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ABSTRACT

A crucial capability of Machine Learning models in real-world applications is the
ability to continuously learn new tasks. This adaptability allows them to respond
to potentially inevitable shifts in the data-generating distribution over time. How-
ever, in Continual Learning (CL) settings, models often struggle to balance learn-
ing new tasks (plasticity) with retaining previous knowledge (memory stability).
Consequently, they are susceptible to Catastrophic Forgetting, which degrades
performance and undermines the reliability of deployed systems. Variational Con-
tinual Learning methods tackle this challenge by employing a learning objective
that recursively updates the posterior distribution and enforces it to stay close to
the latest posterior estimate. Nonetheless, we argue that these methods may be
ineffective due to compounding approximation errors over successive recursions.
To mitigate this, we propose new learning objectives that integrate the regulariza-
tion effects of multiple previous posterior estimations, preventing individual errors
from dominating future posterior updates and compounding over time. We reveal
insightful connections between these objectives and Temporal-Difference meth-
ods, a popular learning mechanism in Reinforcement Learning and Neuroscience.
We evaluate the proposed objectives on challenging versions of popular CL bench-
marks, demonstrating that they outperform standard Variational CL methods and

non-variational baselines, effectively alleviating Catastrophic Forgetting.

1 INTRODUCTION

A fundamental aspect of robust Machine Learn-
ing (ML) models is to learn from non-stationary
sequential data. In this scenario, two main
properties are necessary: first, models must
learn from new incoming data — potentially
from a different task -— with satisfactory
asymptotic performance and sample complex-
ity. This capability is called plasticity. Second,
they must retain the knowledge from previously
learned tasks, know as memory stability. When
this does not happen, and the performance
of previous tasks degrades, the model suf-
fers from Catastrophic Forgetting (Goodfellow
et al.,[2015; McCloskey & Cohen,|1989). These
two properties are the central core of Contin-
ual Learning (CL) (Schlimmer & Fisher, [1986;
Abraham & Robins| 2005), being strongly rel-
evant for ML systems susceptible to test-time
distributional shifts.

Given the critical importance of this topic, ex-
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Figure 1: Average accuracy across observed
tasks in the PermutedMNIST benchmark. The
TD-VCL approach, proposed in this work, leads
to a substantial improvement against standard
VCL and non-variational approaches.

tensive literature addresses the challenges of CL in traditional ML methods (Schlimmer & Fisher,
1986; [Sutton & Whitehead, (1993 [McCloskey & Cohenl [1989; [French, [1999) and, more recently,
for overparameterized models (Hadsell et al.l 2020; |[Goodfellow et al., [2015} |Serra et al., [2018]).
Particularly in this work, we focus on the Bayesian setting, as we argue that it provides a princi-
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Figure 2: An intuitive illustration of how TD-VCL functions in comparison to vanilla VCL. At
each timestep ¢, a new task dataset D; arrives. Both methods aim to learn variational parameters
q:(0) over a family of distributions Q that approximates the true posterior p(6 | D;.;) via mini-
mizing the KL divergence Dx,(g:(0) || p(@ | D1.+)). VCL optimization (left) is only constrained
by the most recent posterior, which compounds approximation errors from previous estimations and
potentially deviates far from the true posterior. TD-VCL (right) is regularized by a sequence of past
estimations, alleviating the impact of compounded errors.

pled framework for learning in online or low-data regimes. We investigate the Variational Continual
Learning (VCL) approach (Nguyen et al.,|2018). As detailed in Section |3} VCL identifies a recur-
sive relationship between subsequent posterior distributions over tasks. A variational optimization
objective then leverages this recursion, which regularizes the updated posterior to stay close to the
very latest posterior approximation. Nevertheless, we argue that solely relying on a single previous
posterior estimate for building up the next optimization target may be ineffective, as the approxima-
tion error propagates to the next update and compounds after successive recursions. If a particular
estimation is especially poor, the error will be carried over to the next step entirely, which can dra-
matically degrade model‘s performance.

In this work, we show that the same optimization objective can be represented as a function of a
sequence of previous posterior estimates and task likelihoods. We thus propose a new Continual
Learning objective, n-Step KL VCL, that explicitly regularizes the posterior update considering
several past posterior approximations. By considering multiple previous estimates, the objective
dilutes individual errors, allows correct posterior approximates to exert a corrective influence, and
leverages a broader global context to the learning target, reducing the impact of compounding errors
over time. Figure 2]illustrates the underlying mechanism.

We further generalize this unbiased optimization target to a broader family of CL objectives, namely
Temporal-Difference VCL, which constructs the learning target by prioritizing the most recent ap-
proximated posteriors. We reveal a link between the proposed objective and Temporal-Difference
(TD) methods, a popular learning mechanism in Reinforcement Learning (Sutton) |1988) and Neuro-
science (Schultz et al.,[1997)). Furthermore, we show that TD-VCL represents a spectrum of learning
objectives that range from vanilla VCL to n-Step KL VCL. Finally, we present experiments on chal-
lenging versions of popular CL benchmarks, demonstrating that they outperform standard VCL and
non-variational baselines (as shown in Figure[]), effectively alleviating Catastrophic Forgetting.

2 RELATED WORK

Continual Learning has been studied throughout the past decades, both in Artificial Intelligence
(Schlimmer & Fisher, [1986; [Sutton & Whitehead, 1993} Ring| [1997)) and in Neuro- and Cognitive
Sciences (Flesch et al.l 2023; [French, [1999; McCloskey & Cohenl, [1989). More recently, the focus
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has shifted towards overparameterized models, such as deep neural networks (Hadsell et al.| 2020;
Goodfellow et al.l 2015} |Serra et al., 2018 |Adel et al., |2020). Given their powerful predictive
capabilities, recent literature approaches CL from a wide range of perspectives. For instance, by
regularizing the optimization objective to account for old tasks (Kirkpatrick et al.| |[2016; [Zenke
et al.}2017;|Chaudhry et al.,|2018)); by replaying an external memory composed by a set of previous
tasks (Lopez-Paz & Ranzato| 2017; Bang et al., |2021; Rebuffi et al.l 2016); or by modifying the
optimization procedure or manipulating the estimated gradients (Zeng et al. |2018; Javed & White,
2019;|Liu & Liul[2022). We refer to (Wang et al., 2024) for an extensive review of recent approaches.
The proposed method in this work is placed between regularization-based and replay-based methods.

Bayesian CL. In the Bayesian framework, prior methods exploit the recursive relationship between
subsequent posteriors that emerge from the Bayes’ rule in the CL setting (Section[3)). Since Bayesian
inference is often intractable, they fundamentally differ in the design of approximated inference. We
highlight works that learn posteriors via Laplace approximation (Ritter et al.| 2018} |Schwarz et al.,
2018)), sequential Bayesian Inference (Titsias et al.,|2020; Pan et al.,|2020), and Variational Inference
(VI) (Nguyen et al.|[2018; [Loo et al.,[2021). Our method lies in the latter category.

