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ABSTRACT

Large Language Models (LLMs) are pre-trained on large data from different sources
and domains. These data most often contain trillions of tokens with large portions
of copyrighted or proprietary content, which hinders the usage of such models under
AI legislation. This raises the need for truly open pre-training data that is compliant
with the data security regulations. In this paper, we introduce Common Corpus1,
the largest open dataset for LLM pre-training. The data assembled in Common
Corpus are either uncopyrighted or under permissible licenses and amount to about
two trillion tokens. The dataset contains a wide variety of languages, ranging
from the high-resource European languages to some low-resource languages rarely
represented in pre-training datasets. In addition, it includes a large portion of code
data. The diversity of data sources in terms of covered domains and time periods
opens up the paths for both research and entrepreneurial needs in diverse areas of
knowledge. In this paper, we present the detailed provenance of data assembling
and the details of dataset filtering and curation. We train two small language models
on Common Corpus and find that the resulting model performs comparably to
other models of their size, indicating that our dataset is suitable for multilingual
pretraining. Common Corpus represents a key contribution to the ecosystem for
open science research on large language models.

1 INTRODUCTION

Large Language Models have been defined by large amounts of training data. While there are several
candidates for the first modern language model based on transformer architecture, including GPT-
1 (Radford et al.), ULMFIT (Howard & Ruder, 2018), or Sentence Neuron (Radford et al., 2017), it
is commonly acknowledged that “large” models start with GPT-3 (Brown et al., 2020). Requiring a
corpus of 300 billion tokens, GPT-3 introduced a standard training data pipeline shared by nearly
all language models to date: large-scale processing of web datasets (45 TB of compressed source
data from Common Crawl) and additional digitized sources (Books3). Until 2025, LLM training data
has grown on a logarithmic curve. The latest generation of publicly documented language models
including DeepSeek v3 (Liu et al., 2025), Gemma 3 (Kamath et al., 2025), Llama 4 (Meta, 2025) or
Qwen 3 (Yang et al., 2025) have been trained on 14-36 trillion tokens. Even the recently introduced
sub-category of Small language models (Wang et al., 2025) relies on large amounts of training data to
fit scaling laws: Qwen 3 0.6B was trained on 36 trillion tokens, which is a 3,000 times multiple of the
original Chinchilla laws (Hoffmann et al., 2022).

As data curation became a major concern, the collection, maintenance, processing, and filtering of
data became one of the main costs in language model training, not to mention even larger hidden
costs: negative externalities affecting competing markets, the digital commons, and society at large.

While data scraped from the web is publicly available, it is not always in the public domain. Most
web data does not have sufficient metadata to determine whether it is permissively licensed. NLP
practitioners have relied on the protection of fair use, claiming that the transformative nature of
the use of the data allows them to use this data to train language models. There are increasingly
more legal challenges to the use of this data. The New York Times sued OpenAI for copyright

1The data will be made publicly available as a dataset on Hugging Face. We include a small sample from the
dataset in the supplementary material.
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infringement, alleging that OpenAI trained their models on NYT articles (Roth, 2023; Pope, 2024).
Due to concerns about indirect commercial exploitation, many rightholders have implemented either
hard technical measures or legal provisions against model training. In 2024, it was estimated that for
Terms of Service crawling restrictions, a full 45% of C4 is now restricted (Longpre et al., 2024b)
and 5% is fully blocked for scraping with a disproportionate impact over quality sources (Longpre
et al., 2024b). Restrictions not only affect LLM pre-training but also the quality of search engine
indexation and a variety of research projects analyzing and collecting content at scale. Even projects
dedicated to knowledge access have faced significant pressure from AI crawlers and implemented
protections that negatively impact access and user experience.

Legal uncertainties have significantly impeded the development of open science research on LLMs.
Previously reproducible research artifacts have been removed or taken down, impacting pre-training
data, continuous pre-trained models, and evaluation datasets. Books3, which has been used in datasets
like the Pile (Gao et al., 2020), faced legal challenges (Brittain, 2023), and the original dataset
was ultimately removed due to a DMCA takedown (Van der Sar, 2023). The LAION dataset was
demonstrated to contain CSAM (Birhane et al., 2021; Thiel, 2023), and taken down (LAION, 2023),
and then re-released once suspected CSAM was removed (LAION, 2024). The Dutch model GEITje
was taken down (Rijgersberg, 2025), due to complaints about training on the Dutch Gigacorpus,
in order to avoid legal disputes. Finally, the widely used benchmark, the Mathematics Aptitude
Test of Heuristics (MATH) dataset (Hendrycks et al., 2021), was removed from Hugging Face via
a DMCA takedown. All of these artifacts, which were released to further open development and
evaluation of language models, were removed suddenly, making previous work unreplicable. These
takedowns and legal challenges also represent a sizeable loss of investment for developers, who are
often independent or small research organizations.

In part as a reaction to the use of publicly available but not permissively licensed data, web text is
also becoming harder to acquire and use. In an analysis of popular datasets such as C4 (Raffel et al.,
2020), RefinedWeb (Penedo et al., 2023), and Dolma (Soldaini et al., 2024), Longpre et al. (2024c)
found that just in the last year, 5% of all tokens in C4 now have restricted use, with a disproportionate
number of those tokens coming from the best-maintained, most critical sources. This is largely due to
changes in content owners’ and hosts’ preferences, which are changing to no longer allow scraping,
especially for the purposes of training AI models.

Since 2024, several initiatives have emerged to collect open data in English with clear licensing. This
includes: C4C, Open License Corpus, a 228 billion token corpus from a mix of public domain texts
and open source code under free licenses (Min et al., 2024), KL3M a 1.2 trillion tokens corpus of
administrative texts and structured data mostly from the US federal public domain (Bommarito et al.,
2025), Common Pile, a data collection of 1 trillion tokens from a variety of recent sources, including
a filtered common crawl (Creative Commons Common Crawl) (Kandpal & Raffel, 2025). All these
projects are monolingual, restricting in effect the reach of language models to the English-speaking
audience. In contrast, the most ambitious multilingual collection of permissive content pre-dates
Large Language Models: C4C (2016), containing 12 million web pages in more than 50 languages
filtered by Creative Commons Licenses (Habernal et al., 2016).

