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Abstract

Understanding the dynamic behavior of proteins is critical to elucidating their
functional mechanisms, yet generating realistic, temporally coherent trajectories
of protein ensembles remains a significant challenge. In this work, we introduce
a novel hierarchical autoregressive framework for modeling protein dynamics
that leverages the intrinsic multi-scale organization of molecular motions. Unlike
existing methods that focus on generating static conformational ensembles or
treat dynamic sampling as an independent process, our approach characterizes
protein dynamics as a Markovian process. The framework employs a two-scale
architecture: a low-resolution model captures slow, collective motions driving
major conformational transitions, while a high-resolution model generates detailed
local fluctuations conditioned on these large-scale movements. This hierarchical
design ensures that the causal dependencies inherent in protein dynamics are
preserved, enabling the generation of temporally coherent and physically realistic
trajectories. By bridging high-level biophysical principles with state-of-the-art
generative modeling, our approach provides an efficient framework for simulating
protein dynamics that balances computational efficiency with physical accuracy.

1 Introduction

The intersection of artificial intelligence and protein science has revolutionized our understanding of
biological systems. Recent breakthroughs in AI for protein research have transformed structure and
function prediction [32, 37, 46, 22], protein design [3, 13, 25], and interaction modeling [9, 14, 47, 30].
However, while static structural understanding has advanced dramatically, accurately modeling protein
dynamics remains an outstanding challenge at the frontier of computational biology.

Protein dynamics are characterized by two fundamental properties. First, they are inherently hierarchi-
cal and multi-scale, with motions naturally separating into slow collective movements (nanoseconds
to microseconds) that typically correspond to functionally relevant conformational changes, and
fast local fluctuations (picoseconds to nanoseconds) that reflect atomic-level interactions [15, 17].
This multi-scale organization forms the theoretical foundation for analytical methods like Principal
Component Analysis and Normal Mode Analysis [8], demonstrating that protein dynamics can be
effectively decomposed into essential subspaces operating at different time scales. Second, protein
motions exhibit strong temporal correlations, where the continuous evolution of conformational states
follows specific pathways critical for biological functions. These temporally correlated dynamic
ensembles have proven essential in understanding enzyme catalysis mechanisms [48], characterizing
drug-binding pathways [7], and elucidating allosteric regulation [31]. For instance, recent studies
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have demonstrated that analyzing dynamic ensembles can reveal cryptic binding sites that only
become accessible through specific conformational transitions [5].

While molecular dynamics (MD) simulations can naturally capture both properties by solving New-
ton’s equations of motion at atomic resolution, their computational demands make them impractical
for large-scale applications. Even with specialized hardware and enhanced sampling techniques, MD
simulations are typically limited to microsecond timescales and small protein systems, making it chal-
lenging to systematically study slow conformational changes or analyze large protein datasets [38].
Current generative approaches, particularly diffusion-based models [19, 23, 10], fundamentally fail to
leverage these characteristics. These methods generate conformational ensembles by simultaneously
producing and optimizing protein states independently, by learning an energy landscape rather than
capturing the true sequential and multi-scale nature of protein dynamics. This approach cannot
accurately represent the causal chain of events that governs protein conformational changes, limiting
their ability to generate physically consistent trajectories.

Motivated by these challenges, we propose TEMPO – a multi-scale autoregressive framework that
models and generates protein dynamics across different temporal scales. Our approach combines a
low-resolution model capturing essential conformational transitions with a high-resolution model
generating detailed local fluctuations, directly translating biophysical principles into a computational
framework for generating physically realistic trajectories. Extensive experiments demonstrate that
our method achieves significant improvements over existing approaches.

Our work makes several key contributions:

• Algorithm Design. TEMPO introduces a novel multi-scale framework that captures both
protein collective motions and local fluctuations, enabling efficient trajectory generation
orders of magnitude faster than MD simulations.

• Performance and Metrics. Our method achieves state-of-the-art performance in both
structural accuracy and computational efficiency in various metrics, outperforming existing
methods in matching MD ground truth while requiring fewer computational resources.

• Extensive Analysis. We demonstrate TEMPO’s ability to capture biologically meaningful
protein motions through comprehensive case studies and analyses.

2 Related Work

Protein Ensemble Generation. Recent advances in deep learning have revolutionized the generation
of protein conformational ensembles. Traditional approaches rely on MSA subsampling with Al-
phaFold2 [32], which provides limited control over conformational diversity. Modern deep learning
methods have introduced more sophisticated techniques. AlphaFlow [19] fine-tunes single-state
predictors under a flow matching framework to generate protein conformational ensembles. ESM-
Flow [19] extends this approach by leveraging protein language models. BioEMU [23] employs
a diffusion-based framework to generate thermodynamically accurate ensembles. ConfDiff [43]
incorporates force-guided networks with diffusion models to enhance generation fidelity, while
Str2Str [27] introduces a structure-to-structure translation framework with roto-translation equivari-
ance. However, these methods primarily focus on generating conformational ensembles that match
equilibrium distributions, without explicitly modeling the temporal evolution of protein structures.

Learning Molecular Dynamics. Machine learning approaches have emerged as powerful tools for
accelerating and enhancing molecular dynamics simulations. VAMPNet [28] pioneered the use of
variational approaches for Markov processes in molecular kinetics. Recent works like DiffMD [45]
employ diffusion models to estimate conformational density gradients, while DFF [4] establishes
connections between score-based generative models and molecular force fields. The Distributional
Graphformer (DiG) [50] predicts equilibrium distributions of molecular systems, enabling efficient
conformational sampling. However, these methods often focus on general-purpose force field learning
or small molecular systems, making them computationally intensive for large proteins.

Multi-scale Dynamics Modeling. The inherent multi-scale nature of protein dynamics has long
been recognized in computational biology. Traditional MD analysis methods decompose protein
motions into slow collective changes, which are crucial for biological function, and fast local
fluctuations contribute to overall stability. Recent deep learning approaches have begun to address
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Figure 1: Overview of our multi-scale protein dynamics generation framework. a) The hierarchical
free energy landscape of protein dynamics, where slow motions (upper) guide fast local fluctuations
(lower). b) Our two-stage generation process: the low-resolution model fsθ captures slow collective
motions, while the high-resolution model ffϕ fills in detailed dynamics. c) The neural architecture
that parameterizes both models features spatial-temporal encoding of protein conformations.

this multi-scale characteristic. EigenFold [20] models protein structures as systems of harmonic
oscillators, naturally inducing a cascading-resolution generative process along system eigenmodes.
FoldFlow [6] proposes a family of flow-based generative models on SE(3), where the continuous-time
dynamics naturally capture multi-scale structural variations - from global conformational changes
to local refinements - through different time scales of the flow evolution. ITO [36] learns transition
density operators that allow conditioning on arbitrary timesteps, focusing on coarse-grained Cα
representations with exponential distribution sampling. However, most existing approaches focus on
either ensemble generation or short-timescale dynamics, without explicitly bridging the gap between
different temporal scales in protein motion.

Autoregressive Models in Structural Biology. While diffusion models have recently dominated
protein structure generation, auto-regressive approaches are gaining traction for their ability to
model temporally coherent and physically consistent dynamics. In the domain of bio-molecules,
arDCA [41] applies a simple yet effective auto-regressive framework to model protein sequence
distributions, capturing co-evolutionary couplings while enabling efficient sequence sampling and
fitness prediction. For protein structure modeling, Structure Language Models [26] employ latent-
space auto-regression to efficiently generate diverse backbone conformations, while equivariant
models such as EquiJump [12] build an SO(3)-equivariant transport model that bridges long time
intervals of all-atom protein MD by stochastically interpolating between snapshots. These advances
demonstrate the promise of auto-regressive models in capturing complex bio-molecular dynamics
across multiple timescales.

