1)⊺.

Further Results of NS-DPO and SW-DPO. We present the experiment results of NS-DPO and
SW-DPO on the synthetic dataset with varied values of hyperparameters γ and w. As shown in
Figure 9, The performance of NS-DPO is robust across varied values of γ, maintaining its reward
accuracy over 80% when 0.5 ≤ γ ≤ 0.97. In the case of SW-DPO, the performance is more
sensitive to the change of the window size w. When w = 10, it shows similar test performance in the
later stage of the training, while the process is visibly slowed down due to the reduced amount of
datapoints actually being used. On the other hand, as the window size gets bigger and starts including
datapoints where parameter shift introduces conflicting preferences, SW-DPO also shows degrading
performance. These results provide further support the advantages of using NS-DPO over SW-DPO,
as it shows faster training and less sensitivity to the hyperparameter.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E OFFLINE LEARNING ANALYSIS

In this section, we provide the remaining details of the analysis on the offline learning of
non-stationary dataset.

Non-Linearity Coefficients. Following the analysis from Filippi et al. (2010); Faury et al. (2021),
we capture the non-linearity of the sigmoid function in the NS-DPO loss. We use the coefficients
kσ,τ , cσ,τ , which are the supremum and infimum of σ̇(τ⟨ϕ(x, a)−ϕ(x, a′), θ⟩) over x ∈ X , (a, a′) ∈
A2, θ ∈ Θ respectively:

kσ,τ = sup
x∈X ,(a,a′)∈A2,θ∈Θ

σ̇(τ⟨ϕ(x, a)− ϕ(x, a′), θ⟩), (24)

cσ,τ = inf
x∈X ,(a,a′)∈A2,θ∈Θ

σ̇(τ⟨ϕ(x, a)− ϕ(x, a′), θ⟩), (25)

while we use Rσ,τ = kσ,τ/cσ,τ to denote the ratio between kσ,τ and cσ,τ .

Loss and gradient. We recap the loss of NS-DPO with ℓ2 regularisation term:

LNS
reg(θ) = − 1

n

n∑
i=1

[
γT−ti−1

{
oi log σ(hθ(xi, ai, a

′
i)) + (1− oi) log σ(hθ(xi, a

′
i, ai))

}]
+

λcσ,ττ
2

2
∥θ∥2.

(26)

We use Equation (26) to draw parallels between the NS-DPO objective in Equation (10) and the
logistic regression objective used in the generalised linear bandit setting of (Faury et al., 2021).
We assume the preference label oi is sampled from a Dynamic Bradley-Terry model with the true
unknown environment parameter θ∗ti . Under this assumption, the mean of the preference label is
E[oi|{xi, ai, a

′
i, ti}] = σ(hθ∗

ti
(xi, ai, a

′
i)). When there is only a unilateral preference sampled for

a given prompt-response pairs, the sigmoid function forces the implicit rewards of DPO to have
infinitely large scale, driving p(a ≻ a′) to either 1 or 0 (Azar et al., 2024). The ℓ2 regularisation
term in our analysis mitigates this problem, by controlling the parameter norm. Differentiating
Equation (12) with respect to the parameter θ results in

∇θLNS
reg(θ) = − 1

n

n∑
i=1

τγT−ti−1oiϕ̂i +
1

n

n∑
i=1

[
τγT−ti−1σ(hθ(xi, ai, a

′
i))ϕ̂i

]
+ λcσ,ττ

2θ︸ ︷︷ ︸
:=gτ (θ)

, (27)

where ϕ̂i = ϕ(xi, ai)− ϕ(xi, a
′
i) is also introduced for brevity. We denote the parameter-dependent

part of the gradient as gτ (θ) = 1
n

∑n
i=1

[
τγT−ti−1σ(hθ(xi, ai, a

′
i))ϕ̂i

]
+ λcσ,τ τ

2θ which we will
use to analyse the parameter estimation error.

Parameter Projection. Let θ̂T denote the parameter minimising the NS-DPO loss defined in
Equation (12), θ̂T = argminθ∈Rd LNS(θ). Due to both learning and tracking aspects of the esti-
mation error, we cannot guarantee that θ̂T is within the boundary of the parameter presented in
Assumption 1, θ̂T ∈ Θ. This motivates a parameter projection method, which enables finding an
admissible parameter θ̃T ∈ Θ while minimising its deviation from θ̂T (Faury et al., 2021; Wang et al.,
2023). Using θ̃T in the performance analysis of NS-DPO allows preventing the potential violation of
Assumption 1 when θ̂T is used. We perform parameter projection by calculating θ̂T by

θ̃T = argmin
θ∈Θ

∥gτ (θ̂T )− gτ (θ)∥(Σ̂+λI)−1 , (28)

using Σ̂ defined in Equation (17) and gτ (θ) defined in Equation (27).