Common Corpus has grown to become the largest fully open pre-training dataset at about 2 trillion
tokens and the only one in its size range having high multilingual diversity. Through this release,
we show that open LLM research and development is possible while meeting legal and regulatory
requirements — in compliance with even the strictest AI regulations, such as in the European Union.
In this paper, we detail the composition of Common Corpus and the entire process of data collection
and curation, and license clearing. Despite its size, Common Corpus is still far from covering
the entire range of available resources: we attribute this discrepancy to an open data paradox as
major sources of open content are paradoxically little visible online and even more so in the leading
pre-training sources. By describing the unique challenges coming with the aggregation of large open
source, we aim to inspire further initiatives. We also train two small language models on our dataset
and find that it offers comparable performance to existing multilingual models.

2 ABOUT COMMON CORPUS

When talking about Common Corpus data, we use the word “open” in the strongest possible sense.
Not only is the data available, but we also provide essential details about the data provenance, data
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Figure 1: A schematic world map of languages in Common Corpus with a log-scaled distribution of
document counts. For each language, we chose a city that is located in the region where this language
is most specific to. To avoid outliers, we show only languages with 1000+ documents.

processing, and important information about the contents of each dataset. The Open Source Initiative
has also defined open-source AI in terms of openness of use, where open means that use is permitted
for “any purpose and without having to ask for permission” (Open Source Initiative, 2024). To
achieve this, models must be trained on datasets that are free from copyright or other legal limitations.
This is currently a limitation of existing open datasets for training LLMs.

Common Corpus, therefore, provides valuable training tokens that will not be subject to the same
restrictions. Additionally, the data in Common Corpus are different from other corpora, primarily
composed of web text. Common Corpus contains multilingual data in a variety of high- and low-
resource languages (see Figure 1 for language distribution), covering diverse genres, time periods,
and domains (in Section 3, we detail each part of the dataset). Therefore, Common Corpus contributes
to data diversity in the open pre-training data ecosystem. This is important for developing powerful
and generalizable model performance. Common Corpus can be used on its own or in conjunction
with existing open datasets, according to one’s needs and the desired use case of a language model.

Common Corpus was developed with consideration for ongoing conversations about best practices for
open-source LLM development (The AI Alliance, 2024; Longpre et al., 2024a; Duprieu & Berkouk,
2024; Baack et al., 2025). We highlight our adherence to the best practices that were suggested by
Baack et al. (2025):

• Provide useful documentation. We provide information about dataset provenance and
processing (Sections 3 and 4) and share key statistics to help potential users understand the
applications of the dataset. Dataset documentation improves reproducibility, helps prevent
misuse, and aids downstream users to best utilize the dataset (Longpre et al., 2024a).

• Follow and record preference signals. In the metadata, we include the source URL and
license information for the vast majority of the corpus.

• Increase diversity and involve local communities to identify relevant data sources. This
dataset includes data from a variety of languages, coming from high-quality sources, and
the multilingual part was never machine-translated.

• Share advancements to foster reciprocity and give back. In addition to the dataset, we
release many of the tools we developed in order to create the final dataset (Section 4).

• Do not use openly licensed data without regard for its quality or fitness for purpose. In
particular, for the dataset in the public domain, we engage in extensive OCR correction and
toxicity filtering in order to bring datasets up to standard (Section 4).

• Do not capture highly sensitive data. We remove personally identifiable information from
our datasets (Section 4).
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(b) A two-component t-SNE visualization of a subset
of the Common Corpus.

Figure 2: Temporal and semantic overview of the Common Corpus collections.

Table 1: Dataset composition of Common Corpus. For each collection, we report the total number of
documents, words (whitespace-separated), and tokens.

Dataset Documents Words Tokens
Open Government 74,727,536 257,233,670,261 406,581,454,455
Open Culture 93,156,602 549,608,763,966 885,982,490,090
Open Science 19,220,942 147,305,783,453 281,193,563,789
Open Code 202,765,051 77,669,169,092 283,227,402,898
Open Web 96,165,348 33,208,509,065 73,217,485,489
Semantic data 30,072,707 23,284,201,782 67,958,671,827
Other 925,462 328,160,421 486,099,734

Total 517,033,648 1,088,638,258,040 1,998,647,168,282

Common Corpus aims to support the pre-training of fully open and auditable LLMs by making
it legal to release the source even without the provision of fair use. It has been used to create
a wider range of language model artifacts, including multimodal datasets, classifiers, synthetic
datasets, and benchmarks. Beyond the main dataset, Common Corpus works as an open science
infrastructure dedicated to the entire lifecycle of language models. As defined by UNESCO, it is a
shared research infrastructure that is needed to support open science and serve the needs of different
communities (Unesco, 2021). We argue this is the first point in time where there has been sufficient
knowledge and infrastructure to collect and clean a dataset on this scale, which meets the legal and
ethical criteria we have outlined.

2.1 COMPOSITION

Common Corpus is available on HuggingFace as an aggregation of 10,000 parquet files and is
composed of six collections: Open Government, Open Culture, Open Science, Open Web, Open
Code, and Open Semantic. In total, the number of tokens in Common Corpus is 1,998,647,168,282.
The token counts2 in each collection are listed in Table 1. We visualize the timeline of the col-
lected documents and embeddings of a subsample in Figure 2. Each collection is composed of
multiple datasets, for which we provide details about provenance and other key information in the
corresponding subsections. Each data object contains a license, language(s), a collection/domain of
specialization, and other metadata, allowing one to filter out a desired subset.

Common Corpus is multilingual (see Figure 1 and Table 2). Among many others, the top nine
languages constitute at least 10B tokens each3. Some of the issues faced in making open datasets for

2We report token counts in terms of the tokenizer trained on a representative subsample of Common Corpus.
3Language distribution was computed using the fastText language identification model.
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Table 2: Token counts for the ten most repre-
sented languages in Common Corpus.

Language Tokens
English 968,757,721,747
French 275,358,437,630
German 112,127,458,251
Spanish 46,514,142,421
Latin 36,031,591,540
Italian 24,681,637,575
Polish 12,146,688,669
Greek 11,376,498,056
Portuguese 10,262,747,943
Russian 9,439,453,633

Table 3: Token counts for the ten most common
licenses in Common Corpus.

License type Tokens
Public Domain 1,138,508,375,958
CC-By 287,749,264,457
MIT 142,694,227,607
CC-By-SA 74,768,060,836
Apache-2.0 68,750,977,037
BSD-3-Clause 18,483,944,333
Open license 10,432,513,767
BSD-2-Clause 5,497,145,480
CC-BY-4.0 2,110,966,243
CC0-1.0 1,877,206,195

LLMs have been raised above, but all of these problems are much worse for languages other than
English. Even in relatively high-resource languages like French, these problems are compounded by
the fact that there is much less data available, and most tools generalize poorly to languages other
than English. Additionally, Kreutzer et al. (2022) showed that many multilingual datasets contain a
lot of low-quality or entirely unusable data. Many of the datasets they analyzed contained less than
50% of usable text, with 15 sources containing no usable data at all.

