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Abstract
The transportation sector is a major contributor to greenhouse gas emissions in Europe.
Shifting to electric vehicles (EVs) powered by a low-carbon energy mix could reduce carbon
emissions. To support electric mobility, a better understanding of EV charging behaviours at
different spatial and temporal resolutions is required, resulting in more accurate forecasting
models. For instance, it would help users getting real-time parking recommendations,
networks operators planning maintenance schedules, and investors deciding where to build
new stations. In this context, the Smarter Mobility Data Challenge has focused on the
development of forecasting models to predict EV charging station occupancy. This challenge
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involved analysing a dataset of 91 charging stations across four geographical areas over
seven months in 2020-2021. The forecasts were evaluated at three spatial levels (individual
stations, areas regrouping stations by neighborhoods and the global level of all the stations
in Paris), thus capturing the different spatial information relevant to the various use cases.
The results uncover meaningful patterns in EV usage and highlight the potential of this
dataset to accurately predict EV charging behaviors. This open dataset addresses many
real-world challenges associated with time series, such as missing values, non-stationarity
and spatio-temporal correlations. Access to the dataset, code and benchmarks are available
at https://gitlab.com/smarter-mobility-data-challenge/tutorials to foster future research.
Keywords: Electric Mobility, Statistical Learning, Boosting, Hierarchical Forecasting

1 Introduction

Electric mobility The transportation sector is currently one of the main contributors to
greenhouse gas emissions in Europe (IEA, 2022). To reduce these emissions, an interesting
avenue has been to foster the development of EVs. In 2021, China led global EV sales with
3.3 million units, tripling its 2020 sales, followed by Europe with 2.3 million units, up from 1.4
million in 2020 (IEA, 2022). The U.S. market share of electric vehicles doubled to 4.5%, with
630,000 units sold. Meanwhile, electric vehicle sales in emerging markets more than doubled
(IEA, 2022). As a consequence, electric mobility development entails new needs for energy
providers and consumers (RTE, 2022). Companies and researchers are proposing a large
amount of innovative solutions including pricing strategies and smart charging (Dallinger
and Wietschel, 2012; Wang et al., 2016; Alizadeh et al., 2017; Moghaddam et al., 2018;
Crozier et al., 2020) to couple it with renewable production Hafeez et al. (2023). However,
their implementation requires a precise understanding of charging behaviours and better
EV charging models are necessary to grasp the impact of EVs on the grid (Gopalakrishnan
et al., 2016; Kaya et al., 2022; Ciociola et al., 2023; Andrenacci and Valentini, 2023). In
particular, forecasting the occupancy of a charging station can be a critical need for utilities
to optimise their production units according to charging demand (Zhang et al., 2023). On
the user side, knowing when and where a charging station will be available is critical, but
large-scale datasets on EVs are rare (Calearo et al., 2021; Amara-Ouali et al., 2021).

Summary of the challenge This article presents the Smarter Mobility Data Challenge,
which aims at testing statistical and machine learning forecasting models to predict the
states of a set of charging stations in the Paris area at different geographical resolutions.
This challenge was held from October, 3rd 2022 to December 5th, 2022 on the CodaLab
platform https://codalab.lisn.upsaclay.fr/competitions/7192. It was organised by
the Manifeste IA, a network of 16 French industrials and TAILOR, a European project which
aims to provide the scientific foundations for Trustworthy AI. It has been pioneered following
the ‘AI for Humanity’ French government plan launched in 2019. The challenge gathered 169
participants and was open to students from the EU. The authors (except the participants of
the challenge) have collected and prepared the dataset, and organised the data challenge.

Time series models Forecasting time series data is essential for businesses and governments
to make informed decisions. However, the temporal structure in time series comes with
specific challenges, such as non-stationarity and missing values. This is why, in addition to
standard machine learning models, a wide range of models have been tailored for time series.

2

https://gitlab.com/smarter-mobility-data-challenge/tutorials
https://codalab.lisn.upsaclay.fr/competitions/7192


Smarter Mobility Data Challenge

These include auto-regressive models (Box et al., 2015), tree-based models (Friedman, 2001),
and deep learning models such as recurrent neural networks (Jordan, 1997; Hochreiter and
Schmidhuber, 1997), temporal convolutional networks (Bai et al., 2018) and transformers
(Wen et al., 2023). However, no one model has proven to be better than the others at
predicting time series. On the one hand, although deep learning models are known to
perform well with large datasets, it is still unclear how they compare to other models on
small datasets, how they handle non-stationary data or how they deal with with exogenous
information (Zeng et al., 2023; Kshitij et al., 2024). In fact, modern machine learning models
still struggle to deal with missing values and time-dependent patterns such as trends or
breaks. On the other hand, tree-based models such as gradient-boosted trees are known
to perform well on tabular data (McElfresh et al., 2023), and to sometimes outperform
complex deep learning models (Makridakis et al., 2022a). Therefore, practical insights from
datasets and benchmarks are valuable (Petropoulos et al., 2022). In particular, a recent
comprehensive benchmark (Godahewa et al., 2021) has regrouped 26 time series datasets on
various domains, including energy and transport, taken from challenges (see, e.g., Makridakis
et al., 2022b) and the public domain. Other works have proposed synthetic datasets to
evaluate specific properties of forecast algorithms, such as interpretability (Ismail et al.,
2020), outlier detection (Lai et al., 2021), and forecast performance (Kang et al., 2020).

Hierarchical forecasting The data of the Smarter Mobility Data Challenge has a hierar-
chical structure because it EV charging stations can be regrouped at different scales (stations,
areas, and global). Hierarchical time series forecasting has been studied on various other
applications where the data is directly or indirectly hierarchically organised. For example, in
the retail industry, goods are often classified into categories (such as food or clothing) and
inventory management can be done at different geographical (national, regional, shop) or
temporal (week, month, season) scales. Moreover, electricity systems often have an explicit
(electricity network) or implicit (e.g., customer types, tariff options) hierarchy. Recent work
shows that exploiting this structure can improve forecasting performance at different levels of
hierarchy. For instance, Hyndman et al. (2011) focuses on tourism demand, Athanasopoulos
et al. (2020) on macroeconomic forecasting, and Hong et al. (2019); Brégère and Huard
(2022); Taieb et al. (2020); Nespoli and Medici (2022) on electricity consumption data.

Related works Similar to energy and transport forecasting, EV demand forecasting has
received a lot of attention. The survey by Amara-Ouali et al. (2022) compares the classical
time series methods, the statistical models, the machine learning methods and the deep
learning methods that have been used to capture the temporal dependencies in EV charging
data. Overall, it shows that both tree-based models and deep learning models are able to
capture the complex non-linear temporal relationships in EV charging data. More recently,
Ma and Faye (2022) proposed a hybrid LSTM model that outperformed classical machine
learning approaches (support vector machine, random forest, and Adaboost) and other deep
learning architectures (LSTM, Bi-LSTM, and GRU) in forecasting the occupancy of 9 fast
chargers in the city of Dundee. Wang et al. (2023) have investigated the use of spatial
correlations to predict EV charging behaviour. They proposed a spatio-temporal graph
convolutional network incorporating both geographical and temporal dependencies to predict
the short-term charging demand in Beijing using a dataset of 76774 private EVs. However,
such individual data is expensive and often kept private, and Wang et al. (2023) only had
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access to data for the month of January 2018. In fact, although datasets describing the
development of EV infrastructures are common (see, e.g., Falchetta and Noussan, 2021; Yi
et al., 2022), fewer datasets document the actual use of EVs and they are often of lower
spatial resolution (see, e.g., Lee et al., 2019). In fact, open datasets at the scale of individual
stations, such as the one presented in this article, are still very rare (Amara-Ouali et al., 2021).
Such so-called EVSE-centric (for Electric Vehicle Supply Equipment) datasets are more
informative and hierarchical forecasting could be useful for users and operators interested in
specific EV stations. However, even with EV datasets spanning multiple years, ruptures are
common and models require specific adjustments (see, e.g., Koohfar et al., 2023).

Main Contributions The main contributions of the paper can be summarised as follows:

1. An open dataset on electric vehicle behaviors gathering both spatial and hierarchical
features, available at https://gitlab.com/smarter-mobility-data-challenge/a
dditional_materials. Datasets with such features are rare and valuable for electric
network management.