Covariance matrices. In addition to Σ̂ defined in Equation (17) we also define Σ̃, to which squared
discount weights are applied:

Σ̃ =
1

n

n∑
i=1

γ2T−2ti−2(ϕ(xi, ai)− ϕ(xi, a
′
i))(ϕ(xi, ai)− ϕ(xi, a

′
i))

⊺. (29)

Due to its squared application of the exponential weighting, Σ̂ ≻ Σ̃.
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E.1 ESTIMATION ERROR

Theorem 1. (Estimation error of θ̃T .) Let δ ∈ (0, 1], λ > 0, τ > 0. Let θ̂T denote the minimiser
of the NS-DPO loss defined in Equation (12) on an offline dataset. Let θ̃T denote the parameter
obtained by performing the parameter projection procedure on θ̂T . Then with probability at least
1− δ:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

(30)

where C1 > 0 is a constant.

Estimation errors in typical stationary settings can be considered as learning errors, which are caused
by having finite data sampled stochastically. In time-varying settings, the parameter estimation suffers
from tracking error as well, which is caused by the drift of the underlying true parameter along the
time steps (Faury et al., 2021; Wang et al., 2023). In this section, we show how these errors can be
disentangled and bounded separately. To do this, we apply the approach of (Wang et al., 2023) in
contextual bandit setting to our setting of offline preference learning.

E.1.1 BOUND DECOMPOSITION

We begin with the deviation between the optimal parameter θ∗T and θ̃T , the projected parameter of
the NS-DPO estimator θ̂T :

gτ (θ̃T )− gτ (θ∗T ) =
1

n

n∑
i=1

τγT−1−ti
[
σ(hθ̃T

(xi, ai, a
′
i))− σ(hθ∗

T
(xi, ai, a

′
i))
]
ϕ̂i + λcσ,τ τ

2(θ̃T − θ∗T ).

(31)

Applying the mean value theorem to the difference of sigmoid functions in Equation (31) we get

gτ (θ̃T )− gτ (θ∗T ) =
1

n

n∑
i=1

τ2γT−1−ti

[∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ̃T ⟩)dv
]
ϕ̂iϕ̂

⊺
i (θ̃T − θ∗T )

+ λcσ,ττ
2(θ̃T − θ∗T ).

We can now define a matrix GT to define the relation between gτ (θ̃T )− gτ (θ∗T ) and θ̃T − θ∗T :

GT :=
1

n

n∑
i=1

γT−1−ti

[∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ̃T ⟩)dv
]

︸ ︷︷ ︸
α(i,θ∗

T ,θ̃T )

ϕ̂iϕ̂
⊺
i + λcσ,τI, (32)

gτ (θ̃T )− gτ (θ∗T ) = τ2 ·GT · (θ̃T − θ∗T ). (33)

We make a brief aside to show GT ⪰ cσ,τ (Σ̂ + λI) ⪰ 0 (Faury et al., 2020; Filippi et al., 2010), as
this is an important property of GT and one we will use later in the main proof. To prove this, we
first show that α(i, θ∗T , θ̃T ) > cσ,τ . α(i, θ1, θ2) is the mean value of σ̇ along the path between some
points ⟨ϕ̂, θ1⟩ and ⟨ϕ̂, θ2⟩. This is greater than the infimum of σ̇ at a point along that path, which
is in turn greater than the infimum of σ̇ in the space of parameters θ ∈ Θ. The last infimum is the
definition of cσ,τ Equation (25). Then

α(i, θ1, θ2) =

∫ v=1

v=0

σ̇(τ(vϕ⊺
i θ1 − (1− v)ϕ⊺

i θ2))dv ≥ infc∈[ϕ⊺
i θ1,ϕ

⊺
i θ2]

[σ̇(c)]

≥ infϕ∈Φ,θ∈Θ[σ̇(τϕ
⊺θ)] = cσ,τ > 0. (34)

α(i, θ1, θ2) > 0 comes from the fact that the logistic sigmoid function is strictly increasing and has a
gradient greater than zero at every point. Because of this inequality, each element of GT denoted
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by [GT ]lk∀l, k ∈ [d], is strictly larger than each element of cσ,τ [Σ̂]lk. We use this to prove that
GT ⪰ cσ,τ (Σ̂ + λI) for any v = θ1 − θ2. We first remind the reader of the definition of Σ̂:

Σ̂ =
1

n

n∑
i=1

γT−ti−1(ϕ(xi, ai)− ϕ(xi, a
′
i))(ϕ(xi, ai)− ϕ(xi, a

′
i))

⊺.