The majority of the data in Common Corpus is in the public domain (see Table 3). The license for
each document is provided in the metadata, so the dataset can be easily filtered by license as desired.

3 PROVENANCE

In this section, we present the details about collections that comprise the Common Corpus, accompa-
nied by the information about the data sources and the main included languages in Appendix C.

3.1 OPEN GOVERNMENT

Open Government is a set of financial, legal, and administrative data in the public domain. In total,
the dataset contains more than 406B tokens and comprises two main datasets: Finance Commons and
Legal Commons. See Appendix C.1 for detailed data composition.

Finance Commons. This is the largest collection of financial documents in the public domain,
comprising more than 14 billion words (more than 23 billion tokens). The documents come from a
wide time range, all the way to 2024. Like many of our other datasets, Finance Commons is also
multilingual. Most of the documents are in English, French, and German, but there are also texts in
languages such as Romanian, Bulgarian, and Latvian. Additionally, this is a multimodal dataset. It
includes more than 1.36 million original PDF documents from AMF and the WTO. The documents
constitute a wide coverage of in-house layouts and formats produced by industrial and economic
sectors. This makes this dataset ideal for developing the next generation of open-data multimodal
models. One application for this dataset is to develop vision-language models (VLMs) for advanced
document segmentation and processing. These documents also contain vast amounts of structured
data, which is also a promising area of research that Finance Commons can help drive forward.

Legal Commons. This is a collection of legal and administrative datasets. The datasets come
mostly from the EU and the US and cover a wide range of languages. These datasets are useful for
developing language models with legal knowledge, as well as models that are ideal for document
processing in official administrative applications.

3.2 OPEN CULTURE

Open Culture is an aggregation of vast cultural heritage datasets containing both monographs and
periodicals for over 13 languages: French, English, German, Spanish, Portuguese, Italian, Dutch,

5
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Luxembourgish, Danish, Swedish, Serbian, Czech, and Greek. There are also small portions of data
in other languages, such as Arabic, Bengali, Latin, Persian, Russian, Sanskrit, and Urdu.

Composition. A large part of Open Culture is compiled from Collections As Data (CAD) —
large dumps of texts, datasets, PDFs, and even raw XML output (METS/ALTO). CAD initiatives,
thus, considerably simplify dataset aggregation and are a major contribution to the digital commons
ecosystem. All other parts of Open Culture have been collected on a resource-by-resource basis
using APIs and other standard retrieval methods whenever available. The largest extractions of
this kind include Internet Archive (about 2 million monographs in multiple languages) and Delpher
(50,000 Dutch monographs and periodicals filtered to match the Dutch copyright law for public
domain). We managed to compile a large multilingual collection despite such challenges, as poor
OCR quality, which we partly solved through the development of OCR correction tools (see Section
4), text segmentation issues, and sometimes irrecoverable deterioration of the original support. For
the detailed dataset composition, refer to Appendix C.2.

Licenses. All Open Culture documents are in the public domain, which means their copyright has
expired after a given term and there are no limitations on their reuse. For certain content, or in cases
where we could not rely on the guarantee of established cultural heritage institutions, we implemented
our own internal rights verification process. This process follows specific criteria, including author
life and data object creation time, and takes into account that we only collected cultural heritage
content from institutions based in the US or the EU (see the complete criteria list in Appendix D).

Value. Open Culture data is also rich from a cultural and stylistic standpoint and can be used to train
multilingual language models with more diverse and creative writing styles. As LLMs are trained on
extremely large corpora to maximize next-word prediction accuracy, LLM-generated text can often
lack in personality and be boring or generic (Jones & Bergen, 2024). This feature of language models
stands in contrast with one of their most common uses. In an analysis of WildChat (Zhao et al., 2024),
a dataset of 1 million user interactions with ChatGPT, Longpre et al. (2024c) found that over 30% of
user requests involved creative compositions such as fictional stories, role-play, or poetry generation.
At the same time, creative writing is poorly represented among datasets used to train LLMs, which
mainly comprise web text (Longpre et al., 2024c). Therefore, Open Culture contributes data that can
be used to train models for creative writing without violating copyright law. In addition, as many of
the Open Culture datasets are historical (coming from the 18th-19th centuries, or even earlier; see
Figure 2a), this collection also enables the development of historical language models. The metadata
includes document creation year, which enables researchers to develop language models with a cutoff
of the training data creation date.

3.3 OPEN SCIENCE

The Open Science collection includes scientific papers and other documents (theses, book reviews,
clinical trials, etc). Following the development of a global open access movement, these documents
have been made increasingly available in open archives (preprints) or directly through open science
publishers and infrastructure. Scientific content has become a primary focus of training data, due
to its impact on reasoning capacities. Yet, the lack of licensing information has until now partly
hindered reuse. The Semantic Scholar Open Research Corpus from Allen AI includes 81.1 million
articles in English under an Open Data Commons Attribution License, allowing for the free reuse of
the aggregated metadata while still acknowledging the remaining copyright of individual authors (Lo
et al., 2020). The Pile incorporated data from arXiv and PubMed Central, also exclusively in En-
glish (Biderman et al., 2022). Finally, the BigScience project assembled several curated multilingual
scientific datasets like the French HAL as part of the training data for Bloom (Scao et al., 2023).

The Open Science collection was made possible largely due to the recent development of OpenAlex4,
the largest open catalogue of scientific documents. OpenAlex maintains an expansive API search
engine tracking detailed metadata for each indexed item, including the licensing, as well as a link to
the original resource, which is generally in PDF format. We filtered OpenAlex on the three following
licenses: CC-By, Public Domain/CC0, and CC-By-SA. The largest share of resources is available
under CC-By, which is currently the recommended license by the Open Access definition. Open
Science also includes smaller subsets, such as a direct extraction of arXiv articles available in CC-By

4https://openalex.org/
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and some European-specific resources not currently well indexed on OpenAlex (the exact distribution
of token counts can be found in Appendix C.3).

Due to the specificity of open scientific publishing, the Open Science collection has less linguistic
diversity, with nearly 85% of documents currently available in English.

