

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMMON CORPUS: THE LARGEST COLLECTION OF ETHICAL DATA FOR LLM PRE-TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are pre-trained on large data from different sources and domains. These data most often contain trillions of tokens with large portions of copyrighted or proprietary content, which hinders the usage of such models under AI legislation. This raises the need for truly open pre-training data that is compliant with the data security regulations. In this paper, we introduce Common Corpus¹, the largest open dataset for LLM pre-training. The data assembled in Common Corpus are either uncopyrighted or under permissible licenses and amount to about two trillion tokens. The dataset contains a wide variety of languages, ranging from the high-resource European languages to some low-resource languages rarely represented in pre-training datasets. In addition, it includes a large portion of code data. The diversity of data sources in terms of covered domains and time periods opens up the paths for both research and entrepreneurial needs in diverse areas of knowledge. In this paper, we present the detailed provenance of data assembling and the details of dataset filtering and curation. We train two small language models on Common Corpus and find that the resulting model performs comparably to other models of their size, indicating that our dataset is suitable for multilingual pretraining. Common Corpus represents a key contribution to the ecosystem for open science research on large language models.

1 INTRODUCTION

Large Language Models have been defined by large amounts of training data. While there are several candidates for the first modern language model based on transformer architecture, including GPT-1 (Radford et al.), ULMFIT (Howard & Ruder, 2018), or Sentence Neuron (Radford et al., 2017), it is commonly acknowledged that “large” models start with GPT-3 (Brown et al., 2020). Requiring a corpus of 300 billion tokens, GPT-3 introduced a standard training data pipeline shared by nearly all language models to date: large-scale processing of web datasets (45 TB of compressed source data from Common Crawl) and additional digitized sources (Books3). Until 2025, LLM training data has grown on a logarithmic curve. The latest generation of publicly documented language models including DeepSeek v3 (Liu et al., 2025), Gemma 3 (Kamath et al., 2025), Llama 4 (Meta, 2025) or Qwen 3 (Yang et al., 2025) have been trained on 14-36 trillion tokens. Even the recently introduced sub-category of *Small language models* (Wang et al., 2025) relies on large amounts of training data to fit scaling laws: Qwen 3 0.6B was trained on 36 trillion tokens, which is a 3,000 times multiple of the original Chinchilla laws (Hoffmann et al., 2022).

As data curation became a major concern, the collection, maintenance, processing, and filtering of data became one of the main costs in language model training, not to mention even larger hidden costs: negative externalities affecting competing markets, the digital commons, and society at large.

While data scraped from the web is publicly available, it is not always in the public domain. Most web data does not have sufficient metadata to determine whether it is permissively licensed. NLP practitioners have relied on the protection of fair use, claiming that the transformative nature of the use of the data allows them to use this data to train language models. There are increasingly more legal challenges to the use of this data. The New York Times sued OpenAI for copyright

¹The data will be made publicly available as a dataset on Hugging Face. We include a small sample from the dataset in the supplementary material.

054 infringement, alleging that OpenAI trained their models on NYT articles (Roth, 2023; Pope, 2024).
 055 Due to concerns about indirect commercial exploitation, many rightholders have implemented either
 056 hard technical measures or legal provisions against model training. In 2024, it was estimated that for
 057 Terms of Service crawling restrictions, a full 45% of C4 is now restricted (Longpre et al., 2024b)
 058 and 5% is fully blocked for scraping with a disproportionate impact over quality sources (Longpre
 059 et al., 2024b). Restrictions not only affect LLM pre-training but also the quality of search engine
 060 indexation and a variety of research projects analyzing and collecting content at scale. Even projects
 061 dedicated to knowledge access have faced significant pressure from AI crawlers and implemented
 062 protections that negatively impact access and user experience.

063 Legal uncertainties have significantly impeded the development of open science research on LLMs.
 064 Previously reproducible research artifacts have been removed or taken down, impacting pre-training
 065 data, continuous pre-trained models, and evaluation datasets. Books3, which has been used in datasets
 066 like the Pile (Gao et al., 2020), faced legal challenges (Brittain, 2023), and the original dataset
 067 was ultimately removed due to a DMCA takedown (Van der Sar, 2023). The LAION dataset was
 068 demonstrated to contain CSAM (Birhane et al., 2021; Thiel, 2023), and taken down (LAION, 2023),
 069 and then re-released once suspected CSAM was removed (LAION, 2024). The Dutch model GEITje
 070 was taken down (Rijgersberg, 2025), due to complaints about training on the Dutch Gigacorpus,
 071 in order to avoid legal disputes. Finally, the widely used benchmark, the Mathematics Aptitude
 072 Test of Heuristics (MATH) dataset (Hendrycks et al., 2021), was removed from Hugging Face via
 073 a DMCA takedown. All of these artifacts, which were released to further open development and
 074 evaluation of language models, were removed suddenly, making previous work unreplicable. These
 075 takedowns and legal challenges also represent a sizeable loss of investment for developers, who are
 often independent or small research organizations.

076 In part as a reaction to the use of publicly available but not permissively licensed data, web text is
 077 also becoming harder to acquire and use. In an analysis of popular datasets such as C4 (Raffel et al.,
 078 2020), RefinedWeb (Penedo et al., 2023), and Dolma (Soldaini et al., 2024), Longpre et al. (2024c)
 079 found that just in the last year, 5% of all tokens in C4 now have restricted use, with a disproportionate
 080 number of those tokens coming from the best-maintained, most critical sources. This is largely due to
 081 changes in content owners' and hosts' preferences, which are changing to no longer allow scraping,
 082 especially for the purposes of training AI models.

083 Since 2024, several initiatives have emerged to collect open data in English with clear licensing. This
 084 includes: C4C, Open License Corpus, a 228 billion token corpus from a mix of public domain texts
 085 and open source code under free licenses (Min et al., 2024), KL3M a 1.2 trillion tokens corpus of
 086 administrative texts and structured data mostly from the US federal public domain (Bommarito et al.,
 087 2025), Common Pile, a data collection of 1 trillion tokens from a variety of recent sources, including
 088 a filtered common crawl (Creative Commons Common Crawl) (Kandpal & Raffel, 2025). All these
 089 projects are monolingual, restricting in effect the reach of language models to the English-speaking
 090 audience. In contrast, the most ambitious multilingual collection of permissive content pre-dates
 091 Large Language Models: C4C (2016), containing 12 million web pages in more than 50 languages
 092 filtered by Creative Commons Licenses (Habernal et al., 2016).

093 Common Corpus has grown to become the largest fully open pre-training dataset at about **2 trillion**
 094 **tokens** and the only one in its size range having high multilingual diversity. Through this release,
 095 we show that open LLM research and development is possible while meeting legal and regulatory
 096 requirements — in compliance with even the strictest AI regulations, such as in the European Union.
 097 In this paper, we detail the composition of Common Corpus and the entire process of data collection
 098 and curation, and license clearing. Despite its size, Common Corpus is still far from covering
 099 the entire range of available resources: we attribute this discrepancy to an *open data paradox* as
 100 major sources of open content are paradoxically little visible online and even more so in the leading
 101 pre-training sources. By describing the unique challenges coming with the aggregation of large open
 102 source, we aim to inspire further initiatives. We also train two small language models on our dataset
 103 and find that it offers comparable performance to existing multilingual models.

104 2 ABOUT COMMON CORPUS

105 When talking about Common Corpus data, we use the word “**open**” in the strongest possible sense.
 106 Not only is the data available, but we also provide essential details about the data provenance, data

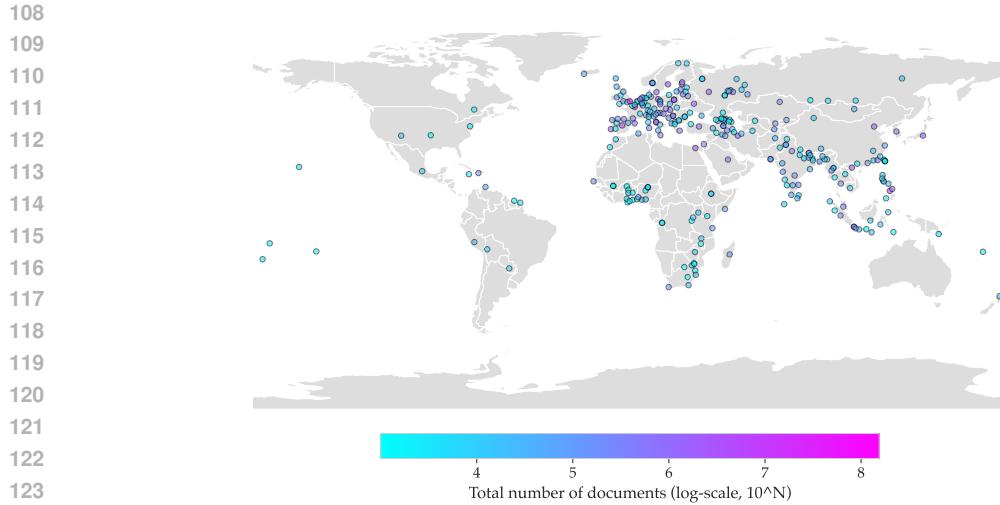


Figure 1: A schematic world map of languages in Common Corpus with a log-scaled distribution of document counts. For each language, we chose a city that is located in the region where this language is most specific to. To avoid outliers, we show only languages with 1000+ documents.

processing, and important information about the contents of each dataset. The Open Source Initiative has also defined open-source AI in terms of openness of use, where open means that use is permitted for “any purpose and without having to ask for permission” (Open Source Initiative, 2024). To achieve this, models must be trained on datasets that are free from copyright or other legal limitations. This is currently a limitation of existing open datasets for training LLMs.

Common Corpus, therefore, provides valuable training tokens that will not be subject to the same restrictions. Additionally, the data in Common Corpus are different from other corpora, primarily composed of web text. Common Corpus contains multilingual data in a variety of high- and low-resource languages (see Figure 1 for language distribution), covering diverse genres, time periods, and domains (in Section 3, we detail each part of the dataset). Therefore, Common Corpus contributes to data diversity in the open pre-training data ecosystem. This is important for developing powerful and generalizable model performance. Common Corpus can be used on its own or in conjunction with existing open datasets, according to one’s needs and the desired use case of a language model.

Common Corpus was developed with consideration for ongoing conversations about best practices for open-source LLM development (The AI Alliance, 2024; Longpre et al., 2024a; Duprieu & Berkouk, 2024; Baack et al., 2025). We highlight our adherence to the best practices that were suggested by Baack et al. (2025):

- **Provide useful documentation.** We provide information about dataset provenance and processing (Sections 3 and 4) and share key statistics to help potential users understand the applications of the dataset. Dataset documentation improves reproducibility, helps prevent misuse, and aids downstream users to best utilize the dataset (Longpre et al., 2024a).
- **Follow and record preference signals.** In the metadata, we include the source URL and license information for the vast majority of the corpus.
- **Increase diversity and involve local communities to identify relevant data sources.** This dataset includes data from a variety of languages, coming from high-quality sources, and the multilingual part was never machine-translated.
- **Share advancements to foster reciprocity and give back.** In addition to the dataset, we release many of the tools we developed in order to create the final dataset (Section 4).
- **Do not use openly licensed data without regard for its quality or fitness for purpose.** In particular, for the dataset in the public domain, we engage in extensive OCR correction and toxicity filtering in order to bring datasets up to standard (Section 4).
- **Do not capture highly sensitive data.** We remove personally identifiable information from our datasets (Section 4).

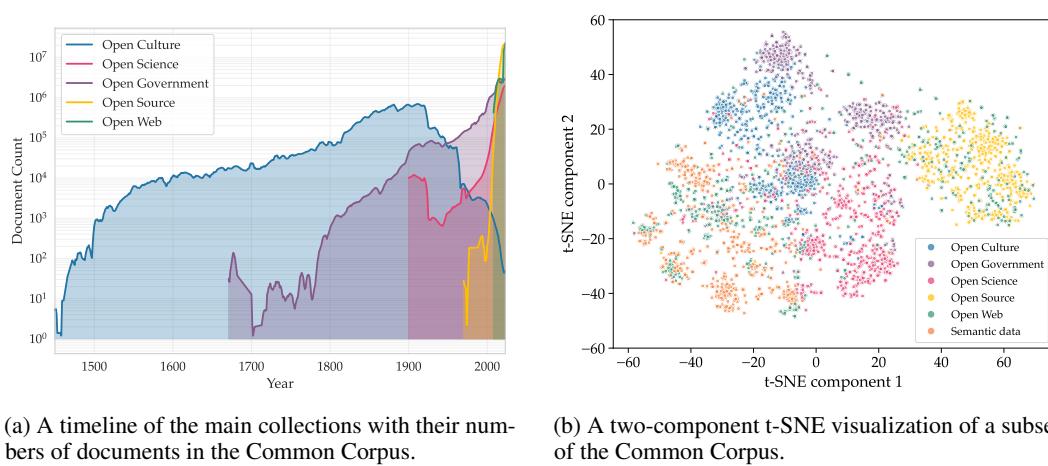


Figure 2: Temporal and semantic overview of the Common Corpus collections.