3 Method

3.1 Preliminaries

Given an initial protein structure X0 of sequence length L, our goal is to learn a generative model that
produces protein backbone trajectories χ = [X1, . . .XT], where each Xi represents the backbone
conformation at time step i. While full-atom protein structure representation has been widely
adopted [32, 23, 19], we focus on backbone dynamics as they capture the essential conformational
changes that determine protein function. This choice is motivated by several key observations: (1)
many important biological processes, such as protein folding and large-scale conformational changes,
are primarily determined by backbone movements [33], (2) side-chain motions typically occur at
faster timescales. They can be considered as local fluctuations around backbone configurations [16].

Consistent with standard representations in protein modeling [32], we describe each residue’s back-
bone conformation using an SE(3) frame along with the torsion angles (ϕ, ψ, ω):

χl
t = ((R, t), (ϕ, ψ, ω)), χ ∈

([
SE(3)× T3

]L)T

(1)
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where t denotes the time step and l indicates the residue index. The SE(3) frame, representing the
rigid body transformation, consists of a rotation component encoded as a unit quaternion from the
positive real part Q̂+ ⊂ R4 and a translation vector in R3, yielding a 7-dimensional representation.
Each torsion angle is encoded as a 2D vector [sin(θ), cos(θ)] ∈ S2 to avoid discontinuities at the
periodic boundary. Combining these components, each residue at each time step is represented by a
13-dimensional vector:

χj
t ∈

(
Q̂+ ⊕ R3

)
× (S2)3 ⊂ R13 (2)

This representation captures the essential geometric features of protein backbone dynamics while
maintaining computational efficiency, and the detailed data processing could be found in Appendix B.

3.2 SDE-based Protein Dynamics Modeling

Protein dynamics in solution naturally follows Langevin dynamics, which describes the motion of
particles under both conservative forces and random collisions with solvent molecules [49]. The
Langevin equation captures two key aspects of protein motion: (1) Deterministic forces arising
from inter-atomic interactions that drive conformational changes, (2) Random forces from thermal
fluctuations that contribute to the stochastic nature of protein dynamics [11].

Motivated by this physical principle, we model protein dynamics as a stochastic differential equation
(SDE) process, which can be viewed as a continuous-time generalization of the Langevin dynamics.
In our framework, the evolution of protein conformations follows a combination of deterministic drift
and stochastic diffusion. Specifically, for a protein conformation Xt at time t, its temporal evolution
can be described as:

dXt = µ(Xt)dt+ σdWt (3)
where µ(Xt) represents the drift term that captures the deterministic dynamics, σ is the diffusion
coefficient, and Wt denotes a standard Brownian motion. The drift term µ(Xt) is learned by our
model, while the stochastic component is simulated through Gaussian noise injection.

In discrete time steps, our model approximates this continuous SDE process as:

Xt+∆t = Xt + fθ(Xt)∆t+ ϵt
√
∆t (4)

where fθ is our neural network model parameterized by θ that learns the drift dynamics, ∆t is
the time step, and ϵt ∼ N (0, σ2I) represents the Gaussian noise. This formulation allows our
model to capture both the deterministic conformational changes and the stochastic nature of protein
dynamics.This approach is theoretically justified as we learn the conditional expectation E[Xt+1|Xt]
in the finite time-step regime, mirroring how numerical MD integrators operate with deterministic
updates plus controlled stochastic components for temperature regulation [49, 11].

However, protein dynamics typically exhibits non-Markovian behavior at short time scales [18],
meaning that future states depend on multiple previous states rather than just the current one. To
account for this memory effect, we extend our model to consider multiple timesteps:

Xt+1:t+2 = fθ(Xt−1:t)∆t+ ϵt
√
∆t (5)

where Xt−1:t represents two consecutive frames at times t − 1 and t, and the model predicts the
next two frames Xt+1:t+2. This design choice is supported by prior research in physical system
modeling [51] and latent ODEs [34], where incorporating temporal memory has been shown to
significantly improve the accuracy of dynamical predictions.

3.3 Multi-scale Dynamics Learning

Building upon the SDE-based framework, we decompose protein motion into a bio-physically
motivated two-timescale formulation to capture both slow collective motions and fast local
fluctuations[15, 17]. This decomposition is realized through coupled stochastic differential equations:

dXs
t = µs(X

s
t )dt+ σsdW

s
t (6)

dXf
t = µf (X

f
t )dt+ σfdW

f
t (7)

where Xs
t and Xf

t represent protein conformations at slow and fast timescales, respectively, with
corresponding drift terms µs and µf , and independent Brownian motions W s

t , W f
t .
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To learn these multi-scale dynamics, we employ a unified neural architecture that operates at both
timescales. Specifically, the drift terms µs and µf are parameterized by the same spatiotemporal
encoder architecture f but trained separately to capture scale-specific features. The discrete time
evolution at each scale follows:

Xs
t+∆ts = Xs

t + fsθ (X
s
t )∆ts + ϵst

√
∆ts (8)

Xf
t+∆tf

= Xf
t + ffϕ (X

f
t )∆tf + ϵft

√
∆tf (9)

where ∆ts and ∆tf represent the time steps for slow and fast dynamics, with neural networks fsθ and
ffϕ learning the respective drift dynamics.

During inference, we employ a hierarchical sampling strategy that mirrors the natural organization
of protein dynamics. Starting from an initial conformation Xs

0, we first generate a sparse trajectory
{Xs

0,X
s
∆ts

, ...,Xs
ns∆ts

} using the slow-scale model fsθ , which captures collective motions like
domain reorientations. These slow-scale conformations then serve as anchoring states for the fast-
scale model ffϕ , which generates the complete fine-grained trajectory {Xf

t : t ∈ [0, nf∆tf ]},
ensuring that fast local dynamics remain consistent with the broader conformational changes.

3.4 Spatiotemporal Protein Encoder

Here we detail the neural architecture that parameterizes the drift dynamics at both timescales. Our
encoder design captures both spatial relationships between protein residues and temporal correlations
in conformational dynamics. As illustrated in Figure 1, the network comprises three functional
components: input representation, spatial-temporal encoding, and conformational prediction.

The input representation module processes protein conformations Xt ∈ RL×13 with added noise
terms that model the stochastic nature of protein dynamics. Specifically, we sample a noise scale
σnoise ∼ U(a, b) and generate Gaussian noise ϵ ∼ N (0, I) to obtain noisy conformations X̃t =
Xt + σnoiseϵ. In parallel, protein sequences are embedded into feature vectors s ∈ RL×dhidden through
a learnable embedding layer. These sequence features are combined with frame representations
gt ∈ SE(3)L and noise scale in an Invariant Point Attention (IPA) [32] module to capture geometric
relationships. The final latent representation is computed as:

hlatent = MLP(X̃t) + IPA(gt, s, σnoise) + Embed(σnoise) (10)

where MLP : R13 → Rdhidden projects the input features to hidden dimension dhidden, and Embed maps
the scalar noise intensity to a dhidden-dimensional vector. The latent representation then undergoes
spatial-temporal processing through:

hspatial = MultiHeadAttention(hlatent) (11)

htemporal = GRU(hspatial) (12)
The spatial module captures inter-residue interactions while the temporal module encodes frame-to-
frame dependencies. The output module generates conformational updates:

Xt+∆t = Xt +MLP(htemporal) (13)

where MLP : Rdhidden → R13 maps the latent features back to the conformational space.