Variational Inference for CL. Variational Continual Learning (VCL) (Nguyen et al.l |2018) intro-
duced the idea of online VI for the Continual Learning setting. It leverages the Bayesian recursion
of posteriors to build an optimization target for the next step’s posterior based on the current one.
Similarly, our work also optimizes a target based on previous approximated posteriors. On the other
hand, rather than relying on a single past posterior estimation, it bootstraps on several previous esti-
mations to prevent compounded errors. Nguyen et al.| (2018)) further incorporate an external replay
buffer to prevent forgetting, requiring a two-step optimization. In contrast, our work only requires a
single-step optimization as the replay mechanism naturally emerges from the learning objective.

Other derivative works usually blend VCL with architectural and optimization improvements (Loo
et al., [2020; 20215 \Guimeng et al., 20225 Tseran, [2018)) or different posterior modeling assumptions
(Auddy et al.l2020; |Yang et al., 2019). We specifically highlight (Loo et al.,|2021), which, among
other contributions, introduces explicitly the likelihood-tempering hyperparameter, which is implic-
itly used in vanilla VCL and also in our work to address variational over-pruning (Trippe & Turner,
2018)). Otherwise, the proposed innovations are orthogonal to this work.

3 PRELIMINARIES

Problem Statement. In the Continual Learning setting, a model learns from a streaming of tasks,
which forms a non-stationary data distribution throughout time. More formally, we consider a task
distribution 7~ and represent each task ¢ ~ 7T as a set of pairs {(x¢, y;)}Vt, where N is the dataset
size. At every timestep {'| the model receives a batch of data D, for training. We evaluate the model
in held-out test sets, considering all previously observed tasks.

In the Bayesian framework for CL, we assume a prior distribution over parameters p(0), and the
goal is to learn a posterior distribution p(@ | D7) after observing 71" tasks. Crucially, given the
sequential nature of tasks, we identify a recursive property of posteriors:

p(0 | Dir) o p(O)p(Drr | 0) = p(6) [[ p(D: | 8) < p(8 | Drr—1)p(Dr [6), (1)

t=1

where we assume that tasks are i.i.d. Equation[I]shows that we may update the posterior estimation
online, given the likelihood of the subsequent task.

Variational Continual Learning. Despite the elegant recursion, computing the posterior p(6 |
Dy.7) exactly is often intractable, especially for large parameter spaces. Hence, we rely on an
approximation. VCL achieves this by employing online variational inference (Ghahramani & Attias,
2000). It assumes the existence of variational parameters ¢(€) whose goal is to approximate the
posterior by minimizing the following KL divergence over a space of variational approximations Q:

"We represent each task with the index ¢, which also denotes the timestep in the sequence of tasks.
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where Z,; represents a normalization constant. The objective in Equation [2|is equivalent to maxi-
mizing the variational lower bound of the online marginal likelihood:

Lycr(0) = Eog,(0)llogp(D: | 0)] — Zic1(0:(0) || q:-1(8)). 3)

We can interpret the loss in Equation[3]through the lens of the stability-plasticity dilemma (Abraham
& Robins, [2005). The first term maximizes the likelihood of the new task (encouraging plasticity),
whereas the KL term penalizes parametrizations that deviate too far from the previous posterior esti-
mation, which supposedly contains the knowledge from past tasks (encouraging memory stability).

4 TEMPORAL-DIFFERENCE VARIATIONAL CONTINUAL LEARNING

Maximizing the objective in Equation [3| is equivalent to the optimization in Equation [2| but its
computation relies on two main approximations. First, computing the expected log-likelihood term
analytically is not tractable, which requires a Monte-Carlo (MC) approximation. Second, the KL
term relies on a previous posterior estimate, which may be biased from previous approximation
errors. While updating the posterior to account for the next task, these biases deviate the learning
target from the true objective. Crucially, as Equation 3 solely relies on the very latest posterior
estimation, the error compounds with successive recursive updates.

Alternatively, we may represent the same objective as a function of several previous posterior esti-
mations and alleviate the effect of the approximation error from any particular one. By considering
several past estimates, the objective dilutes individual errors, allows correct posterior approximates
to exert a corrective influence, and leverages a broader global context to the learning target, reducing
the impact of compounding errors over time.

4.1 VARIATIONAL CONTINUAL LEARNING WITH N-STEP KL REGULARIZATION

We start by presenting a new objective that is equivalent to Equation [2] while also meeting the
aforementioned desiderata:

Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equa-
tion2)) is equivalently represented as the following objective, where n € Ny is a hyperparameter:

I
-

n

n —
0(0) = g max B0 "= togp(Dii 1 0)] - Z L 1 (@(0) || ars1(0)). @)
qe

.
I
o

We present the proof of Proposition [4.1) in Appendix [A] We name Equation [ as the n-Step KL
regularization objective. It represents the same learning target of Equation [2[as a sum of weighted
likelihoods and KL terms that consider different posterior estimations, which can be interpreted as
“distributing” the role of regularization among them. For instance, if an estimate g,_; deviates too
far from the true posterior, it only affects 1/n of the KL regularization term. The hyperparameter n
assumes integer values up to ¢ and defines how far in the past the learning target goes. If n is set to
1, we recover vanilla VCL.

An interesting insight comes from the likelihood term. It contains the likelihood of different tasks,
weighted by their recency. Hence, the idea of re-training in old task data, commonly leveraged as a
heuristic in CL methods, naturally emerges in the proposed objective. Additionally, we may estimate
the likelihood term by replaying data from different tasks simultaneously, alleviating the violation
of the i.i.d assumption that happens given the online, sequential nature of CL (Hadsell et al., 2020).

4.2 FROM N-STEP KL TO TEMPORAL-DIFFERENCE TARGETS

The learning objective in Equation [] relies on several different posterior estimates, alleviating the
compounding error problem. A caveat is that all estimates have the same weight in the final ob-
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jective. One may want to have more flexibility by giving different weights for them — for instance,
amplifying the effect from the most recent estimate while drastically reducing the impact of previous
ones. It is possible to accomplish that, as shown in the following proposition:

Proposition 4.2. The standard KL minimization objective in VCL (Equation[2)) is equivalently rep-
resented as the following objective, with n € Ny, and \ € [0, 1) hyperparameters:

n—1 \;
AN (1 — A"
arg max Eo-q, (9) [Z (1_7)\71)10&@ Di—i | 0) } Z %(L(Ch( )1 q—i-1(8)).
9€Q i=0 i=0
)

The proof is available in Appendix [Bf We call Equation [5|the TD(\)-VCL objectiv It augments
the n-Step KL Regularization to weight the regularization effect of different estimates in a way that
geometrically decays — via the A\ term — as far as it goes in the past. Other \-related terms serve as
normalization constants. Equation [5| provides a more granular level of target control.