2. An in-depth descriptive analysis of this dataset revealing meaningful user behaviors
(work behaviors, daily and weekly patterns...).

3. A detailed and reproducible benchmark for forecasting the EV charging station oc-
cupancy. This benchmark compares the winning solutions of a data challenge and
state-of-the-art predictive models.

Overview The paper is structured as follows. Section 2 describes the dataset. Section 3
details the forecasting problem at hand and baseline models. Section 4 presents the methods
proposed by the three winning teams. Finally, Section 5 summarizes the findings and
discusses our results. The full dataset, baseline models, winning solutions, and aggregations,
are available at https://gitlab.com/smarter-mobility-data-challenge/tutorials and distributed
under the Open Database License (ODbL). A supplementary material presents the Belib’s
pricing and park history in Section 1, a detailed data description (collection, preprocessing,
explanatory data analysis) in Section 2, some complements about the winning strategies
of the challenge in Section 3, future perspectives about new datasets and benchmarks in
Section 4 and a Datasheet in Section 5.

2 EV charging dataset

In this section we present how the raw dataset was collected and how it was then preprocessed
to make it suitable for the data challenge.

General description The dataset is based on the real-time charging station occupancy
information of the Belib network, available on the Paris Data platform (ODbL) (of Paris,
2023). The Belib network was composed of 91 charging stations in Paris at the time of the
challenge, each offering 3 plugs for a total of 273 charging points. A process to store the
data was initiated by the EDF R&D team since daily data was not stored by Paris Data. A
pipeline was set up to collect this data every 15 minutes, starting July 2020, on the platform’s
dedicated API https://parisdata.opendatasoft.com/explore/dataset/belib-point
s-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel/api. The
data was then stored in a data lake based on Hadoop technologies (HDFS, PySpark, Hive,

4

https://gitlab.com/smarter-mobility-data-challenge/additional_materials
https://gitlab.com/smarter-mobility-data-challenge/additional_materials
https://gitlab.com/smarter-mobility-data-challenge/tutorials
https://parisdata.opendatasoft.com/explore/dataset/belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel/api
https://parisdata.opendatasoft.com/explore/dataset/belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel/api


Smarter Mobility Data Challenge

and Zeppelin). The storage of this information over time allows, for example, to estimate
the usage of the charging stations depending on their location.

Belib’s history: pricing mechanism and park evolution 89% of EV users living in a
house mainly charge their vehicle at home, compared to only 54% of EV users living in an
apartment in 2020 (ENEDIS, 2021). Paris is a very dense city that allows limited access to
private residential charging points, hence the need for public charging stations. The first 5
stations of the Belib network were commissioned on 12 January, 2016 (Torregrossa, 2016;
Camille, 2016). The network grew progressively in 2016 to reach 60 stations all around Paris.
Users needed to buy a 15 euro badge to connect to the network. Different pricing strategies
were applied depending on the time of the day and plugs. The "normal charge" of 3kW was
free at night (between 8 p.m. and 8 a.m.) and cost 1 euro per hour on daytime (between 8
a.m. and 8 p.m.). The "quick charge" of 22kW cost 25 cents every 15 minutes during the
first hour of charge. After the first hour, the first 15 minutes cost 2 euros. After this 1h and
15 minutes, each 15 minutes cost 4 euros. Each station contained 3 parking spots:

• one dedicated to "normal charge" with an E/F electric plug,

• one dedicated to "quick charge" with a ChaDeMo and a Combo2 plugs,

• one where both "normal charge" and "quick charge" were possible, with an E/F, a T2,
and a T3 plugs.

The pricing strategy was intended to allow the usage of "normal charge" plugs as a free
parking spot overnight, while "quick charge" became expensive after one hour of usage.

In 2021, the city of Paris allowed the company TotalEnergies to run the Belib network for
a period of 10 years. The goal is to enhance the network, increasing from 90 stations and 270
charging points, to 2300 charging points (TotalEnergies, 03/31/2021; Livois, 04/09/2021).
We elaborate on the new pricing mechanism in the supplementary material.

Data preprocessing In the raw data, each observation reflects the status of the plugs (up
to 6) within a charging point. The structure of the raw dataset is misleading as only one of
these plugs can be in use at a time. Therefore, we processed the dataset to only keep the
relevant rows, i.e., the rows containing the plugs in use, and we treated a charging point as a
single plug. In addition, charging points are clustered in groups of three according to their
geographic location in the raw data. This charging point structure was confirmed by the data
provider. We grouped the three adjacent charging points into a single charging station and
aggregated the data accordingly. To account for differences in timestamp synchronization
between stations, we have adjusted timestamps to match the nearest 15-minute interval. The
available, charging, and passive states are taken directly from the raw data. The last state
other regroups several statuses including reserved (a user has booked the charging point),
offline (the charging point is not able to send information to the server), and out of order
(the charging point is out of order). We made this choice because of the relatively small
number of reserved and out of order records. This way, the other state could be interpreted
as a noisy version of the offline state. Missing timestamps in the dataset have not been filled
so there is room for missing data imputation techniques.
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Figure 1: Left: Percentage of non missing observations per station. Right: Number of non
missing stations in function of time on the train set.

Missing values There is a significant number of missing values in the data. To illustrate,
the records of the following five days are very incomplete as they contain less than 96
observations for all the 91 stations: 2020-08-06 (with 92 data points), 2020-10-27 (95),
2020-11-20 (54), 2020-12-29 (95), and 2021-01-04 (95). The distribution of missing values is
highly station-dependent, as illustrated in Figure 1. We note that half of the stations have
almost no missing data (except for the five days documented above), whereas 7 stations have
around 50% missing observations. This suggests that malfunctioning behaviors are specific
to some stations and could be learned. In addition, the number of non-missing stations is
depicted in Figure 1. Note that we excluded timestamps from the plot when all stations
were missing. We also note that the number of missing stations starts to fluctuate a lot after
October.

Exploratory Data Analysis We show daily and weekly profiles with the median number
of plugs as a function of time (an instant corresponding to a 15-minute interval) per status at
the Global level on Figure 2. From these graphs, We observe the presence of a daily pattern
in the data and a change in the pattern between weekdays and weekends. What we observe
in Figure 2 matches with the pricing strategy used from 2016 to 2021, detailed in Paragraph
2. The pricing changed twice a day: at 8 a.m. and 8 p.m. At night, the free "normal charge
regime" (7kW) explains the peak in charging states at instant 80 (corresponding to 8 p.m.)
and the drop of available at the same hour. This "normal charge" mode provides a low
electrical power, hence the slowness of charging. Therefore, overnight, as EV batteries become
fully charged, the number of charging states decrease in favour of the number of passive
states. The proportion of other states is more important at night, mainly because there is
more maintenance jobs at night. Since users tend to be repelled by or ignore malfunctioning
stations it explains why this excess in other comes with a slight increase of available at night.
On the other hand, the price increase, after 8 a.m., induces a decrease of passive spots from
7p.m. to 9 p.m. and an increase of available (drivers parking on regular parking spots) and
charging spots (drivers charging their car in front of their office after the morning ride). This
analysis is consistent with the weekly scale in Figure 2. The number of charging stations is
greater during work days, while the number of available stations is greater during week-ends,
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Figure 2: Daily (left) and Weekly (right) profiles for each status at the Global level.

reflecting commuting behaviors. We note that the daily peaks at 8 a.m. and 8 p.m. are
pronounced on the weekly charging profile.
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Figure 3: Empirical ACF of the 4 status at the global level.

Figure 3 shows the empirical autocorrelation functions (ACF) at the global level. As
excepted, we observe daily and weekly cycles. The daily cycle depends on the state of the plug.
The non-stationnarity of the data is visible on the ACF: the available status slowly decreases
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on its ACF due to the low frequency component of the data. We study the distribution of
the states with respect to time and stations. The barplots of the corresponding frequencies
(in percent) are shown in Figure 4 (left). We note a major difference between the available
status and the 3 others; the stations’ plugs are most often available than in any other state.
The distribution of the 4 states by area is shown in Figure 4 (right). The distribution profile
is similar in all areas with a high frequency of available status, followed by other, passive
then charging. We note that the other status is over represented in the north area. The west
area has lower availability due to higher charging activities as well as a high representation of
Other. The south and east area are very similar, with higher representation of the available
status.
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Figure 4: Left: distribution of the 4 states over all the stations and instants. Right:
distribution of the 4 states by area.