Table 1: Dataset composition of Common Corpus. For each collection, we report the total number of documents, words (whitespace-separated), and tokens.

Dataset	Documents	Words	Tokens
Open Government	74,727,536	257,233,670,261	406,581,454,455
Open Culture	93,156,602	549,608,763,966	885,982,490,090
Open Science	19,220,942	147,305,783,453	281,193,563,789
Open Code	202,765,051	77,669,169,092	283,227,402,898
Open Web	96,165,348	33,208,509,065	73,217,485,489
Semantic data	30,072,707	23,284,201,782	67,958,671,827
Other	925,462	328,160,421	486,099,734
Total	517,033,648	1,088,638,258,040	1,998,647,168,282

Common Corpus aims to support the pre-training of fully open and auditable LLMs by making it legal to release the source even without the provision of fair use. It has been used to create a wider range of language model artifacts, including multimodal datasets, classifiers, synthetic datasets, and benchmarks. Beyond the main dataset, Common Corpus works as an open science infrastructure dedicated to the entire lifecycle of language models. As defined by UNESCO, it is a shared research infrastructure that is needed to support open science and serve the needs of different communities (Unesco, 2021). We argue this is the first point in time where there has been sufficient knowledge and infrastructure to collect and clean a dataset on this scale, which meets the legal and ethical criteria we have outlined.

2.1 COMPOSITION

Common Corpus is available on HuggingFace as an aggregation of 10,000 parquet files and is composed of six collections: Open Government, Open Culture, Open Science, Open Web, Open Code, and Open Semantic. In total, the number of tokens in Common Corpus is **1,998,647,168,282**. The token counts² in each collection are listed in Table 1. We visualize the timeline of the collected documents and embeddings of a subsample in Figure 2. Each collection is composed of multiple datasets, for which we provide details about provenance and other key information in the corresponding subsections. Each data object contains a license, language(s), a collection/domain of specialization, and other metadata, allowing one to filter out a desired subset.

Common Corpus is multilingual (see Figure 1, Table 2, and Appendix C). Among many others, the top nine languages constitute at least 10B tokens each³. Some of the issues faced in making open datasets

²We report token counts in terms of the tokenizer trained on a representative subsample of Common Corpus.

³Language distribution was computed using the fastText language identification model.

Table 2: Token counts for the ten most represented languages in Common Corpus.

Language	Tokens
English	968,757,721,747
French	275,358,437,630
German	112,127,458,251
Spanish	46,514,142,421
Latin	36,031,591,540
Italian	24,681,637,575
Polish	12,146,688,669
Greek	11,376,498,056
Portuguese	10,262,747,943
Russian	9,439,453,633

Table 3: Token counts for the ten most common licenses in Common Corpus.

License type	Tokens
Public Domain	1,138,508,375,958
CC-By	287,749,264,457
MIT	142,694,227,607
CC-By-SA	74,768,060,836
Apache-2.0	68,750,977,037
BSD-3-Clause	18,483,944,333
Open license	10,432,513,767
BSD-2-Clause	5,497,145,480
CC-BY-4.0	2,110,966,243
CC0-1.0	1,877,206,195

for LLMs have been raised above, but all of these problems are much worse for languages other than English. Even in relatively high-resource languages like French, these problems are compounded by the fact that there is much less data available, and most tools generalize poorly to languages other than English. Additionally, Kreutzer et al. (2022) showed that many multilingual datasets contain a lot of low-quality or entirely unusable data. Many of the datasets they analyzed contained less than 50% of usable text, with 15 sources containing no usable data at all.

The majority of the data in Common Corpus is in the public domain (see Table 3). The license for each document is provided in the metadata, so the dataset can be easily filtered by license as desired.

3 PROVENANCE

In this section, we present the details about collections that comprise the Common Corpus, accompanied by the information about the data sources and the main included languages in Appendix E.

3.1 OPEN GOVERNMENT

Open Government is a set of financial, legal, and administrative data in the public domain. In total, the dataset contains more than 406B tokens and comprises two main datasets: Finance Commons and Legal Commons. See Appendix E.1 for detailed data composition.

Finance Commons. This is the largest collection of financial documents in the public domain, comprising more than 14 billion words (more than 23 billion tokens). The documents come from a wide time range, all the way to 2024. Like many of our other datasets, Finance Commons is also multilingual. Most of the documents are in English, French, and German, but there are also texts in languages such as Romanian, Bulgarian, and Latvian. Additionally, this is a multimodal dataset. It includes more than 1.36 million original PDF documents from AMF and the WTO. The documents constitute a wide coverage of in-house layouts and formats produced by industrial and economic sectors. This makes this dataset ideal for developing the next generation of open-data multimodal models. One application for this dataset is to develop vision-language models (VLMs) for advanced document segmentation and processing. These documents also contain vast amounts of structured data, which is also a promising area of research that Finance Commons can help drive forward.

Legal Commons. This is a collection of legal and administrative datasets. The datasets come mostly from the EU and the US and cover a wide range of languages. These datasets are useful for developing language models with legal knowledge, as well as models that are ideal for document processing in official administrative applications.

3.2 OPEN CULTURE

Open Culture is an aggregation of vast cultural heritage datasets containing both monographs and periodicals for over 13 languages: French, English, German, Spanish, Portuguese, Italian, Dutch,

270 Luxembourgish, Danish, Swedish, Serbian, Czech, and Greek. There are also small portions of data
 271 in other languages, such as Arabic, Bengali, Latin, Persian, Russian, Sanskrit, and Urdu.
 272

273 **Composition.** A large part of Open Culture is compiled from Collections As Data (CAD) —
 274 large dumps of texts, datasets, PDFs, and even raw XML output (METS/ALTO). CAD initiatives,
 275 thus, considerably simplify dataset aggregation and are a major contribution to the digital commons
 276 ecosystem. All other parts of Open Culture have been collected on a resource-by-resource basis
 277 using APIs and other standard retrieval methods whenever available. The largest extractions of
 278 this kind include Internet Archive (about 2 million monographs in multiple languages) and Delpher
 279 (50,000 Dutch monographs and periodicals filtered to match the Dutch copyright law for public
 280 domain). We managed to compile a large multilingual collection despite such challenges, as poor
 281 OCR quality, which we partly solved through the development of OCR correction tools (see Section
 282 4), text segmentation issues, and sometimes irrecoverable deterioration of the original support. For
 283 the detailed dataset composition, refer to Appendix E.2.

284 **Licenses.** All Open Culture documents are in the public domain, which means their copyright has
 285 expired after a given term and there are no limitations on their reuse. For certain content, or in cases
 286 where we could not rely on the guarantee of established cultural heritage institutions, we implemented
 287 our own internal rights verification process. This process follows specific criteria, including author
 288 life and data object creation time, and takes into account that we only collected cultural heritage
 289 content from institutions based in the US or the EU (see the complete criteria list in Appendix F).

290 **Value.** Open Culture data is also rich from a cultural and stylistic standpoint and can be used to train
 291 multilingual language models with more diverse and creative writing styles. As LLMs are trained on
 292 extremely large corpora to maximize next-word prediction accuracy, LLM-generated text can often
 293 lack in personality and be boring or generic (Jones & Bergen, 2024). This feature of language models
 294 stands in contrast with one of their most common uses. In an analysis of WildChat (Zhao et al., 2024),
 295 a dataset of 1 million user interactions with ChatGPT, Longpre et al. (2024c) found that over 30% of
 296 user requests involved creative compositions such as fictional stories, role-play, or poetry generation.
 297 At the same time, creative writing is poorly represented among datasets used to train LLMs, which
 298 mainly comprise web text (Longpre et al., 2024c). Therefore, Open Culture contributes data that can
 299 be used to train models for creative writing without violating copyright law. In addition, as many of
 300 the Open Culture datasets are historical (coming from the 18th-19th centuries, or even earlier; see
 301 Figure 2a), this collection also enables the development of historical language models. The metadata
 302 includes document creation year, which enables researchers to develop language models with a cutoff
 303 of the training data creation date.

303 3.3 OPEN SCIENCE

305 The Open Science collection includes scientific papers and other documents (theses, book reviews,
 306 clinical trials, *etc*). Following the development of a global open access movement, these documents
 307 have been made increasingly available in open archives (preprints) or directly through open science
 308 publishers and infrastructure. Scientific content has become a primary focus of training data, due
 309 to its impact on reasoning capacities. Yet, the lack of licensing information has until now partly
 310 hindered reuse. The Semantic Scholar Open Research Corpus from Allen AI includes 81.1 million
 311 articles in English under an Open Data Commons Attribution License, allowing for the free reuse of
 312 the aggregated metadata while still acknowledging the remaining copyright of individual authors (Lo
 313 et al., 2020). The Pile incorporated data from arXiv and PubMed Central, also exclusively in En-
 314 glish (Biderman et al., 2022). Finally, the BigScience project assembled several curated multilingual
 315 scientific datasets like the French HAL as part of the training data for Bloom (Scao et al., 2023).

316 The Open Science collection was made possible largely due to the recent development of OpenAlex⁴,
 317 the largest open catalogue of scientific documents. OpenAlex maintains an expansive API search
 318 engine tracking detailed metadata for each indexed item, including the licensing, as well as a link to
 319 the original resource, which is generally in PDF format. We filtered OpenAlex on the three following
 320 licenses: CC-By, Public Domain/CC0, and CC-By-SA. The largest share of resources is available
 321 under CC-By, which is currently the recommended license by the Open Access definition. Open
 322 Science also includes smaller subsets, such as a direct extraction of arXiv articles available in CC-By

323 ⁴<https://openalex.org/>

324 and some European-specific resources not currently well indexed on OpenAlex (the exact distribution
 325 of token counts can be found in Appendix E.3).

327 Due to the specificity of open scientific publishing, the Open Science collection has less linguistic
 328 diversity, with nearly 85% of documents currently available in English.

329 3.4 OPEN CODE

331 The Open Code collection comprises code data under a vast variety of free licenses, which allows
 332 NLP practitioners to train models on public domain code for either coding applications or in order
 333 to improve certain model performance on natural language reasoning, world knowledge tasks,
 334 mathematics, and structured output tasks (Aryabumi et al., 2024; Petty et al., 2024; MA et al., 2024).
 335 The code data we use comes from the Stack v1 and v2 (Kocetkov et al., 2023; Lozhkov et al., 2024).
 336 The Stack v1 contains 6.4TB of data and covers 30 programming languages, while the Stack v2 is
 337 approximately ten times bigger at 67.5TB and covers over 600 programming languages. All the code
 338 data is made available with a direct link to the original resource on GitHub. In total, Open Code
 339 contains 283,227,402,898 tokens (see most common languages in Appendix E.4).

340 To prepare the collection, we ran a pipeline of varied filters. We first removed files that were
 341 not in our desired set of languages and formats according to their file extensions, including SVG
 342 files containing mostly encoded shapes, data storage formats: `csv`, `json`, `json5`, `jsonld`, and
 343 other file types with non-informative content, typically in small amounts: `python-traceback`,
 344 `unity3d-asset`, `numpy`, and `http`. We then filtered out the licenses to keep only permissible
 345 ones. To discard the low-quality data, we ran a series of manual filters described by Lozhkov et al.
 346 (2024). In addition to those, we removed files consisting of 75% or more of digits, which are mostly
 347 files containing raw numeric data. Before the filters, we also replaced sequences of `[\r]+\n` with
 348 `\n` and recalculated line lengths to avoid false positives by maximum line length.

349 3.5 OPEN WEB

351 In accordance with the general focus of Common Corpus on curated content, the Open Web collection
 352 currently includes four major web sources:

353 **Wikipedia and Wikisource.** Wikimedia projects have always been major sources for language
 354 model training due to their reliability, extensive coverage, and textbook-like style. Despite this
 355 centrality, there is still a range of unresolved challenges with the most common versions available
 356 for training. The raw source of Wikimedia projects is made available in a specific *mediawiki* syntax,
 357 including a lot of project-specific models, tags, and conventions. The parsing of models is especially
 358 not straightforward, as they can either format existing text or remove or include external content
 359 (transclusion). As part of Wikimedia Enterprise, the Wikimedia Foundation created entirely new
 360 dumps from the rendered HTML sources, which in effect ensure that they include all the text made
 361 available to readers.