3.4 OPEN CODE

The Open Code collection comprises code data under a vast variety of free licenses, which allows
NLP practitioners to train models on public domain code for either coding applications or in order
to improve certain model performance on natural language reasoning, world knowledge tasks,
mathematics, and structured output tasks (Aryabumi et al., 2024; Petty et al., 2024; MA et al., 2024).
The code data we use comes from the Stack v1 and v2 (Kocetkov et al., 2023; Lozhkov et al., 2024).
The Stack v1 contains 6.4TB of data and covers 30 programming languages, while the Stack v2 is
approximately ten times bigger at 67.5TB and covers over 600 programming languages. All the code
data is made available with a direct link to the original resource on GitHub. In total, Open Code
contains 283,227,402,898 tokens (see most common languages in Appendix C.4).

To prepare the collection, we ran a pipeline of varied filters. We first removed files that were
not in our desired set of languages and formats according to their file extensions, including SVG
files containing mostly encoded shapes, data storage formats: csv, json, json5, jsonld, and
other file types with non-informative content, typically in small amounts: python-traceback,
unity3d-asset, numpy, and http. We then filtered out the licenses to keep only permissible
ones. To discard the low-quality data, we ran a series of manual filters described by Lozhkov et al.
(2024). In addition to those, we removed files consisting of 75% or more of digits, which are mostly
files containing raw numeric data. Before the filters, we also replaced sequences of [\r]+\n with
\n and recalculated line lengths to avoid false positives by maximum line length.

3.5 OPEN WEB

In accordance with the general focus of Common Corpus on curated content, the Open Web collection
currently includes four major web sources:

Wikipedia and Wikisource. Wikimedia projects have always been major sources for language
model training due to their reliability, extensive coverage, and textbook-like style. Despite this
centrality, there is still a range of unresolved challenges with the most common versions available
for training. The raw source of Wikimedia projects is made available in a specific mediawiki syntax,
including a lot of project-specific models, tags, and conventions. The parsing of models is especially
not straightforward, as they can either format existing text or remove or include external content
(transclusion). As part of Wikimedia Enterprise, the Wikimedia Foundation created entirely new
dumps from the rendered HTML sources, which in effect ensure that they include all the text made
available to readers.

Youtube Commons. For YouTube Commons, we collected audio transcripts of 2,063,066 videos
uploaded on YouTube under a standardized CC-By license.

StackExchange. This is a collection of user-generated forums and Q&A made available under the
CC-By-SA license. We reused the version from The Pile (Biderman et al., 2022).

A major objective will be the integration of web archives filtered by permissive licenses. Since
2016, several projects have attempted to reidentify Creative Commons licenses from web archives at
scale including C4C (multilingual)(Habernal et al., 2016) and more recently CCCC (from Allen AI
- in English) and most recently Common Crawl Creative Commons Corpus (C5 - for the first time
multilingual)5 All theses projects struggled with license identification. While license mentions are
frequently normalized with a direct link or logo to Creative Commons, there is no guarantee they
really concern the entire content: “a blog page contains many photos and each photo is licensed under
different CC-license type or a blog home page with many articles and each article is licensed under
different CC-license type.”(Habernal et al., 2016). We hope this limitation could be overcome by a
combination of web domain curation and fine-grained curation and annotation by a language model.

5https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons
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3.6 OPEN SEMANTIC

Semantic data is the latest set added to Common Corpus and currently includes only one collection:
Wikidata. First created in 2011, Wikidata hosts 100 million documented items and several billion
factual statements encoded as RDF triples. It has grown to become a critical web infrastructure, used
by Google for search disambiguation and currently embodying Tim Berners-Lee’s ambitious vision
for “a web of data”. Despite the rising interest in mixed LLM/knowledge graph methods, Wikidata
has hardly been used in language models. The largest initiative to date is Kelm, a collection of 15
million synthetic sentences generated by Google from English-speaking statements (Agarwal et al.,
2021). A persistent challenge has been the exclusive availability of Wikidata dumps under formats
optimized for data exchange rather than language model training.

Thanks to a collaboration with Wikimedia Deutschland, the entire set of Wikidata has been adapted in
natural language and added to Common Corpus. This is to date the only available textual collection
of Wikidata covering the entire range of 300 languages. Data processing involved the translation of
items and properties into formal language sequences as simple natural language sequences, without
textual synthesis: “Q41309 — P:27 — Q171150” becoming “Franz Liszt country of citizenship
Kingdom of Hungary”. Within each entry, we provide all the available translations as consecutive
blocks separated by a newline, anticipating that this may contribute to language alignment.

4 CLEANING AND CURATION

In order to curate our dataset, we developed a number of custom tools to handle the issues unique to
multilingual, historical, and OCRed data. We will release all of them under permissive licenses.

Text Segmentation We developed Segmentext, a specialized language model for text segmentation
(see example in Appendix E.1). Segmentext has been trained to be resilient to broken and unstructured
texts with digitization artifacts and ill-recognized layout formats. Given the diversity of the training
data, Segmentext should work correctly on diverse document formats in the main European languages.

OCR Correction We developed OCRonos model based on Llama 3 8B (Grattafiori et al., 2024).
OCRonos is versatile and supports the correction of OCR errors, cutting or merging of the wrong
word, and overall broken text structures. The training data includes a highly diverse set of OCR-ed
texts in multiple languages, mostly coming from uncorrected versions of Open Culture and Open
Government. On highly deteriorated content, OCRonos can act as a synthetic rewriting tool rather
than a strict correction tool. An example of OCRonos work is presented in Appendix E.3. OCRonos
contributes to make challenging resources usable for LLM applications and, more broadly, search
retrieval. It is especially fitting in situation where the original PDF sources is too damaged for correct
OCR or even non-existent/complex to retrieve.

OCRonos is generally faithful to what the original material, provides sensible restitution of de-
teriorated text and will rarely rewrite correct words. On past experiments, a common issue with
OCR correction has been language switching: due to the inherent noise in the input text, an LLM
will transcribe in a different language or script. The issue has been especially observed in smaller
generalist models like GPT-3.5 or Claude-Haiku. OCRonos largely mitigates this issue.

PII Removal Personally Identifiable Information (PII), i.e., any information that can be used to
distinguish or trace an individual’s identity, is protected under legislation such as GDPR. Consequently,
the new regulations put restrictions on LLM training data. In large open datasets, there is a staggering
amount of personal data in widely used datasets, e.g., large quantities of phone numbers in RedPajama,
email addresses in S2ORC and peS2o, and IP addresses in the Stack (Elazar et al., 2024).

To identify and replace PII, we use Microsoft’s Presidio6, an open-source state-of-the-art tool. With
Presidio, we filtered out phone numbers, email addresses, IBANs, IP addresses, and URLs. With
the base settings, Presidio identified on average 55-60% of texts that included phone numbers due
to different possible number formats. By applying custom regular expression patterns that include
most phone numbers, we increased this accuracy to 85%. Typical methods of handling PII include

6https://microsoft.github.io/presidio/
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Table 4: Multilingual benchmarking results. “Ours” refers to models pre-trained on Common Corpus.