We then prove the inequality, using the fact that α and γ do not depend upon the indices l, k of the
vector v to move the sum across indices within the sum over the datapoints

v⊺GT v =
∑

(l,k)∈[d]2

[ 1
n

n∑
i=1

γT−1−tiα(i, θ1, θ2)ϕ̂iϕ̂
⊺
i + λcσ,τI

]
lk
vlvk

=

 1

n

n∑
i=1

γT−1−tiα(i, θ1, θ2)
∑

(l,k)∈[d]2

[
ϕ̂iϕ̂

⊺
i

]
lk
vlvk

+ λcσ,τ
∑
l∈[d]

v2l

≥

 1

n

n∑
i=1

γT−1−ticσ,τ
∑

(l,k)∈[d]2

[
ϕ̂iϕ̂

⊺
i

]
lk
vlvk

+ λcσ,τ
∑
l∈[d]

v2l (35)

= cσ,τ
∑

(l,k)∈[d]2

[ 1
n

n∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i + λI︸ ︷︷ ︸

Σ̂+λI

]
lk
vlvk = cσ,τv

⊺(Σ̂ + λI)v. (36)

We now continue applying Equation (33) to bound the estimation error term:

∥θ̃T − θ∗T ∥Σ̂+λI =
1

τ2
∥G−1

T (gτ (θ̃T )− gτ (θ∗T ))∥Σ̂+λI . (37)

We use Equation (36) to apply GT
−1 ≺ 1

cσ,τ
(Σ̂ + λI)−1:

1

τ2
∥G−1

T (gτ (θ̃T )− gτ (θ∗T ))∥Σ̂+λI ≺ 1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ∗T )∥(Σ̂+λI)−1 . (38)

We add and subtract gτ (θ̂T ) inside Equation (38), and apply triangle inequality to derive

1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ∗T )∥(Σ̂+λI)−1

=
1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ̂T ) + gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

≤ 1

τ2cσ,τ

(
∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 + ∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

)
. (39)

We use the definition of θ̃T from Equation (28) to derive ∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 ≤ ∥gτ (θ̂T )−
gτ (θ∗T )∥(Σ̂+λI)−1 and get

1

τ2cσ,τ

(
∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 + ∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

)
≤ 2

τ2cσ,τ
∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1 . (40)

We remind the definition of θ̂T , which minimises the gradient of the loss defined in Equation (27),
making ∇LNS

reg(θ) = 0:

∇LNS
reg(θ) =

1

n

n∑
i=1

τγT−1−ti
[
σ(τ⟨ϕ̂i, θ̂T − θref⟩)− oi

]
ϕ̂i + λcσ,ττ

2θ̂T = 0. (41)
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We rearrange the terms in Equation (41) to derive gτ (θ̂T ) on one side of the equation:

1

n

n∑
i=1

τγT−1−tiσ(τ⟨ϕ̂i, θ̂T − θref⟩)ϕ̂i + λcσ,ττ
2θ̂T︸ ︷︷ ︸

=gτ (θ̂T )

=
1

n

n∑
i=1

τγT−1−tioiϕ̂i. (42)

We apply the result of Equation (42) to obtain

gτ (θ̂T )− gτ (θ∗T ) =
1

n

n∑
i=1

τγT−1−ti [oi − σ(hθ∗
T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T . (43)

Using the fact that the preference label oi is obtained from the optimal parameter at time step ti, we
define ϵi = oi − σ(τ⟨ϕ̂i, θ

∗
ti − θref⟩), and use oi = ϵi + σ(τ⟨ϕ̂i, θ

∗
ti − θref⟩) to get

1

n

n∑
i=1

τγT−1−ti [oi − σ(hθ∗
T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T

=
1

n

n∑
i=1

τγT−1−ti [ϵi + σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T

=
1

n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i︸ ︷︷ ︸

tracking

+
1

n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T︸ ︷︷ ︸

learning

. (44)

We use terms in Equation (44) with Equation (40) to define learning error and tracking error:

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T ∥(Σ̂+λI)−1 (45)

ξtrack =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i∥(Σ̂+λI)−1 . (46)

Bounding each of Equation (45) and Equation (46) results in Theorem 1. The detailed bounds for the
tracking and learning terms are provided in Appendix E.1.2 and Appendix E.1.3 respectively.