362 **Youtube Commons.** For YouTube Commons, we collected audio transcripts of 2,063,066 videos
 363 uploaded on YouTube under a standardized CC-By license.

364 **StackExchange.** This is a collection of user-generated forums and Q&A made available under the
 365 CC-By-SA license. We reused the version from The Pile (Biderman et al., 2022).

367 A major objective for the future work will be the integration of web archives filtered by permissive
 368 licenses. Since 2016, several projects have attempted to reidentify Creative Commons licenses from
 369 web archives at scale including C4C (multilingual) (Habernal et al., 2016) and more recently CCCC
 370 (from Allen AI, in English) and most recently Common Crawl Creative Commons Corpus (C5, for
 371 the first time multilingual)⁵. All these projects struggled with license identification. While license
 372 mentions are frequently normalized with a direct link or logo to Creative Commons, there is no
 373 guarantee they really concern the entire content: “a blog page contains many photos, and each photo
 374 is licensed under a different CC-license type, or a blog home page with many articles, and each article
 375 is licensed under a different CC-license type.” (Habernal et al., 2016). We hope this limitation could
 376 be overcome by a combination of web domain curation and fine-grained curation and annotation by a
 377 language model.

⁵<https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons>

378 3.6 OPEN SEMANTIC
379

380 Semantic data is the latest set added to Common Corpus and currently includes only one collection:
 381 Wikidata. First created in 2011, Wikidata hosts 100 million documented items and several billion
 382 factual statements encoded as RDF triples. It has grown to become a critical web infrastructure, used
 383 by Google for search disambiguation and currently embodying Tim Berners-Lee’s ambitious vision
 384 for “a web of data”. Despite the rising interest in mixed LLM/knowledge graph methods, Wikidata
 385 has hardly been used in language models. The largest initiative to date is Kelm, a collection of 15
 386 million synthetic sentences generated by Google from English-speaking statements (Agarwal et al.,
 387 2021). A persistent challenge has been the exclusive availability of Wikidata dumps under formats
 388 optimized for data exchange rather than language model training.

389 Thanks to a collaboration with Wikimedia Deutschland, the entire set of Wikidata has been adapted in
 390 natural language and added to Common Corpus. This is to date the only available textual collection
 391 of Wikidata covering the entire range of 300 languages. Data processing involved the translation of
 392 items and properties into formal language sequences as simple natural language sequences, without
 393 textual synthesis: “Q41309 — P:27 — Q171150” becoming “Franz Liszt country of citizenship
 394 Kingdom of Hungary”. Within each entry, we provide all the available translations as consecutive
 395 blocks separated by a newline, anticipating that this may contribute to language alignment.

396 4 CLEANING AND CURATION
397

398 In order to curate our dataset, we developed a number of custom tools to handle the issues unique to
 399 multilingual, historical, and OCRed data. We will release all of them under permissive licenses.

400 **Text Segmentation.** We developed **Segmentext**, a specialized language model for text segmentation
 401 (see example in Appendix G.1). Segmentext has been trained to be resilient to broken and unstructured
 402 texts with digitization artifacts and ill-recognized layout formats. Given the diversity of the training
 403 data, Segmentext should work correctly on diverse document formats in the main European languages.

404 **OCR Correction.** We developed **OCRonos** model based on Llama 3 8B (Grattafiori et al., 2024).
 405 OCRonos is versatile and supports the correction of OCR errors, cutting or merging of the wrong
 406 word, and overall broken text structures. The training data includes a highly diverse set of OCR-ed
 407 texts in multiple languages, mostly coming from uncorrected versions of Open Culture and Open
 408 Government. On highly deteriorated content, OCRonos can act as a synthetic rewriting tool rather
 409 than a strict correction tool. An example of OCRonos work is presented in Appendix G.3. OCRonos
 410 contributes to make challenging resources usable for LLM applications and, more broadly, search
 411 retrieval. It is especially fitting in situation where the original PDF sources is too damaged for correct
 412 OCR or even non-existent/complex to retrieve.

413 OCRonos is generally faithful to what the original material, provides sensible restitution of de-
 414 teriorated text and will rarely rewrite correct words. On past experiments, a common issue with
 415 OCR correction has been language switching: due to the inherent noise in the input text, an LLM
 416 will transcribe in a different language or script. The issue has been especially observed in smaller
 417 generalist models like GPT-3.5 or Claude-Haiku. OCRonos largely mitigates this issue.

418 **PII Removal.** Personally Identifiable Information (PII), i.e., any information that can be used to
 419 distinguish or trace an individual’s identity, is protected under legislation such as GDPR. Consequently,
 420 the new regulations put restrictions on LLM training data. In large open datasets, there is a staggering
 421 amount of personal data in widely used datasets, e.g., large quantities of phone numbers in RedPajama,
 422 email addresses in S2ORC and peS2o, and IP addresses in the Stack (Elazar et al., 2024). To identify
 423 and replace PII, we use Microsoft’s Presidio⁶, an open-source state-of-the-art tool. With Presidio, we
 424 filtered out phone numbers, email addresses, IBANs, IP addresses, and URLs. With the base settings,
 425 Presidio identified on average 55-60% of texts that included phone numbers due to different possible
 426 number formats. By applying custom regular expression patterns that include most phone numbers,
 427 we increased this accuracy to 85%. Typical methods of handling PII include removing it, replacing
 428 it with tags, and partial anonymization. These transformations substantially alter the format of PII,
 429 which could undermine the model’s understanding of the text or interfere with its ability to process
 430 text with real PII. Instead, we replace PII with fictitious but realistic values.

431 ⁶<https://microsoft.github.io/presidio/>

432 Table 4: Multilingual benchmarking results. “Ours” refers to models pre-trained on Common Corpus.
433

Model	Ours	Gemma 3	XGLM	BLOOM	Ours	Gemma 3	XGLM	OLMo
Parameters	350M	270M	564M	560M	1.2B	1B	1.7B	1B
MultiBLiMP	0.774	0.762	0.711	0.683	0.797	0.799	0.710	0.699
XStoryCloze	0.509	0.533	0.537	0.532	0.526	0.594	0.569	0.517
XCOPA	0.533	0.544	0.550	0.541	0.541	0.593	0.574	0.518

434
435
436
437
438
439
440
441 **Deduplication.** Our early experiments showed a negligible rate of duplication, which we attribute
442 to the initial data curation: large institutions are incentivized to avoid re-digitizing the same texts. We
443 also filtered out duplicates based on PDF metadata and used deduplicated sources wherever possible.
444

445 **Toxicity Detection.** In addition to posing legal and regulatory issues, web data is a major source
446 of harmful and biased content (Common Crawl was shown to contain sexual content, hate speech,
447 and racial and gender biases (Luccioni & Viviano, 2021)) and often suffers from low-quality and
448 machine-generated text (Dodge et al., 2021). Public Domain data, such as that in Open Culture, do
449 not pose the same legal challenges but introduce new ones. Many texts there are historical periodicals
450 and monographs from at least 80 years ago, while cultural norms have changed dramatically. Many
451 of these texts, therefore, do not meet modern ethical standards. Training language models on these
452 texts would lead to the reproduction and circulation of harmful language.
453

454 To address this, we developed a pipeline to filter the public domain training data. We identify docu-
455 ments containing harmful language and either remove it or synthetically rewrite the document without
456 the harmful language. With this approach, we aim to mitigate some of the potential biases and harms
457 in the dataset, while still leveraging the high-quality, diverse data for high model performance. We
458 created a multilingual toxicity classifier, **Celadon**, a DeBERTa-v3-small model ($\sim 140M$ parameters),
459 which we trained from scratch on 2M annotated samples. Celadon identifies toxic and harmful
460 content along five dimensions: race and origin-based bias, gender and sexuality-based bias, religious
461 bias, ability bias, and violence and abuse. We will release the model along with the training data.
462

463 5 MODEL TRAINING

464 We train two models on Common Corpus: a 350M and a 1.2B model. The architecture is based on
465 Llama. We train a custom Llama-style tokenizer with a vocabulary size of 65536 on a representative
466 subset of Common Corpus. The 350M model is trained on a filtered subset of Common Corpus,
467 comprised of approximately 1T tokens. The 1.2B model is trained on two epochs of Common Corpus.
468 The models were trained for 2944 and 23040 H100 hours, respectively. We will release our models
469 on Hugging Face. We will also release our full training pipeline under an Apache 2.0 license.
470

471 We evaluate our models on MultiBLiMP (Jumelet et al., 2025), XStoryCloze (Lin et al., 2022), and
472 XCOPA (Ponti et al., 2020) (see Table 4 for aggregated scores and Appendix H for per-language
473 details). All evaluations were run using the LM Evaluation Harness (Biderman et al., 2024). Our
474 models perform comparably to models trained on closed or non-permissively licensed data, and
475 show outstanding performance on MultiBLIMP, which has more languages compared to other
476 benchmarks. This is especially notable for our 350M model, which we compare to bigger models; it
477 also outperforms models from the 1B range, except for Gemma 3 1B. Our models stably outperform
478 OLMo 1B, which was also pre-trained on a publicly released dataset.
479

480 6 CONCLUSION

481 Through the release of Common Corpus and this paper with thorough documentation of data collection
482 and curation, we show that LLM development is possible while strictly adhering to the regulatory
483 norms. While Common Corpus is only large enough to train small models currently, the tools and
484 methods we used to identify and curate the data may be used to expand the amount of permissively
485 licensed open data. We hope that Common Corpus will grow as a critical infrastructure for open
486 science LLM research and development and inspire future initiatives in the open.
487

486 REFERENCES
487

488 Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge Graph Based Syn-
489 thetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training. In Kristina
490 Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard,
491 Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Confer-
492 ence of the North American Chapter of the Association for Computational Linguistics: Human
493 Language Technologies*, pp. 3554–3565, Online, June 2021. Association for Computational Lin-
494 guistics. doi: 10.18653/v1/2021.naacl-main.278. URL <https://aclanthology.org/2021.naacl-main.278/>.
495

496 Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
497 Fadaee, Ahmet Üstün, and Sara Hooker. To code, or not to code? exploring impact of code in
498 pre-training. *CoRR*, abs/2408.10914, 2024. URL <https://doi.org/10.48550/arXiv.2408.10914>.
499

500 Stefan Baack, Stella Biderman, Kasia Odrozek, Aviya Skowron, Ayah Bdeir, Jillian Bommarito,
501 Jennifer Ding, Maximilian Gahntz, Paul Keller, Pierre-Carl Langlais, et al. Towards best practices
502 for open datasets for llm training. *arXiv preprint arXiv:2501.08365*, 2025.
503

504 Stella Biderman, Kieran Bicheno, and Leo Gao. Datasheet for the Pile, January 2022. URL
505 <http://arxiv.org/abs/2201.07311>. arXiv:2201.07311 [cs].
506

507 Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
508 Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
509 the trenches on reproducible evaluation of language models. *arXiv preprint arXiv:2405.14782*,
2024.
510

511 Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: misogyny,
512 pornography, and malignant stereotypes. *arXiv preprint arXiv:2110.01963*, 2021.
513

514 Michael J. Bommarito, Jillian Bommarito, and Daniel Martin Katz. The KL3M Data Project:
Copyright-Clean Training Resources for Large Language Models, April 2025. URL <http://arxiv.org/abs/2504.07854>. arXiv:2504.07854 [cs].
515

516 Blake Brittain. Authors sue meta, microsoft, bloomberg in latest ai copyright clash. *Reuters*,
517 October 18 2023. URL <https://www.reuters.com/legal/litigation/authors-sue-meta-microsoft-bloomberg-latest-ai-copyright-clash-2023-10-18/>.
518

519 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
520 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
521 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
522 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
523 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
524 Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July 2020. URL
525 <http://arxiv.org/abs/2005.14165>. arXiv:2005.14165 [cs].
526

527 Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos. Large-
528 scale multi-label text classification on EU legislation. In Anna Korhonen, David Traum, and Lluís
529 Márquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational
530 Linguistics*, pp. 6314–6322, Florence, Italy, July 2019. Association for Computational Linguistics.
531 doi: 10.18653/v1/P19-1636. URL <https://aclanthology.org/P19-1636>.
532

533 Marta Ruiz Costa-jussà, James Cross, Onur cCelebi, Maha Elbayad, Kenneth Heafield, Kevin
534 Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang,
535 Guillaume Wenzek, Alison Youngblood, Bapi Akula, Loïc Barrault, Gabriel Mejia Gonzalez,
536 Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
537 non L. Spruit, C. Tran, Pierre Yves Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov,
538 Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre
539 Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. No language
left behind: Scaling human-centered machine translation. *ArXiv*, abs/2207.04672, 2022. URL
<https://api.semanticscholar.org/CorpusID:250425961>.
540

540 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
 541 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
 542 colossal clean crawled corpus. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
 543 Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural
 544 Language Processing*, pp. 1286–1305, Online and Punta Cana, Dominican Republic, November
 545 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.98. URL
 546 <https://aclanthology.org/2021.emnlp-main.98>.