Interestingly, this objective relates intrinsically to the A-returns for Temporal-Difference (TD) learn-
ing in valued-based reinforcement learning (Sutton & Bartol [2018)). More broadly, both objectives
of Equations [] and [5] are compound updates that combine n-step Temporal-Difference targets, as
shown below. First, we formally define a TD target in the CL context:

Definition 4.3. For a timestep ¢, the n-Step Temporal-Difference target for Variational Continual
Learning is defined as, Vn € Ny, n < ¢:

n—1

TD¢(n) = Egry, () [Z log p(Dy—; | 9)]] — Dr1(q:(0) || gt—n(8)). (6)

=0

In Appendix [C] we reveal the connection between Equation[6]and the TD targets employed in Rein-
forcement Learning, justifying the adopted terminology. From this definition, it follows that:

Proposition 4.4. Vn € Ny, n < t, the objective in Equation 2 can be equivalently represented as:

q+(0) = argmax TDy(n), @)
qeQ

with TDy(n) as in Definition Furthermore, the objective in Equation E]can also be represented
as:

n—1
1—
q:(0) = arg max A Z)\kTDt(k—Fl)) .
gee 1=A" 1=

Discounted sum of TD targets

®)

The proof is in Appendix [D] Proposition states that the TD(\)-VCL objective is a sum of dis-
counted TD targets (up to a normalization constant), effectively representing A-returns. Parallelly,
one can show that the n-Step KL Regularization objective, as a particular case, is a simple average of
n-Step TD targets. Fundamentally, the key idea behind these objectives is bootstrapping: they build
a learning target estimate based on other estimates. Ultimately, the “A-target” in Equation 5] provides
flexibility for bootstrapping by allowing multiple previous estimates to influence the objective.

The TD-VCL objectives generalize a spectrum of Continual Learning algorithms. As a final
remark, in Appendix [E] we show that, based on the choice of hyperparameters, the TD(\)-VCL
objective forms a family of learning algorithms that span from Vanilla VCL to n-Step KL Regular-
ization. Fundamentally, it mixes different targets of MC approximations for expected log-likelihood
and KL regularization. This process is similar to how TD(\) and n-step TD mix MC updates and
TD predictions in Reinforcement Learning, effectively providing a mechanism to strike a balance
between the variance from MC estimations and the bias from bootstrapping (Sutton & Bartol [2018]).

>We refer to both n-Step KL Regularization and TD()\)-VCL as TD-VCL objectives.
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Figure 3: The PermutedMNIST, SplitMNIST, and SplitNotMNIST benchmarks. In the Permut-
edMNIST (left), each task is a different permutation pattern of pixels from MNIST. In SplitMNIST
(middle), each task is a binary classification problem between two digits. SplitNotMNIST (right) is
similar to SplitMNIST but comprises a harder dataset of characters with diverse font styles.

5 EXPERIMENTS AND DISCUSSION

Our central hypothesis is that leveraging multiple past posterior estimates mitigates the impact of
compounded errors inherent to the VCL objective, thus alleviating the problem of Catastrophic
Forgetting. We now provide an experimental setup for validation. Specifically, we evaluate this
hypothesis by analyzing the three questions highlighted in Section[5.2]

Implementation. We use a Gaussian mean-field approximate posterior and assume a Gaussian prior
N(0,02I), and parameterize all distributions as deep networks. For all variational objectives, we
compute the KL term analytically and employ Monte Carlo approximations for the expected log-
likelihood terms, leveraging the reparametrization trick (Kingma & Welling|, 2014)) for computing
gradients. We employed likelihood-tempering (Loo et al., 2021) to prevent variational over-pruning
(Trippe & Turner, |2018)). Lastly, for test-time evaluation, we compute the posterior predicting distri-
bution by marginalizing out the approximated posterior distribution via Monte-Carlo sampling. We
provide further details in Appendix [F|and our codeﬂ

Baselines. We compare TD-VCL and n-Step KL VCL with several baselines. Online MLE naively
applies maximum likelihood estimation in the current task data. It serves as a lower bound for other
methods, as well as a way to evaluate how challenging the benchmark is. Batch MLE applies
maximum likelihood estimation considering a buffer of current and old task data. VCL, introduced
by Nguyen et al.| (2018), optimizes the objective in Equation[3] VCL CoreSet is a VCL variant that
incorporates a replay set to mitigate any residual forgetting (Nguyen et al., 2018)).

Benchmarks. We consider three Continual Learning benchmarks, illustrated in Figure 3] The Per-
mutedMNIST (Goodfellow et al.,[2015)) is a multi-class classification setup where each task corre-
sponds to a different permutation of pixels in the MNIST data. The benchmark runs ten successive
tasks. The SplitMNIST (Zenke et al.,|2017) is a binary classification setting where the model needs
to recognize between pairs of digits. Five tasks arrive sequentially: 0/1, 2/3, 4/5, 6/7, 8/9. The
challenging SplitNotMNIST (Nguyen et al.| 2018) contains characters from diverse font styles,
comprising 400,000 examples. Similar to SplitMNIST, it comprises five sequential tasks to recog-
nize pairs of characters: A/F, B/G, C/H, D/I, and E/J. For all benchmarks, each evaluation iteration
considers the performance in all past tasks, where we report averaged accuracy across them.

Before turning our attention to evaluating the proposed TD-VCL objective, our first empirical con-
tribution is a critical evaluation of common design choices presented by previous methods while
employing these benchmarks.

5.1 TOWARDS HIGHER STANDARDS FOR CONTINUAL LEARNING EVALUATION

Popular Continual Learning benchmarks (Goodfellow et al., 2015;|Zenke et al.,2017; Nguyen et al.,
2018)) provide an effective experimental setup. These benchmarks offer tasks that, while conceptu-
ally simple in isolation, present a challenging task streaming setup that highlights the phenomenon
of Catastrophic Forgetting. This combination facilitates the study of Continual Learning meth-

*https://anonymous.4open.science/r/vcl-nstepkl-5707
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Figure 4: A Replay Buffer analysis on the PermutedMNIST. Each curve represents a model
re-trained on a buffer composed of “I™ previous tasks, “B” examples of each. Online MLE only
considers the current task. Allowing “unlimited” access to previous task data trivializes the CL
setting, and a simple MLE baseline is enough to attain strong results. Nevertheless, as we restrict
the replay buffer in size and number of tasks, the benchmark becomes substantially more challenging
and shows signs of Catastrophic Forgetting.

ods through rapid iterations and modest deep architectures, making it ideal for academic settings.
Nonetheless, we argue that the “unrestricted” versions of these benchmarks — specifically regarding
replay buffer adoption and model architecture — are either trivially addressed by simple baselines
or do not reflect realistic scenarios of Continual Learning. This observation motivates our work to
incorporate certain restrictions in the considered methods, resulting in a more challenging setup for
Continual Learning while maintaining the benchmarks’ original desiderata.

“Unlimited” training on old task data trivializes CL benchmarks. Figure [ presents MLE mod-
els trained on different levels of old task data (besides the data from the current task). Online MLE
means no usage of data from old tasks. On the flip side, we re-train the remaining models consider-
ing the data of T previous tasks, with B examples of each. It shows that allowing access to all the
old tasks is enough for an MLE model to maintain high accuracy even when presenting to only a set
as tiny as 200 examples. As we reduce the number of old tasks in the buffer, performance decreases,
showing clear signs of Catastrophic Forgetting. For T' = 2, all models present an accuracy lower
than 60% regardless of the volume of old task data. Therefore, in order to avoid trivializing the
benchmark, we impose additional restrictions for re-training in prior tasks. For PermutedMNIST,
we restrict re-training to the two most recent past tasks, with 200 examples per task; for others, we
allow only the most recent past task with 40 examples. As shown in Figure d MLE-based methods
do not perform well in this setting.