E.1.2 CONFIDENCE SETS: LEARNING

We begin with the definition of the learning error:

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T ∥(Σ̂+λI)−1 . (47)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We bound the norm of Equation (47) with respect to Σ̃ + λI , using the fact that Σ̂ ≻ Σ̃ and
Σ̃ + λI ⪰ λI:∥∥∥ 1

n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T

∥∥∥
(Σ̂+λI)−1

≤
∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T

∥∥∥
(Σ̃+λI)−1

≤ ∥λcσ,τ τ2θ∗T ∥(λI)−1 +
∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

≤ τ2
√
λcσ,τW +

∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

. (48)

We can use the ϵi’s property of being a sub-Gaussian random variable, sampled i.i.d. during the
creation of the dataset. We apply Theorem 2.1 of (Hsu et al., 2012) to Equation (48), resulting in a
bound holding with probability at least 1− δ:∥∥∥ 1

n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

≤ τC1

√
d+ log(1/δ)

n
= βT (δ), (49)

where C1 denotes a constant introduced for bounding purpose. We provide the details of applying
(Hsu et al., 2012)’s theorem in Appendix E.4.

We now go back to the original definition of learning error term ξlearn and bound it. We use the result
in Equation (48) and Equation (49) to derive

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T ∥(Σ̂+λI)−1

=
2

τ2cσ,τ

(
τ2
√
λcσ,τW + τC1

√
d+ log(1/δ)

n

)

= 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
, (50)

which finishes the bounding of the learning error.

E.1.3 ESTIMATION ERROR: TRACKING

We begin with the definition of the tracking error:

ξtrack =
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i

∥∥∥
(Σ̂+λI)−1

=
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(τ⟨ϕ̂i, θ

∗
T − θref⟩)]ϕ̂i

∥∥∥
(Σ̂+λI)−1

. (51)

We remind that using Equation (34), α(i, θ∗ti , θ
∗
T ) is

α(i, θ∗ti , θ
∗
T ) :=

∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ∗ti⟩)dv. (52)

Applying the man value theorem to Equation (51), we obtain

2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(τ⟨ϕ̂i, θ

∗
T − θref⟩)]ϕ̂i

∥∥∥
(Σ̂+λI)−1

=
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
ti − θ∗T )

∥∥∥
(Σ̂+λI)−1

. (53)
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We apply telescopic sum, which separates θ∗ti −θ∗T into differences of the optimal parameters between
each datapoint:∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
ti − θ∗T )

∥∥∥
(Σ̂+λI)−1

=
∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i

( n∑
p=i

(θ∗tp − θ∗tp+1
)
)∥∥∥

(Σ̂+λI)−1
,

(54)

where we use tn+1 to denote T .

Then we use
∑n

i=k

∑n
j=i ai,j =

∑n
j=k

∑j
i=k ai,j to rearrange the terms inside the summation:

∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i

( n∑
p=i

(θ∗tp − θ∗tp+1
)
)∥∥∥

(Σ̂+λI)−1

=
∥∥∥ n∑

p=1

1

n

p∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

. (55)

We use α(i, θ∗ti , θ
∗
T ) ≤ kσ,τ using the definition of αi in Equation (34) to get∥∥∥ n∑
p=1

1

n

p∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

≤ τ2kσ,τ

∥∥∥ n∑
p=1

1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

. (56)

We then apply triangle inequality and Cauchy-Schwarz inequality to get

τ2kσ,τ

∥∥∥ n∑
p=1

1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

≤ τ2kσ,τ

n∑
p=1

∥∥∥ 1
n

p∑
i=1

γT−1−ti ϕ̂i∥ϕ̂⊺
i ∥2∥θ

∗
tp − θ∗tp+1

∥2
∥∥∥
(Σ̂+λI)−1

. (57)

We use ∥ϕ̂∥ ≤ 2L and arrange terms to obtain

τ2kσ,τ

n∑
p=1

∥∥∥ 1
n

p∑
i=1

γT−1−ti ϕ̂i∥ϕ̂⊺
i ∥2∥θ

∗
tp − θ∗tp+1

∥2
∥∥∥
(Σ̂+λI)−1

≤ 2Lτ2kσ,τ

n∑
p=1

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥(Σ̂+λI)−1︸ ︷︷ ︸
=v1

∥θ∗tp − θ∗tp+1
∥2. (58)