3 Problem description

In this section, we introduce the hierarchical forecasting challenge proposed to the contestants
of the Smarter Mobility Challenge. The overall goal is to forecast the occupancy of charging
stations at different geographical resolutions: single station, regional and global Paris area.
Accurate prediction of a single station typically benefits to EV drivers looking for available
charging points, whereas forecasting the occupancy of a network of charging stations allows
utility providers to optimise their production units. This can lead to significant savings for
the electricity system (around 1 billion euros per year, see RTE (Sections 5.4 and 5.5, 2019)
and Lauvergne et al. (2022)).

Data splitting For this data challenge, we split the data between a training and a testing
set. Because of the change of operator and pricing (see Section 2) on March 25th, 2021, we
decided to study the following period: from July 3rd, 2020 to March 10th, 2021, when both
the EV park and the pricing stayed unchanged. To mimic a genuine time-series forecasting
problem, we preserved the time structure when partitioning the data and selected a test set
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of three weeks. The test set is a stable period that does not include significant changes in
the data on the global level (Figure 5).
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Figure 5: Left: total number of plugs in each state in function of time on train and test
(transparent color). The vertical dashed lines represents the end of the train set. Right: total
of available plugs in function of time on the test set. In blue: public set. In red: private set.

The training set contains Dtrain points from 2020-07-03 00:00 to 2021-02-18 23:45. The
test set contains Dtest points from 2021-02-19 00:00 to 2021-03-10 23:45. As most EVSE
stakeholders (e.g., EDF Group) receive the data with a delay of one to two weeks, we designed
the challenge to match the operational perspective, hence the two-week forecast horizon.
The test set has been divided into two subsets: a public set for validation purposes and a
private set Dprivate. The latter being used to quantify the performance of the solution while
minimising the risk of overfitting.

To create the public and the private sets, the test set was split into three subsets of one
week each. The first week was assigned to the public set, and the third one to the private
set. We randomly assigned 20% of second week to the public set and the rest to the private,
as illustrated in Figure 5. February 23 was excluded of the test set as it contains outliers.
The public and private test sets were structured to balance the preservation of the temporal
structure of the data and to avoid overfitting on short forecast horizons.

Target description At any given time, a plug is in one of the four states.

• A station is in state c (charging) when it is plugged into a car and provides electricity.

• In state p (passive) when connected to a car that is already fully charged.

• In state a (available) when the plug is free.

• In state o (other) when the plug is malfunctioning.

We denote by yt,k = (at,k, ct,k, pt,k, ot,k) ∈ {0, 1, 2, 3}4 the vector representing the state of
station k ∈ {1, . . . , 91} at time t, where at,k is the number of available plugs, ct,k the number
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Figure 6: The 91 stations (yellow dots on the left) and the 4 areas of Paris (colored on the
right)

of charging plugs, pt,k the number of passive plugs, and ot,k the number of other plugs, at
station k and time t. By definition, eq. 1 is always valid,

at,k + ct,k + pt,k + ot,k = 3. (1)

Features description To predict the state of station k at time t, the dataset contains the
following variables:

• Temporal information: date, tod (time of day), dow (day of week), and trend (a
temporal index).

• Spatial information: latitude, longitude, and area (south, north, east, and west) of the
station.

dow is the day of week (from 1 for Monday to 7 for Sunday) and tod the time of day, by
interval of 15 minutes (0 for 00:00:00 to 95 for 23:45:00). The trend feature is the numerical
conversion of the time index, and date is the corresponding string, in the ISO 8601 format.
The data is then aggregated into 4 areas of about 20 stations each, as shown in Figure 6.

Evaluation We aim to forecast the state of the different plugs at 3 hierarchical levels:

• Individual stations: denoted by yt,i, for i ∈ {1 . . . 91}.

• Areas, corresponding to the cardinal points: yt,south, yt,north, yt,east, and yt,west

• At the global level: yt,global

we also introduce yt,zone =
∑

i∈zone yt,i as the sum of the plugs per state in a zone (south,
north, east, west, or global). Let zt = (yt,1, . . . , yt,91, ytsouth, yt,north, yt,east, yt,west, yt,global) be
the aggregated matrix containing the statutes of all stations at the different hierarchical
levels at time t. The goal is to provide the best estimator ẑ of z. Performance is evaluated
using the following score, encoding each hierarchical level as a penalty.

L(z, ẑ) = |Dprivate|−1
∑

t∈Dprivate

(
ℓstation(zt, ẑt) + ℓarea(zt, ẑt) + ℓglobal(zt, ẑt)

)
, (2)
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Figure 7: Number of available (left) an passive (right) plugs in function of time for one
station, its corresponding area and at the global level.

with the different terms defined as follows:

ℓstation(zt, ẑt) =

91∑
k=1

∥yt,k − ŷt,k∥1,

ℓarea(zt, ẑt) =
∑

zone∈C
∥yt,zone − ŷt,zone∥1,

ℓglobal(zt, ẑt) = ∥yt,global − ŷt,global∥1,

where C = {south, north, east,west} is the set of cardinal points and ∥x∥1 =
∑p

k=1 |xk| is the
usual ℓ1 norm on Rp. We illustrate the different hierarchical level of the data in Figure 7.
We observe that spatial aggregation increases the signal-to-noise ratio, as the variance tends
to decrease when the spatial aggregation is broader.

Baseline models As a baseline, we provided two models. A first naive estimator of zt is
the median per day of week and quarter-hour over the training set, in which we removed the
missing values:

ẑt = median
t′∈Calt

{zt′}, (3)

where

Calt = {t′ ∈ Dtrain, dow(t′) = dow(t)} ∩ {t′ ∈ Dtrain, tod(t′) = tod(t)}.

Notice that the Calt corresponds to the timestamps of the same day of the week and the
same hour of the day.

The second baseline model is the parametric model called (CatBoost). It is a tree-based
gradient boosting algorithm designed to solve regression problems on categorical data. We
used its implementation in the python library CatBoost (Prokhorenkova et al., 2018) and it
has demonstrated excellent performance for a great variety of regression tasks (Daoud, 2019;
Huang et al., 2019; Hancock and Khoshgoftaar, 2020) and forecasting challenges (Makridakis
et al., 2022b). The performance of these two baselines on the private test set is shown by
the dotted lines in Figure 8, next to the solutions of the winning team.
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4 Solutions of the winning teams

This section describes the methods used by the three winning teams. The ranking of the
top competitors is shown in Figure 8. The confidence intervals are constructed by time
series bootstrapping (non-overlapping moving block bootstrap) (Kunsch, 1989; Politis and
Romano, 1994). One subsection is dedicated to each of the winning teams, as their approaches
are informative for the analysis of the dataset. In the last subsection, their strengths are
combined using aggregation methods.

Figure 8: Ranking of the top competitors.
∗ No information about these methods were provided by these competitors.

4.1 Arthur Satouf (team Arthur75)

Data exploration As shown in Figure 1, the dataset presents a lot of missing data.
Common techniques were considered to impute these Pratama et al. (2016), including
computing the mean by station, forward and backward filling, simple moving average,
weighted moving average, and exponential moving weighted average (EMW) Hunter (1986).
These techniques are evaluated by measuring the mean absolute error (MAE) on a validation
subset of the training set. As a result, the EMW is the most effective technique, and it is
thus implemented for both forward and backward filling approaches. Specifically, we use the
last 8 known values to forward fill the first 8 missing values. The same procedure is applied
to backward filling.