The training objectives for both timescales follow the same formulation, consisting of two terms: a re-
construction loss measuring the mean squared error between predicted and ground truth conformations
and a physical constraint loss penalizing steric clashes between backbone atoms:

Ltotal = ∥Xt+∆t − X̂t+∆t∥2 + λ
∑
i ̸=j

ReLU(1.2Å− ∥ri − rj∥) (14)

where ri and rj are positions of backbone atoms from different residues, and the minimum distance
threshold of 1.2Å is chosen following the widely adopted steric criteria in Rosetta [1]. This objective
is applied independently to train the slow and fast dynamics models, with appropriate time intervals
∆ts and ∆tf , respectively.
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4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on two comprehensive molecular dynamics datasets: md-
CATH [29] and ATLAS [42]. For mdCATH, we randomly sampled 1,000 proteins and their 320K
temperature trajectories with three independent seeds for training. Each protein sequence was trun-
cated to 240 residues, and trajectories were standardized to 400 frames at 1ns intervals through
periodic extension or truncation. We randomly selected 50 proteins for validation and 64 proteins for
testing, ensuring no overlap with the training set. For ATLAS, we follow the data split and processing
protocol established by MDGen [21]. We rigorously quantified sequence similarity using mmseqs2,
finding an average of 18.93% sequence similarity between training and test sets for mdCATH and
18.3% for ATLAS, well below standard thresholds (40%) for sequence relatedness.

Baselines. To evaluate our method’s capability in capturing both protein dynamics and ensemble
properties, we conduct comprehensive comparisons with four state-of-the-art baselines: BioEMU [23],
AlphaFlow and ESMFlow [19], and MDGen [21]. While the first three methods primarily focus on
generating conformational ensembles, MDGen, though not explicitly modeling dynamics, captures
temporal evolution through training on the ATLAS dataset [42].

Implementation details. Our multi-scale modeling approach captures protein dynamics at two
temporal resolutions. The low-resolution model generates trajectories at 20ns intervals, characterizing
major structural transitions, while the high-resolution model operates at 1ns resolution to capture local
fluctuations. We empirically chose the 20ns/1ns hierarchy based on established biophysical principles
where the 20ns interval effectively captures major conformational transitions between different states
in the free energy surface as visualized in Figure 1a, while the 1ns resolution represents the dataset’s
finest temporal sampling. The generation process follows a hierarchical strategy. The low-resolution
model first produces a sequence of conformational states {Xs

t }20t=1 at ∆t = 20ns. Specifically, each
high-resolution segment is initialized by the corresponding low-resolution state (Xf

t+∆t = fθ(X
s
t )),

followed by autoregressive sampling (Xf
t+k∆t = fθ(X

f
t+(k−1)∆t) for k = 2, ..., 20 where ∆t = 1ns).

This hierarchical process generates a complete trajectory while maintaining consistency across
different temporal scales.

During training, both scale-models simulate the forward process of protein dynamics SDE through
autoregressive sampling with noise scales uniformly sampled from [0.01, 0.05]. At inference time,
while the low-resolution model maintains similar noise levels, we increase the noise scale to 5.0 for
the high-resolution model. This elevated noise level enables diverse conformational sampling on the
learned energy surface.

Evaluation Framework. Our comprehensive evaluation framework encompasses both ensemble
properties and trajectory-specific characteristics. Following AlphaFlow, we analyze conformational
flexibility through several complementary measures: Dynamic Range (the average Cα-RMSD
between pairs of conformations within each ensemble, quantifying the overall conformational space
explored), Local Flexibility (assessed through root mean square fluctuation (RMSF) analysis of
atomic positions), and Distribution Accuracy (quantified using the root mean Wasserstein distance
(RMWD) between predicted and ground truth conformational distributions).

The trajectory accuracy is measured by the backbone RMSD error between generated and ground truth
trajectories relative to the native structure: Errorframe = |RMSDpred−RMSDgt|. This metric, averaged
across all frames and test proteins, quantifies the model’s ability to capture conformational change
magnitudes accurately [24]. Further biological validation includes contact dynamics analysis, where
contacts between Cα atoms (8Å threshold) are classified as weak (initially present but dissociate
in > 10% of the ensemble) or transient (initially absent but form in > 10% of the ensemble),
with accuracy evaluated using Jaccard similarity between predicted and ground truth contact sets.
Computational efficiency is assessed through the average inference time per protein in generating
400 snapshots. Additionally, we calculate the clash ratio, defined as the proportion of conformations
containing steric clashes among the 400 generated snapshots for each protein. Detailed definitions of
all metrics are provided in Appendix D.
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Table 1: Evaluation on mdCATH. Comparing predicted ensembles with MD ensembles across
various metrics. For protein flexibility and RMSF, ground truth values are in parentheses. Median
values across 64 test ensembles are reported. The rightmost column shows TEMPO’s performance
on the up-sampling task. r: Pearson correlation; J : Jaccard similarity;W2: 2-Wasserstein distance.

Metrics TEMPO BioEMU AlphaFLOW-MD ESMFLOW-MD MDGEN TEMPO(Up)

Pairwise RMSD(= 3.26) 2.78 13.82 2.00 2.32 1.11 3.06
Pairwise RMSD r ↑ 0.77 -0.02 0.41 0.26 0.71 0.99
All-atom RMSF(= 1.64) 1.60 10.08 0.99 1.18 0.56 1.64
Global RMSF r 0.67 0.13 0.41 0.34 0.67 0.99

Root mean W2 ↓ 4.21 10.70 5.62 4.08 3.36 1.06
MD PCA W2 ↓ 2.33 2.49 2.38 2.36 2.62 0.63
% PC-sim > 0.5 ↑ 7.81 9.38 21.88 25.00 17.19 95.31

Weak contacts J ↑ 0.43 0.38 0.42 0.51 0.41 0.83
Trans. contacts J ↑ 0.20 0.12 0.27 0.28 0.20 0.60
% Clash ratio ↓ 4.75 19.7 15.5 5.23 0.42 4.12

RMSD Error ↓ 1.78 - - - 3.76 0.60

Inference time (hour) 0.006 0.25 4.5 4.7 0.008 -

4.2 Results and Analysis

We evaluate our framework on both mdCATH and ATLAS datasets. Table 1 presents results on
mdCATH, while Table 2 shows results on ATLAS where all methods are trained and tested following
MDGen’s protocol. TEMPO demonstrates consistent strong performance across both datasets,
achieving state-of-the-art results on key metrics.