547 Henri Duprieu and Nicolas Berkouk. Techniques d’audit des grands modèles de langage. Technical
 548 report, Commission Nationale Informatique et Libertés (CNIL), November 2024. URL <https://hal.science/hal-04782667>.

549 Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane
 550 Suhr, Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hannaneh Hajishirzi,
 551 Noah A. Smith, and Jesse Dodge. What’s in my big data? In *The Twelfth International Confer-
 552 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=RvfPnOkPV4>.

553 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
 554 Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
 555 language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

556 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 557 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
 558 Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
 559 Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
 560 Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 561 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 562 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
 563 Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv
 564 Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
 565 Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank
 566 Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail,
 567 Gregoire Mialon, Guan Pang, Guillem Cucurell, et al. The llama 3 herd of models, 2024. URL
 568 <https://arxiv.org/abs/2407.21783>.

569 Ivan Habernal, Omnia Zayed, and Iryna Gurevych. C4Corpus: Multilingual Web-size Corpus with
 570 Free License. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko
 571 Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and
 572 Stelios Piperidis (eds.), *Proceedings of the Tenth International Conference on Language Resources
 573 and Evaluation (LREC’16)*, pp. 914–922, Portorož, Slovenia, May 2016. European Language
 574 Resources Association (ELRA). URL <https://aclanthology.org/L16-1146/>.

575 Peter Henderson, Mark S. Krass, Lucia Zheng, Neel Guha, Christopher D. Manning, Dan Jurafsky,
 576 and Daniel E. Ho. Pile of law: Learning responsible data filtering from the law and a 256gb
 577 open-source legal dataset, 2022. URL <https://arxiv.org/abs/2207.00220>.

578 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 579 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 580 preprint arXiv:2103.03874*, 2021.

581 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 582 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 583 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 584 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 585 Training Compute-Optimal Large Language Models, March 2022. URL <http://arxiv.org/abs/2203.15556> [cs].

586 Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text Classification,
 587 May 2018. URL <http://arxiv.org/abs/1801.06146>. arXiv:1801.06146 [cs].

594 Cameron Jones and Ben Bergen. Does GPT-4 pass the Turing test? In Kevin Duh, Helena Gomez,
 595 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter
 596 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 597 Long Papers)*, pp. 5183–5210, Mexico City, Mexico, June 2024. Association for Computational
 598 Linguistics. doi: 10.18653/v1/2024.naacl-long.290. URL <https://aclanthology.org/2024.naacl-long.290>.

600 Jaap Jumelet, Leonie Weissweiler, Joakim Nivre, and Arianna Bisazza. Multiblimp 1.0: A massively
 601 multilingual benchmark of linguistic minimal pairs. *arXiv preprint arXiv:2504.02768*, 2025.

602

603 Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
 604 Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard,
 605 Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne
 606 Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton
 607 Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
 608 Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
 609 Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
 610 Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
 611 Sharma, Abheesh Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alex Feng,
 612 Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Su-
 613 sano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish
 614 Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen,
 615 Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch,
 616 Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathi-
 617 halli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov,
 618 Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska,
 619 Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan
 620 Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
 621 Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
 622 Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
 623 Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
 624 Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
 625 Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
 626 Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shiv-
 627 anna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy
 628 Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal
 629 Bhatnagar, Sindhu Raghu ram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone,
 630 Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad
 631 Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei,
 632 Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jes-
 633 sica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher,
 634 Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
 635 Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
 636 Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
 637 Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
 638 Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussonot. Gemma 3 technical report,
 639 2025. URL <https://arxiv.org/abs/2503.19786>.

640 Nikhil Kandpal and Colin Raffel. Position: The Most Expensive Part of an LLM should be its Training
 641 Data, April 2025. URL <http://arxiv.org/abs/2504.12427>. arXiv:2504.12427 [cs].

642 Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
 643 Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
 644 Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. *Transactions
 645 on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=pxpbTdUEpD>.

646 Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In *Proceedings of
 647 Machine Translation Summit X: Papers*, pp. 79–86, Phuket, Thailand, September 13-15 2005. URL
<https://aclanthology.org/2005.mtsummit-papers.11>.

648 Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab, Daan van Esch, Nasanbayar Ulzii-Orshikh,
 649 Allahsera Tapo, Nishant Subramani, Artem Sokolov, Claytone Sikasote, Monang Setyawan,
 650 Supheakmungkol Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, Annette Rios, Isabel Pa-
 651 padimitriou, Salomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, Andre Niyongabo
 652 Rubungo, Toan Q. Nguyen, Mathias Müller, André Müller, Shamsuddeen Hassan Muhammad,
 653 Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin
 654 Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure
 655 F. P. Dossou, Sakhile Dlamini, Nisansa de Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia
 656 Battisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime, Ayodele Awokoya,
 657 Duygu Ataman, Orevaghene Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofetoluwa Adeyemi.
 658 Quality at a glance: An audit of web-crawled multilingual datasets. *Transactions of the As-
 659 sociation for Computational Linguistics*, 10:50–72, 2022. doi: 10.1162/tacl_a_00447. URL
 660 <https://aclanthology.org/2022.tacl-1.4>.

661 LAION. Safety review for laion 5b, December 19 2023. URL <https://laion.ai/notes/laion-maintenance/>.

663 LAION. Releasing re-laion 5b: Transparent iteration on laion-5b with additional safety fixes, August
 664 30 2024. URL <https://laion.ai/blog/relaion-5b/>.

666 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuhui Chen, Daniel Simig, Myle Ott,
 667 Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura,
 668 Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab,
 669 Veselin Stoyanov, and Xian Li. Few-shot learning with multilingual generative language models.
 670 In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
 671 on Empirical Methods in Natural Language Processing*, pp. 9019–9052, Abu Dhabi, United Arab
 672 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 673 emnlp-main.616. URL <https://aclanthology.org/2022.emnlp-main.616/>.

674 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 675 Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
 676 Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
 677 Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian
 678 Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei
 679 Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai
 680 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei
 681 Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
 682 Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
 683 Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
 684 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
 685 Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
 686 Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
 687 Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
 688 Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
 689 Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
 690 Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 691 Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
 692 Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
 693 Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
 694 Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
 695 Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
 696 Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
 697 Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
 698 Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
 699 Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
 Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
 700 Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.

701 Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S2ORC: The Semantic
 Scholar Open Research Corpus. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault

702 (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*,
 703 pp. 4969–4983, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
 704 2020.acl-main.447. URL <https://aclanthology.org/2020.acl-main.447/>.

705

706 Shayne Longpre, Stella Biderman, Alon Albalak, Hailey Schoelkopf, Daniel McDuff, Sayash Kapoor,
 707 Kevin Klyman, Kyle Lo, Gabriel Ilharco, Nay San, Maribeth Rauh, Aviya Skowron, Bertie Vidgen,
 708 Laura Weidinger, Arvind Narayanan, Victor Sanh, David Ifeoluwa Adelani, Percy Liang, Rishi
 709 Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, and Luca Soldaini. The responsible
 710 foundation model development cheatsheet: A review of tools & resources. *Transactions on*
 711 *Machine Learning Research*, 2024a. ISSN 2835-8856. URL [https://openreview.net/](https://openreview.net/forum?id=tH1dQH20eZ)
 712 [forum?id=tH1dQH20eZ](https://openreview.net/forum?id=tH1dQH20eZ). Survey Certification.

713 Shayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William Brannon,
 714 Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, Kevin Klyman, Christopher
 715 Klamm, Hailey Schoelkopf, Nikhil Singh, Manuel Cherep, Ahmad Anis, An Dinh, Caroline
 716 Chitongo, Da Yin, Damien Sileo, Deividas Mataciunas, Diganta Misra, Emad Alghamdi, Enrico
 717 Shippole, Jianguo Zhang, Joanna Materzynska, Kun Qian, Kush Tiwary, Lester Miranda, Manan
 718 Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff, Seonghyeon Ye, Seungone Kim,
 719 Shrestha Mohanty, Vipul Gupta, Vivek Sharma, Vu Minh Chien, Xuhui Zhou, Yizhi Li, Caiming
 720 Xiong, Luis Villa, Stella Biderman, Hanlin Li, Daphne Ippolito, Sara Hooker, Jad Kabbara, and
 721 Sandy Pentland. Consent in Crisis: The Rapid Decline of the AI Data Commons, July 2024b. URL
 722 <http://arxiv.org/abs/2407.14933>. arXiv:2407.14933 [cs].

723 Shayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William Brannon,
 724 Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, Kevin Klyman, Christopher
 725 Klamm, Hailey Schoelkopf, Nikhil Singh, Manuel Cherep, Ahmad Anis, An Dinh, Caroline
 726 Chitongo, Da Yin, Damien Sileo, Deividas Mataciunas, Diganta Misra, Emad A. Alghamdi, Enrico
 727 Shippole, Jianguo Zhang, Joanna Materzynska, Kun Qian, Kush Tiwary, Lester James V. Miranda,
 728 Manan Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff, Seonghyeon Ye, Seungone
 729 Kim, Shrestha Mohanty, Vipul Gupta, Vivek Sharma, Vu Minh Chien, Xuhui Zhou, Yizhi Li,
 730 Caiming Xiong, Luis Villa, Stella Biderman, Hanlin Li, Daphne Ippolito, Sara Hooker, Jad Kabbara,
 731 and Sandy Pentland. Consent in Crisis: The Rapid Decline of the AI Data Commons. *CoRR*,
 732 abs/2407.14933, 2024c. URL <https://doi.org/10.48550/arXiv.2407.14933>.

733 Lefteris Loukas, Manos Fergadiotis, Ion Androutsopoulos, and Prodromos Malakasiotis. EDGAR-
 734 CORPUS: Billions of tokens make the world go round. In Udo Hahn, Veronique Hoste, and Amanda
 735 Stent (eds.), *Proceedings of the Third Workshop on Economics and Natural Language Processing*,
 736 pp. 13–18, Punta Cana, Dominican Republic, November 2021. Association for Computational
 737 Linguistics. doi: 10.18653/v1/2021.econlp-1.2. URL <https://aclanthology.org/2021.econlp-1.2>.

738 Eneldo Loza Mencía and Johannes Fürnkranz. Efficient Multilabel Classification Algorithms for
 739 Large-Scale Problems in the Legal Domain. In *Semantic Processing of Legal Texts*. Springer, 2010.

740

741 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 742 Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
 743 Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
 744 Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
 745 Nii Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
 746 Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
 747 Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
 748 Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
 749 Scholak, Sébastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostafa
 750 Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
 751 Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
 752 The next generation, 2024. URL <https://arxiv.org/abs/2402.19173>.

753 Alexandra Luccioni and Joseph Viviano. What's in the box? an analysis of undesirable content in
 754 the Common Crawl corpus. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
 755 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers),

756 pp. 182–189, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.24. URL <https://aclanthology.org/2021.acl-short.24>.

757

758

759 YINGWEI MA, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan
760 Li. At which training stage does code data help LLMs reasoning? In *The Twelfth International*
761 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=KIPJKST4gw>.

762

763 Meta. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, 2025.
764 URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.

765

766 Sewon Min, Suchin Gururangan, Eric Wallace, Weijia Shi, Hannaneh Hajishirzi, Noah A. Smith, and
767 Luke Zettlemoyer. SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore,
768 July 2024. URL <http://arxiv.org/abs/2308.04430>. arXiv:2308.04430 [cs].

769 Clemens Neudecker. An open corpus for named entity recognition in historic newspapers. In Nicoletta
770 Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard,
771 Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), *Proceed-
772 ings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pp.
773 4348–4352, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).
774 URL <https://aclanthology.org/L16-1689>.

775

776 Open Source Initiative. The open source ai definition – 1.0, 2024. URL <https://opensource.org/ai/open-source-ai-definition>. Accessed: 2024-11-20.

777

778 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
779 Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
780 dataset for Falcon LLM: Outperforming curated corpora with web data only. *Advances in Neural*
781 *Information Processing Systems*, 36:79155–79172, 2023.

782

783 Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect lan-
784 guage model task performance? In *The 7th BlackboxNLP Workshop*, 2024. URL <https://openreview.net/forum?id=2sghJ1yYOr>.

785

786 Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. XCOPA: A multilingual dataset for causal commonsense reasoning. In Bonnie Webber,
787 Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empir-
788 ical Methods in Natural Language Processing (EMNLP)*, pp. 2362–2376, Online, November
789 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.185. URL
790 <https://aclanthology.org/2020.emnlp-main.185>.

791

792 Audrey Pope. NYT v. OpenAI: The Times’s About-Face. *Harvard Law Re-
793 view Blog*, April 2024. URL <https://harvardlawreview.org/blog/2024/04/nyt-v-openai-the-timess-about-face/>.