“Multi-Head” Classifiers are unrealistic for CL. “Multi-Head” networks train a different classifier
for each task on top of a shared backbone. As argued by [Farquhar & Gal| (2018)), it is not well
suited for CL for two reasons: first, it assumes a priori knowledge about the number of tasks,
which is a strong assumption that simplifies the problem to a multi-task learning setup. Second, it
provides independent parameters for each task, which naturally circumvents Catastrophic Forgetting
by disregarding the effect of negative transfer among tasks. In Appendix[H] we evaluate the methods
on the SplitMNIST benchmark considering the multi-head and single-head classifiers. In the former,
all baselines trivially attain high average accuracy; in the latter, all methods face a much more
challenging setup. Hence, we adopt single-head architecture throughout this work.

Lastly, we highlight that all evaluated methods — including the proposed ones — are subject to the
adopted restrictions highlighted in this Section. Therefore, they are trained in the same data with the
same parametrization, ensuring a fair comparison setup.

5.2 EXPERIMENTS

We highlight and analyze the following questions to evaluate our hypothesis and proposed method:
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Table 1: Quantitative comparison on the Permuted MNIST, SplitMNIST, and SplitNotMNIST
benchmarks. Each column presents the average accuracy across the past ¢ observed tasks. Results
are reported with two standard deviations across ten seeds. Top two results are in bold, while
noticeably lower results are in . TD-VCL objective consistently outperforms standard VCL
variants, especially when the number of observed tasks increase.

Permuted MNIST
t=2 t=3 t=4 t=5 t=6 t="7 t=8 t=9 t=10
Online MLE
Batch MLE 0.95+0.01 0.93x0.01
VCL 0.9520.00 0.94+0.01 0.93:0.02 0.9120.02

VCL CoreSet  0.96+0.00 0.95:0.00 0.9420.00 0.9320.02 0.91:0.01 0.89:0.02
n-Step TD-VCL 0.95:0.01 0.94:0.00 0.9420.00 0.93=0.01 0.92+0.01 0.91:0.01 0.9020.02 0.89=0.01 0.88:0.02
TD()\)-VCL 0.97+0.00 0.96+0.00 0.95:0.00 0.94+0.01 0.93:0.01 0.92:0.01 0.9120.01 0.90+0.01 0.89:0.02

Split MNIST Split NotMNIST

t=2 t=3 t=4 t=5 t=2 t=3 t=4 t=5
Online MLE 0.72+0.02
Batch MLE 0.9520.04 0.71z0.02
VCL 0.87+0.02 0.64+0.11 0.69x0.04
VCL CoreSet  0.93:0.04 0.84+0.04 0.69x0.04
n-Step TD-VCL 0.98:0.01 0.79:0.08 0.88:0.04 0.67=0.04 0.72+0.04 0.73:0.05 0.70:0.04 0.58=0.08
TD()\)-VCL 0.98+0.01 0.81+0.07 0.89+0.03 0.66=0.02 0.7420.02 0.73+0.03 0.69+0.03 0.58+0.09
Do the TD-VCL objectives effectively alle-
viate Catastrophic Forgetting in challenging 1.00 Permuted mmST
CL benchmarks? Table [I] presents the results B S e s Ll
in the three benchmarks, adopting the restric- 0.95
tions in Section B.1] for all considered meth- '
ods. Each column presents the average accu- 0.90
racy across the past ¢ observed tasks, and we g '
present the results starting from ¢ = 2 since 9
t = 1 is simply single-task learning. For <085
PermutedMNIST (top), all methods presented
high accuracy for ¢ = 2, suggesting that they 0.80
could fit the data successfully. As the number
of tasks increases, all methods start manifest- 0.75 1 2 3 4 5 6 7 8 9 10
ing Catastrophic Forgetting at different levels. Number of Observed Tasks

While Online and Batch MLE drastically suf-

fer, variational approaches considerably retain Figure 5: Average accuracy across all observed
old tasks’ performance. The Core Set slightly tasks in PermutedMNIST. The TD-VCL objec-
helps VCL, and both n-Step KL and TD-VCL tives lead to a substantial improvement against
outperform them by a considerable margin, at- standard VCL and non-variational approaches.
taining approximately 90% average accuracy

after all tasks. For completeness, Figure [5] graphically shows the results. We emphasize the dis-
crepancy between variational approaches and naive baselines and highlight the performance boost
by adopting TD-VCL objectives.

For SplitMNIST (bottom-left), we highlight that the TD-VCL objectives also surpassed baselines in
all configurations. Nonetheless, all methods present a significant decrease in performance for ¢t = 5,
suggesting a more challenging setup for addressing Catastrophic Forgetting that opens a venue for
future research. We discuss SplitMNIST results in more detail in Appendix

Lastly, the SplitNotMNIST (bottom-right) is a considerably harder benchmark, as the letters come
from a diverse set of font styles. Furthermore, we purposely decided to employ a modest network
architecture (as for previous benchmarks). Facing hard tasks with less expressive parametrizations
will result in higher posterior approximation error. Our goal is to evaluate how the variational meth-
ods behave in this setting. Naturally, all methods struggle to fit the tasks. For PermutedMNIST and
SplitMNIST, all models could at least fit the current task almost perfectly, while presenting accura-
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Figure 6: Per-task performance (accuracy) over time in the PermutedMNIST benchmark. Each
plot represents the accuracy of one task (identified in the plot title) while the number of observed
tasks increases. We highlight a stronger effect of Catastrophic Forgetting on earlier tasks for the
baselines, while TD-VCL objectives are noticeably more robust to this phenomenon.

cies around 80% and 90% for current tasks in SplitNotMNIST, as shown in Figure [9)in Appendix [I}
This validates our intent in this setting.

Once again, n-step KL and TD-VCL surpassed the baselines after observing more than three tasks.
The effect is more pronounced after increasing the number of observed tasks. These objectives
are the only ones whose resultant models achieved non-trivial average accuracy after observing all
tasks. This evidence suggests that leveraging multiple posterior estimates during learning is better
than only the latest one, even where the approximation error is high.

How do the TD-VCL objectives affect per-task performance? While Table [I] presents perfor-
mance averaged across different tasks, we now analyze the accuracy of each task separately in the
course of online learning. This setup is relevant since solely considering the averaged accuracy
may hide a stronger Catastrophic Forgetting effect from earlier tasks by “compensating” with higher
accuracy from later tasks. We show the results for PermutedMNIST in Figure [6] while we defer
the results for SplitMNIST and SplitNotMMNIST for Appendices [H] and [I] respectively. Figure [6]
presents a sequence of plots, where each figure represents the accuracy of one task while the number
of observed tasks increases. Naturally, the tasks that appear at later stages present fewer data points:
for instance, “Task 10” has a single data point as it does not have test data for earlier timesteps.