Table 2: Evaluation on ATLAS. All methods trained and tested following MDGen’s protocol.
Metrics BioEMU AlphaFlow-MD MDGen TEMPO
Pairwise RMSD r ↑ -0.02 0.48 0.48 0.91
Global RMSF r ↑ 0.09 0.60 0.50 0.89
Root mean W2 ↓ 19.23 2.61 2.69 1.49
MD PCA W2 ↓ 3.61 1.52 1.89 0.60
% PC-sim > 0.5 ↑ 14 44 10 76
Weak contacts J ↑ 0.26 0.51 0.62 0.74
Trans. contacts J ↑ 0.06 0.29 0.41 0.38
RMSD Error ↓ - - 3.20 1.83

Our multi-scale framework demonstrates distinct advantages across three critical dimensions of
protein dynamics modeling. On ATLAS, TEMPO achieves substantial improvements over baselines,
with Pearson correlation of 0.91 for pairwise RMSD and 0.89 for global RMSF, significantly outper-
forming other methods. The model captures 76% of principal components with similarity greater than
0.5, compared to 44% for AlphaFlow and 10% for MDGen, demonstrating superior ability to preserve
essential collective motions. On mdCATH, in structural flexibility metrics, TEMPO achieves the
closest match to molecular dynamics (MD) ground truth, with pairwise Cα-RMSD and residue-level
RMSF closely matching MD values. The strong Pearson correlation (r = 0.77) between predicted
and ground truth RMSD values reveals our hierarchical SDE formulation preserves the intrinsic
roughness of protein energy landscapes.

In distribution matching metrics, TEMPO achieves the lowest MD PCA Wasserstein distance (0.60 on
ATLAS, 2.33 on mdCATH) across both datasets, suggesting accurate preservation of principal motion
patterns. While MDGen shows slight advantages in average conformational Wasserstein distance on
mdCATH, our approach achieves better backbone RMSD error on both datasets (1.83 on ATLAS,
1.78 on mdCATH compared to MDGen’s 3.20 and 3.76). Furthermore, our physically constrained
learning reduces steric clashes compared to ESMFlow, BioEMU, and AlphaFlow, validating the
biological plausibility of generated conformations.

In computational efficiency, TEMPO generates complete 400-frame trajectories in approximately 22
seconds, significantly faster than AlphaFlow and ESMFlow. Among all baselines, only MDGen is
specifically designed for trajectory generation, yet it requires prohibitive computational resources. In
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contrast, our multi-scale decomposition enables training on a single NVIDIA A100 GPU, with both
slow-scale and fast-scale models operating within memory constraints.

These results collectively demonstrate that TEMPO’s physics-informed multi-scale design achieves
superior performance in conformational accuracy, temporal coherence, and computational efficiency
across different datasets. Our experimental validation incorporates four analyses to verify TEMPO’s
spatiotemporal modeling: (1) Collective motion analysis to evaluate the capture of functionally
relevant slow motions, (2) Up-sampling evaluates high-resolution reconstruction of local fluctuations,
(3) State transition tracking examines temporal pathway fidelity, and (4) Free energy surface analysis
to compare conformational sampling strategies. We focus subsequent analysis and visualizations on
mdCATH as its free energy landscapes contain more distinct energy basins with clearer conformational
transition pathways, better suited for analyzing dynamics modeling. Visual examples of generated
protein trajectories are provided in Appendix E, offering an intuitive demonstration of our model’s
capability to capture protein dynamics. Additional ablation studies and detailed analyses are provided
in the Appendix. All analyzed cases are identified by their PDB IDs.
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Figure 2: Comparison of PC projections between MD and generated conformations. (a-c) PC1
trajectories from MD (blue) and our slow-scale trajectories (red) for three representative proteins. (d)
Box plot of cosine similarity scores comparing TEMPO and MDGen across the test set.

Slow Motion generation. Protein slow motions, occurring on microsecond to millisecond timescales,
often correspond to functionally relevant conformational changes such as domain movements [17].
Capturing these collective motions is challenging due to their long timescales and coordinated
nature. We evaluate our model’s capability in capturing such motions through principal component
analysis (PCA), as the first few PCs typically describe the dominant collective motions in protein
dynamics [2]. For representative cases (Figure 2(a-c)), we projected both MD trajectories and our
generated slow-scale conformations onto the first principal component (PC1) of MD trajectories. The
cosine similarity between these projections ranges from 0.67 to 0.77, indicating strong alignment of
collective motions. Extending this analysis across all test proteins (Figure 2(d)), we evaluated the
maximum cosine similarity between the first two PCs of generated ensembles and MD trajectories to
assess the capture of collective motions. TEMPO achieves better performance than MDGen, with a
mean similarity of 0.41 compared to MDGen’s 0.36, suggesting potential for capturing slow motions
while highlighting the challenging nature of this task.

Up-sampling. We evaluated our high-resolution model’s capacity to capture detailed protein motions
through up-sampling experiments, using ground truth low-resolution protein conformation as input.
The conformational sampling quality was quantitatively assessed via free energy surface (FES)
analysis in a reduced dimensionality space, obtained through PCA of protein backbone coordinates
using Prody. The free energy landscapes were constructed by projecting conformations onto the
first two principal components, followed by kernel density estimation and Boltzmann inversion at
300K. Figure 3 demonstrates the FES contour plots for two representative test proteins, comparing
the distributions between MD ensembles and our generated trajectories. The close correspondence in
FES characteristics, particularly in the location and depth of energy minima, validates our model’s
ability. More evaluation metrics across our test set (Table 1) further confirm that our high-resolution
model effectively captures local protein fluctuations consistent with MD simulations. Additional case
studies with extended protein sets are presented in Appendix I.

State Transition. After evaluating the two scale models separately, we further investigated TEMPO’s
ability to capture complete conformational transition pathways. Using four representative proteins
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Figure 3: FES comparison between MD trajectories (a,c) and generated ensembles (b,d) for proteins
2eyzA03 (a,b) and 3gyxA02 (c,d). Colors represent free energy values from low (blue) to high (red).
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Figure 4: Comparison of conformational transitions in PC space between TEMPO and MDGen
baseline (bottom). Ground truth MD trajectories are shown in blue, while generated trajectories are
in green. The polynomial fitting curves highlight the temporal evolution of conformational changes
(Protein from left to right: 2e9xB01, 1s79A00, 1bl0A02, 3cx5E01).

from our test set, we analyzed how well our integrated framework reproduces the sequential nature of
conformational changes. We first constructed the PCA space using MD trajectories as reference, then
projected both our generated trajectories and MD trajectories onto the first two principal components
to visualize the conformational landscape. As shown in Figure 4, the upper row demonstrates
TEMPO’s ability to generate trajectories (green) that follow similar transition pathways as MD
simulations (blue). In contrast, the MDGen tends to generate clustered conformations in limited
regions of the PC space, failing to capture the full range of transitions. This comparison highlights
the advantage of our temporal modeling approach over the frame-independent generation strategy,
particularly in reproducing the sequential nature of conformational changes. The polynomial fitting
curves further illustrate how our model better tracks the temporal evolution of these state transitions.
Additional transition pathway analyses for an extended set of test proteins are provided in Appendix J.

Free Energy Surface Coverage. Our quantitative metrics effectively assess conformational stability
and structural accuracy, but provide limited insight into the comprehensive exploration of confor-
mational space. To address this, we established a reference framework using PCA derived from
MD ensembles of four randomly selected proteins, subsequently constructing the corresponding free
energy surface (FES). Projection of generated conformations onto this FES revealed that ESMFlow
achieves broader coverage of the conformational landscape (Figure 5), consistent with its design for
independent sampling across the energy surface.