Here we bound the term v1. We first apply Jensen’s inequality to derive

v1 ≤

√√√√ 1

n

p∑
i=1

γT−1−ti

√√√√ 1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1

= γ
T−1

2

√√√√ 1

n

p∑
i=1

γ−ti

√√√√ 1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1
. (59)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We then use the property of trace operation and Σ̂ ≻
∑p

i=1 γ
T−1−ti ϕ̂iϕ̂

⊺
i from Equation (17) to get

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1 =
1

n

p∑
i=1

γT−1−titr
(
ϕ̂⊺
i (Σ̂ + λI)−1ϕ̂i

)
= tr

(
(Σ̂ + λI)−1 1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i

)
≤ tr (Id) = d. (60)

We apply Assumption 5 here. Because each time step can have at maximum m̄ datapoints, we can
upper bound 1

n

∑p
i=1 γ

−ti with

1

n

p∑
i=1

γ−ti ≤ m̄

n

t∑
k=1

γ−k =
m̄γ(γ−(t+1) − 1)

n(1− γ)
, (61)

where t =
⌈
|[p]|
m̄

⌉
. We combine Equation (60) and Equation (61) to obtain

2Lτ2kσ,τ

n∑
p=1

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥(Σ̂+λI)−1∥θ∗tp − θ∗tp+1
∥2

≤ 2Lτ2kσ,τ

n∑
p=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗tp − θ∗tp+1

∥2. (62)

We apply Assumption 5 again to upper bound the summation as
∑n

p=1 vp ≤ m̄
∑T−1

t=1 vt, getting

2Lτ2kσ,τ

n∑
p=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗tp − θ∗tp+1

∥2

≤ 2Lτ2kσ,τm̄

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2. (63)

We apply v = 1
T

∑T
k=1 v to introduce another summation:

2Lτ2kσ,τm̄

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2

=
2Lτ2kσ,τm̄

T

T∑
k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2. (64)

Because γ < 1, we can bound
T∑

k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 2

T−1∑
t=1

T∑
k=t+1

γ
k−1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
(65)

and apply geometric sum to obtain

2

T−1∑
t=1

T∑
k=t+1

γ
k−1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
= 2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
. (66)

We use γ < 1 again to derive 1+γ
1
2

2 < 1, and get

2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2 1+γ

1
2

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)

= 4

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
. (67)
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We then use
(
γ

t
2 − γ

T
2

)√
γ(γ−(t+1) − 1) ≤ γ

t
2 γ− t

2 = 1 to derive

4

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 4

√
dm̄

n

T−1∑
t=1

1

(1− γ)
3
2

. (68)

We use the result from Equation (68) to Equation (64), and use the definition of variation budget BT

from Assumption 3 to get

2Lτ2kσ,τm̄

T

T∑
k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2

≤ 8Lτ2kσ,τm̄

T

√
dm̄

n

T−1∑
t=1

1

(1− γ)
3
2

∥θ∗t − θ∗t+1∥2

≤ 8Lτ2kσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT . (69)

We now combine Equation (69) with Equation (46) to derive the full bound of the tracking error:

ξtrack =
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT . (70)

We now use Equation (70) with Equation (50) to obtain the full estimation error:

∥θ̂T − θ̂
∗
T ∥Σ̂+λI ≤ ξlearn + ξtrack

≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT , (71)

which concludes the analysis for Theorem 1.

E.2 REGRET BOUND

Theorem 2. (Regret bound of θ̃T ) Let δ ∈ (0, 1
2 ], τ > 0. Let θ̃T denote the parameter in Θ which

minimises the NS-DPO loss (Equation (12)) on an offline dataset. The following bound holds with
probability at least 1− 2δ and when λ ≥ C

√
d log(4d/δ)/n:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT

)2

,

where C1 > 0 denotes a constant. When γ = 1−
(
BT

T

)3/4
, Roff

T satisfies:

Roff
T = Õ

(
d B

3/4
T n−1/4

)
.