Model Ours Gemma 3 XGLM BLOOM Ours Gemma 3 XGLM OLMo

Parameters 350M 270M 564M 560M 1.2B 1B 1.7B 1B

MultiBLiMP 0.774 0.762 0.711 0.683 0.797 0.799 0.710 0.699
XStoryCloze 0.509 0.533 0.537 0.532 0.526 0.594 0.569 0.517
XCOPA 0.533 0.544 0.550 0.541 0.541 0.593 0.574 0.518

removing it, replacing it with tags, and partial anonymization. These transformations substantially
alter the format of PII, which could undermine the model’s understanding of the text or interfere with
its ability to process text with real PII. Instead, we replace PII with fictuous but realistic values.

Toxicity Detection In addition to posing legal and regulatory issues, web data is a major source
of harmful and biased content (Common Crawl was shown to contain sexual content, hate speech,
and racial and gender biases (Luccioni & Viviano, 2021)) and often suffers from low-quality and
machine-generated text (Dodge et al., 2021). Public Domain data, such as that in Open Culture, do
not pose the same legal challenges but introduce new ones. Many texts there are historical periodicals
and monographs from at least 80 years ago. Cultural norms surrounding the discussion of certain
ethnic groups, women, and themes such as violence have changed dramatically. Many of these texts,
therefore, do not meet modern ethical standards. Training language models on these texts would lead
to the reproduction and circulation of harmful language.

To address this, we developed a pipeline to filter the public domain training data. We identify
documents containing harmful language and either remove it or synthetically rewrite the document
without the harmful language. With this approach, we aim to mitigate some of the potential biases
and harms in the dataset, while still leveraging the high-quality and stylistically diverse data for high
model performance. We created a multilingual toxicity classifier, Celadon, a DeBERTa-v3-small
model (∼140M parameters), which we trained from scratch on 2M annotated samples. Celadon
identifies toxic and harmful content along five dimensions: race and origin-based bias, gender and
sexuality-based bias, religious bias, ability bias, and violence and abuse. We will release the model
along with the training data.

5 MODEL TRAINING

We train two models on Common Corpus: a 350M and a 1.2B model. The architecture is based on
Llama. We train a custom Llama-style tokenizer with a vocabulary size of 65536 on a representative
subset of Common Corpus. The 350M model is trained on a filtered subset of Common Corpus,
comprised of approximately 1T tokens. The 1.2B model is trained on two epochs of Common Corpus.
The models were trained for 2944 and 23040 H100 hours, respectively. We will release our models
on Hugging Face. We will also release our full training pipeline under an Apache 2.0 license.

We evaluate our models on MultiBLiMP (Jumelet et al., 2025), XStoryCloze (Lin et al., 2022),
and XCOPA (Ponti et al., 2020) (see Table 4). All evaluations were run using the LM Evaluation
Harness (Biderman et al., 2024). Our models perform comparably to models trained on closed or
non-permissively licensed data, and show outstanding performance on MultiBLIMP, which has more
languages compared to other benchmarks. This is especially notable for our 350M model, which we
compare to bigger models; it also outperforms models from the 1B range, except for Gemma 3 1B.
Our models stably outperform OLMo 1B, which was also pre-trained on a publicly released dataset.

6 CONCLUSION

Through the release of Common Corpus and this paper with thorough documentation of data collection
and curation, we show that LLM development is possible while strictly adhering to the regulatory
norms. While Common Corpus is only large enough to train small models currently, the tools and
methods we used to identify and curate the data may be used to expand the amount of permissively
licensed open data. We hope that Common Corpus will grow as a critical infrastructure for open
science LLM research and development and inspire future initiatives in the open.
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Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin
Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure
F. P. Dossou, Sakhile Dlamini, Nisansa de Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia
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4348–4352, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).
URL https://aclanthology.org/L16-1689.

Open Source Initiative. The open source ai definition – 1.0, 2024. URL https://opensource.
org/ai/open-source-ai-definition. Accessed: 2024-11-20.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: Outperforming curated corpora with web data only. Advances in Neural
Information Processing Systems, 36:79155–79172, 2023.

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect lan-
guage model task performance? In The 7th BlackboxNLP Workshop, 2024. URL https:
//openreview.net/forum?id=2sghJ1yYOr.
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A LLM USAGE STATEMENT

In the process of developing this work, we utilized LLMs for grammar correction and occasionally as
a rewriting tool. In addition, we involved LLMs in the process of data visualization.

B LIMITATIONS

Common Corpus is far from collecting the whole range of available open data, which we described
as the open data paradox. Therefore, the future collection of permissible data is highly encouraged
by this work. Furthermore, the collected amount of data (2 trillion tokens), when used alone, as our
own small language model family (see Section 5), is suitable for pre-training of models of limited
size, while larger ones require significantly larger amounts of data. In addition, Common Corpus
naturally does not contain data for instruction-tuning and any forms of specialized tasks. Therefore,
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Table 5: Finance Commons sources distribution with languages.

Dataset Main Languages Documents Tokens
SEC English 1,085,113 9,653,919,837

WTO English, Spanish, French, and small parti-
tions of others

772,508 2,835,007,015

AMF French, English 595,397 9,823,755,281

TED EU
Tenders

German, French, Polish, Spanish, Dutch,
Czech, Romanian, English, Swedish, Ital-
ian, Bulgarian, Finnish, Latvian, Danish,
Lithuanian, Croatian, Estonian, Hungarian,
Portuguese, Slovenian, Slovak, Greek, Irish

137,837 650,396,761

GATT Li-
brary

English, French, Spanish, Catalan, Por-
tuguese, German

67,596 224,526,628

it is not directly suitable for task-specific fine-tuning. However, due to the multilingual, temporal,
and semantic diversity of data, Common Corpus opens the opportunities for the creation of ethical
fine-tuning datasets.

In Section 4, we described the tools we used for the data curation, filtering, and editing. Even though
we used these methods responsibly and mitigated many issues overlooked by the counterparts (e.g.,
with toxicity detection), none of the curation methods could naturally facilitate a hundred-percent
accuracy. However, some issues, like OCR errors, present considerable challenges to the models and
might even account for better handling of typos in the future. We would also like to mention that
each data object is accompanied by sufficient metadata, and, if desired, LLM practitioners are free to
filter out collections that might contain potential issues (as described in Section 4).