794

795

796 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under-
797 standing by Generative Pre-Training.

798

799 Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to Generate Reviews and Discovering
800 Sentiment, April 2017. URL <http://arxiv.org/abs/1704.01444>. arXiv:1704.01444
801 [cs].

802

803 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
804 Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the Limits of Transfer Learning with a Unified
805 Text-to-Text Transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.

806

807 Edwin Rijgersberg. The end of geitje. GoingDutch.ai, 2025. URL <https://goingdutch.ai/en/posts/geitje-takedown/>. Accessed: 2025-02-20.

808

809 Emma Roth. New York Times sues OpenAI and Microsoft over copyright infringement. *The
810 Verge*, December 2023. URL <https://www.theverge.com/2023/12/27/24016212/new-york-times-openai-microsoft-lawsuit-copyright-infringement>.

810 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
 811 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
 812 Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
 813 Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
 814 Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe-
 815 dro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell,
 816 Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna
 817 Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm,
 818 Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Pon-
 819 ferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán
 820 Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmu-
 821 min, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
 822 Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo
 823 Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy,
 824 Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang,
 825 Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, et al. Bloom: A 176b-parameter open-
 826 access multilingual language model, 2023. URL <https://arxiv.org/abs/2211.05100>.
 827
 828 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 829 Ben Beglin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: an Open Corpus of
 830 Three Trillion Tokens for Language Model Pretraining Research. *arXiv preprint arXiv:2402.00159*,
 831 2024. URL <https://arxiv.org/pdf/2402.00159.pdf>.
 832
 833 The AI Alliance. Dataset specification, 2024. URL <https://the-ai-alliance.github.io/open-trusted-data-initiative/dataset-requirements/>. Accessed: 2025-02-20.
 834
 835 David Thiel. Identifying and eliminating csam in generative ml training data and models. Technical
 836 report, Stanford Digital Repository, December 20 2023. URL <https://purl.stanford.edu/kh752sm9123>.
 837
 838 Unesco. Recommendation on Open Science, 2021. URL <https://www.unesco.org/en/legal-affairs/recommendation-open-science>.
 839
 840 Ernesto Van der Sar. Anti-piracy group takes prominent ai training dataset “books3”
 841 offline. *TorrentFreak*, August 16 2023. URL <https://torrentfreak.com/anti-piracy-group-takes-prominent-ai-training-dataset-books3-offline-230816/>.
 842
 843 Chengyu Wang, Taolin Zhang, Richang Hong, and Jun Huang. A Short Survey on Small Reasoning
 844 Models: Training, Inference, Applications and Research Directions, April 2025. URL <https://arxiv.org/abs/2504.09100v1>.
 845
 846 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 847 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 848 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 849 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 850 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 851 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 852 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 853 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 854 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 855
 856 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. WildChat:
 857 1M ChatGPT Interaction Logs in the Wild. In *The Twelfth International Conference on Learning*
 858 *Representations*, 2024. URL <https://openreview.net/forum?id=B18u7ZRlbM>.
 859
 860
 861

A LLM USAGE STATEMENT

 862
 863 In the process of developing this work, we utilized LLMs for grammar correction and occasionally as
 a rewriting tool. In addition, we involved LLMs in the process of data visualization.

864 B LIMITATIONS

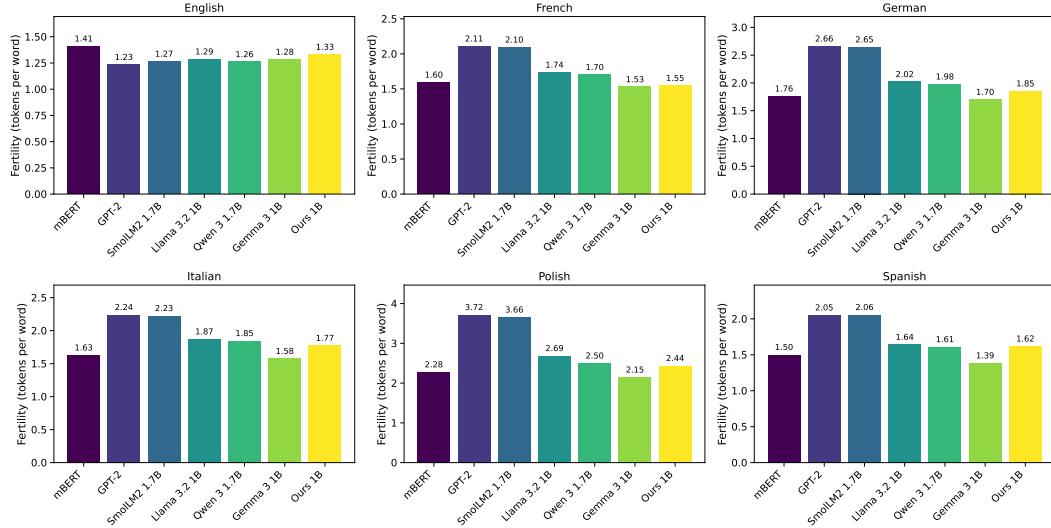
866 Common Corpus is far from collecting the whole range of available open data, which we described
 867 as the open data paradox. Therefore, the future collection of permissible data is highly encouraged
 868 by this work. Furthermore, the collected amount of data (2 trillion tokens), when used alone, as our
 869 own small language model family (see Section 5), is suitable for pre-training of models of limited
 870 size, while larger ones require significantly larger amounts of data. In addition, Common Corpus
 871 naturally does not contain data for instruction-tuning and any forms of specialized tasks. Therefore,
 872 it is not directly suitable for task-specific fine-tuning. However, due to the multilingual, temporal,
 873 and semantic diversity of data, Common Corpus opens the opportunities for the creation of ethical
 874 fine-tuning datasets.

875 In Section 4, we described the tools we used for the data curation, filtering, and editing. Even though
 876 we used these methods responsibly and mitigated many issues overlooked by the counterparts (*e.g.*,
 877 with toxicity detection), none of the curation methods could naturally facilitate a hundred-percent
 878 accuracy. However, some issues, like OCR errors, present considerable challenges to the models and
 879 might even account for better handling of typos in the future. We would also like to mention that
 880 each data object is accompanied by sufficient metadata, and, if desired, LLM practitioners are free to
 881 filter out collections that might contain potential issues (as described in Section 4).

883 C LANGUAGE DISTRIBUTION

886 In Table 5, we present the top-50 languages in Common Corpus by token count. The token counts
 887 are presented in terms of our BPE tokenizer used to train the models described in Section 5, which
 888 was trained on a representative subsample of Common Corpus. To verify that our tokenizer serves as
 889 a strong baseline for token counts, we show its fertility in Appendix D.

891 D TOKENIZER DETAILS



911 Figure 3: Comparing the fertility of our tokenizer (marked as “Ours 1B”) and other language models
 912 for six languages. The data source for all languages is the devtest set of FLORES200 (Costa-jussà
 913 et al., 2022).

916 In Figure 3, we show how our tokenizer with a vocabulary of size 65,536, trained on a representative
 917 subsample of Common Corpus, compares to other language model tokenizers. Our tokenizer is
 918 outperformed only by Gemma 3, which has a tokenizer **four times larger**.

918

919

920 Table 5: Top-50 languages in Common Corpus by token count. Each language is presented with its
921 number of documents, words, and tokens in the corpus. The rows are ordered by the token count.
922

Dataset	Documents	Words	Tokens
English	154,175,907	634,794,970,595	968,757,721,747
French	35,245,624	162,061,620,874	275,358,437,630
German	11,385,377	56,674,819,173	112,127,458,251
Spanish	6,530,094	26,215,767,271	46,514,142,421
Latin	2,367,110	16,189,444,325	36,031,591,540
Italian	3,804,052	13,207,129,356	24,681,637,575
Polish	2,640,613	5,086,555,167	12,146,688,669
Greek	844,122	3,796,018,483	11,376,498,056
Portuguese	1,756,922	5,234,373,473	10,262,747,943
Russian	2,762,818	3,222,919,854	9,439,453,633
Dutch	3,206,382	3,791,928,728	8,058,934,080
Danish	2,270,459	2,840,121,206	6,941,827,931
Slovak	683,174	2,320,831,403	5,148,967,838
Czech	946,534	1,966,829,784	4,798,558,092
Indonesian	1,023,361	1,660,129,567	4,381,878,823
Estonian	685,180	1,613,093,565	4,379,534,617
Hungarian	888,780	1,527,981,866	4,110,878,972
Swedish	3,250,289	1,782,642,556	4,014,927,806
Finnish	931,201	1,356,653,003	3,943,036,413
Maltese	480,491	1,421,372,608	3,646,102,921
Bulgarian	576,997	1,444,748,621	3,422,182,324
Lithuanian	539,906	1,192,586,834	3,097,400,907
Romanian	725,766	1,398,178,029	2,909,452,579
Japanese	1,409,956	204,698,439	2,738,872,745
Arabic	1,291,439	827,392,227	2,682,255,180
Slovenian	504,492	1,107,467,643	2,602,943,380
Latvian	364,503	966,005,785	2,579,350,119
Ukrainian	1,378,390	786,829,868	2,561,253,212
Croatian	443,669	984,577,685	2,400,762,140
Chinese	1,426,017	329,649,628	2,238,230,225
Haitian Creole	292,718	762,225,686	1,420,886,048
Turkish	572,633	380,551,359	1,206,732,266
Cebuano	6,123,694	598,016,557	1,080,404,897
Norwegian Nynorsk	1,026,745	405,911,677	1,036,914,970
Irish	139,815	371,175,864	958,688,647
Castilian	50,785	457,490,798	893,080,621
Serbian	698,037	292,399,267	822,519,328
Hebrew	343,406	227,869,199	763,029,488
Catalan	803,532	368,144,006	736,220,789
Korean	653,460	143,729,419	677,716,397
Persian	983,632	209,078,446	668,287,975
Vietnamese	1,296,789	267,190,147	593,203,801
Norwegian	628,798	252,133,513	561,694,623
Armenian	306,959	109,852,686	539,900,475
Hindi	210,984	127,830,222	463,832,707
Yiddish	59,158	122,100,684	463,526,449
Welsh	309,573	191,827,552	438,133,529
Occitan	288,195	195,380,666	357,267,635
Georgian	172,532	71,678,084	349,884,144
Basque	439,582	139,077,600	348,891,265

970

971

972 **E PROVENANCE**
973974 **E.1 OPEN GOVERNMENT**
975976 In this section, we describe the provenance and present token counts and main languages for the two
977 sub-collections of Open Government: Finance Commons and Legal Commons.
978979 **E.1.1 FINANCE COMMONS**
980981 Table 6: Finance Commons sources distribution with languages.
982

983 Dataset	984 Main Languages	985 Documents	986 Tokens
987 SEC	988 English	989 1,085,113	990 9,653,919,837
991 WTO	992 English, Spanish, French, and small parti- 993 tions of others	994 772,508	995 2,835,007,015
996 AMF	997 French, English	998 595,397	999 9,823,755,281
1000 TED EU 1001 Tenders	1002 German, French, Polish, Spanish, Dutch, 1003 Czech, Romanian, English, Swedish, Italian, 1004 Bulgarian, Finnish, Latvian, Danish, 1005 Lithuanian, Croatian, Estonian, Hungarian, 1006 Portuguese, Slovenian, Slovak, Greek, Irish	1007 137,837	1008 650,396,761
1009 GATT Li- 1010 brary	1011 English, French, Spanish, Catalan, Por- 1012 tuguese, German	1013 67,596	1014 224,526,628

997 The datasets that make up Finance Commons are presented in Table 6. Here, we also present the
998 provenance details for each of the parts of Finance Commons:
999

- 1000 • **Securities and Exchange Commission (SEC).** This dataset comprises the SEC annual
1001 reports (Form 10-K) for the years 1993 to 2024. Entries up to 2020 were compiled by
1002 Loukas et al. (2021). We added the reports from 2021-2024, which come from the EDGAR
1003 database⁷, compiled using the EDGAR-Crawler toolkit⁸.
- 1004 • **World Trade Organization (WTO).** This dataset comprises documents from WTO's official
1005 Documents Online platform. The documents cover the years 1995 to 2024. Documents are
1006 available in three official languages: English, French, and Spanish. Some documents are
1007 available in other languages, *e.g.*, Chinese, Korean, Arabic, German, and Portuguese. Also
1008 released separately as WTO-PDF.
- 1009 • **French Authority for Financial Market (AMF).** This is a dataset of documents from the
1010 French Authority for Financial Market, or the Autorité des marchés financiers⁹ (AMF),
1011 which is an independent public authority that regulates the French market. The documents
1012 are primarily in French. Also released separately as AMF-PDF.
- 1013 • **Tenders Electronic Daily (TED) EU Tenders.** This dataset is a collection of procurement
1014 notices published by the EU. The documents are published in the online version of the
1015 “Supplement to the Official Journal” of the EU¹⁰, dedicated to European public procurement.
1016 The documents are mostly in German, with French, Polish, and Spanish making up relatively
1017 large portions of the remaining documents. There are also small portions of other languages
1018 (see details in Table 6).
- 1019 • **General Agreement on Tariffs and Trade (GATT) Library.** This dataset comprises
1020 documents from GATT, which was an organization that promoted international commerce
1021 and the reduction of trade barriers among member states. Public documents were made

1022 ⁷<https://www.sec.gov/search-filings/edgar-search-assistance/>
1023 accessing-edgar-data1024 ⁸<https://github.com/nlpaueb/edgar-crawler>1025 ⁹<https://www.amf-france.org/en/news-publications/publications/open-data>10¹⁰<https://ted.europa.eu/en/>

Table 7: Legal Commons sources distribution with languages.