This divergence reflects fundamentally different modeling objectives. ESMFlow optimizes conforma-
tional diversity through independent sampling, valuable for exploring thermodynamically accessible
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states. In contrast, TEMPO’s focused sampling is a design feature that preserves temporal corre-
lations and physical constraints governing real protein motion. Real proteins must respect energy
barriers and cannot instantaneously jump between distant conformations; biological processes depend
on sequential, pathway-dependent conformational changes where kinetic accessibility differs from
thermodynamic accessibility. Such trajectory-aware modeling ultimately serves our primary objec-
tive of elucidating the kinetic mechanisms underlying biological function, rather than maximizing
configurational sampling (additional analyses in Appendix K).
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Figure 5: FES comparison between TEMPO (top row) and ESMFlow (bottom row) on four randomly
selected test proteins. TEMPO’s dynamic modeling shows more focused exploration of confor-
mational space, whereas ESMFlow’s independent sampling achieves broader coverage across the
PCA-derived free energy surface (Protein from left to right: 1s79A00, 1x4tA01, 2e9xB01, 5b58T02).

5 Conclusion

In conclusion, our proposed TEMPO framework represents a significant advancement in the modeling
and generation of protein dynamics by effectively addressing the inherent complexities of hierarchical
and multi-scale behavior. Through the integration of a multi-scale autoregressive approach with
stochastic differential equations, TEMPO successfully captures both slow collective motions and fast
local fluctuations that characterize protein dynamics. Our comprehensive experimental validation
demonstrates that TEMPO achieves superior performance across multiple metrics, from structural
flexibility to distribution matching, while maintaining computational efficiency compared to existing
methods. As we move forward, TEMPO’s innovative design and proven capabilities hold the potential
to facilitate further research in protein dynamics, ultimately contributing to a more comprehensive
understanding of biological systems and their underlying mechanisms.
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A Limitation

While TEMPO demonstrates promising capabilities in protein dynamics generation, several aspects
warrant further exploration. The current model shows limited generalization capability to unseen
proteins, especially for cases involving large conformational changes. This could be addressed
through expanded training data incorporating diverse protein architectures and enhanced model
designs for capturing large-scale motions. Our two-scale temporal decomposition, though effective
for the demonstrated trajectory lengths, might benefit from auto-regressive resolution mechanisms
similar to those successful in image generation [40] when modeling longer timescale dynamics.

The framework’s current limitation to single-protein backbone dynamics could be extended in several
directions. Incorporating side-chain reconstruction and multi-molecular interactions could enable
modeling of protein-ligand binding dynamics and DNA recognition processes, critical downstream
applications in drug discovery and biological mechanism studies. Additionally, while existing metrics
provide useful validation, developing more biologically-grounded evaluation protocols could better
assess trajectory quality through direct correlation with experimental observables and functional
outcomes. These directions collectively suggest rich potential for expanding both the scope and
practical utility of deep learning-based protein dynamics modeling.

B Protein Structure Tokenization

We represent protein structures using a combination of local reference frames and torsion angles,
resulting in a rotation and translation equivariant representation. For a protein with L amino acids,
our tokenization procedure is as follows:

SE(3) Frame Representation. For each residue i, we construct a local reference frame using the
backbone atoms (N, Cα, C) following the approach similar to AlphaFold [32]. Specifically:

• The origin Oi is placed at the Cα atom position

• The x-axis x̂i is aligned with the normalized Cα-N bond vector

• The temporary vector v⃗i is the normalized Cα-C bond vector

• The z-axis ẑi is computed as ẑi = x̂i×v⃗i
|x̂i×v⃗i|

• The y-axis ŷi completes the right-handed coordinate system: ŷi = ẑi × x̂i

Each SE(3) frame consists of a rotation matrix Ri ∈ SO(3) and a translation vector ti ∈ R3:

Ri = [x̂i, ŷi, ẑi] ∈ R3×3, ti = Oi ∈ R3 (15)

To obtain a compact representation, we convert the rotation matrix to a unit quaternion qi ∈ S3
following [39]:

qi =

qw,i

qx,i
qy,i
qz,i

 =


1
2

√
1 +Ri[0, 0] +Ri[1, 1] +Ri[2, 2]

Ri[2,1]−Ri[1,2]
4qw,i

Ri[0,2]−Ri[2,0]
4qw,i

Ri[1,0]−Ri[0,1]
4qw,i

 (16)

Combined with the translation vector, this yields a 7-dimensional vector
[qw,i, qx,i, qy,i, qz,i, tx,i, ty,i, tz,i] for each residue, resulting in a tensor of shape [L, 7] for
the entire protein.

Torsion Angle Representation. We complement the SE(3) frames with the backbone torsion
angles (ϕ, ψ, ω), which define the protein’s conformation. For residue i, these angles are defined as:

ϕi = dihedral(Ci−1, Ni, Cαi, Ci) (17)
ψi = dihedral(Ni, Cαi, Ci, Ni+1) (18)
ωi = dihedral(Cαi, Ci, Ni+1, Cαi+1) (19)
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Rather than using the raw angles, we represent each angle as a 2D vector [sin(θ), cos(θ)] to avoid
discontinuities at ±π, as commonly done in protein structure prediction models [44]. This results in
a 6-dimensional vector per residue:

vtorsion,i = [sin(ϕi), cos(ϕi), sin(ψi), cos(ψi), sin(ωi), cos(ωi)] (20)

This yields a tensor of shape [L, 6] for the protein’s torsion information.

Final Representation. We concatenate the SE(3) frame and torsion angle representations to obtain a
comprehensive protein structure encoding of shape [L, 13], where a 13-dimensional vector represents
each residue:

vi = [qw,i, qx,i, qy,i, qz,i, tx,i, ty,i, tz,i, sin(ϕi), cos(ϕi), sin(ψi), cos(ψi), sin(ωi), cos(ωi)] (21)

Rotation and Translation Equivariance. Our final protein representation—comprising unit quater-
nions and translation vectors for SE(3) frames and backbone torsion angles is equivariant to global
rigid-body motions. Specifically, a global rotation Rg ∈ SO(3) and translation tg ∈ R3 transform
each local frame (Ri, ti) as (RgRi, Rgti + tg). When using unit quaternions qi to represent Ri, this
corresponds to a left quaternion multiplication:

q′i = qg ⊗ qi, t′i = Rgti + tg

where qg is the unit quaternion corresponding to Rg , and ⊗ denotes quaternion multiplication.

The torsion angles (ϕ, ψ, ω), represented as [sin(θ), cos(θ)] pairs, are internal degrees of freedom and
remain invariant under global SE(3) transformations. Therefore, our 13-dimensional representation
vi is globally equivariant and captures both spatial orientation and internal conformation. This
formulation ensures that the learned model respects 3D geometric symmetries, consistent with the
principles of equivariant neural networks [35].

C Algorithm

Algorithm 1 describes our multi-scale training procedure, which is applied to both low-resolution
and high-resolution models. The algorithm implementation differs in how we prepare the training
trajectories for each scale:

Low-resolution Training. For the slow-scale model (∆ts = 20ns), we sample frames from the
full trajectory at 20ns intervals. Starting from the native structure, the model learns to predict
conformational changes over longer time scales, capturing major conformational transitions.

High-resolution Training. For the high-resolution model (∆tf = 1ns), we randomly sample
continuous trajectory segments of 20ns length with 1ns intervals. Each segment is an independent
training sequence, allowing the model to learn local fluctuations and fast conformational changes.

Notations:

• gt ∈ SE(3)L: The frame sequence at time t, where each frame consists of rotation and
translation components (R, t) in SE(3) space

• Xt ∈ RL×13: Protein conformation at time t, where each residue includes 13 features as
described in Section B.