12
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Table 1: Example of a data conversion to a string

Given station at a given time Available Charging Passive Other Target

14h15-16/08/2021 1 2 0 0 1200
14h30-16/08/2021 0 1 1 1 0111
14h45-16/08/2021 0 0 3 0 0030

Model description We compare usual forecasting models Ahmed et al. (2010); Chen
and Guestrin (2016); Ribeiro and dos Santos Coelho (2020), such as SARIMAX, LSTM,
XGBoost, random forest, and CatBoost. The evaluation metric used is the MAE, and the
time series cross-validation technique is applied to evaluate the performance of the models
Kreiss and Paparoditis (2011); Pedregosa et al. (2011). The CatBoost algorithm is ultimately
chosen for its fast optimization relying on parallelization and its ability to handle categorical
data without preprocessing. As explained in Section 2, the states of any station k satisfy
at any time t the equation at,k + ct,k + pt,k + ot,k = 3, which is enforced in the CatBoost
estimator as follows.

• At the station level, the problem is transformed from a multi-task regression problem
to a classification problem. This is achieved by concatenating the values of each task
as a string, resulting in 20 unique classes. In this approach, the sum of the four vectors
always equals three, given that there are three plugs. After predicting a given target,
the target is decomposed into four values. Table 1 provides an example.

• At the area level, CatBoost was also used as a regression problem, as shown in Figure 9
and Figure 10. However, each area had its own model, and each area used a combination
of CatBoost regressor and Regressor-Chain Read et al. (2009). Regressor-Chain involves
building a unique model for each task and using the result of each task as an input
for the next prediction model. The output of each model, along with the previous
output, is then used as input for the next task. This approach helps to keep the sum
of plug equal to the right number and takes into account the correlation between tasks,
making the prediction more robust.

• At the global level, the approach is similar to the one applied to the area level, with
only 4 models as there are no longer areas.

A time series cross validation is used once again to tune the hyperparameters and to validate
the models. It relies on the mean absolute percentage error Myttenaere et al. (2016) at the
area and the global levels, and on the F-measure Chen et al. (2004) at the station level. In
total, 21 CatBoost models are used to forecast the private datasets.

4.2 Thomas Wedenig and Daniel Hebenstreit (team Charging-Boys)

Data exploration Exploratory experiments did not show any signs of a trend within the
time series. Regarding stationarity, we run the Augmented Dickey–Fuller test Dickey and
Fuller (1979) on the daily averages of the target values for each station and find inconclusive
results. Therefore, we cannot assume stationarity for all target-station pairs, which is why
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Yavail.Xtrain CatBoost 1

Xtrain Yavail. Ychar. CatBoost 2

Xtrain Yavail. Ychar. Ypass. CatBoost 3

Xtrain Yavail. Ychar. Ypass. Yother. CatBoost 4

Train

Train

Train

Train

Figure 9: Training process of the regressor Chain with CatBoost-Regressor.

Xtest CatBoost 1 Ŷavail.

Xtest Ŷavail. CatBoost 2 Ŷchar.

Xtest Ŷavail. Ŷchar. CatBoost 3 Ŷpass.

Xtest Ŷavail. Ŷchar. Ŷpass. CatBoost 4 Ŷother.

Input Pred.

Input Pred.

Input Pred.

Input Pred.

Figure 10: Inference process of the regressor Chain with CatBoost-Regressor.

we employ differencing in the construction of our ARIMA model. As usual in statistical
frameworks, we assume that the noise interferes with the high frequencies of the signal.
To denoise, we preprocess the time series by computing a rolling window average with a
window size of 2.5 hours Hyndman and Athanasopoulos (2018). During our data exploration,
we encounter a significant change in the behavior of the individual stations in the end of
October 2020, just before the COVID-19 regulations were enforced in Paris. We also assume
that several stations were turned off after this event, as labels were missing over large time
intervals. Thus, we experiment with different methods of missing value imputation, but find
that simply dropping the timestamps with missing values performs best. We add custom
features, namely a column indicating whether the current date is a French holiday, as well as
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sine and cosine transforms of tod, dow, the month, and the position of the day in the year.
To ensure that our regression models return integer outputs that sum to 3 for each station
and timestamp (since stations have exactly 3 plugs), we round and rescale these predictions
in a post-processing step.

Model description We train different models and then aggregate them. First, we start by
considering a tree-based regression model. Using skforecast Rodrigo and Ortiz (2023), we
train an autoregressive XGBoost model Chen and Guestrin (2016) with 100 estimators. We
train it on all of the 91 stations individually, each having 4 targets, resulting in 364 models.
Each model receives the last 20 target values, as well as the sine/cosine transformed time
information as input, and predicts the next target value. We also discard all features that
are constant per station (e.g., station name, longitude, and latitude). The final regression
model achieves a public leaderboard score of 177.67.

Then, we consider a tree-based classification model. To effectively enforce structure in the
predictions (i.e., that they sum to 3), we transform the regression problem discussed above
into a classification problem. For a given station and timestamp, consider the set of possible
target values C =

{
x ∈ {0, 1, 2, 3}4 s.t.

∑4
i=1 xi = 3

}
. We treat each element c ∈ C as

a separate class and only predict class indices ∈ I = {0, . . . , 19} (since |C| = 20). While
I loses the ordinal information present in C, this approach empirically shows competitive
performance. When training a single XGBoost classifier with 300 estimators for all stations,
we achieve a public leaderboard score of 178.9. We also experiment with autoregressive
classification (i.e.,including predictions of previous timestamps), but find no improvement in
the validation error.

Finally, we fit a non-seasonal autoregressive integrated moving average (ARIMA) model
Box et al. (2015) for each target-station combination.

To predict the value of a given target, we only consider the last p = 2 past values of
the same target (in the preprocessed time series) and do not use any exogenous variables
for prediction (e.g., time information). We apply first-order differencing to the time series
(d = 1) and design the moving average part of the model to be of first-order (q = 1). On
the validation and training sets, forecasts were applied recursively, using past forecasts as
ground truth.

We observe that the forecasts using these models have very low variance, i.e., each model
outputs an approximately constant time series. These predictions achieve a competitive score
on the public leaderboard (third place).

The final model is an ensemble of the tree-based regression model, the tree-based
classification model, and the ARIMA model. For a single target, we compute the weighted
average of the individual model predictions (per timestamp). The ensemble weights are
chosen to be roughly proportional to the public leaderboard score (wreg = 0.35, wclass = 0.25,
wARIMA = 0.4). Since the predictions of the tree-based models have high variance, we can
interpret mixing in the ARIMA model’s predictions as a regularizer, which decreases the
variance of the final model. As the tree-based models also use time information for their
predictions, we use the entirety of the available features.
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Figure 11: Percentage of state o occurrences per outlier per day around 2020-10-22

4.3 Nathan Doumèche and Alexis Thomas (team Adorable Interns)

Data exploration Several challenges arise from the data, as shown in Figure 1. An
interesting phenomenon is the emergence of a change in the data distribution on 2020-10-22,
characterized by the appearance of missing data. A reasonable explanation is that the
detection of missing values is due to an update in the software that communicates with the
stations. The update would have taken place on 2020-10-22, allowing the software to detect
new situations in which stations were malfunctioning. This hypothesis is supported by the
fact that the stations with missing values are those that were stuck in states corresponding
to the absence of a car, i.e., either the state a or the state o (see Figure 11). In fact, 88%
of the stations that were stuck in either a or o for the entire week before 2020-10-22 had
missing values on 2020-10-22. Perhaps the users avoided the malfunctioning stations, or
perhaps the users tried to connect to the station, but the plug was unresponsive, so the
users went undetected. An important implication of this hypothesis is that the data before
the change should not be invalidated, since the behaviour of the well-functioning stations
did not change. Another challenge of the dataset was its shortness. In fact, we expect a
yearly seasonal effect due to holidays (Xing et al., 2019) that cannot be distinguished from a
potential trend because there is less than one year of data. All these observations suggest
giving more weight to the most recent data.

As usual in the supervised learning setting, we need to choose a model F to construct the
estimator ẑt ∈ F . To estimate the entire Dtest period at once, we cannot rely on online models
such as autoregressive models or hidden-state neural networks (RNN, LSTM, transformers...),
although they perform well for time series forecasting (Bryan and Stefan, 2021), and in
particular for EV charging station occupancy forecasts Ma and Faye (2022); Mohammad
et al. (2023).

Once a model F is chosen, we define an empirical loss L on the training data. Then, a
learning procedure, such as a gradient descent, fits the estimator ẑ that minimizes L, with
the hope that ẑ will minimize the expectation of the test loss (2) (Vapnik, 1991; Hastie et al.,
2017). Given a training set Ttrain ⊆ Dtrain, we consider two empirical losses.