As observed, per-task performance explicitly shows a stronger effect of Catastrophic Forgetting for
earlier tasks in the adopted baselines. We particularly highlight how non-variational approaches fail
for them. In this direction, TD-VCL objectives presented a more robust performance against others.
For instance, we highlight the results for Task 1. After observing all tasks, the proposed methods
demonstrated accuracy of around 80% and 85%. The VCL baselines dropped to 50% and 60%, and
MLE-based methods failed with only 20% of accuracy.

How do the TD-VCL objectives behave with the choice of the hyperparameters n, )\, and the
likelihood-tempering parameter 5? The proposed learning objectives introduce two new hyperpa-
rameters: n (the number of considered previous posterior estimates in the learning target) and A for
TD(M\)-VCL (which controls the level of influence for each past posterior estimate). Furthermore,
it also inherits the § parameter from the standard VCL. Hence, we evaluate the sensitivity of the
proposed objectives concerning these hyperparameters, presenting results and detailed discussion
in Appendix [J] We highlight three main findings. First, similarly to VCL, TD-VCL objectives are
sensitive to the likelihood-tempering hyperparameter. Second, increasing n is beneficial up to a cer-
tain point, from which it becomes detrimental, suggesting that leveraging too old posterior estimates
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may not be useful. Lastly, TD-VCL objectives present robustness over the choice of A\, with a more
pronounced effect when the number of observed tasks increases.

6 CLOSING REMARKS

In this work, we have presented a new family of variational objectives for Continual Learning,
namely Temporal-Difference VCL. TD-VCL is an unbiased proxy of the standard VCL objective
but leverages several previous posterior estimates to alleviate the compounding error caused by
recursive approximations. We have shown that TD-VCL represents a spectrum of continual learning
algorithms and is equivalent to a discounted sum of n-step Temporal-Difference targets. Lastly, we
have empirically displayed that it helps address Catastrophic Forgetting, surpassing vanilla VCL and
other baselines in improved versions of popular CL benchmarks.

Limitations. Despite being theoretically principled and attaining superior performance, TD-VCL
presents limitations. First, the hyperparameters n and A depend on the evaluated setting, which may
require certain tuning. Second, the objectives require maintaining a copy of the past n posterior
estimates, increasing the memory requirements. Still, we believe this is not a major limitation as
TD-VCL suits well modern deep Bayesian architectures that target smaller parameter subspaces for
posterior approximation (Yang et al., 2024; Dwaracherla et al., [2024} [Melo et al., [2024)).

Future Work. While presenting connections with Temporal-Difference methods, our work does
not claim that TD-VCL is an RL algorithm. Further mathematical connections with Markov Deci-
sion/Reward Processes formalism are left as future work. Another interesting direction is to apply
TD-VCL objectives for probabilistic meta-learning (Finn et al.| [2018; Zintgraf et al.| [2020).
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A DERIVATION OF THE N-STEP KLL. REGULARIZATION OBJECTIVE

In this Section, we prove Proposition f.1}

Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equa-
tion[2) is equivalently represented as the following objective, where n € Ny is a hyperparameter:

I
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Proof. Starting from Equation[2] we can expand it as a sum of equal terms and utilize the recursive
property (Equation [T to expand these terms:
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B DERIVATION OF THE TEMPORAL-DIFFERENCE VCL OBJECTIVE

Before proving Proposition [4.2] we start by presenting a well known result for the sum of geometric
series:

Lemma B.1. The finite sum of a geometric series with n terms, common ratio A and initial term a
is given by:

ZAka:M (10)

Proof. Let s, =Y ;_, AFa. Hence,

n—1 n—1
= Z)\ka—)\z/\ka:a—a)\”
k=0 k=0

= 5,(1—X) =a(l-A\") (1)
s a(l—A")
S R

O

Now, we prove Proposition

Proposition 4.2. The standard KL minimization objective in VCL (Equation[2)) is equivalently rep-
resented as the following objective, with n € Ny, and X\ € [0, 1) hyperparameters:

n—1 n—1
)\’L — AZ
3TgmaXE0~qt(9)[ )logp (Di—i | 0) } Z I—n 9KL(Qt( )1 qe—i-1(0)).
q€Q i—0 i

(&)

Proof. We can use Lemma [B.T|to expand the sum of KL terms:

15



Under review as a conference paper at ICLR 2025

4:(0) = arg min Zc 1 (4(0) | Zitqt,ue)p(m 16))

qeEQ

1= 1-)\" 1
= argergln mﬁﬁm(qw) I Z%—l(e)p(pt | 6))
. - A 1
= argmin -——o [@KL((](Q) I 7%71(0)]9(2% | 6))
qeQ -
+ APk (q(0) || 7 Z Qt—Q(Q)p(Dt | 0)p(Di—1 | 0)) +
n—1
- 1
+ A" D (q(0) || == a-i(0) H p(Di-i | 9))
Hi:O L i=0
1= A
T — [@mth) | 1-1(6)) ~ Egg, (o) log (D1 | 0)]
qgeQ -
+ Ak L(q(0) || 4:—2(0)) — AEg~q,(6)[log p(Dy | 0) +log p(Dy—1 | 0)] +
n—1
X D (00(0) || 41— (6)) — )\n_lEBth(a)[Z log p(Dy—i | 9)]1
i=0
n—1 )
= argergin lz NZk0(q(0) || 4—i-1(8)) — Egrq, () [Z A'logp(Dy | 9)
q i=0

n—1

+ Y Nlogp(Di1 | 0) + -+ X" log p(Di i1 | 0)”
i=1

n—1
; 1-A"
lz N Dk1(q(0) || ¢t-i-1(0)) — Egg, (o) [7 log p(D | 0)
i=0

TS T -
AL — A1
+ % logp(Dy—1 | 8) + -+ + A"~ log p(Dy—n1 | B)H
n—1 _
Ai(1— )\” i
= angQlax]Ee~q,,(e)[Z )logp Di—i | 6) ] Z %@(qt( ) | gr—i-1(0)).
ac i=0 i=0
(12)
O

16



Under review as a conference paper at ICLR 2025

C THE CONNECTION OF TD TARGETS IN TD-VCL AND REINFORCEMENT
LEARNING

In the Section 4, we formalize the concept of n-Step Temporal-Difference for the Variational CL
objective (Definition @) In this Section, we reveal the connections between this definition and the
widely used Temporal-Difference methods in Reinforcement Learning. Our aim is to clarify why
Equation [6]indeed represents a temporal-difference target, both in a broad and strict senses.

In a broad sense, bootstrapping characterizes a Temporal-Difference target: building a learning
target estimate based on previous estimates. Crucially, the leveraged estimates are functions of
different timesteps. TD-VCL objectives applies bootstrapping in the KL regularization term, by
considering one or more of posteriors estimates from previous timesteps.