Dataset	Languages	Tokens
Caselaw Access Project	English	13,821,842,995
Court Listener	English	22,625,121,735
EUR-lex	Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish	65,044,763,781
Eurovoc	English, German, French, Croatian, Italian, Lithuanian, Portuguese, Finnish, Danish, Bulgarian, Dutch, Polish, Greek, Swedish, Hungarian, Czech, Spanish, Maltese, Latvian, Slovak, Slovenian, Romanian, Estonian, Arabic, Tigrinya, Farsi, Russian, Urdu, Serbian, Albanian, Kurdish, Pashto, Irish, Norwegian, Icelandic, Dari, Armenian, Japanese.	31,648,136,898
French open data	French	24,597,392,089
USPTO	English	200,509,900,178
UN Digital Library	Arabic, Chinese, English, French, Russian, Spanish	1,781,037,875
European Open Data	EU languages	7,098,502,579
OECD	English, French	584,969,458

available by the General Council of the WTO in 2006¹¹. The documents span from January 1, 1946, to September 6, 1996. Most of the documents are in English, but there are also documents in French, Spanish, and other languages.

E.1.2 LEGAL COMMONS

Here, we present the provenance details for each of the parts of Legal Commons:

- **Europarl.** This dataset is a multilingual parallel corpus, drawn from the proceedings of the European Parliament¹². It includes texts from 21 EU languages. It was originally compiled by Koehn (2005).
- **Caselaw Access Project.** This dataset consists of 6,773,632 legal cases, digitized from Harvard Law School Library’s physical collection of American case law¹³. The dataset spans the years 1658 to 2020.
- **CourtListener.** This is a dataset¹⁴ of opinions, oral arguments, judges, judicial financial records, and federal filings put together by the Free Law Project¹⁵.
- **EUR-lex.** This is a dataset of 57,000 legislative documents from the EU¹⁶. It is based on the dataset by Loza Mencía & Fürnkranz (2010) and developed by Chalkidis et al. (2019). The

¹¹https://www.wto.org/english/docs_e/gattdocs_e.htm

¹²<https://www.statmt.org/europarl/>

¹³<https://case.law/>

¹⁴<https://www.courtlistener.com/help/api/bulk-data/>

¹⁵<https://free.law/contact>

¹⁶<https://eur-lex.europa.eu/>

1080 documents have also been annotated by the Publications Office of EU¹⁷ with concepts from
 1081 EuroVoc¹⁸. The dataset covers all 24 EU languages.
 1082

- **Eurovoc.** Eurovoc is a dataset containing 1,528,402 documents in 39 languages with
 1083 associated EuroVoc labels. The documents come from Cellar¹⁹, which is a data repository
 1084 for the Publications Office of the European Union. This dataset was originally compiled by
 1085 Sébastien Campion²⁰.
- **French Open Data.** This dataset comes from French administrative bodies' websites, for
 1086 example, the French Directorate of Legal and Administrative Information (Direction de
 1087 l'information légale et administrative²¹; DILA), which is a French public administrative
 1088 entity that disseminates information about laws and their applications to the public.
- **USPTO.** This dataset comprises documents from the United States Patent and Trademark
 1089 Office (USPTO), the federal agency that grants patents and registers trademarks. This dataset
 1090 consists of actions from this agency from 2019 to 2022. It was originally published as part
 1091 of the Pile of Law (Henderson et al., 2022)²².
- **UN Digital Library.** This dataset comes from the UN Digital Library²³.
- **European Legal Dataset.** We also collect datasets from various EU websites, *e.g.*, Archives
 1096 of the EU Institute²⁴ and the Council of the EU²⁵.
- **OECD.** These data come from the Organisation for Economic Co-operation and Develop-
 1097 ment (OECD)²⁶.

E.2 OPEN CULTURE

Large portion of data in Open Culture part of the Common Corpus was built on top of the following collection-as-data initiatives:

- **Chronicle America:** about 100B words (150B tokens) of digitized US newspapers by the Library of Congress, made available as a raw text file.
- **Europeana:** about 21B tokens of digitized European newspapers through large-scale cross-national contributions and new digitizations.
- **Gallica:** about 85B words of digitized French newspapers and monographs made available on the open data portal of the French digitized library through entire dumps or API access²⁷.
- **Biblioteca:** about 15B words of digitized Spanish newspapers and monographs.

Combined with the other retrieved data, the collections were dispatched into smaller individual subsets, which were also separately released as parts of the Open Culture collection (Table 8). The Open Culture data in Common Corpus have been post-processed and filtered, as described below, which results in a slightly different final word and token count:

- **French PD.** This corpus is based on the training corpus for gallicagram²⁸. It comprises 289,000 books from the French National Library (Gallica). This initial aggregation was made possible thanks to the open data program of the French National Library and the consolidation of public domain status for cultural heritage works in the EU following the 2019 Copyright Directive (Art. 14).

¹⁷<https://publications.europa.eu/en>

¹⁸<http://eurovoc.europa.eu/>

¹⁹<https://op.europa.eu/en/web/cellar>

²⁰<https://huggingface.co/datasets/EuropeanParliament/Eurovoc>

²¹<https://echanges.dila.gouv.fr/OPENDATA/>

²²<https://huggingface.co/datasets/pile-of-law/pile-of-law>

²³<https://digitallibrary.un.org/?ln=en>

²⁴<https://archives.eui.eu/>

²⁵<https://www.consilium.europa.eu/en/general-secretariat/corporate-policies/transparency/open-data/>

²⁶<https://www.oecd.org/en/data/datasets.html?orderBy=mostRelevant&page=0>

²⁷<https://api.bnf.fr>

²⁸<https://shiny.ens-paris-saclay.fr/app/gallicagram>

1134 Table 8: Subsets of Open Culture with language coverage, type of document, and token count.
1135

1136	Corpus	Language	Domain	Tokens
1137	English PD	English	Books and Newspapers	174.2B
1138	US PD Books	English	Books	82.2B
1139	French PD Books	French	Books	24.0B
1140	French PD Newspapers	French	Newspapers	110.8B
1141	French PD Diverse	French	Books and Newspapers	69.6B
1142	LoC Books	English	Books	10.6B
1143	US PD Newspapers	English	Newspapers	199.3B
1144	New Zealand PD Newspapers	English, Māori	Newspapers	12.6B
1145	Europeana Newspapers	Multilingual	Newspapers	21.0B
1146	German PD Newspapers	German	Newspapers	18.4B
1147	German PD	German	Books	58.0B
1148	Portuguese PD	Portuguese	Books and Newspapers	2.6B
1149	Spanish PD Newspapers	Spanish	Newspapers	8.0B
1150	Spanish PD Books	Spanish	Books	15.4B
1151	Italian PD	Italian	Books	18.2B
1152	Dutch PD	Dutch	Books and Newspapers	2.7B
1153	BnL Newspapers	German, French, Luxembourghish	Newspapers	0.3B
1154	Danish PD	Danish	Books and Newspapers	0.5B
1155	Serbian PD	Serbian	Books and Newspapers	0.3B
1156	Czech PD	Czech	Books and Newspapers	0.7B
1157	Greek PD	Greek	Books and Newspapers	4.2B
1158	Multilingual PD	Multilingual	Books and Newspapers	8.4B
1159	Polish PD	Polish	Books and Newspapers	5.9B
1160	Latin PD	Latin	Books	27.2B
1161	Russian PD	Russian	Books	1.9B
1162	Arabic PD	Arabic	Books	0.3B
1163				

1164

- 1165 • **French PD Newspapers.** This dataset was also based on the Gallicagram corpus. It
1166 comprises nearly three million unique newspaper and periodical editions from the French
1167 National Library (Gallica).
- 1168 • **LoC Books.** This dataset comprises 140,000 English books, digitized by the Library of
1169 Congress. The books come from the Selected Digitized Books Collection²⁹. The dataset
1170 was curated by using the Library of Congress JSON API. This dataset contains only the
1171 books in the English collection. The dataset was compiled by Sebastian Majstorovic.
- 1172 • **US PD Newspapers.** This dataset comprises 21 million digitized newspapers from Chronicling
1173 America³⁰. The newspapers were digitized by the Library of Congress. The dataset
1174 can be fully explored through an original corpus map created by Nomic AI³¹. The dataset
1175 is mostly in English, but it also contains articles in other languages, mostly German and
1176 Spanish. The articles were published between the years 1690 and 1963.
- 1177 • **New Zealand PD Newspapers.** This dataset comprises historic newspapers from New
1178 Zealand and the Pacific from the 19th and 20th centuries. The data were made available by
1179 the National Library of New Zealand as part of Papers Past³². The articles are primarily in
1180 English, but include some articles in te reo Māori.
- 1181 • **Europeana Newspapers.** This dataset contains over 1,000 digitized newspapers from 23
1182 libraries around Europe. It contains articles in at least 40 languages, and its articles were

1184 ²⁹<https://www.loc.gov/collections/selected-digitized-books/about-this-collection/>

1185 ³⁰<https://chroniclingamerica.loc.gov/>

1186 ³¹<https://atlas.nomic.ai/data/aaron/pdnews-21286k-tr2k-addmeta/map>

1187 ³²<https://paperspast.natlib.govt.nz/newspapers>

1188 published between 1618 and 1990 (Neudecker, 2016). The original sources are available via
 1189 Europeana, and were made available by Big Science³³.
 1190

- 1191 • **German PD Newspapers.** This dataset contains articles from 4,299,653 issues from over
 1192 1900 different newspapers. The articles come from the German Digital Library, hosted by
 1193 Deutsches Zeitungsportal³⁴. The articles were originally published between 1794 and 1957.
 1194 This dataset was curated and first made available by Sebastian Majstorovic³⁵.
- 1195 • **German PD.** This dataset contains texts from various sources, including the Mannheim Cor-
 1196 pus of Historical Newspapers and Magazines³⁶ (Mannheimer Korpus Historischer Zeitungen
 1197 und Zeitschriften). This dataset is made up of 21 German newspapers and magazines. The
 1198 texts were originally published between 1737 and 1905. The corpus was originally digitized
 1199 between 2009 and 2011. The corpus was made available by the Institut für Deutsche Sprache
 1200 in 2013.
- 1201 • **Spanish PD Books.** This dataset contains 302,640 individual texts from various sources,
 1202 including the leading cultural heritage institution Biblioteca Digital Hispánica³⁷ (BDH). To
 1203 ensure that these texts are in the public domain, we have retained exclusively titles published
 1204 prior to 1884.
- 1205 • **Dutch PD.** This dataset contains approximately 176,000 books and 540,000 periodicals,
 1206 which come from various sources including Delpher³⁸. Delpher is a repository of digitized
 1207 printed material from the Netherlands, which is maintained by the Koninklijke Bibliotheek,
 1208 the national library of the Netherlands. To ensure that these texts are in the public domain,
 1209 we have retained exclusively titles published prior to 1884.
- 1210 • **BnL Newspapers.** This dataset contains 630,709 articles from 21 different newspaper
 1211 titles and 24,415 unique issues. The articles were digitized by the National Library of
 1212 Luxembourg (BnL) as part of their Open Data Initiative³⁹. OCR was done using Nautilus-
 1213 OCR⁴⁰. The articles are in German, French, and Luxembourgish. The newspapers were
 1214 originally published between 1841 and 1879. The dataset was published and made accessible
 1215 by BigScience.
- 1216 • The rest of the datasets, including French PD Diverse, Portuguese PD, Italian PD, Polish PD,
 1217 Danish PD, Swedish PD, Serbian PD, Czech PD, and Multilingual PD, come from various
 1218 sources, including several European national libraries and cultural heritage institutions. To
 1219 ensure that these texts are in the public domain, we have retained exclusively titles published
 1220 prior to 1884.