C PROVENANCE

C.1 OPEN GOVENMENT

In this section, we describe the provenance and present token counts and main languages for the two
sub-collections of Open Government: Finance Commons and Legal Commons.

C.1.1 FINANCE COMMONS

The datasets that make up Finance Commons are presented in Table 5. Here, we also present the
provenance details for each of the parts of Finance Commons:

• Securities and Exchange Commission (SEC). This dataset comprises the SEC annual
reports (Form 10-K) for the years 1993 to 2024. Entries up to 2020 were compiled by
Loukas et al. (2021). We added the reports from 2021-2024, which come from the EDGAR
database7, compiled using the EDGAR-Crawler toolkit8.

• World Trade Organization (WTO). This dataset comprises documents from WTO’s official
Documents Online platform. The documents cover the years 1995 to 2024. Documents are
available in three official languages: English, French, and Spanish. Some documents are
available in other languages, e.g., Chinese, Korean, Arabic, German, and Portuguese. Also
released separately as WTO-PDF.

• French Authority for Financial Market (AMF). This is a dataset of documents from the
French Authority for Financial Market, or the Autorité des marchés financiers9 (AMF),

7https://www.sec.gov/search-filings/edgar-search-assistance/
accessing-edgar-data

8https://github.com/nlpaueb/edgar-crawler
9https://www.amf-france.org/en/news-publications/publications/open-data
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Table 6: Legal Commons sources distribution with languages.

Dataset Languages Tokens
Caselaw Access
Project

English 13,821,842,995

Court Listener English 22,625,121,735

EUR-lex Bulgarian, Croatian, Czech, Danish, Dutch,
English, Estonian, Finnish, French, German,
Greek, Hungarian, Irish, Italian, Latvian,
Lithuanian, Maltese, Polish, Portuguese, Ro-
manian, Slovak, Slovenian, Spanish, Swedish

65,044,763,781

Eurovoc English, German, French, Croatian, Italian,
Lithuanian, Portuguese, Finnish, Danish, Bul-
garian, Dutch, Polish, Greek, Swedish, Hun-
garian, Czech, Spanish, Maltese, Latvian, Slo-
vak, Slovenian, Romanian, Estonian, Arabic,
Tigrinya, Farsi, Russian, Urdu, Serbian, Alba-
nian, Kurdish, Pushto, Irish, Norwegian, Ice-
landic, Dari, Armenian, Japanese.

31,648,136,898

French open data French 24,597,392,089

USPTO English 200,509,900,178

UN Digital Library Arabic, Chinese, English, French, Russian,
Spanish

1,781,037,875

European Open
Data

EU languages 7,098,502,579

OECD English, French 584,969,458

which is an independent public authority that regulates the French market. The documents
are primarily in French. Also released separately as AMF-PDF.

• Tenders Electronic Daily (TED) EU Tenders. This dataset is a collection of procurement
notices published by the EU. The documents are published in the online version of the
“Supplement to the Official Journal” of the EU10, dedicated to European public procurement.
The documents are mostly in German, with French, Polish, and Spanish making up relatively
large portions of the remaining documents. There are also small portions of other languages
(see details in Table 5).

• General Agreement on Tariffs and Trade (GATT) Library. This dataset comprises
documents from GATT, which was an organization that promoted international commerce
and the reduction of trade barriers among member states. Public documents were made
available by the General Council of the WTO in 200611. The documents span from January
1, 1946, to September 6, 1996. Most of the documents are in English, but there are also
documents in French, Spanish, and other languages.

C.1.2 LEGAL COMMONS

Here, we present the provenance details for each of the parts of Legal Commons:

• Europarl. This dataset is a multilingual parallel corpus, drawn from the proceedings of the
European Parliament12. It includes texts from 21 EU languages. It was originally compiled
by Koehn (2005).

10https://ted.europa.eu/en/
11https://www.wto.org/english/docs_e/gattdocs_e.htm
12https://www.statmt.org/europarl/
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• Caselaw Access Project. This dataset consists of 6,773,632 legal cases, digitized from
Harvard Law School Library’s physical collection of American case law13. The dataset
spans the years 1658 to 2020.

• CourtListener. This is a dataset14 of opinions, oral arguments, judges, judicial financial
records, and federal filings put together by the Free Law Project15.

• EUR-lex. This is a dataset of 57,000 legislative documents from the EU16. It is based on the
dataset by Loza Mencı́a & Fürnkranz (2010) and developed by Chalkidis et al. (2019). The
documents have also been annotated by the Publications Office of EU17 with concepts from
EuroVoc18. The dataset covers all 24 EU languages.

• Eurovoc. Eurovoc is a dataset containing 1,528,402 documents in 39 languages with
associated EuroVoc labels. The documents come from Cellar19, which is a data repository
for the Publications Office of the European Union. This dataset was originally compiled by
Sébastien Campion20.

• French Open Data. This dataset comes from French administrative bodies’ websites, for
example, the French Directorate of Legal and Administrative Information (Direction de
l’information légale et administrative21; DILA), which is a French public administrative
entity that disseminates information about laws and their applications to the public.

• USPTO. This dataset comprises documents from the United States Patent and Trademark
Office (USPTO), the federal agency that grants patents and registers trademarks. This dataset
consists of actions from this agency from 2019 to 2022. It was originally published as part
of the Pile of Law (Henderson et al., 2022)22.

• UN Digital Library. This dataset comes from the UN Digital Library23.
• European Legal Dataset. We also collect datasets from various EU websites, e.g., Archives

of the EU Institute24 and the Council of the EU25.
• OECD. These data come from the Organisation for Economic Co-operation and Develop-

ment (OECD)26.

C.2 OPEN CULTURE

Large portion of data in Open Culture part of the Common Corpus was built on top of the following
collection-as-data initiatives:

• Chronicle America: about 100B words (150B tokens) of digitized US newspapers by the
Library of Congress, made available as a raw text file.

• Europeana: about 21B tokens of digitized European newspapers through large-scale cross-
national contributions and new digitizations.

• Gallica: about 85B words of digitized French newspapers and monographs made available
on the open data portal of the French digitized library through entire dumps or API access27.

• Biblioteca: about 15B words of digitized Spanish newspapers and monographs.
13https://case.law/
14https://www.courtlistener.com/help/api/bulk-data/
15https://free.law/contact
16https://eur-lex.europa.eu/
17https://publications.europa.eu/en
18http://eurovoc.europa.eu/
19https://op.europa.eu/en/web/cellar
20https://huggingface.co/datasets/EuropeanParliament/Eurovoc
21https://echanges.dila.gouv.fr/OPENDATA/
22https://huggingface.co/datasets/pile-of-law/pile-of-law
23https://digitallibrary.un.org/?ln=en
24https://archives.eui.eu/
25https://www.consilium.europa.eu/en/general-secretariat/

corporate-policies/transparency/open-data/
26https://www.oecd.org/en/data/datasets.html?orderBy=mostRelevant&page=0
27https://api.bnf.fr
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Table 7: Subsets of Open Culture with language coverage, type of document, and token count.