In a strict sense, we can show that Equation [6|deeply resembles TD targets in Reinforcement Learn-
ing. RL assumes the formalism of a Markov Decision Process (MDP), defined by a tuple M =
(S, A, P,R,Py,v, H), where S is a state space, A is an action space, P : SX Ax S — [0,00) isa
transition dynamics, R : S X A — [—Rinaz, Rmaz] is @ bounded reward function, Py : S — [0, 00)
is an initial state distribution, v € [0, 1] is a discount factor, and H is the horizon.

The standard RL objective is to find a policy that maximizes the cumulative reward:

H

T = arg maXIEW[Z YRR (st4ks ati)], (13)
" k=0

with a; ~ mg(as | st), st ~ P(s¢ | St—1,at—1), and sg ~ Py(s), where mg : S x A — [0,00) is a
policy parameterized by 6. Hence, we can define the following learning target, which represents a
“value” function at each state s;:

H

’Uﬂ(St> = Eﬂ-[z ’}/kR(St+k, aH_k) | s = St],vst cS. (14)
k=0

Naturally, it follows that 7}, = arg max, v.(s), Vs € S. Crucially, we can expand Equation |14{as
follows:

H
Uw(St) =E, [Z WkR(StJrk,atJrk) ‘ s = St}
k=0
H
=E, [R(St, Clt) + Z ’}/kR(St+k, at+k) | s = St]
k=1
= Ex[R(st; at) + v0r(st41)];
=Ex[R(st,a¢) + YR(st41, ar41) + 7 0r(s142)],
n—1
=E,| 'yk’R(st,at) + V"0 (St4n)], Ve € S,n < H. (15)
k=0

Temporal-Difference methods estimates a learning target directly from Equation 15}

n—1
ip(s) = TDRL(n) = Ex[>_7*R(st,a)]+  "0x(s10n) Vst €Sn<H.  (16)

k=0 Bootstrapped via past estimations

Estimated via MC Sampling

Now, we turn our attention back to our Variational Continual Learning setting. The standard VCL
objective is given by Equation
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4(6) = arg min Zxc 1, (4(0) | Zitqt,me)p(m 16)).

qeQ

We can similarly define a learning target as a “value” function which we aim to maximize:

o) (t) = —Zxc1(a(6) | Zitqt_w)p(u 16))

= Egg, (o) | logp(D; | 0)] +1og Zy | — Pr1(q:(0) || ¢:-1(0))

=Egq,(0) | logp(Dy | 0)] +1og Zi | — i 1.(q:(0) |

S t-2(O)p(Dis | )

= Egq,(0) | logp(D;: | 0)] +1og Z; | + ugee)(t — 1)

[n—2 n—2
=FEogq,(0) Z logp(Di—i | 0)] + Z log Zy i | + ugeey(t —n+1),n € Ng,n < t.
L i=0 i=0

a7

Similarly to the RL case, it follows that ¢;(6) = argmax,cg uqg)(t). Lastly, we assume the
following estimation of the “value” function defined in Equation

n—2 n—2
tig() (t) = Eo~g, (o) lz logp(Di—; | 0)] + Y log Zy_;| + igee)(t —n+1)
=0 1=0
n—1 n—1
= Eo~q,(0) lz logp(Di—i | O)]| = Zkr(qt(0) || ¢t—n(0) +|D logZis
i=0 Bootstrapped via past posterior estimations i=0
Estimated via MC Sampling Constant w.r.t 6

(18)

We notice that Z; is constant with respect to 8, hence we can disregard it and still have the same
learning target. Thus, we have:

q:(0) = arg max tiq(g)(t)
qeQ

n—1

= argmax Eo~q.(0) [Z log p(Dy—; | 9)]1 — Ik1(q:(0) || 4:-n(0)) +
qe

n—1

Z log Zy 4
i=0 =0
n—1

= argerrglaer;th(g) lz log p(D;—; | 9)]] — Dk1(q:(0) || -n(0)) . (19)
4 i=0

TDcp(n)

Equation[I9]is exactly n-Step Temporal-Difference target in Definition[4.3|from Section[d] The main
differences from the CL recursion in Equation[I7)and the RL one in Equation[I5]are two-fold. First,
the CL setup is not discounted (or, equivalently, assumes the discount factor v = 1). Second, the
RL recursion looks over future timesteps, while the CL one looks over past timesteps. Besides these
two differences, both scenarios are strongly connected. Particularly, they share the same purpose
for leveraging TD targets: to strike a balance between MC estimation (which incurs variance) and
bootstrapping (which incurs bias) while estimating the learning objective.
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D TD(A)-VCL IS A DISCOUNTED SUM OF N-STEP TD TARGETS

In Section[d, we mention that the TD-VCL learning target is a compound update that averages n-step
temporal-difference targets, as per Proposition which we prove below.

Proposition 4.4. Vn € Ny, n < t, the objective in Equation 2 can be equivalently represented as:
q:(0) = argmax TD¢(n), (7)
qeQ

with TDy(n) as in Deﬁnition Furthermore, the objective in Equation E]can also be represented
as:

n—1
1—A
¢:(0) = arg max — | DO NTDy(k + 1)) (8)
qeq  1=A" 1=
Discounted sum of TD targets
Proof. We start by proving the equivalence between Equation [2]and Equation
) 1
4:(0) = arg min Zxc1(¢(0) || —-a:-1(0)p(D: | 0))
q€Q t
1 n—1
= argmin Zx(q(0) || ————a-n(0) [] p(Di-i | 6))
9€Q [Ti=o Zi—i i=0 (20)
n—1
= argengl)aerth(w [Zlogp(i?m | 0)]] — Zk1(@(0) || ¢t—n(9))
a i=0
= argmax TD;(n).
qeQ

Now, we show that Equation [3]is a discounted sum of n-Step targets:

q+(60) = arg max lEowt(e) logp(Dy | 0) — Dk 1.(q:(0) || ¢:—1(0))]

QGQ 1 — )\n
+ AEo~q, () log p(D; | 6) + log p(Di—1 | 0)] — ADk1.(q:(0) || g1—2(0)) + - ..
n—1
+ A" Eong,0)[Y_ 108 p(Dii | 0)] = X" Dic(61(6) || 41— (6))
i=0
= argmax ——— | TD;(1) + ATD;(2) + ... A" ~'TD,(n)
qcQ 11—\

n—1
1 - k
= arg max E ANTDy(k+ 1
gco 1—A" [k_o i )

Disconted sum of TD targets
2D
O

In Equation[7] if we set n = 1, the n-Step TD target recovers the VCL objective. Furthermore, it is
worth highlighting that an n-Step TD target is not the same as n-Step KL Regularization. The latter
leverages several previous posterior estimates, while the former only relies on a single estimate.
Lastly, we can follow a similar idea to prove that the n-Step KL Regularization objective is a simple
average of n-step TD targets, by leveraging the expansion in Equation [0and identifying the sum of
TD targets.
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E TD-VCL: A SPECTRUM OF CONTINUAL LEARNING ALGORITHMS

In this Section, we describe how TD-VCL spans a spectrum of algorithms that mix different levels
of Monte Carlo approximation for expected log-likelihood and KL regularization. Our goal is to
show that by choosing specific hyperparameters for Equation [5} one may recover vanilla VCL in
one extreme and n-Step KL regularization in the opposite.