The first one corresponds to Eq. 4, this loss gives equal weight to all data points.
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Table 2: Evaluation of the performance of the Adorable Interns’ models in both phases

Mean Median C(4, 150) Cexp(5, 200)

Benchmark Phase 316 309 292 261
Validation Phase 323 303 233 189

Lequal(ẑ) = |Ttrain|−1
∑

t∈Ttrain

∥zt − ẑt∥1 (4)

The second one is given in Eq. 5.

Lexp(ẑ) =
∑

t∈Ttrain

exp((t− tmax)/τ)∥zt − ẑt∥1, (5)

where τ = 30 days and tmax = 2021-02-19 00:00:00.
This time-adjusted loss function is common for non-stationary processes Ditzler et al.

(2015) because it gives more weight to the most recent observations. This makes it possible
to give more credit to the data after the change in the data distribution and to capture the
latest effect of the trend, while using as much data as possible.

Model description To compare the performance of the models, we defined a training
period Ttrain, covering the first 95% of Dtrain, and a validation period Tval, covering the last
5%. In this benchmark phase, models are trained on Ttrain to minimize Lequal or Lexp, and
then their performance is evaluated on Tval by Lval(ẑ) = |Tval|−1

∑
t∈Tval

∥zt − ẑt∥1.
The Mean model estimates ŷt,k, Ât,k and Ĝt by their mean over the training period for

each value of (tod, dow). Idem for the Median model. They are robust to missing values
since the malfunctioning of a station k only affects ŷt,k.

We compare them with the CatBoost model presented in Section 3. Let C(d, i) be the
CatBoost model of depth d trained with i iterations using Lequal, and Cexp(d, i) the same
model trained using Lexp. In this setting, we train twelve CatBoost models: one for each
pair of state (a, c, p, o) and hierarchical level.

After hyperparameter tuning, we found C(4, 150) and Cexp(5, 200) to be the best models
in terms of tradeoff between performance and number of parameters, knowing that early
stopping and a small number of parameters prevent overfitting (see, e.g., Ying, 2019). All of
these models take advantage of the fact that malfunctioning stations tend to stay in specific
states.

The contest organizers allowed participants to test their models on a subset Tval of Dtest.
In this validation phase, we trained our best models on the entire Dtrain period and tested
them with the test loss (2). Table 2 shows that the ranking of the models is preserved. The
submitted model was therefore Cexp(5, 200). Note that this model is also interesting because
its small number of parameters ensures robustness and scalability. In addition, tree-based
models are quite interpretable, which is paramount for operational use Jabeur et al. (2021).
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4.4 Aggregation of forecasts from the winning teams

Naive aggregations of uncorrelated estimators are known to have good asymptotic (Tsybakov,
2003) and online (Cesa-Bianchi and Lugosi, 2006) properties. In practice, they often achieve
better performance than the individual estimators (see, e.g., Bojer and Meldgaard, 2021;
McAndrew et al., 2021).

Table 3 shows the performance of the top 3 teams compared with two aggregation
techniques. The Total score is the result of Equation (2), while the other scores are
straightforward subdivisions of the loss by hierarchical level and by state. Standard deviations
are estimated by moving block bootstrap. The uniform aggregation –denoted by Uniform agg.–
corresponds to the mean of each team’s prediction, while the weighted aggregation –denoted
by Weighted agg.– is computed by gradient descent using the MLpol algorithm (Gaillard
et al., 2014) to minimise the error on the training set. Notice how the weighted aggregation
outperforms the other forecasts for the total loss, as well as for all the subdivisions of the
loss. Note that the weighted aggregation of the 3 teams forecasts performs better than the
weighted aggregation of any subsets of it (Arthur75+Charging Boys: 199, Arthur75+Adorable
Interns: 203, Charging Boys+Adorable Interns:200). From these results, each team brings a
significant contribution to the final score.

Table 3: Score by target of the top 3 teams and aggregations.

Available Charging Passive Other Stations Area Global Total
Arthur75 85.7 (2.7) 33.1 (0.7) 24 (0.6) 63.3 (2.8) 145.6 (1.4) 41.8 (2.5) 18.7 (4.8) 206.1 (5.7)

Charging Boys 83.9 (3.3) 38.9 (0.6) 26.3 (0.4) 60.7 (3.4) 145.3 (1.8) 42.9 (3) 21.7 (5.7) 209.9 (6.8)
Adorable Interns 85.7 (2) 33.8 (0.7) 23.6 (0.6) 77.4 (2.7) 155.4 (1.5) 40.1 (2.8) 25 (3.8) 220.5 (5.1)

Uniform Aggregation 82.9 (2.5) 33.1 (0.7) 22.1 (0.5) 63.4 (2.7) 141.1 (1.4) 40.5 (2.9) 20 (4.4) 201.5 (5.4)
Weighted Aggregation 82.3 (2.7) 33 (0.7) 22.4 (0.5) 58.5 (2.9) 137.1 (1.4) 40.3 (2.9) 18.7 (4.4) 196.2 (5.4)

4.5 Neural networks

Although participants proposed a wide variety of models, they mainly focused on classical
time series models like ARIMA (see, e.g., charging-boys) and tree-based models (see, e.g.,
arthur75). Indeed, the only neural network proposed in the challenge was LeDuf’s temporal
convolutional neural network, inspired by Bai et al. (2018), and it performed poorly (see
Figure 8). Therefore, in order to get a better overview of their potential strengths, we
completed our benchmark with neural networks after the challenge. The code to reproduce
these experiments is available at https://gitlab.com/smarter-mobility-data-challen
ge/tutorials/-/tree/master/2.%20Model%20Benchmark.

Indeed, Fully Connected Neural Networks (FCNNs) are known to be able to forecast EV
demand (Boulakhbar et al., 2022; Ahmadian et al., 2023). The FCNN model we implemented
predicts the status of individual stations. The forecasts for the area and the global levels are
then derived in a bottom-up manner by summing the forecasts of the individual stations. In
contrast to the CatBoost models, this bottom-up approach performed better than training
a FCNN for each hierarchical level (station, area and global). The hyperparameters of the
FCNN were then optimised using the optuna package in Python (Akiba et al., 2019). As a
result, the package selected a FCNN with one hidden layer, 155 neurons, a learning rate of
7.8e− 4, a dropout of 0.012, a batch size of 480 and 14 epochs. Similar to Ahmadian et al.
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(2023), we found out that FCNNs with a single hidden layer were the ones that performed
best. The performance of the FCNN on the test set for the hierarchical loss is 250.5 ± 3.1.
The standard deviation of the score is estimated by moving block bootstrap. Thus, the
FCNN is outperformed by the CatBoost model which has a loss of 246.1 ± 2.3.

Graph Neural Networks (GNNs) are neural networks that encode the spatial dependencies
in a dataset as a graph to capture spatial correlations. GNNs are natural candidates among
neural networks for EV charging forecasting because they inherently encode the spatial
hierarchical structure of the dataset (Wang et al., 2023; Qu et al., 2024). Among GNNs,
Graph Attention Networks (GATs) are models designed for time series forecasting that exploit
both temporal and spatial dependencies (Velickovic et al., 2018). Contrary to Wang et al.
(2023) and Qu et al. (2024), the optimisation of this GNN did not converge, and its loss on
the test set did not go below 400. We believe that this is due to the fact that we only had
access to 91 charging stations, which is not a big data regime, as compared to Wang et al.
(2023) who fitted their GNN on 76774 EVs and to Qu et al. (2024) who fitted their GNN
on 18061 EV charging piles. Both Wang et al. (2023) and Qu et al. (2024) only had access
to one month of data and focused on short-term forecasting, which may also explain this
difference.

5 Summary of findings and discussion

This paper presents a dataset in the context of hierarchical time series forecasting of EV
charging station occupancy, providing valuable insights for energy providers and EV users
alike.

Models Contestants were able to train models that significantly outperformed the baseline
performance (see Figure 8). This dataset contains many practical problems related to
time series, including missing values, non-stationarity, and outliers. This explains why
most contestants relied on tree-based models, which are robust enough to outperform more
sophisticated machine learning methods.