1221 E.3 OPEN SCIENCE

1223 In Table 9, we present the total token counts per collection inside of the Open Science part of Common
 1224 Corpus.

1226 E.4 OPEN CODE

1228 Table 10 shows the number of tokens for the top ten coding languages and frameworks in Open Code.

1230 F OPEN CULTURE VERIFICATION

1232 Here, we describe the rights verification process that we applied for cultural data objects:

1234 ³³https://huggingface.co/datasets/biglam/europeana_newspapers

1235 ³⁴<https://www.deutsche-digitale-bibliothek.de/newspaper>

1236 ³⁵<https://huggingface.co/datasets/storytracer/German-PD-Newspapers>

1237 ³⁶<https://repos.ids-mannheim.de/fedora/objects/clarin-ids:mkhz1.00000/datstreams/CMDI/content>

1239 ³⁷<https://www.bne.es/fr/catalogues/biblioteca-digital-hispanica>

1240 ³⁸<https://www.digitisednewspapers.net/histories/delpher/>

1241 ³⁹<https://data.bnl.lu/>

⁴⁰<https://github.com/natliblux/nautilusocr>

1242 Table 9: Token count by dataset Open Science.
1243

1244	Dataset	1245
1246	OpenAlex	191,616,437,384
1247	Open Science Pile	11,096,766,324
1248	Open Science French	46,961,690,792
1249	Open Science Spanish	16,523,491,767
1250	Open Science German	7,806,446,050
1251	ArXiv	7,188,731,472
1252	Total	281,193,563,789

1253 Table 10: Token counts by programming language or framework.
1254

1255	Language	1256
1257	Java	35,697,451,454
1258	JavaScript	28,894,772,110
1259	Python	26,681,331,771
1260	C++	25,481,950,314
1261	C	23,277,000,113
1262	PHP	23,077,121,733
1263	C#	16,806,995,110
1264	Go	11,200,587,099
1265	Rust	3,888,428,173
1266	Ruby	3,718,918,983

- 1268 • **Author life + 70 years for all non-US authors.** Among most signatories of the Berne
1269 Convention for the Protection of Literary and Artistic Works⁴¹, this is the most common
1270 approach to determining documents in the public domain. This approach requires not
1271 only identifying the author but also their date of death. On top of the information already
1272 made available by cultural heritage institutions, we also implemented an internal data
1273 reconciliation pipeline based on the complete dump of Wikidata.
- 1274 • **All publications after 1884.** In cases where the author could not be identified or for
1275 collective works like newspapers, we applied a “universal” public domain rule based on 70
1276 years prior to the current term of the author’s life + 70 years. Simplified rules like these
1277 are commonly applied in cultural heritage projects, especially for the release of newspaper
1278 collections.
- 1279 • **Publication + 95 years for US authors.** This is the copyright-based approach currently in
1280 place in the US. For an international project, this will only affect US-born authors. Due to a
1281 lack of further legal expertise, we did not attempt to include works whose copyright might
1282 not have been renewed.
- 1283 • **No digitization rights.** Following on the 2019 Copyright Directive (Art. 14) and common
1284 practice among GLAM reusers like Wikimedia Commons, we consider that the simple act
1285 of digitization does not provide any additional rights.

1287

G CLEANING AND CURATION

1289

G.1 TEXT SEGMENTATION

1291 Here is an example input text for the Segmentext model:

1293 In this respect, the insurance business investment portfolio can be considered
1294 conservatively managed as it is largely composed of corporate, sovereign, and
1295

⁴¹<https://www.wipo.int/treaties/en/ip/berne/>

1296 supranational bonds, term loans as well as demand deposits. Following the previous
 1297 year, the group continued to diversify its holdings into investment-grade corporate
 1298 bonds. It should be noted that bonds and term loans are held to maturity in
 1299 accordance with the group's business model policy of "inflows".

1300 Technical liabilities on insurance contracts.

1301 The guarantees offered cover death, disability, redundancy, and unemployment
 1302 as part of a loan protection insurance policy. These types of risk are controlled
 1303 through the use of appropriate mortality tables, statistical checks on loss ratios for
 1304 the population groups insured, and through the insurance program.

1305 Liability adequacy test.

1306 A goodness-of-fit test aimed at ensuring that insurance liabilities are adequate
 1307 with respect to current statements of future cash flows generated by the insurance
 1308 contracts is performed at each statement of account. Future cash flows resulting
 1309 from the contracts take into account the guarantees and options inherent therein.
 1310 In the event of inadequacy, the potential losses are fully recognized in the income
 1311 statement. The modeling of future cash flows in the insurance liability adequacy
 1312 test are based on the following assumptions: At the end of 2022, this liability
 1313 adequacy test did not reveal any anomalies.

1314 Income statement.

1315 The income and expenses recognized for the insurance contracts issued by the
 1316 group appear in the income statement in "Net income of other activities" and "Net
 1317 expense of other activities".

1318 Risk management.

1319 The group adopts a "prudent approach" to its management of the risks to which it
 1320 could be exposed through its insurance activities. Risk of counterparty. As stated
 1321 above, insurance companies only invest in assets (bank deposits, sovereign bonds,
 1322 supranational agencies, or corporate bonds).

1323 Example output:

1325 Editorial Segmentation

1326 *[Text]* In this respect, the insurance business investment portfolio can be considered conservatively managed as it is largely composed of
 1327 corporate, sovereign, and supranational bonds, term loans as well as demand deposits. Following the previous year, the group
 1328 continued to diversify its holdings into investment-grade corporate bonds. It should be noted that bonds and term loans are held to
 1329 maturity in accordance with the group's business model policy of "inflows".

1330 *[Title]* Technical liabilities on insurance contracts.

1331 *[Text]* The guarantees offered cover death, disability, redundancy, and unemployment as part of a loan protection insurance policy. These
 1332 types of risk are controlled through the use of appropriate mortality tables, statistical checks on loss ratios for the population groups
 1333 insured, and through the insurance program.

1334 *[Title]* Liability adequacy test.

1335 *[Text]* A goodness-of-fit test aimed at ensuring that insurance liabilities are adequate with respect to current statements of future cash
 1336 flows generated by the insurance contracts is performed at each statement of account. Future cash flows resulting from the contracts
 1337 take into account the guarantees and options inherent therein. In the event of inadequacy, the potential losses are fully recognized in
 1338 the income statement. The modeling of future cash flows in the insurance liability adequacy test are based on the following
 1339 assumptions: At the end of 2022, this liability adequacy test did not reveal any anomalies.

1340 *[Title]* Income statement.

1341 *[Text]* The income and expenses recognized for the insurance contracts issued by the group appear in the income statement in "Net
 1342 income of other activities" and "Net expense of other activities".

1343 *[Title]* Risk management.

1344 *[Text]* The group adopts a "prudent approach" to its management of the risks to which it could be exposed through its insurance activities.

1345 *[Title]* Risk of counterparty.

1346 *[Text]* As stated above, insurance companies only invest in assets (bank deposits, sovereign bonds, supranational agencies, or corporate
 1347 bonds).

1348 G.2 OCR ERROR DETECTION

1349 **OCRosope.** To illustrate this approach, this long text is correctly identified as French with 99%
 confidence by `cld2`, as despite the many mistakes, there are enough non-ambiguous French words:

1350 NOUVELLES POLI TI QU E S. Suede. Stockholm , le 2 5 décembre 1792. Le
1351 général Toll ira à Varsovie en quarté d'envoyé de la Suede auprès du roi et de la
1352 république ; A 1 même rey.u l'ordre de s'y rendra incessamment. 11 paraît que k
1353 Uc-régeik a des craintes ; il a fait venir chez lji les membres c Ij““ tribunal 4e la
1354 cour , et leur a rtmis son lesfca n at. La fermentation qu'a causée 1 ,ari r?tavh n k
1355 M p v riote Thorild t'i'est pas appaisée y le luigage qv'il a yailé an duc-régent a
1356 été bien entendu par le peu) k y ir M (U i n'entendrait pas l'apostrdphe suivante ?
1357 ttRxc3xa7nd ,la libuk à r otre raison , et ne et nous force pas de l'ache'ef r i te n :e
1358 sang,.

Le duc a fait x,épa4idre sur-le-champ une fjtbprijuun à te us les habitans di\$ Toyaume , pour les detourntr de mr laisser sé luire par de fa,ux bruits et des jugemens pe rver\$, e i en même temps l'ordre a. été donné à la garnison de charger et de se tenir prête à marcher.

(*Mercure Français*, 1793, January 25th)

1364 Yet one short n-gram ("n k M p v riote Thorild") is classified as unknown by cld2.
1365

OCRrerr. The following is a low-error example sentence taken from Common Corpus:

1368 They did not approach her, but turned away and passed from her presence, filled
1369 with sorrow and moved with sympathy, which her intense emotions seemed to
1370 communicate to even these thoughtless young men of the two plains.

1372 And the OCRerrcr detection (with formatting for clarity):

1373 They did not approach *cer*, but turned away and passed
1374 *iron* from her presence, filled with sorrow and moved with sympathy, which
1375 her intense emotions seemed to communicate to even these thoughtless young men
1376 of the *tho* plains.

G.3 OCR CORRECTION

1380 Here is an example of text containing various OCR errors:

1382 The guaranty fees offered cover death, disability, redundancy and unemployment
1383 aspects of a loan protection insurance policy. These types of risk are controlled
1384 through the use of appropriate mortality tables, statistical checkson loss ratios for
1385 the population groups insured and through a reinsurance program.

1386 And here is the text corrected by our model, OCronos:

1388 The guarantees offered cover death, disability, redundancy, and unemployment
1389 as part of a loan protection insurance policy. These types of risk are controlled
1390 through the use of appropriate mortality tables, statistical checks on loss ratios for
1391 the population groups insured, and through the insurance program.

H EVALUATIONS

In Tables 11, 12, 13, and 14, we present per-language scores for the studied benchmarks. On MultiBLIMP, most of the scores are significantly above random (0.5); therefore, we also highlight the best and second-best scores.

1404

1405

1406

1407

1408 Table 11: Multilingual benchmarking results on MultiBLIMP (ISO 639 language codes a*–i* in
1409 alphabetical order). “Ours” refers to our models pre-trained on Common Corpus. Within each model
1410 group, the best score is in **bold**, and the second-best is underlined.