Let us consider the TD-VCL objective in Equation [5}

_ i n—1
) N
argnéaxEMw)[Z )1ogp (Dr-i10)] - 3o A T MO G ((8) 1] i (6).
q€ i=0 i=0

Trivially, if we set A = 0, assuming 0% = 1, it recovers the Vanilla VCL objective, as stated in
Equation [3] regardless of the choice of n.

More interestingly, we investigate the learning target as A — 1:

. — (1 - = Ai(1—\
lim {EM [Z XX rogpio, 10)] - 3 X Moo | qt_,»_lwn}
1=0
n—1 n—1 :
. AL = ] M(1 =\
= EO"‘qt(e)[ {im {(1_7/\n)} log p(Dy—; | 9)} — ) lim {1(_7”)} Dk 1(q(0) || g—i-1(8))
=0 1=0

() (1n

Let us develop (I) and (II) separately by applying the L’Hopital’s rule. First, for (I):

] )\1(1 _ )\n—i) . i)\i_l(l _ )\n—i) _ )\z(n _ Z'))\n—i—l
Jimg { 1—an } Jimg { A1 }

. 22
. {w—l —iAnl — (n — z'))\”_l} i @
CAS1 —nAn—1 on
Now, for (II):
. (A1 =) AT =) = X 1
A g == 23
)1\1211{ 1—An } )I\ILHI{ —npAn—1 } n’ )

Applying Equations [22|and [23|to TD-VCL objective, we obtain:

n

arg max Eg.q, ) [
qeQ

|
[ay
—~

ni)

log p(Dy-: | 0)] - Z D (@(8) || a-i-1(6)),

Il
=)

%

which is exactly the N-Step KL Regularization objective.
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F IMPLEMENTATION DETAILS

Operationalization. For all experiments, we use a Gaussian mean-field approximate posterior and
assume a Gaussian prior N'(0,02I). We parameterize all distributions as deep networks. For all
variational objectives, we compute the KL term analytically and employ the Monte Carlo approx-
imations for the expected log-likelihood terms, leveraging the reparametrization trick (Kingma &
Wellingl |2014)) for computing gradients. Lastly, we employed likelihood-tempering (Loo et al.,
2021)) to prevent variational over-pruning (Trippe & Turner, |2018)).

Model Architecture and Hyperpatameters. We adopted fully connected neural networks. We
chose different depths and sizes depending on the benchmark, and we provide a full list of hyper-
parameters in Appendix (G| For training, we used the Adam optimizer (Kingma & Bal 2015). We
implemented early stopping with a patience parameter of five epochs, which drastically reduced the
number of epochs needed for each new task.

We initialize the prior with variance 1e —5. In contrast to what was reported by Nguyen et al.[(2018),
we found no gains in initializing the variational parameters with the maximum likelihood estimate
parameters. Therefore, we started by sampling from the prior.

Hyperparamter Tuning Protocol. For the proposed methods, we mainly tuned three hyper-
parameters: n (as in n-Step KL), A (as in TD-VCL), and § (the likelihood tempering param-
eter). We conducted a grid search for each evaluated benchmark, with n € {1,2,3,5,8,10},
A €{0.0,0.1,0.5,0.8,0.9,0.99},and 3 € {le—5,1e—4,1e—3,5e—3,1le—2,5e—2,1le—1,1.0}.
For VCL, we tuned the 3 hyperparameter in the same way.

Reproducibility. Reported results are averaged across ten different seeds. Error bars represent 95%
confidence intervals, while Table [T] shows 2-sigma errors up to two decimal places. We execute all
experiments using a single GPU RTX 4090. We provide our implementation code for the proposed
methods (TD-VCL and n-Step), as well as considered baselines (Batch MLE, Online MLE, VCL,
and VCL CoreSet) inhttps://anonymous.4open.science/r/vcl-nstepkl-5707.

G HYPERPARAMETERS

Table [2] provides the shared hyperparameters used in each benchmark. Tables [3]and 2] provided the
specific hyperparameters for n-Step KL and TD-VCL methods, respectively.

PermutedMNIST | SplitMNIST SplitNotMNIST
Batch Size 256 256 256
Max. Number of Epochs 100 100 100
Network Layers [100, 100] [256, 256] [150, 150, 150, 150]
Number of Heads 1 5/1 1
Learning Rate le-3 le-3 le-3
Prior Variance le-5 le-5 le-5

Table 2: Training hyperparameters. These are shared across all evaluated methods.

PermutedMNIST | SplitMNIST | SplitNotMNIST
n 5 4 5
153 5e-3 S5e-2 S5e-2

Table 3: Hyperparameters for the n-Step KL Regularization method.

PermutedMNIST | SplitMNIST | SplitNotMNIST
n 8 4 3
A 0.5 0.8 0.1
B le-3 Se-2 le-3

Table 4: Hyperparameters for the TD-VCL method.
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H SpPLITMNIST: ADDITIONAL RESULTS

H.1 MULTI-HEAD NETWORK

Figure |/| presents the results for the SplitMNIST benchmark. The first five plots bring the results
per each task, while the last shows the average accuracy as the number of observed tasks grows. As
the results suggest, SplitMNIST with multi-head networks is the easiest benchmark: even Online
MLE presents a final average accuracy of around 90%. All variational methods present almost
perfect results, ranging between 97% and 98%. As stated in Section [5.1] these positive results are
a consequence of using multi-head networks, which end up training different classifiers on top of
the same backbone. This architecture would naturally disregard negative transfer and, therefore,
Catastrophic Forgetting. They also assume a priori knowledge about the number of tasks, which is
unrealistic for CL settings.

Split MNIST: Per Task Performance (Multi-Head Network)

Task '0/1' Task '2/3' Task '4/5'
1.0 — L0 1.0 -
§0.9 \ | 0.9 f ; ; 0.9
50.8 I 0.8 0.8
O il
S !
<o0.7 1\1/1 0.7 0.7
06 1 2 3 4 5 0.6 1 2 3 4 5 0.6 1 2 3 4 5
Number of Observed Tasks
Task '6/7' Task '8/9' Average
1.0 — 1.0 8 1.0
Method N \ g
0.9 0.9 —— Online MLE 0.9 —3 1
© Batch MLE
z 0.8 0.8 —— vcL 0.8
v} —— VCL CoreSet
<0.7 0.7 —— N-Step TD-VCL 0.7
—e— TD(A)-VCL
0.6 1 2 3 4 5 0.6 1 2 3 4 5 0-6 1 2 3 4 5

Number of Observed Tasks

Figure 7: SplitMNIST results with multi-head networks. The first five plots show results per task,
and the last one is an average across tasks. As a consequence of multi-head networks trivializing the
Continual Learning challenge, all methods attain high accuracy. In particular, variational methods
accuracies ranging from 97% and 98%.