• T : Number of timesteps used for both input and prediction windows
• K: Total number of frames in the training trajectory (differs between scales)
• σnoise: Noise scale in our SDE formulation

Algorithm 2 details our hierarchical inference strategy for generating complete protein dynamics
trajectories. During inference, we first use the low-resolution model fsθ to predict conformations at
coarse timesteps (∆ts = 20ns), which captures slow collective motions. These coarse predictions
then serve as anchoring points for the high-resolution model ffϕ , which fills in the intermediate frames
at fine timesteps (∆tf = 1ns) to capture local fluctuations. This hierarchical approach ensures that
the generated trajectories maintain consistency between collective motions and fast local dynamics.
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Algorithm 1: Autoregressive Training of Protein Dynamics Model with Multiple Timesteps

Input: ground truth frame sequences {gt}K−1
t=0 ∈ (SE(3)L)K ,

ground truth trajectories {Xt}K−1
t=0 ∈ (RL×13)K ,

amino acid identities A ∈ {1, . . . , 20}L,
teaching force probability ptf ,
number of timesteps T (for both input and prediction)
Output: trained model parameters θ

1 for each training iteration do
// Initialize input buffers with first T frames

2 Initialize Xbuffer ← {Xi}T−1
i=0 ;

3 Initialize gbuffer ← {gi}T−1
i=0 ;

4 Ltotal ← 0 ;
5 for t = 0 to ⌊K/T ⌋ − 2 do
6 σnoise ∼ U(0.01, 0.05) ;
7 ϵ ∼ N (0, I) ;
8 hlatent ←Wproj(Xbuffer + σnoiseϵ) ;
9 s← Embed(A) ;

10 for i = 1 to nipa do
11 hframe ← InvariantPointAttention(s, gbuffer, σnoise) ;

// spatial processing
12 hspatial ← hlatent + hframe + Embed(σnoise) ;
13 for j = 1 to natt do
14 hspatial ← MultiHeadAttention(hspatial) ;

// temporal processing
15 htemporal ← hspatial ;
16 for k = 1 to nGRU do
17 htemporal ← GRU(htemporal) ;
18 Xpred ←Wproj(htemporal) ;
19 gpred ← RigidTransformDecode(Xpred) ;
20 Lmse ← ∥Xpred −X(t+1)T :(t+2)T ∥2 ;
21 Lclash ← ComputeClashScore(Xpred) ;
22 Ltotal ← Ltotal + Lmse + λLclash ;

// Update buffers
23 r ∼ U(0, 1) ;
24 if r > ptf then
25 Xbuffer ← Xpred ;
26 gbuffer ← gpred ;
27 else
28 Xbuffer ← X(t+1)T :(t+2)T ;
29 gbuffer ← g(t+1)T :(t+2)T ;

30 Update model parameters θ using ∇θLtotal ;

D Evaluation Metrics

We employ a comprehensive set of metrics to evaluate both structural accuracy and dynamic properties
of generated protein ensembles. Our evaluation framework follows established protocols in protein
ensemble generation [19], adapted for trajectory-based assessment.

D.1 Structural Flexibility Metrics

Pairwise RMSD. For each ensemble, we quantify overall conformational diversity as the average Cα-
RMSD between all pairs of conformations. This metric captures the range of conformational space
explored by the ensemble. We report both the absolute values and Pearson correlation coefficient
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Algorithm 2: Multi-scale Inference for Protein Dynamics Generation

Input: initial frames {Xi}T−1
i=0 , {gi}

T−1
i=0 , ; // T frames as initial buffer

1 coarse timestep ∆ts = 20ns,
2 fine timestep ∆tf = 1ns,
3 total simulation time Ttotal,
4 trained coarse-resolution model fsθ ,
5 trained fine-resolution model ffϕ

Output: complete trajectory X = {Xt}Ttotal−1
t=0

6 Xs
buffer ← {Xi}T−1

i=0 ;
7 gsbuffer ← {gi}

T−1
i=0 ;

8 X ← {Xi}T−1
i=0 ;

9 for t = 0 to ns do
10 Xs

pred, g
s
pred ← fsθ (X

s
buffer, g

s
buffer);

11 Xf
buffer ← Xs

pred;
12 gfbuffer ← gspred;
13 Append Xs

pred to X ;
14 for k = 0 to nf do
15 Xf

pred, g
f
pred ← ffϕ (X

f
buffer, g

f
buffer) // Model forward pass

16 Append Xf
pred to X ;

17 Update Xf
buffer, g

f
buffer with prediction;

18 Update Xs
buffer, g

s
buffer with prediction;

19 return X

between predicted and ground truth pairwise RMSD distributions to assess whether our model
captures the relative flexibility patterns across different proteins.

Root Mean Square Fluctuation (RMSF). To assess local flexibility, we compute the RMSF for
each residue, measuring the standard deviation of atomic positions across the ensemble after optimal
alignment. The Pearson correlation between predicted and ground truth RMSF profiles indicates how
well the model captures residue-level flexibility patterns.

D.2 Distribution Accuracy Metrics

Root Mean Wasserstein Distance (RMWD). To generalize all-atom RMSD to ensemble comparison,
we define the root mean Wasserstein distance between ensembles X and Y as:

RMWD(X ,Y) =

√√√√ 1

N

N∑
i=1

W2
2 (N [Xi],N [Yi]) (22)

where N [Xi] denotes a 3D Gaussian fitted to the positional distribution of the ith atom in ensemble
X . This metric reduces to standard RMSD for single structures and provides a distributional measure
of positional accuracy.

Principal Component Analysis. To evaluate collective motions, we project the joint distribution
of Cα positions onto principal components computed from the MD ensemble. We measure: (1) the
2-Wasserstein distance between predicted and ground truth ensembles in the PC space (MD PCA
W2), and (2) the cosine similarity between the dominant principal components. A similarity > 0.5
indicates successful capture of the dominant collective motion. We report the percentage of test
proteins achieving this threshold (% PC-sim > 0.5).

D.3 Dynamic Property Metrics

Contact Dynamics. We analyze intermittent contacts to assess if the model captures thermal
fluctuations. For each ensemble, we identify: (1) weak contacts - Cα pairs (<8Å) in the native
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Time steps

Protein 
1bl0A02

Protein
5exeA02

Figure 6: Visualization of protein conformational changes over time for two representative proteins
(1bl0A02 and 5exeA02). Each row shows the temporal evolution of one protein. MD ground truth
trajectories are shown in blue, while TEMPO-generated trajectories are shown in pink, demonstrating
the close structural alignment between generated and reference structures throughout the trajectory.

structure that dissociate in > 10% of ensemble structures, and (2) transient contacts - pairs not in
contact in the native structure but associate in > 10% of ensemble structures. We compute Jaccard
similarity between predicted and ground truth contact sets.

Trajectory Accuracy. For trajectory generation methods, we measure the backbone RMSD error:
Errorframe = |RMSDpred − RMSDgt|, where RMSD is computed relative to the native structure. This
metric quantifies the model’s ability to accurately capture the magnitude of conformational changes
over time.

Clash Ratio. We compute the proportion of generated conformations containing steric clashes,
defined as backbone atom pairs from different residues with distance < 1.2Å. This metric validates
the physical plausibility of generated structures.

All metrics are computed on backbone atoms (N, Cα, C, O) after optimal rigid-body alignment to the
native structure, unless otherwise specified. We report median values across the test set to ensure
robustness to outliers.