E.2.1 POPULATION COVARIANCE OF FEATURE DIFFERENCES

Let Σπref ,diff define the population covariance matrix of the feature differences:

Σπref ,diff = E[ϕ̂ϕ̂⊺], (72)

where ϕ̂ = ϕ(x, a)− ϕ(x, a′) denotes the feature difference vector, and the expectation is computed
with respect to x ∼ X , t ∼ T , a, a′ ∼ πref(·|x). We also define the discounted population covariance
matrix Σγ

πref ,diff
:

Σγ
πref ,diff

= E[γT−1−tϕ̂ϕ̂⊺], (73)

where the expectation is computed with respect to the same distributions as Σπref ,diff .
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We then define ωupp(T, γ):

ωupp(T, γ) = sup
v∈Rd

v⊺Σπref ,diffv

v⊺Σγ
πref ,diff

v
, (74)

Without any assumptions on the time distribution, ωupp(T, γ) ≤ γ−(T−1), which happens when all
the datapoints come from the oldest time step. We use Assumption 5 to obtain a tighter upper bound
of ωupp. Using m(T − 1) ≤ n ≤ m̄(T − 1), we can get

1

n

n∑
i=1

γT−1−ti ≥ m

n
·
T−1∑
t=1

γT−1−t ≥ m

m̄(T − 1)
·
T−1∑
t=1

γT−1−t. (75)

We note that the prompt distribution X and the reference policy πref are independent from the time
step distribution T . Using Equation (75), we obtain

v⊺Σγ
πref ,diff

v ≥

(
m

m̄(T − 1)

T−2∑
i=0

γi

)
· (v⊺Σπref ,diffv) =

m(1− γT−1)

m̄(T − 1)(1− γ)
· (v⊺Σπref ,diffv),

(76)

which implies ωupp(T, γ) ≤ m̄(T−1)(1−γ)
m(1−γT−1)

.

E.2.2 DECOMPOSING REGRET BOUND

In order to decompose and bound the detailed elements of the regret bound, we first show the relation
between the regret and the estimation error of the model parameters.

Theorem 4. Let δ ∈ [0, 1]. Let θ̃T denote the parameter obtained by performing the parameter
projection in Appendix E, after training with the NS-DPO loss defined in Equation (12) on an offline
dataset. When λ ≥ C

√
d log(4d/δ)/n, with probability at least 1− δ:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)
∥θ∗T − θ̃T ∥2Σ̂+λI

. (77)

Let πθ̃T
denote the policy we obtained by training with NS-DPO and performing parameter projection.

We use Σπθ̃T
to denote the population covariance matrix, whose expectation taken with respect to πθ̃T

.
We assess the performance of πθ̃ using the difference in expected non-stationary RLHF objective
JT (π) defined in Equation (7), which is

JT (π) = Ex∼X ,a∼π

[
r(x, a, T )− τDKL[π(·|x)∥πref(·|x)]

]
,

Roff
T = JT (π

∗
T )− JT (πθ̃T

)

= Ex∼X

[
Ea∼π∗

T (·|x)[r(x, a, T )]− τDKL[π
∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[r(x, a

′, T )] + τDKL[πθ̃T
(·|x)∥πref(·|x)]

]
. (78)

We plug Equation (8) in Equation (78) to obtain

Roff
T = Ex∼X

[
Ea∼π∗

T (·|x)[τ log
π∗
T (a|x)

πref(a|x)
]− τDKL[π

∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[τ log

π∗
T (a|x)

πref(a|x)
] + τDKL[πθ̃T

(·|x)∥πref(·|x)]
]
, (79)
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where terms with normalisation constant Z∗
T (x) are cancelled out. By using the definition of KL

divergence in Equation (79) again, we obtain

Roff
T = Ex∼X

[
− Ea′∼πθ̃T

(·|x)

[
τ log

π∗
T (a|x)

πref(a|x)

]
+ Ea′∼πθ̃T

(·|x)

[
τ log

πθ̃T
(a|x)

πref(a|x)

]]

= Ex∼X

[
τEa′∼πθ̃T

(·|x)

[
log

πθ̃T
(a|x)

π∗
T (a|x)

]]

= Ex∼X

[
τDKL[πθ̃T

(·|x)∥π∗
T (·|x)]

]
. (80)

Here, we borrow the analysis in Appendix A.5. of Chowdhury et al. (2024). We use the property of
the Bergman divergence BLx with its potential function Lx(θ) = log

∑
a′∈A⟨θ, ϕ(x, a′)⟩:

DKL[πθ̃T
(·|x)∥π∗

T (·|x)] =
1

2
(θ∗T − θ̃T )

⊺∇2Lx(θ)(θ
∗
T − θ̃T ) (81)

for a parameter θ ∈ {tθ̃ + (1 − t)θ∗ : t ∈ [0, 1]} using Taylor’s approximation. With log-linear
policies, Ex∼X [∇2Lx(θ)] = Σπθ

. We use this to derive the upper bound of Equation (80):

Roff
T = Ex∼X

[
τDKL[πθ̃T

(·|x)∥π∗
T (·|x)]

]
≤ τ∥θ∗T − θ̃T ∥2Σπθ

= τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺(Σ̂ + λI)(θ∗T − θ̃T )
(82)

We now use the following lemma from (Chowdhury et al., 2024), which relies on the matrix concen-
tration inequality to explain the difference between Σ̂ and Σγ

πref ,diff
.