Corpus Language Domain Tokens
English PD English Books and Newspapers 174.2B
US PD Books English Books 82.2B
French PD Books French Books 24.0B
French PD Newspapers French Newspapers 110.8B
French PD Diverse French Books and Newspapers 69.6B
LoC Books English Books 10.6B
US PD Newspapers English Newspapers 199.3B
New Zealand PD Newspa-
pers

English, Māori Newspapers 12.6B

Europeana Newspapers Multilingual Newspapers 21.0B
German PD Newspapers German Newspapers 18.4B
German PD German Books 58.0B
Portuguese PD Portuguese Books and Newspapers 2.6B
Spanish PD Newspapers Spanish Newspapers 8.0B
Spanish PD Books Spanish Books 15.4B
Italian PD Italian Books 18.2B
Dutch PD Dutch Books and Newspapers 2.7B
BnL Newspapers German, French, Lux-

embourgish
Newspapers 0.3B

Danish PD Danish Books and Newspapers 0.5B
Serbian PD Serbian Books and Newspapers 0.3B
Czech PD Czech Books and Newspapers 0.7B
Greek PD Greek Books and Newspapers 4.2B
Multilingual PD Multilingual Books and Newspapers 8.4B
Polish PD Polish Books and Newspapers 5.9B
Latin PD Latin Books 27.2B
Russian PD Russian Books 1.9B
Arabic PD Arabic Books 0.3B

Combined with the other retrieved data, the collections were dispatched into smaller individual
subsets, which were also separately released as parts of the Open Culture collection (Table 7). The
Open Culture data in Common Corpus have been post-processed and filtered, as described below,
which results in a slightly different final word and token count:

• French PD. This corpus is based on the training corpus for gallicagram28. It comprises
289,000 books from the French National Library (Gallica). This initial aggregation was
made possible thanks to the open data program of the French National Library and the
consolidation of public domain status for cultural heritage works in the EU following the
2019 Copyright Directive (Art. 14).

• French PD Newspapers. This dataset was also based on the Gallicagram corpus. It
comprises nearly three million unique newspaper and periodical editions from the French
National Library (Gallica).

• LoC Books. This dataset comprises 140,000 English books, digitized by the Library of
Congress. The books come from the Selected Digitized Books Collection29. The dataset
was curated by using the Library of Congress JSON API. This dataset contains only the
books in the English collection. The dataset was compiled by Sebastian Majstorovic.

• US PD Newspapers. This dataset comprises 21 million digitized newspapers from Chroni-
cling America30. The newspapers were digitized by the Library of Congress. The dataset

28https://shiny.ens-paris-saclay.fr/app/gallicagram
29https://www.loc.gov/collections/selected-digitized-books/

about-this-collection/
30https://chroniclingamerica.loc.gov/
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can be fully explored through an original corpus map created by Nomic AI31. The dataset
is mostly in English, but it also contains articles in other languages, mostly German and
Spanish. The articles were published between the years 1690 and 1963.

• New Zealand PD Newspapers. This dataset comprises historic newspapers from New
Zealand and the Pacific from the 19th and 20th centuries. The data were made available by
the National Library of New Zealand as part of Papers Past32. The articles are primarily in
English, but include some articles in te reo Māori.

• Europeana Newspapers. This dataset contains over 1,000 digitized newspapers from 23
libraries around Europe. It contains articles in at least 40 languages, and its articles were
published between 1618 and 1990 (Neudecker, 2016). The original sources are available via
Europeana, and were made available by Big Science33.

• German PD Newspapers. This dataset contains articles from 4,299,653 issues from over
1900 different newspapers. The articles come from the German Digital Library, hosted by
Deutsches Zeitungsportal34. The articles were originally published between 1794 and 1957.
This dataset was curated and first made available by Sebastian Majstorovic35.

• German PD. This dataset contains texts from various sources, including the Mannheim Cor-
pus of Historical Newspapers and Magazines36 (Mannheimer Korpus Historischer Zeitungen
und Zeitschriften). This dataset is made up of 21 German newspapers and magazines. The
texts were originally published between 1737 and 1905. The corpus was originally digitized
between 2009 and 2011. The corpus was made available by the Institut für Deutsche Sprache
in 2013.

• Spanish PD Books. This dataset contains 302,640 individual texts from various sources,
including the leading cultural heritage institution Biblioteca Digital Hispánica37 (BDH). To
ensure that these texts are in the public domain, we have retained exclusively titles published
prior to 1884.

• Dutch PD. This dataset contains approximately 176,000 books and 540,000 periodicals,
which come from various sources including Delpher38. Delpher is a repository of digitized
printed material from the Netherlands, which is maintained by the Koninklijke Bibliotheek,
the national library of the Netherlands. To ensure that these texts are in the public domain,
we have retained exclusively titles published prior to 1884.

• BnL Newspapers. This dataset contains 630,709 articles from 21 different newspaper
titles and 24,415 unique issues. The articles were digitized by the National Library of
Luxembourg (BnL) as part of their Open Data Initiative39. OCR was done using Nautilus-
OCR40. The articles are in German, French, and Luxembourgish. The newspapers were
originally published between 1841 and 1879. The dataset was published and made accessible
by BigScience.

• The rest of the datasets, including French PD Diverse, Portuguese PD, Italian PD, Polish PD,
Danish PD, Swedish PD, Serbian PD, Czech PD, and Multilingual PD, come from various
sources, including several European national libraries and cultural heritage institutions. To
ensure that these texts are in the public domain, we have retained exclusively titles published
prior to 1884.

31https://atlas.nomic.ai/data/aaron/pdnews-21286k-tr2k-addmeta/map
32https://paperspast.natlib.govt.nz/newspapers
33https://huggingface.co/datasets/biglam/europeana_newspapers
34https://www.deutsche-digitale-bibliothek.de/newspaper
35https://huggingface.co/datasets/storytracer/German-PD-Newspapers
36https://repos.ids-mannheim.de/fedora/objects/clarin-ids:mkhz1.00000/

datastreams/CMDI/content
37https://www.bne.es/fr/catalogues/biblioteca-digital-hispanica
38https://www.digitisednewspapers.net/histories/delpher/
39https://data.bnl.lu/
40https://github.com/natliblux/nautilusocr
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Table 8: Token count by dataset Open Science.