E Trajectory Visualization

To provide an intuitive visualization of our generation results, we present trajectory comparisons
for two representative test proteins. Figure 6 shows snapshots of the trajectories at 80ns intervals,
where the ground truth MD conformations are shown in blue and TEMPO-generated conformations
are shown in pink. These visualizations demonstrate the close structural alignment between our
generated conformations and the MD reference states.

F Thermodynamic Accuracy Analysis

Following BioEMU’s established evaluation methodology [23], we provide quantitative assessment
of thermodynamic accuracy through free energy difference analysis. This analysis validates that
our generated trajectories not only capture structural features but also preserve the underlying
thermodynamic properties of protein dynamics.

Free Energy Difference Computation. We compute free energy differences by extracting reaction
coordinates, specifically the fraction of native contacts, to calculate folding probabilities (pfold). The
free energy differences are then calculated as:

∆G = −kT · log
(

pfold

1− pfold

)
(23)

where k is the Boltzmann constant and T is the temperature. We measure the free energy error as
∆∆G = ∆Gground truth −∆Gpredicted.

Results. TEMPO achieves an average ∆∆G of 0.67 kcal/mol on the mdCATH test set, demonstrating
good agreement with reference MD simulations within the acceptable range for biological applications
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(typically <1-2 kcal/mol). This result indicates that our method not only generates structurally
accurate conformations but also preserves the thermodynamic properties of protein folding and
unfolding processes.

Free Energy Profiles. Following BioEMU’s evaluation framework, we analyze our generated
trajectories through multiple perspectives:

• 1D Free Energy Profiles: We construct free energy profiles using three key reaction
coordinates: RMSD from native structure, radius of gyration, and fraction of native contacts.
Our generated trajectories exhibit high similarity to ground truth MD simulations across all
three coordinates.

• 2D Free Energy Surfaces: Two-dimensional free energy surface plots constructed from
combinations of reaction coordinates show that TEMPO captures the essential features of
the conformational landscape, including energy minima locations and barrier heights.

• Time Series Analysis: The fraction of native contacts time series from our generated trajec-
tories closely matches the temporal evolution patterns observed in ground truth simulations,
validating our model’s ability to capture dynamic processes.

These quantitative thermodynamic evaluations complement our structural metrics and demonstrate
that TEMPO generates trajectories that are not only geometrically accurate but also thermodynami-
cally consistent with reference MD simulations (see Figure 7 and Figure 8 for visualizations).

G Ablation Study: Multi-scale vs Single-scale Generation

While autoregressive methods typically suffer from error accumulation during sequential generation,
our hierarchical multi-scale design mitigates this issue by anchoring fine-scale dynamics to coarse-
scale predictions. To demonstrate the effectiveness of our multi-scale architecture, we compare
TEMPO’s full hierarchical framework against a single-scale baseline that directly generates 400
frames without multi-scale guidance on mdCATH.

Table 3 shows that the multi-scale approach significantly outperforms single-scale generation across
all metrics. The multi-scale model achieves substantially lower RMSD error (1.78Å vs 8.62Å)
after 400 frames, demonstrating controlled error propagation that maintains trajectory stability over
extended generation periods. Furthermore, the multi-scale design preserves conformational diversity
(pairwise RMSD of 2.78Å vs 7.46Å compared to ground truth 3.26Å) and structural flexibility
patterns (Pearson correlation of 0.77 vs 0.14 for RMSD, 0.67 vs 0.15 for RMSF), while the single-
scale approach shows severe degradation in capturing protein dynamics. These results validate that
our hierarchical decomposition is crucial for generating physically realistic long protein trajectories.

Table 3: Ablation study comparing multi-scale TEMPO with single-scale baseline on mdCATH.
Ground truth values are shown in parentheses where applicable. The single-scale model directly
generates 400 frames without hierarchical guidance.

Metrics TEMPO (Multi-scale) TEMPO (Single-scale)
Pairwise RMSD (= 3.26) 2.78 7.46
Pairwise RMSD r ↑ 0.77 0.14
All-atom RMSF (= 1.64) 1.60 4.27
Global RMSF r ↑ 0.67 0.15
Root mean W2 ↓ 4.21 8.27
MD PCA W2 ↓ 2.33 2.53
% PC-sim > 0.5 ↑ 7.81 3.12
Weak contacts J ↑ 0.43 0.23
Trans. contacts J ↑ 0.20 0.09
RMSD Error ↓ 1.78 8.62
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Figure 7: Thermodynamic accuracy analysis for two representative proteins (7p46_A and 7asg_A)
selected from the ATLAS test set. For each protein, we show: 1D free energy profiles along three
reaction coordinates (RMSD, radius of gyration, and fraction of native contacts), 2D free energy
surfaces, and time series of fraction of native contacts.

H Training vs Test Performance Analysis

We acknowledge that capturing all distribution modes represents a fundamental challenge in protein
dynamics modeling. While our primary objective focuses on generating realistic conformational
transitions rather than perfect mode coverage, we recognize the importance of understanding the
performance gap between training and test scenarios.

Performance Gap Analysis. Table 4 compares TEMPO’s performance on training and test sets of
mdCATH, where the training set results are evaluated on 60 randomly selected proteins from the

20



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RMSD (Å)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

RMSD Free Energy Profile

Predicted
Ground Truth

14.8 15.0 15.2 15.4 15.6 15.8
Radius of Gyration (Å)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

Rg Free Energy Profile
Predicted
Ground Truth

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Fraction of Native Contacts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

FNC Free Energy Profile
Predicted
Ground Truth

0.5 1.0 1.5 2.0 2.5 3.0 3.5
RMSD (Å)

14.8

14.9

15.0

15.1

15.2

15.3

15.4

15.5

Ra
di

us
 o

f G
yr

at
io

n 
(Å

)

Predicted: 2D FES

0.5 1.0 1.5 2.0 2.5 3.0
RMSD (Å)

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

Ra
di

us
 o

f G
yr

at
io

n 
(Å

)

Ground Truth: 2D FES

0 50 100 150 200 250 300 350 400
Frame

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 N

at
iv

e 
Co

nt
ac

ts

FNC Time Series ( G=-0.25 kcal/mol)
Predicted (dG=-4.17)
Ground Truth (dG=-4.42)

0.0

2.4

4.8

7.2

9.6

12.0

14.4

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

0.0

2.4

4.8

7.2

9.6

12.0

14.4

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

0 1 2 3 4 5 6 7 8
RMSD (Å)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

RMSD Free Energy Profile
Predicted
Ground Truth

11.5 12.0 12.5 13.0 13.5 14.0 14.5
Radius of Gyration (Å)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

Rg Free Energy Profile

Predicted
Ground Truth

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Native Contacts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

FNC Free Energy Profile
Predicted
Ground Truth

1 2 3 4 5
RMSD (Å)

12.0

12.5

13.0

13.5

Ra
di

us
 o

f G
yr

at
io

n 
(Å

)

Predicted: 2D FES

1 2 3 4 5 6 7
RMSD (Å)

12.5

13.0

13.5

14.0

14.5

Ra
di

us
 o

f G
yr

at
io

n 
(Å

)

Ground Truth: 2D FES

0 50 100 150 200 250 300 350 400
Frame

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 N

at
iv

e 
Co

nt
ac

ts

FNC Time Series ( G=0.01 kcal/mol)
Predicted (dG=-1.29)
Ground Truth (dG=-1.28)

0.0

2.4

4.8

7.2

9.6

12.0

14.4

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

0.0

2.4

4.8

7.2

9.6

12.0

14.4

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

Figure 8: Thermodynamic accuracy analysis for two representative proteins (2ijd101 and 1rl0A02)
selected from the mdCATH test set.

training data. The training set demonstrates significantly better mode coverage accuracy, with 46.7%
of principal components achieving similarity greater than 0.5 compared to 7.81% on the test set.
Similarly, the training set shows improved performance across most metrics, including lower MD
PCA Wasserstein distance (1.31 vs 2.33) and better contact prediction accuracy (0.53 vs 0.43 for
weak contacts, 0.37 vs 0.20 for transient contacts).