Data cleaning Specific techniques were developed to deal with missing data and outliers
(see, e.g., Section 4.1). Data preprocessing is a crucial step, and the addition of relevant
exogenous features, such as the national holidays calendar, significantly improved the results.

Time dependant loss function All three of the winning solutions described in this paper
were robust enough to maintain a high private test score, showing good generalization of the
models. The choice of the empirical cost function to drive the training process produced the
best results when more recent data points were given greater weight (see, e.g., Section 4.3).

Aggregation Aggregating the forecasts of the three winning teams even yielded a better
global score, with a notable improvement at the station level. The hierarchical models
presented are promising and could help improve the overall EV charging network.

Why publishing this dataset? This open dataset is interesting for research purpose
because it encompasses many real-world problems related to time series matters, such as
missing values, non-stationarities, and spatio-temporal correlations. In addition, we strongly
believe that sharing the benchmark models derived from this challenge will be useful for
making comparisons in future research. Two more complete datasets using new features and
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spanning from July 2020 to July 2022 are available at doi.org/10.5281/zenodo.8280566 and
at gitlab.com/smarter-mobility-data-challenge/additional_materials. A primary analysis is
presented in the supplementary material.

Perspectives Managing a fleet of EVs in the context of an increasing renewable production
amount open new challenges for forecasters. We hope this dataset will allow other researchers
to work on topics such as probabilistic forecasts, online learning (our challenge was "offline")
or graphical models.

Limitations The deployment of electric vehicles (EVs) is progressing at a remarkable pace
(Sathiyan et al., 2022), making any dataset merely a snapshot of a swiftly evolving world
(see also Hecht et al., 2021). To enhance forecasting accuracy, additional features could be
incorporated into a dataset. Numerous covariates, such as mobility and traffic information,
meteorological data, and vehicle characteristics, could be included. In a forthcoming release of
the dataset, in addition to extending the observation period, we intend to incorporate traffic
and meteorological data. A first attempt is proposed in the Section 4 of the supplementary
material.

Ethical concerns To the best of our knowledge, our work does not pose any risk of security
threats or human rights violations. Knowing when and where someone plugs in their EV
could lead to a risk of surveillance. However, this dataset does not contain any personal
information about the user of the plug or their car, so there is no risk of consent or privacy.

Acknowledgments

We thank Cédric Villani, Jean-Michel Poggi, and Marc Schoenauer for being part of the jury
and for their insightful comments on the algorithms and on the paper. We thank Jerome
Naciri, Tiphaine Phe-Neau and Jean-Yves Moise for their help in organizing the challenge.
Moreover, we thank all the contestants for their original solutions. Finally, the authors
thankfully acknowledge the Manifeste IA network of French industrial companies and the
TAILOR European project on trustworthy AI for founding this challenge.

References

A. Ahmadian, V. Ghodrati, and R. Gadh. Artificial deep neural network enables one-size-
fits-all electric vehicle user behavior prediction framework. Applied Energy, 352:121884,
2023.

N.K. Ahmed, A.F. Atiya, N.E. Gayar, and H. El-Shishiny. An empirical comparison of
machine learning models for time series forecasting. Econometric reviews, 29(5-6):594–621,
2010.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 2623–2631, 2019.

20

https://doi.org/10.5281/zenodo.8280566
https://gitlab.com/smarter-mobility-data-challenge/additional_materials/


Smarter Mobility Data Challenge

M. Alizadeh, H.-T. Wai, M. Chowdhury, A. Goldsmith, A. Scaglione, and T. Javidi. Optimal
pricing to manage electric vehicles in coupled power and transportation networks. IEEE
Transactions on Control of Network Systems, 4(4):863–875, 2017.

Y. Amara-Ouali, Y. Goude, P. Massart, J.-M. Poggi, and H. Yan. A review of electric vehicle
load open data and models. Energies, 14:2233, 2021.

Y. Amara-Ouali, Y. Goude, B. Hamrouche, and M. Bishara. A benchmark of electric vehicle
load and occupancy models for day-ahead forecasting on open charging session data. In
Proceedings of the Thirteenth ACM International Conference on Future Energy Systems,
page 193–207, 2022.

N. Andrenacci and M.P. Valentini. A literature review on the charging behaviour of private
electric vehicles. Applied Sciences, 13(23), 2023.

G. Athanasopoulos, P. Gamakumara, A. Panagiotelis, R.J. Hyndman, and M. Affan.
Hierarchical Forecasting, pages 689–719. Springer International Publishing, Cham, 2020.

S. Bai, J.Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. International Conference on Learning
Representations (ICLR) Workshop, 2018.

C.S. Bojer and J.P. Meldgaard. Kaggle forecasting competitions: An overlooked learning
opportunity. International Journal of Forecasting, 37(2):587–603, 2021.

M. Boulakhbar, M. Farag, K. Benabdelaziz, T. Kousksou, and M. Zazi. A deep learning
approach for prediction of electrical vehicle charging stations power demand in regulated
electricity markets: The case of morocco. Cleaner Energy Systems, 3:100039, 2022.

G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

M. Brégère and M. Huard. Online hierarchical forecasting for power consumption data.
International Journal of Forecasting, 38:339–351, 2022.

L. Bryan and Z. Stefan. Time-series forecasting with deep learning: A survey. Philosophical
Transactions of the Royal Society A, 379:20200209, 2021.

L. Calearo, M. Marinelli, and C. Ziras. A review of data sources for electric vehicle integration
studies. Renewable and Sustainable Energy Reviews, 151:111518, 2021.

D. Camille. Bornes bélib, les tarifs pour recharger sa voiture à paris. Stage récupération
point, Jan 2016. URL "https://www.stage-recuperation-points.com/actualites/b
ornes-belib-tarifs-recharger-voitures-paris-160126". Accessed on 08/24/2023.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, Cambridge, 2006.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

21

"https://www.stage-recuperation-points.com/actualites/bornes-belib-tarifs-recharger-voitures-paris-160126"
"https://www.stage-recuperation-points.com/actualites/bornes-belib-tarifs-recharger-voitures-paris-160126"


Amara-Ouali, Goude, Doumèche et al.

T.Y. Chen, F.-C. Kuo, and R. Merkel. On the statistical properties of the f-measure.
In Fourth International Conference onQuality Software, 2004. QSIC 2004. Proceedings.,
pages 146–153. IEEE, 2004.

A. Ciociola, D. Giordano, L. Vassio, and M. Mellia. Data driven scalability and profitability
analysis in free floating electric car sharing systems. Information Sciences, 621:545–561,
2023.

C. Crozier, T. Morstyn, and M. McCulloch. The opportunity for smart charging to mitigate
the impact of electric vehicles on transmission and distribution systems. Applied Energy,
268:114973, 2020.

D. Dallinger and M. Wietschel. Grid integration of intermittent renewable energy sources
using price-responsive plug-in electric vehicles. Renewable and Sustainable Energy Reviews,
16(5):3370–3382, 2012.

E.A. Daoud. Comparison between xgboost, lightgbm and catboost using a home credit
dataset. International Journal of Computer and Information Engineering, 13(1):6 – 10,
2019.

D.A. Dickey and W.A. Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American statistical association, 74(366a):427–431, 1979.

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environments: A
survey. IEEE Computational Intelligence Magazine, 10(4):12–25, 2015.

ENEDIS. Utilisation et recharge : Enquête comportementale auprès des possesseurs de
véhicules électriques, 2021. URL https://www.enedis.fr/sites/default/files/docu
ments/pdf/enquete-comportementale-possesseurs-de-vehicules-electriques.pdf.
Accessed on 12/08/2023.

G. Falchetta and M. Noussan. Electric vehicle charging network in europe: An accessibility and
deployment trends analysis. Transportation Research Part D: Transport and Environment,
94:102813, 2021.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

P. Gaillard, G. Stoltz, and T. van Erven. A second-order bound with excess losses. In
Maria Florina Balcan, Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings of
The 27th Conference on Learning Theory, volume 35 of Proceedings of Machine Learning
Research, pages 176–196, Barcelona, Spain, 2014. PMLR.