Dataset Tokens
OpenAlex 191,616,437,384
Open Science Pile 11,096,766,324
Open Science French 46,961,690,792
Open Science Spanish 16,523,491,767
Open Science German 7,806,446,050
ArXiv 7,188,731,472

Total 281,193,563,789

C.3 OPEN SCIENCE

In Table 8, we present the total token counts per collection inside of the Open Science part of Common
Corpus.

C.4 OPEN CODE

Table 9: Token counts by programming language or framework.

Language Tokens
Java 35,697,451,454
JavaScript 28,894,772,110
Python 26,681,331,771
C++ 25,481,950,314
C 23,277,000,113
PHP 23,077,121,733
C# 16,806,995,110
Go 11,200,587,099
Rust 3,888,428,173
Ruby 3,718,918,983

Table 9 shows the number of tokens for the top ten coding languages and frameworks in Open Code.

D OPEN CULTURE VERIFICATION

Here, we describe the rights verification process that we applied for cultural data objects:

• Author life + 70 years for all non-US authors. Among most signatories of the Berne
Convention for the Protection of Literary and Artistic Works41, this is the most common
approach to determining documents in the public domain. This approach requires not
only identifying the author but also their date of death. On top of the information already
made available by cultural heritage institutions, we also implemented an internal data
reconciliation pipeline based on the complete dump of Wikidata.

• All publications after 1884. In cases where the author could not be identified or for
collective works like newspapers, we applied a “universal” public domain rule based on 70
years prior to the current term of the author’s life + 70 years. Simplified rules like these
are commonly applied in cultural heritage projects, especially for the release of newspaper
collections.

• Publication + 95 years for US authors. This is the copyright-based approach currently in
place in the US. For an international project, this will only affect US-born authors. Due to a
lack of further legal expertise, we did not attempt to include works whose copyright might
not have been renewed.

41https://www.wipo.int/treaties/en/ip/berne/
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• No digitization rights. Following on the 2019 Copyright Directive (Art. 14) and common
practice among GLAM reusers like Wikimedia Commons, we consider that the simple act
of digitization does not provide any additional rights.

E CLEANING AND CURATION

E.1 TEXT SEGMENTATION

Here is an example input text for the Segmentext model:

In this respect, the insurance business investment portfolio can be considered
conservatively managed as it is largely composed of corporate, sovereign, and
supranational bonds, term loans as well as demand deposits. Following the previous
year, the group continued to diversify its holdings into investment-grade corporate
bonds. It should be noted that bonds and term loans are held to maturity in
accordance with the group’s business model policy of ”inflows”.
Technical liabilities on insurance contracts.
The guarantees offered cover death, disability, redundancy, and unemployment
as part of a loan protection insurance policy. These types of risk are controlled
through the use of appropriate mortality tables, statistical checks on loss ratios for
the population groups insured, and through the insurance program.
Liability adequacy test.
A goodness-of-fit test aimed at ensuring that insurance liabilities are adequate
with respect to current statements of future cash flows generated by the insurance
contracts is performed at each statement of account. Future cash flows resulting
from the contracts take into account the guarantees and options inherent therein.
In the event of inadequacy, the potential losses are fully recognized in the income
statement. The modeling of future cash flows in the insurance liability adequacy
test are based on the following assumptions: At the end of 2022, this liability
adequacy test did not reveal any anomalies.
Income statement.
The income and expenses recognized for the insurance contracts issued by the
group appear in the income statement in ”Net income of other activities” and ”Net
expense of other activities”.
Risk management.
The group adopts a ”prudent approach” to its management of the risks to which it
could be exposed through its insurance activities. Risk of counterparty. As stated
above, insurance companies only invest in assets (bank deposits, sovereign bonds,
supranational agencies, or corporate bonds).

Example output:

E.2 OCR ERROR DETECTION

OCRoscope. To illustrate this approach, this long text is correctly identified as French with ¿99%
confidence by cld2, as despite the many mistakes, there are enough non-ambiguous French words:

NOUVELLES POLI TI QÛ E S. Suede. Stockholm , le 2 5 décembre 1792. Le
général Toll ira à Varsovie en quarté d’envoyé de la Suede auprès du roi et de la
république ; A 1 même rey.u l’ordre de s’y rendra incessamment. 11 paraı̂t que k
Uc-régeik a des craintes ; il a fait venir chez lji les membres c Ij“‘ tribunal 4e la
cour , et leur a rtmis son lesfca n at. La fermentation qu’a causée 1 ,’ari r?tavh n k
M p v riote Thorild tı̂’est pas appaisée y le luigage qv’il a yailé an duc-régent a
été bien entendu par le peu) k y ir M (U i n’entendrait pas l’apostrdphe suivante ?
ttRxc3xa7nd ¿la libuk à r otre raison , et ne et nous force pas de i’ache’ef r i te n :e
sang,.
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Le duc a fait x,épa4idre sur-le-champ une fjtbprijuun à te us les habitans di$
Toyaume , pour les detourntr de mr laisser sé luire par de fa,ux bruits et des
jugemens pe rver$ , e i en même temps l’ordre a. été donné à la garnison de charger
et de se tenir prête à marcher.
(Mercure Français, 1793, January 25th)

Yet one short n-gram (”n k M p v riote Thorild”) is classified as unknown by cld2.

OCRerrcr. The following is a low-error example sentence taken from Common Corpus:

They did not approach cer, but turned away and passed irom her presence, filled
with sorrow and moved with sympathy, which her intense emotions seemed to
communicate to even these thoughtless young men of the tho plains.

And the OCRerrcr detection (with formatting for clarity):

They did not approach <er>cer,</er> but turned away and passed
<er>irom</er> her presence, filled with sorrow and moved with sympathy, which
her intense emotions seemed to communicate to even these thoughtless young men
of the <er>tho</er> plains.

E.3 OCR CORRECTION

Here is an example of text containing various OCR errors:

Theguaran tees offered cover death,disability,r e dundancy andunem ployment
aspartof aloanprotect ion insurance policy. These types o f risk are controlled
throu ghthe use o f app ropriate morta litytables,statistica lchecksonloss rat ios for
thepopulation groups insure dandthrough ar e insurance program.

And here is the text corrected by our model, OCRonos:

The guarantees offered cover death, disability, redundancy, and unemployment
as part of a loan protection insurance policy. These types of risk are controlled
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through the use of appropriate mortality tables, statistical checks on loss ratios for
the population groups insured, and through the insurance program.
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