This performance gap reflects the inherent complexity of generalizing to novel protein architectures in
mdCATH, where most proteins contain distinct energy basins and unique conformational landscapes.
The challenge of mode coverage is not unique to our method - even extensively pretrained methods
like BioEMU show significant free energy surface (FES) deviations as shown in Appendix Figure 11.
The difficulty stems from the fundamental nature of protein dynamics: each protein has its own
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characteristic energy landscape shaped by its unique sequence and structure, making it challenging
for models to perfectly capture the full conformational distribution of unseen proteins.

Despite the performance gap, our test set results still demonstrate strong capability in capturing
essential protein dynamics, as evidenced by high structural flexibility correlations (Pearson r = 0.77
for pairwise RMSD, r = 0.67 for RMSF) and accurate trajectory generation (RMSD error of
1.78Å). The stronger training set performance validates our model’s capacity to learn complex protein
dynamics when sufficient data is available, suggesting that expanded training data incorporating
diverse protein architectures could further improve generalization.

Table 4: Comparison of TEMPO performance on training set versus test set. Ground truth values are
shown in parentheses. The training set demonstrates significantly better mode coverage.

Metrics Train Sample Test
Pairwise RMSD 3.06 (2.51) 2.78 (3.26)
Pairwise RMSD r ↑ 0.79 0.77
All-atom RMSF 1.16 (1.31) 1.60 (1.64)
Global RMSF r ↑ 0.78 0.67
Root mean W2 ↓ 3.42 4.21
MD PCA W2 ↓ 1.31 2.33
% PC-sim > 0.5 ↑ 46.7 7.81
Weak contacts J ↑ 0.53 0.43
Trans. contacts J ↑ 0.37 0.20
RMSD Error ↓ 1.51 1.78

I Additional Up-sampling Analysis

Additional up-sampling experiments across multiple test proteins further validate our high-resolution
model’s ability to generate full protein dynamics from ground truth low-resolution protein conforma-
tions. Figure 9 shows the FES contour plots for four randomly selected proteins (1rl0A02, 1x4tA01,
1zpdA02, and 2ndpA00) computed from their backbone conformations.

J Additional State Transition Analysis

To further validate our model’s capability in capturing protein conformational transitions, we present
additional state transition analyses on representative proteins from our test set. Figure 10, each subplot
compares the conformational trajectories generated by TEMPO and MDGen with MD simulations in
the space of the first two principal components. Consistent with our observations in the main text,
these additional examples demonstrate TEMPO’s robust ability to generate physically meaningful
transition pathways. MDGen typically exhibits more clustered sampling patterns, fails to capture
the continuous nature of conformational transitions. These results further support our framework’s
advantage in modeling the temporal dependencies inherent in protein dynamics.

K Additional Free Energy Surface Analysis

To complement the FES analysis, we randomly selected four additional proteins from our test set for
detailed comparison. As shown in Figure 11. Based on the FES analysis across four randomly selected
test proteins, we observe several distinctive patterns in conformational sampling strategies: TEMPO
demonstrates precise conformational sampling that closely aligns with the ground truth distributions.
The generated conformations (orange points) are concentrated within physically meaningful energy
basins, suggesting coherent trajectory generation. MDGen shows similar sampling quality, though
with slightly more dispersed distributions in some cases.

In contrast, AlphaFlow exhibits broader but less focused sampling, often deviating from the main
energy wells. BioEMU shows the most scattered sampling patterns, frequently generating physically
implausible conformations that lie outside the main energy basins. This comparison highlights the
advantage of our trajectory-aware approach over independent sampling methods - while methods like
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Figure 9: FES plots of four randomly selected test proteins. The FES is computed from: (top)
trajectories generated by TEMPO performing up-sampling tasks, (middle) ground truth molecular
dynamics simulations, and (bottom) trajectories produced by the baseline model MDGen, performing
simulation tasks. Each column represents a distinct test protein (from left to right: 1rl0A02, 1x4tA01,
1zpdA02, and 2ndpA00).

AlphaFlow and BioEMU may achieve wider conformational coverage, they often do so at the cost of
physical realism.

These observations consistently demonstrate that TEMPO’s multi-scale framework effectively bal-
ances conformational exploration with physical constraints, producing trajectories that maintain
both continuity and thermodynamic plausibility. The results validate our design choice of incorpo-
rating temporal dependencies, which proves crucial for generating biologically meaningful protein
dynamics.

L Per-Residue RMSF.

The RMSF analysis reveals our model’s ability to capture local protein dynamics across different
scales. Figure 12 illustrates a representative case study using protein 4impA02, where the generated
trajectories closely mirror the MD simulation’s Cα fluctuation patterns. In this example, both profiles
exhibit characteristic mobility signatures, with enhanced fluctuations at the N-terminus (residues
0-20) and C-terminus (residues 190-210), while maintaining relatively stable conformations (RMSF <
2Å) in the central regions. Across our entire test set, the generated trajectories maintain a reasonable
correlation (average Pearson r = 0.67) with MD simulations in terms of RMSF profiles, suggesting that
our model consistently reproduces biologically relevant flexibility patterns. This global performance
indicates that the model has learned meaningful protein dynamics patterns rather than generating
arbitrary motions. Additional case studies are provided in Figure 13.
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Figure 10: Comparison of conformational transitions in PC space between TEMPO and MDGen
baseline (bottom). Ground truth MD trajectories are shown in blue, while generated trajectories are
in green. The polynomial fitting curves highlight the temporal evolution of conformational changes.
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Figure 11: Comparison of FES for four randomly selected test proteins (from left to right: 3cj8B02,
3cx5E01, 3f6kA03, 4fomA03). Results are shown for TEMPO, MDGen, AlphaFlow, and BioEMU
(from top to bottom).
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Figure 12: Comparison of Root Mean Square Fluctuation (RMSF) between MD simulation trajectory
and generated trajectory for protein 4impA02. The RMSF values reflect the Cα fluctuations of protein
residues during the simulation. The Pearson (r) between the two RMSFs is 0.93.
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Figure 13: RMSF profiles comparison between MD simulations and TEMPO generated trajectories
for 4 randomly selected test proteins. Each plot demonstrates the Cα atomic fluctuations along the
protein sequence (Protein from top to bottom: 1y4mA00, 3b8xA02,3bjdA01, 3gyxA02).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 4.2, our approach demonstrates distinct advantages across three
critical dimensions of protein dynamics modeling and achieves SOTA on several metrics.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix A, we discuss the limitation of TEMPO.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the implementation detail in Section 4.1 and also submit the code
in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the datasets are obtained from open-source libraries. The code is available
in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We state the experimental setup in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Section 4.2, we show the statistical significance of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.2, we report the memory and computational efficiency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact on the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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