R. Godahewa, C. Bergmeir, G.I. Webb, R.J. Hyndman, and P. Montero-Manso. Monash time
series forecasting archive. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

R. Gopalakrishnan, A. Biswas, A. Lightwala, S. Raj Vasudevan, P. Dutta, and A. Tripathi.
Demand prediction and placement optimization for electric vehicle charging stations. In
International Joint Conference on Artificial Intelligence, 2016.

22

https://www.enedis.fr/sites/default/files/documents/pdf/enquete-comportementale-possesseurs-de-vehicules-electriques.pdf
https://www.enedis.fr/sites/default/files/documents/pdf/enquete-comportementale-possesseurs-de-vehicules-electriques.pdf


Smarter Mobility Data Challenge

A. Hafeez, R. Alammari, and A. Iqbal. Utilization of ev charging station in demand side
management using deep learning method. IEEE Access, 11:8747–8760, 2023.

J.T. Hancock and T.M. Khoshgoftaar. Catboost for big data: an interdisciplinary review.
Journal of Big Data, 7(94), 2020.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York, New York, 2nd edition, 2017.

C. Hecht, J. Figgener, and D.U. Sauer. Predicting electric vehicle charging station availability
using ensemble machine learning. Energies, 14(23), 2021.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

T. Hong, J. Xie, and J.D. Black. Global energy forecasting competition 2017: Hierarchical
probabilistic load forecasting. International Journal of Forecasting, 2019.

G. Huang, L. Wu, X. Ma, W. Zhang, J. Fan, X. Yu, W. Zeng, and H. Zhou. Evaluation of
catboost method for prediction of reference evapotranspiration in humid regions. Journal
of Hydrology, 574:1029–1041, 2019.

J. Stuart Hunter. The exponentially weighted moving average. Journal of Quality Technology,
18(4):203–210, 1986.

R.J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

R.J. Hyndman, R.A. Ahmed, G. Athanasopoulos, and H.L. Shang. Optimal combination
forecasts for hierarchical time series. Computational statistics & data analysis, 55(9):
2579–2589, 2011.

IEA. Transport and environment report, 2022. URL https://www.eea.europa.eu/public
ations/transport-and-environment-report-2022/transport-and-environment-rep
ort. Accessed on March 2nd, 2023.

IEA. Electric vehicles, 2022. URL https://www.iea.org/reports/electric-vehicles.
Accessed on March 2nd, 2023.

A.A. Ismail, M. Gunady, H. Corrada Bravo, and S. Feizi. Benchmarking deep learning
interpretability in time series predictions. Advances in neural information processing
systems, 33:6441–6452, 2020.

S.B. Jabeur, C. Gharib, S. Mefteh-Wali, and W.B. Arfi. Catboost model and artificial
intelligence techniques for corporate failure prediction. Technological Forecasting and
Social Change, 166:120658, 2021.

M.I. Jordan. Serial order: A parallel distributed processing approach. In Advances in
psychology, volume 121, pages 471–495. Elsevier, 1997.

23

https://www.eea.europa.eu/publications/transport-and-environment-report-2022/transport-and-environment-report
https://www.eea.europa.eu/publications/transport-and-environment-report-2022/transport-and-environment-report
https://www.eea.europa.eu/publications/transport-and-environment-report-2022/transport-and-environment-report
https://www.iea.org/reports/electric-vehicles


Amara-Ouali, Goude, Doumèche et al.

Y. Kang, , R.J. Hyndman, and F. Li. Gratis: Generating time series with diverse and
controllable characteristics. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 13(4):354–376, 2020.

O. Kaya, K.D. Alemdar, A. Atalay, M.Y. Çodur, and A. Tortum. Electric car sharing stations
site selection from the perspective of sustainability: A gis-based multi-criteria decision
making approach. Sustainable Energy Technologies and Assessments, 52:102026, 2022.

S. Koohfar, W. Woldemariam, and A. Kumar. Prediction of electric vehicles charging demand:
A transformer-based deep learning approach. Sustainability, 15(3), 2023.

J.-P. Kreiss and E. Paparoditis. Bootstrap methods for dependent data: A review. Journal
of the Korean Statistical Society, 40(4):357–378, 2011.

T. Kshitij, R. Arvind, K. Vipin, and L. Dan. Futuretst: When transformers meet future ex-
ogenous drivers. In Proceedings of the 41st International Conference on Machine Learning,
Vienna, Austria. PMLR 235, 2024.

H.R. Kunsch. The jackknife and the bootstrap for general stationary observations. The
annals of Statistics, pages 1217–1241, 1989.

K.H. Lai, D. Zha, J. Xu, and Y. Zhao. Revisiting time series outlier detection: Definitions
and benchmarks. In NeurIPS Datasets and Benchmarks, 2021. URL https://api.sema
nticscholar.org/CorpusID:237258098.

R. Lauvergne, Y. Perez, M. Françon, and A. Tejeda De La Cruz. Integration of electric
vehicles into transmission grids: A case study on generation adequacy in europe in 2040.
Applied Energy, 326:120030, 2022. ISSN 0306-2619.

Z.J. Lee, T. Li, and S.H. Low. Acn-data: Analysis and applications of an open ev charging
dataset. In Proceedings of the Tenth ACM International Conference on Future Energy
Systems, e-Energy ’19, page 139–149, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

D. Livois. Le géant pétrolier total, nouveau gestionnaire du réseau parisien de bornes de
recharge belib’. Le Parisien, 04/09/2021. URL https://www.leparisien.fr/hauts-de-s
eine-92/le-geant-petrolier-total-nouveau-gestionnaire-du-reseau-parisie
n-de-bornes-de-recharge-belib-09-04-2021-8430925.php. Accessed on 08/24/2023.

T.-Y. Ma and S. Faye. Multistep electric vehicle charging station occupancy prediction using
hybrid lstm neural networks. Energy, 244:123217, 2022.

S. Makridakis, E. Spiliotis, and V. Assimakopoulos. M5 accuracy competition: Results,
findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364, 2022a.
ISSN 0169-2070. Special Issue: M5 competition.

S. Makridakis, E. Spiliotis, and V. Assimakopoulos. M5 accuracy competition: Results,
findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364, 2022b.

24

https://api.semanticscholar.org/CorpusID:237258098
https://api.semanticscholar.org/CorpusID:237258098
https://www.leparisien.fr/hauts-de-seine-92/le-geant-petrolier-total-nouveau-gestionnaire-du-reseau-parisien-de-bornes-de-recharge-belib-09-04-2021-8430925.php
https://www.leparisien.fr/hauts-de-seine-92/le-geant-petrolier-total-nouveau-gestionnaire-du-reseau-parisien-de-bornes-de-recharge-belib-09-04-2021-8430925.php
https://www.leparisien.fr/hauts-de-seine-92/le-geant-petrolier-total-nouveau-gestionnaire-du-reseau-parisien-de-bornes-de-recharge-belib-09-04-2021-8430925.php


Smarter Mobility Data Challenge

T. McAndrew, Nutcha N. Wattanachit, G.C. Gibson, and N.G. Reich. Aggregating predictions
from experts: A review of statistical methods, experiments, and applications. WIREs
Computational Statistics, 13(2):e1514, 2021.

D. McElfresh, S. Khandagale, J. Valverde, V. Prasad, G. Ramakrishnan, M. Goldblum, and
C. White. When do neural nets outperform boosted trees on tabular data? In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 76336–76369. Curran Associates,
Inc., 2023.

Z. Moghaddam, I. Ahmad, D. Habibi, and Q.V. Phung. Smart charging strategy for electric
vehicle charging stations. IEEE Transactions on Transportation Electrification, 4(1):76–88,
2018.

F. Mohammad, D.-K. Kang, M.A. Ahmed, and Y.-C. Kim. Energy demand load forecasting for
electric vehicle charging stations network based on convlstm and biconvlstm architectures.
IEEE Access, pages 1–1, 2023.

A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi. Mean absolute percentage error
for regression models. Neurocomputing, 192:38–48, 2016.

L. Nespoli and V. Medici. Multivariate boosted trees and applications to forecasting and
control. The Journal of Machine Learning Research, 23(1):11204–11250, 2022.