1411

Model	Ours	Gemma 3	XGLM	BLOOM	Ours	Gemma 3	XGLM	OLMo
Parameters	350M	270M	564M	560M	1.2B	1B	1.7B	1B
abk	<u>0.550</u>	0.750	0.475	0.525	<u>0.675</u>	<u>0.675</u>	0.325	0.800
aln	<u>0.733</u>	0.755	0.709	0.700	<u>0.728</u>	0.750	0.675	0.690
amh	<u>0.946</u>	0.929	0.911	0.973	1.000	0.955	0.848	<u>0.964</u>
apu	0.964	0.964	0.893	0.786	0.964	0.929	0.964	0.893
aqz	0.214	0.357	<u>0.429</u>	0.500	<u>0.429</u>	<u>0.429</u>	0.714	0.214
arb	0.877	<u>0.913</u>	0.895	0.923	<u>0.900</u>	0.951	0.887	0.782
azz	<u>0.734</u>	0.744	0.729	0.720	0.729	<u>0.758</u>	0.773	0.686
bel	0.799	<u>0.795</u>	0.574	0.608	<u>0.853</u>	0.896	0.577	0.611
ben	0.571	0.762	1.000	<u>0.810</u>	0.762	0.905	<u>0.857</u>	0.524
bho	0.676	<u>0.647</u>	0.588	0.588	<u>0.706</u>	0.794	0.618	0.588
bor	0.722	0.631	<u>0.697</u>	0.610	0.697	0.627	<u>0.680</u>	0.668
bre	0.942	<u>0.815</u>	0.554	0.604	<u>0.938</u>	0.946	0.615	0.685
bua	0.680	0.718	0.670	0.718	<u>0.670</u>	0.641	0.699	0.660
bul	0.872	<u>0.880</u>	0.969	0.623	0.897	<u>0.945</u>	0.976	0.735
cat	0.885	0.852	0.961	<u>0.950</u>	0.919	<u>0.931</u>	0.953	0.735
ces	0.824	0.808	0.579	<u>0.597</u>	<u>0.858</u>	0.891	0.603	0.668
chu	0.670	<u>0.648</u>	0.582	0.635	<u>0.659</u>	0.663	0.593	0.632
cym	0.771	<u>0.730</u>	0.633	0.611	0.828	0.796	0.610	<u>0.796</u>
dan	<u>0.980</u>	1.000	0.840	0.800	<u>0.980</u>	1.000	0.740	0.940
deu	0.967	0.949	<u>0.961</u>	0.754	<u>0.977</u>	0.981	0.969	0.886
egy	0.409	0.409	0.409	0.455	0.500	0.455	0.409	<u>0.455</u>
ell	0.931	<u>0.937</u>	0.985	0.676	0.948	<u>0.975</u>	0.984	0.842
eng	0.981	<u>0.979</u>	0.973	0.960	0.983	0.987	0.974	<u>0.984</u>
est	<u>0.729</u>	0.699	0.885	0.561	<u>0.800</u>	<u>0.800</u>	0.915	0.587
eus	0.916	0.927	0.963	<u>0.952</u>	0.916	0.938	0.982	0.905
fao	0.707	0.647	0.509	<u>0.556</u>	<u>0.772</u>	0.806	0.552	0.681
fas	<u>0.756</u>	0.810	0.567	0.577	<u>0.837</u>	0.919	0.565	0.655
fin	<u>0.736</u>	<u>0.744</u>	0.947	0.562	0.809	0.893	0.935	0.645
fra	0.994	0.963	0.963	<u>0.984</u>	0.993	<u>0.989</u>	0.976	0.928
frm	0.997	0.741	0.745	<u>0.905</u>	0.997	<u>0.847</u>	0.820	0.765
fro	0.782	0.701	0.686	<u>0.709</u>	0.822	<u>0.725</u>	0.694	0.679
gla	0.955	0.924	0.924	<u>0.939</u>	0.909	0.924	<u>0.939</u>	0.970
gle	0.750	0.821	0.750	<u>0.786</u>	0.679	0.750	0.750	0.714
glg	0.849	0.807	0.798	<u>0.788</u>	<u>0.879</u>	0.895	0.789	0.754
got	<u>0.630</u>	0.642	0.588	0.599	0.645	0.631	0.580	0.598
grc	0.824	<u>0.719</u>	0.683	0.623	0.887	0.758	0.711	0.707
guj	1.000	1.000	1.000	1.000	1.000	0.857	1.000	1.000
hbo	<u>0.711</u>	0.712	0.683	0.706	<u>0.737</u>	0.764	0.629	0.679
hbs	0.892	<u>0.848</u>	0.619	0.603	<u>0.922</u>	0.929	0.616	0.723
heb	0.853	<u>0.829</u>	0.609	0.642	0.876	<u>0.868</u>	0.585	0.667
hin	0.854	0.934	0.975	<u>0.971</u>	0.916	<u>0.966</u>	0.977	0.748
hit	<u>0.620</u>	0.640	0.520	0.600	0.560	0.480	<u>0.540</u>	<u>0.540</u>
hsb	0.683	0.677	0.624	0.629	<u>0.667</u>	0.694	0.624	0.591
hun	0.928	0.867	0.728	0.692	0.938	0.925	0.686	0.740
hye	0.883	0.898	0.631	0.623	<u>0.929</u>	0.946	0.662	0.671
hyw	0.813	<u>0.781</u>	0.583	0.608	0.894	0.859	0.551	0.629
isl	<u>0.710</u>	0.751	0.653	0.660	<u>0.767</u>	0.863	0.636	0.667
ita	0.925	0.910	<u>0.915</u>	0.670	<u>0.952</u>	0.965	0.915	0.791

1454

1455

1456

1457

1458

1459

1460 Table 12: Multilingual benchmarking results on MultiBLIMP (ISO 639 language codes $k^* - y^*$ in
 1461 alphabetical order). “Ours” refers to our models pre-trained on Common Corpus. Within each model
 1462 group, the best score is in **bold**, and the second-best is underlined.

1463

Model	Ours	Gemma 3	XGLM	BLOOM	Ours	Gemma 3	XGLM	OLMo
Parameters	350M	270M	564M	560M	1.2B	1B	1.7B	1B
kat	<u>0.931</u>	0.951	0.917	0.760	0.951	0.951	0.809	0.907
kaz	<u>0.705</u>	0.792	0.647	0.682	<u>0.780</u>	0.844	0.682	0.688
kir	0.930	0.843	0.914	<u>0.919</u>	<u>0.935</u>	0.924	0.843	0.941
kmr	0.710	<u>0.662</u>	0.588	0.579	0.761	0.748	0.577	0.588
koi	0.628	0.488	<u>0.605</u>	0.558	0.558	0.651	<u>0.628</u>	0.605
kpv	0.641	<u>0.591</u>	0.553	0.547	0.700	<u>0.628</u>	0.581	0.547
krl	<u>0.650</u>	0.612	0.688	0.573	0.612	<u>0.642</u>	0.704	0.573
kxh	0.483	0.433	<u>0.475</u>	0.333	<u>0.458</u>	0.450	0.442	0.483
lat	0.874	<u>0.651</u>	0.578	0.575	0.925	0.730	0.568	0.625
lav	0.791	<u>0.747</u>	0.616	0.604	<u>0.844</u>	0.862	0.611	0.623
lij	0.783	<u>0.744</u>	0.669	0.638	<u>0.780</u>	0.807	0.701	0.665
lit	0.928	<u>0.848</u>	0.745	0.740	0.947	0.932	0.736	0.779
mar	0.737	0.717	<u>0.735</u>	0.667	0.713	0.776	0.726	0.776
mdf	<u>0.537</u>	0.622	0.524	<u>0.537</u>	0.622	0.585	0.561	0.500
mkd	<u>0.923</u>	0.974	0.769	0.769	<u>0.821</u>	1.000	0.590	0.718
myv	<u>0.608</u>	0.614	0.565	0.560	0.636	<u>0.619</u>	0.532	0.547
nds	0.736	<u>0.729</u>	0.674	0.663	0.749	<u>0.732</u>	0.674	0.700
nhi	0.526	<u>0.579</u>	0.474	0.632	<u>0.553</u>	0.579	0.447	0.500
nld	0.924	<u>0.912</u>	0.620	0.627	0.954	0.963	0.663	0.829
olo	0.679	0.668	0.795	0.611	0.753	0.711	0.842	0.595
orv	0.733	<u>0.721</u>	0.690	0.636	0.757	0.744	0.707	0.667
ota	0.879	0.929	<u>0.899</u>	0.848	<u>0.939</u>	0.949	0.889	0.828
pcm	1.000	1.000	1.000	0.923	1.000	0.962	1.000	0.885
pol	0.892	<u>0.849</u>	0.624	0.634	<u>0.930</u>	0.931	0.628	0.725
por	0.948	0.933	0.939	0.955	<u>0.965</u>	0.972	0.920	0.872
quc	0.779	0.672	0.649	<u>0.740</u>	0.740	0.664	<u>0.679</u>	0.656
ron	<u>0.868</u>	0.874	0.638	0.608	<u>0.903</u>	0.928	0.640	0.793
rus	<u>0.921</u>	0.916	0.937	0.727	<u>0.952</u>	0.963	<u>0.954</u>	0.819
sah	0.688	<u>0.771</u>	0.736	0.792	<u>0.708</u>	0.681	0.701	0.764
san	<u>0.657</u>	0.666	0.612	0.609	<u>0.670</u>	0.678	0.618	0.620
slk	0.797	<u>0.739</u>	0.528	0.570	<u>0.824</u>	0.861	0.533	0.588
slv	0.882	<u>0.796</u>	0.618	0.636	0.903	0.854	0.622	0.711
sme	<u>0.689</u>	0.705	0.653	0.660	<u>0.681</u>	0.700	0.668	0.659
sms	0.833	<u>0.802</u>	0.779	0.757	0.821	<u>0.779</u>	0.764	0.768
spa	<u>0.959</u>	0.945	0.950	0.966	<u>0.970</u>	0.973	0.956	0.896
sqi	<u>0.786</u>	0.823	0.494	0.588	<u>0.823</u>	0.881	0.539	0.765
swe	0.995	0.995	0.970	0.950	<u>0.995</u>	1.000	0.985	0.990
tam	0.942	0.942	0.969	<u>0.966</u>	0.932	<u>0.953</u>	0.976	0.746
tpn	0.111	0.000	<u>0.111</u>	0.111	0.222	<u>0.111</u>	0.000	0.000
ttc	<u>0.478</u>	<u>0.478</u>	0.493	0.449	0.449	0.464	0.435	0.478
tur	0.766	<u>0.804</u>	0.829	0.700	0.814	0.908	<u>0.857</u>	0.716
uig	0.764	<u>0.760</u>	0.722	0.732	<u>0.755</u>	0.757	0.686	0.740
ukr	<u>0.874</u>	0.892	0.640	0.606	<u>0.911</u>	0.946	0.648	0.704
urb	0.538	<u>0.462</u>	<u>0.462</u>	0.231	0.538	<u>0.462</u>	<u>0.462</u>	<u>0.462</u>
urd	0.858	0.925	0.956	<u>0.935</u>	0.896	0.964	<u>0.960</u>	0.736
uzb	0.900	<u>0.880</u>	0.780	0.720	<u>0.900</u>	0.940	0.760	0.880
vep	0.572	0.588	0.588	0.481	<u>0.631</u>	0.626	0.567	0.524
wbp	0.250	0.000	0.167	0.250	0.250	0.083	0.250	0.250
wol	0.892	0.881	0.851	<u>0.891</u>	<u>0.868</u>	0.879	0.854	0.823
xcl	0.679	<u>0.674</u>	0.585	<u>0.636</u>	0.711	<u>0.702</u>	0.613	0.616
xnr	0.791	0.756	<u>0.779</u>	0.616	<u>0.744</u>	0.814	0.721	0.733
xpg	0.820	0.900	0.820	<u>0.860</u>	0.880	0.900	0.900	0.900
ylr	<u>0.689</u>	0.722	0.594	0.604	0.683	<u>0.669</u>	0.626	0.601

1510

1511

1512
1513
1514
1515
15161517 Table 13: Multilingual benchmarking results on XStoryCloze. “Ours” refers to our models pre-trained
1518 on Common Corpus. Languages are represented as two-letter codes in ISO 639.
1519

Model	Ours	Gemma 3	XGLM	BLOOM	Ours	Gemma 3	XGLM	OLMo
Parameters	350M	270M	564M	560M	1.2B	1B	1.7B	1B
ar	0.475	0.492	0.500	0.521	0.477	0.572	0.525	0.473
ca	0.514	0.513	0.567	0.561	0.535	0.600	0.602	0.509
en	0.569	0.614	0.606	0.612	0.617	0.698	0.645	0.704
es	0.520	0.558	0.549	0.555	0.543	0.628	0.593	0.556
eu	0.516	0.524	0.531	0.538	0.514	0.531	0.561	0.503
gl	0.490	0.486	0.461	0.467	0.532	0.576	0.484	0.459
hi	0.509	0.541	0.520	0.549	0.515	0.598	0.557	0.493
id	0.500	0.544	0.542	0.555	0.518	0.631	0.583	0.498
my	0.492	0.507	0.515	0.475	0.498	0.518	0.537	0.475
ru	0.503	0.547	0.562	0.488	0.531	0.634	0.600	0.512
sw	0.500	0.507	0.531	0.500	0.510	0.551	0.563	0.494
te	0.542	0.562	0.559	0.557	0.553	0.592	0.581	0.532
zh	0.491	0.536	0.533	0.545	0.494	0.594	0.561	0.511

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
15441545 Table 14: Multilingual benchmarking results on XCopa. “Ours” refers to our models pre-trained on
1546 Common Corpus. Languages are represented as two-letter codes in ISO 639.
1547

Model	Ours	Gemma 3	XGLM	BLOOM	Ours	Gemma 3	XGLM	OLMo
Parameters	350M	270M	564M	560M	1.2B	1B	1.7B	1B
es	0.566	0.590	0.604	0.620	0.614	0.678	0.664	0.524
et	0.518	0.498	0.554	0.488	0.500	0.536	0.568	0.480
eu	0.504	0.514	0.512	0.502	0.518	0.502	0.534	0.516
ht	0.522	0.504	0.548	0.500	0.524	0.518	0.556	0.534
id	0.534	0.578	0.574	0.596	0.558	0.690	0.646	0.544
it	0.542	0.524	0.536	0.502	0.562	0.648	0.536	0.488
qu	0.522	0.492	0.492	0.500	0.500	0.502	0.522	0.506
sw	0.528	0.546	0.530	0.516	0.538	0.544	0.562	0.510
ta	0.536	0.560	0.562	0.558	0.556	0.566	0.550	0.550
th	0.546	0.538	0.550	0.538	0.550	0.584	0.580	0.532
tr	0.530	0.566	0.544	0.528	0.542	0.606	0.536	0.530
vi	0.550	0.598	0.584	0.602	0.526	0.694	0.630	0.494
zh	0.536	0.564	0.554	0.588	0.544	0.640	0.584	0.522

1561
1562
1563
1564
1565