Lemma 5. (Lemma A.1. of (Chowdhury et al., 2024)) With probability at least 1 − δ, for some
universal constant C, we have

∥Σ̂− Σγ
πref ,diff

∥2 ≤ C
√

d log(4d/δ)/n. (83)

Lemma 5 implies that with probability at least 1− δ and λ ≥ C
√
d log(4d/δ)/n:

Σ̂ + λI ⪰ Σγ
πref ,diff

+ λI − C
√
d log(4d/δ)/n

⪰ Σγ
πref ,diff

. (84)

We use Equation (84) to derive

τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺(Σ̂ + λI)(θ∗T − θ̃T )

≤ τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σ
γ
πref ,diff

(θ∗T − θ̃T )
. (85)

We then apply the result from Equation (74) which implies (∥v∥Σγ
πref ,diff

)−1 ≤√
ωupp(T, γ)(∥v∥Σπref ,diff

)−1:

τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σ
γ
πref ,diff

(θ∗T − θ̃T )

≤ τωupp(T, γ)∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref ,diff(θ
∗
T − θ̃T )

. (86)
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From the definition of Σπref ,diff in Equation (72), a, a′ are independently sampled. We combine this
fact with the population covariance matrix Σπref

, deriving Σπref ,diff = 2Σπref
. We use this to get

τωupp(T, γ)∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref ,diff(θ
∗
T − θ̃T )

=
τωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref
(θ∗T − θ̃T )

. (87)

We use κ = maxπ∈Π κπ with the definition of κπ in Equation (16), along with the result obtained in
Equation (76) to use ωupp(T, γ) = (T−1)(1−γ)

1−γT−1 ≤ T (1−γ)
1−γT−1 :

τωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref
(θ∗T − θ̃T )

≤ τκωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

≤ τκm̄T (1− γ)

2m(1− γT−1)
∥θ∗T − θ̃T ∥2Σ̂+λI

. (88)

E.2.3 COMPLEXITY ANALYSIS

In order to investigate the complexity of the regret bound, we set the value of γ using T,BT . We first
set γ as

γ = 1−
(
BT

T

)3/4

. (89)

We apply Equation (89) in the estimation error ∥θ∗T − θ̃T ∥Σ̂+λI , with assumption of λ ≥
C
√
d log(4d/δ)/n from Lemma 5, while ignoring the logarithmic factor:

2
√
λW (= d

1
4 n− 1

4 )

2C1

τcσ,τ

√
d+ log(1/δ)

n
(= d

1
2 n− 1

2 )

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT (= d

1
2 B

− 1
8

T T− 3
8 ) (90)

Here, we note that from Assumption 5, n = Θ(T ). This allows us to consider the complexity with
respect to the dataset size n and T together. We can conclude from Equation (90) that the complexity

bound of the entire estimation error is O(d
1
2 T− 1

4 ). By setting the value of T to a sufficiently large
one, making 1− γT−1 ≥ 1

2 , then the complexity of ωupp(T, γ) is

T (1− γ) (= B
3
4
T T

1
4 ). (91)

Finally we present the total complexity bound of the algorithm, by applying the complexity of
ωupp(T, γ) in Equation (91) to the squared estimation error ∥θ∗T − θ̃T ∥2Σ̂+λI

:

Roff
T = O(d B

3
4
T T− 1

4 )

= O(d B
3
4
T n− 1

4 ). (92)
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E.3 THEORETICAL ANALYSIS OF NS-DPO UNDER STATIONARY PREFERENCES

Corollary 3. (Regret bound under stationary preferences) Let BT → 0, δ ∈ (0, 1
2 ], τ > 0. Let

θ̃T ∈ Θ denote the minimiser of the NS-DPO loss (Equation (12)). Then, for λ ≥ C
√
d log(4d/δ)/n,

some constant C1 > 0, γ = 1−
(
BT

T

)α
and α ∈ (0, 2

3 ), we have with probability at least 1− 2δ:

lim
BT→0

Roff
T <

4τκm̄

m︸ ︷︷ ︸
Pre-factor

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

,

and recover the complexity of Roff
T = O(n− 1

2 ) under stationary preferences.