City of Paris. Paris data, 2023. URL https://opendata.paris.fr/pages/home/. Accessed
on March 2nd, 2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Petropoulos, D. Apiletti, V. Assimakopoulos, M.Z. Babai, D.K. Barrow, S. Ben Taieb,
C. Bergmeir, R.J. Bessa, J. Bijak, J.E. Boylan, J. Browell, C. Carnevale, J.L. Castle,
P. Cirillo, M.P. Clements, C. Cordeiro, F.L. Cyrino Oliveira, S. De Baets, A. Dokumentov,
J. Ellison, P. Fiszeder, P.H. Franses, D.T. Frazier, M. Gilliland, M. Sinan Gönül, P. Good-
win, L. Grossi, Y. Grushka-Cockayne, M. Guidolin, M. Guidolin, U. Gunter, X. Guo,
R. Guseo, N. Harvey, D.F. Hendry, R. Hollyman, T. Januschowski, J. Jeon, V.R.R. Jose,
Y. Kang, A.B. Koehler, S. Kolassa, N. Kourentzes, S. Leva, F. Li, K. Litsiou, S. Makri-
dakis, G.M. Martin, A.B. Martinez, S. Meeran, T. Modis, K. Nikolopoulos, D. Önkal,
A. Paccagnini, A. Panagiotelis, I. Panapakidis, J.M. Pavía, M. Pedio, D.J. Pedregal,
P. Pinson, P. Ramos, D.E. Rapach, J. James Reade, B. Rostami-Tabar, M. Rubaszek,
G. Sermpinis, H. Lin Shang, E. Spiliotis, A.A. Syntetos, P. Dilini Talagala, T.S. Talagala,
L. Tashman, D. Thomakos, T. Thorarinsdottir, E. Todini, J.R. Trapero Arenas, X. Wang,
R.L. Winkler, A. Yusupova, and F. Ziel. Forecasting: theory and practice. International
Journal of Forecasting, 38(3):705–871, 2022.

D.N. Politis and J.P. Romano. The stationary bootstrap. Journal of the American Statistical
association, 89(428):1303–1313, 1994.

25

https://opendata.paris.fr/pages/home/


Amara-Ouali, Goude, Doumèche et al.

I. Pratama, A.E. Permanasari, I. Ardiyanto, and R. Indrayani. A review of missing values
handling methods on time-series data. In 2016 international conference on information
technology systems and innovation (ICITSI), pages 1–6. IEEE, 2016.

L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, and A. Gulin. Catboost: unbiased
boosting with categorical features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

H. Qu, H. Kuang, Q. Wang, J. Li, and L. You. A physics-informed and attention-based
graph learning approach for regional electric vehicle charging demand prediction. IEEE
Transactions on Intelligent Transportation Systems, pages 1–14, 2024.

J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification.
In Lecture Notes in Computer Science, volume 85, pages 254–269, 2009.

M.H.D.M. Ribeiro and L. dos Santos Coelho. Ensemble approach based on bagging, boosting
and stacking for short-term prediction in agribusiness time series. Applied soft computing,
86:105837, 2020.

J. Amat Rodrigo and J. Escobar Ortiz. skforecast, 2023.

RTE. Integration of electric vehicles into the power system in france. Technical report,
Réseau de Transport d’Électricité, 2019. URL https://assets.rte-france.com/prod
/public/2020-09/RTE%20electromobility%20report.pdf.

RTE. Futurs énergétiques 2050 : les scénarios de mix de production à l’étude permettant
d’atteindre la neutralité carbone à l’horizon, 2022. URL https://www.rte-france.com/
analyses-tendances-et-prospectives/bilan-previsionnel-2050-futurs-energet
iques#Lesdocuments. Accessed on March 2nd, 2023.

S.P. Sathiyan, C.B. Pratap, A.A. Stonier, G. Peter, A. Sherine, K. Praghash, and V. Ganji.
Comprehensive assessment of electric vehicle development, deployment, and policy initia-
tives to reduce ghg emissions: Opportunities and challenges. IEEE Access, 10:53614–53639,
2022.

S.B. Taieb, J.W. Taylor, and R.J. Hyndman. Hierarchical probabilistic forecasting of electricity
demand with smart meter data. Journal of the American Statistical Association, 116:27–43,
2020.

M. Torregrossa. Bornes bélib : détails et tarifs du réseau de charge parisien. Automobile
propre, Jan 2016. URL "https://www.automobile-propre.com/breves/bornes-recha
rge-belib-paris-details-tarifs-prix/". Accessed on 08/24/2023.

TotalEnergies. Véhicules électriques : Total devient l´opérateur des 2 300 bornes de recharge
du réseau bélib’ à paris, 03/31/2021. URL "https://totalenergies.ch/fr/vehicule
s-electriques-totalenergies-devient-loperateur-des-2-300-bornes-de-recha
rge-du-reseau-belib". Accessed on 08/24/2023.

26

https://assets.rte-france.com/prod/public/2020-09/RTE%20electromobility%20report.pdf
https://assets.rte-france.com/prod/public/2020-09/RTE%20electromobility%20report.pdf
https://www.rte-france.com/analyses-tendances-et-prospectives/bilan-previsionnel-2050-futurs-energetiques#Lesdocuments
https://www.rte-france.com/analyses-tendances-et-prospectives/bilan-previsionnel-2050-futurs-energetiques#Lesdocuments
https://www.rte-france.com/analyses-tendances-et-prospectives/bilan-previsionnel-2050-futurs-energetiques#Lesdocuments
"https://www.automobile-propre.com/breves/bornes-recharge-belib-paris-details-tarifs-prix/"
"https://www.automobile-propre.com/breves/bornes-recharge-belib-paris-details-tarifs-prix/"
"https://totalenergies.ch/fr/vehicules-electriques-totalenergies-devient-loperateur-des-2-300-bornes-de-recharge-du-reseau-belib"
"https://totalenergies.ch/fr/vehicules-electriques-totalenergies-devient-loperateur-des-2-300-bornes-de-recharge-du-reseau-belib"
"https://totalenergies.ch/fr/vehicules-electriques-totalenergies-devient-loperateur-des-2-300-bornes-de-recharge-du-reseau-belib"


Smarter Mobility Data Challenge

A.B. Tsybakov. Optimal rates of aggregation. In Bernhard Schölkopf and Manfred K. War-
muth, editors, Learning Theory and Kernel Machines, pages 303–313, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody, S. Hanson, and
R.P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4.
Morgan-Kaufmann, 1991.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. stat, 1050(20):10–48550, 2018.

Q. Wang, X. Liu, J. Du, and F. Kong. Smart charging for electric vehicles: A survey from
the algorithmic perspective. IEEE Communications Surveys & Tutorials, 18(2):1500–1517,
2016.

Shengyou Wang, Anthony Chen, Pinxi Wang, and Chengxiang Zhuge. Predicting electric ve-
hicle charging demand using a heterogeneous spatio-temporal graph convolutional network.
Transportation Research Part C: Emerging Technologies, 153:104205, 2023.

Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun. Transformers in time
series: A survey. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, 2023.

Q. Xing, Z. Chen, Z. Zhang, X. Huang, Z. Leng, K. Sun, Y. Chen, and H. Wang. Charging
demand forecasting model for electric vehicles based on online ride-hailing trip data. IEEE
Access, 7:137390–137409, 2019.

Z. Yi, X.C. Liu, R. Wei, X. Chen, and J. Dai. Electric vehicle charging demand forecasting
using deep learning model. Journal of Intelligent Transportation Systems, 26(6):690–703,
2022.

X. Ying. An overview of overfitting and its solutions. Journal of Physics: Conference Series,
1168, 2019.

A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 11121–
11128, 2023.

J. Zhang, Z. Wang, E.J. Miller, D. Cui, P. Liu, and Z. Zhang. Charging demand prediction
in beijing based on real-world electric vehicle data. Journal of Energy Storage, 57:106294,
2023.

27


	Introduction
	EV charging dataset
	Problem description
	Solutions of the winning teams
	Arthur Satouf (team Arthur75)
	Thomas Wedenig and Daniel Hebenstreit (team Charging-Boys)
	Nathan Doumèche and Alexis Thomas (team Adorable Interns)
	Aggregation of forecasts from the winning teams
	Neural networks

	Summary of findings and discussion