H.2 SINGLE-HEAD NETWORK

In this Section, We re-evaluate the SplitMNIST benchmark by only allowing single-head architec-
tures.Figure[§| presents the results. As expected, the performance of all methods drops substantially,
as the problem of representing a streaming of tasks in a single classifier is much harder. However, we
highlight that n-Step KL and TD-VCL presented slightly better results than VCL and VCL CoreSet,
demonstrating again the effectiveness of the proposed learning objectives.

Interestingly, the average accuracy does not decrease monotonically, as usually expected due to
Catastrophic Forgetting. It actually decreases substantially after Task 3 and increases back. This
evidence suggests a negative transfer between tasks, particularly in Task 1 while learning Task 3, as
the first plot presents. We believe this could be addressed with more expressive architectures that
better disentangle features and avoid negative transfer. Nonetheless, this is outside our scope, as we
focus on studying the effect of Catastrophic Forgetting in Continual Learning.

I SpPLITNOTMNIST: ADDITIONAL RESULTS

In this Section, we evaluate methods in SplitNotMNIST by considering single-head networks for
all methods and show per-task performance. As highlighted in Section [5.2] SplitNotMNIST is a
considerably harder benchmark, and the choice of simpler deep architectures naturally results in
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Split MNIST: Per Task Performance

Task '0/1' Task '2/3' Task '4/5'
1.0 1.0 1.0
5.0.8 0.8 m 0.8
[}
0.6 0.6 0.6
3
50.4 0.4 0.4
<
0.2 0.2 0.2 \J
1 2 3 4 5 1 2 3 4 5
Number of Observed Tasks
Task '6/7' Task '8/9' Average
1.0 .\§ 1.0 . 1.0
Method
>08 08 . oniine MLE 509
©06 0.6 Batch MLE © 0.8
] —— VCL =
00.4 0.4 —— VCL CoreSet 9 0.7
R —— N-Step TD-VCL <™
0.2 0.2 @)L 0.6 :
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of Observed Tasks # tasks

Figure 8: SplitMNIST results with single-head networks. In this more robust evaluation setting,
tasks are enforced to share all learned parameters. Consequently, the effect of Catastrophic For-
getting (and task negative transfer) is explicit. TD-VCL objectives present slightly better average
accuracy across tasks in comparison with standard VCL variants.

higher approximation errors. Our goal is to evaluate how the presented methods behave under this
circumstance.

Split NotMNIST: Per Task Performance

Task 'A/F' Task 'B/G' Task 'C/H'
1.0 1.0 1.0 <
0.9 0.9 0.9
308 0.8 0.8
Co7 0.7 0.7
00.6 0.6 0.6
< 0.5 0.5 0.5
0.4 0.4 0.4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of Observed Tasks
10 Task 'D/I 10 Task 'E/J 0. Average
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0.8 0.8 —— Online MLE 0.7
© 0.7 0. Batch MLE .
506 0.6 — z(c:t CoreSet . 0.6
<05 0.5 o NstepTDVCL
0.4 0.4 —— TD(A)-VCL 0.5
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Number of Observed Tasks

Figure 9: SplitNotMNIST results. The first five plots show results per task, and the last one is an
average across them. SplitNotMNIST is considerably harder to fit with modest deep architectures,
leading to a setup where posteriors induce high approximation errors. As a result, the standard
VCL variants performs similarly to non-variational approaches. TD-VCL surpasses all methods and
shows more robustness to Catastrophic Forgetting under this high approximation error setting.

Figure 0] presents the results. As expected, even learning the current task is challenging. This char-
acteristic contrasts with PermutedMNIST and SplitMNIST, where all models could at least fit the
current task almost perfectly. MLE methods fit the current task slightly better since their objectives
are not regularized by the prior or previous posterior. However, this same reason caused them to suf-
fer from Catastrophic Forgetting more drastically, as they tend to focus on fitting the current task and
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disregard past ones. Overall, TD-VCL objectives maintained the best trade-off between plasticity
and memory stability, aligning with the results in the other benchmarks.

J HYPERPARAMETERS ROBUSTNESS ANALYSIS

In this Section, we present robustness studies in the PermutedMNIST benchmark with respect to the
relevant hyperparameters. Our goal is to evaluate how they affect the performance of the proposed
methods.

J.1 N-STEP KL REGULARIZATION

Figure [I0] presents the ablation study of the n-step KL Regularization method in the PermutedM-
NIST benchmark. We designed this study to highlight the two most sensitive hyperparameters: n,
the n-step size, and [, the likelihood-tempering parameter.

Similarly to VCL, this method is sensitive to the choice of 8. Higher values will prevent the model
from fitting new tasks, a manifestation of variational over-pruning. On the other hand, lower values
will not retain knowledge properly, suffering from Catastrophic Forgetting. Mild values (0.001,
0.005, 0.01) balanced well this trade-off.

In terms of n, we observe benefits of up to 5 steps. Beyond that, the effect saturates, even becoming
slightly detrimental. This observation suggests that too-old posterior estimates may not be useful to
retain knowledge, as compared to most recent ones.

Permuted MNIST: N-Step TD-VCL Ablation

n-Step =1 n-Step = 2 n-Step = 3
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(0.7 — B=0001 0.7 0.7
< —— B =0.005
0.6 —— B=o0.01 0.6 0.6
—— B=0.05
0'5123456789100'5123456789100'512345678910
Number of Observed Tasks
n-Step = 5 n-Step = 8 n-Step = 10
1.0 : 1.0 1.0
0.9 0.9 0.9
(%}
Cos 0.8 0.8
>
S0.7 0.7 0.7
go. . .
0.6 0.6 0.6
0'5123456789100'5123456789100'512345678910

Number of Observed Tasks

Figure 10: Hyperparameter Robustness Analysis for n-Step KL Regularization in PermutedM-
NIST. The plots show the effect of the likelihood-tempering parameter 3 for different n. For 3, too
high values negatively affect fitting new tasks, and too low values disregard the regularization of
previous posteriors, leading to Catastrophic Forgetting. For n, we observe benefits while increasing
up to n = 9, and the effect saturates.

J.2 TD(M)-VCL

Figure|l1|shows the ablation study for TD-VCL. For this setup, we considered a fixed value of /3, as
our hyperparameter search suggested the same trends for n-Step KL Regularization and TD-VCL.
Hence, we simplify the analysis to consider only n and A.

TD-VCL presents mild sensitivity to the choice of A. The effect is more pronounced as the method
observes more tasks, with a slight preference for lower values for some choices of n. We believe
that the choice of A will fundamentally depend on how most recent estimates are better and more
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informative than old ones. In the case where they present similar approximation errors, the choice
of A causes less impact, and, therefore, there is less difference between leveraging N-Step TD-VCL
and TD(\)-VCL objectives.

Permuted MNIST: TD(A)-VCL Ablation

n-Step: 1 n-Step: 2 n-Step: 3
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Figure 11: Hyperparameter Robustness Analysis for TD(\)-VCL in PermutedMNIST. The
plots show the effect of X for different choices of n. The learning objective presents mild sensitivity
to the choice of A in this benchmark, and the effect is more pronounced as the number of observed
tasks increases.
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