We show that under certain conditions, NS-DPO’s regret bound recovers O(n− 1
2 ). We first analyse

the estimation error in the limit BT → 0. Consider the estimation error bound in Theorem 1:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

, (93)

in which the tracking term depends upon γ and BT . In the regret bound, we write γ in terms of BT

the form of

γ = 1−
(
BT

T

)α

, (94)

where α ∈ R. We obtain 1 − γ =
(
BT

T

)α
by rearranging terms. Substituting BT back into the

estimation error bound, we find that the tracking term reduces to 16LRσ,τm̄T
3
2α−1B

1− 3
2α

T

√
dm̄
n .

By inspection, for 0 < α < 2
3 the tracking term tends to 0 as BT → 0. Thus we conclude that

lim
BT→0

(
2
√
λW+

2C1

τcσ,τ

√
d+ log(1/δ)

n
+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT

)
= 2

√
λW+

2C1

τcσ,τ

√
d+ log(1/δ)

n
.

(95)

We now consider the regret bound in Theorem 2:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)︸ ︷︷ ︸
Pre-factor

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

Tracking

)2

. (96)

Here we note that the tracking term and the pre-factor term are dependent upon γ. Using the product
rule of limits, we analyse the limit of the pre-factor and tracking terms independently and then
multiply them together. Using L’Hopital’s rule, the pre-factor term in Equation (96) in the limit
BT → 0 becomes

lim
BT→0

τκm̄T (1− γ(BT ))

2m(1− γ(BT )T−1)
= lim

BT→0

τκm̄T (BT

T )α

2m(1− (1− (BT

T )α)T−1

(97)

We remove terms that do not depend upon BT for simplicity and then apply L’Hopital’s rule:

lim
BT→0

(BT

T )α

(1− (1− (BT

T )α)T−1
= lim

BT→0

1

(T − 1)(1− (BT

T )α)T−2
(98)

=
1

T − 1
(99)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

thus finding the limit of the pre-factor term. As T > 1, τκm̄T
2m(T−1) <

τκm̄
m , we use our analysis from

the estimation bound and set 0 < α < 2
3 , such that the limit of the tracking term is 0 as expected in

stationary scenarios. We can now write the regret bound as

lim
BT→0

Roff
T <

4τκm̄

m︸ ︷︷ ︸
Pre-factor

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

. (100)

and recover the result of O(n−1/2) in Corollary 3.

E.4 DETAILS OF APPLYING BERNSTEIN’S INEQUALITY

We restate the norm to investigate:

∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i∥(Σ̃+λI)−1 . (101)

We then define two vectors V and Z, followed by a matrix M :

V = [ϵ1, . . . , ϵn], (102)

Z = [γT−1−t1 ϕ̂1, . . . , γ
T−1−tn ϕ̂n], (103)

M =
1

n2
Z(Σ̃ + λI)−1Z⊺. (104)

We then express Equation (101) using V,Z,M :

∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i∥(Σ̃+λI)−1 =
√
τ2V ⊺MV . (105)

We here recall the definition of ϵi, which is a 1-sub-Gaussian random variable:

ϵi = oi − σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩),

Eoi∼pti
(ai≻a′

i|xi)[ϵi] = 0, (106)

Varoi∼pti
(ai≻a′

i|xi)[ϵi] = Eoi∼pti
(ai≻a′

i|xi)[ϵ
2
i ]− (Eoi∼pti

(ai≻a′
i|xi)[ϵi])

2 ≤ 1. (107)

As stated in (Hsu et al., 2012), the Bernstein’s inequality for sub-Gaussian random variables in
quadratic form implies

τ2V ⊺MV ≤ τ2
(

tr(M) + 2
√

tr(M⊺M) log(1/δ) + 2∥M∥ log(1/δ)
)

≤ τ2 · C1 ·
d+ log(1/δ)

n
, (108)

for some C1 > 0, while ∥M∥ = λmax(M). Here we used the definition of Σ̃ in Equation (17) to
show Σ̃ = 1

nZ
⊺Z, and derive for λ > 0

M ≺ 1

n2
Z(Σ̃)−1Z⊺ =

1

n
I, (109)

tr(M) ≤ d/n, (110)

tr(M⊺M) ≤ d/n2, (111)
∥M∥ ≤ 1/n. (112)
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