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Abstract

Designing robust reinforcement learning (RL) agents in the presence of imperfect
reward signals remains a core challenge. In practice, agents are often trained with
proxy rewards that only approximate the true objective, leaving them vulnerable to
reward hacking, where high proxy returns arise from unintended or exploitative
behaviors. Recent work formalizes this issue using r-correlation between proxy and
true rewards, but existing methods like occupancy-regularized policy optimization
(ORPO) optimize against a fixed proxy and do not provide strong guarantees against
broader classes of correlated proxies. In this work, we formulate reward hacking
as a robust policy optimization problem over the space of all r-correlated proxy
rewards. We derive a tractable max-min formulation, where the agent maximizes
performance under the worst-case proxy consistent with the correlation constraint.
We further show that when the reward is a linear function of known features,
our approach can be adapted to incorporate this prior knowledge, yielding both
improved policies and interpretable worst-case rewards. Experiments across several
environments show that our algorithms consistently outperform ORPO in worst-
case returns, and offer improved robustness and stability across different levels
of proxy—true reward correlation. These results show that our approach provides
both robustness and transparency in settings where reward design is inherently
uncertain.

1 Introduction

Real-world reinforcement learning (RL) systems often struggle with reward specification: it is
notoriously difficult to craft a reward function that perfectly captures the intended goals in all
scenarios [[1, 12} 3]]. In practice, designers rely on proxy rewards that approximate the true objective [4]].
However, agents optimizing these imperfect proxies can lead to unintended exploitative behaviors,
achieving high proxy returns while yielding poor true outcomes, a phenomenon known as reward
hacking [3} 6} [7, [8]]. Such reward hacking behaviors are not merely hypothetical; they have led to
undesirable or even catastrophic consequences in safety-critical settings (e.g., autonomous driving) [9]
10] and are alarmingly common in real-world deployments [[11}112}113}[14]. Beyond reward hacking,
interpretability and transparency of RL policies are increasingly recognized as critical requirements for
real-world acceptance [15} 16, [17]]. Policymakers and practitioners in safety-critical domains require
systems not only to be robust but also interpretable; they must understand which specific decision-
making criteria lead to undesirable outcomes to effectively mitigate risks and ensure compliance with
safety regulations [18} [19} 120]. These challenges highlight the need for RL algorithms to address
two fundamental challenges: robustness to uncertain or poorly-specified rewards, and interpretability
to facilitate oversight and compliance by human stakeholders, especially in high-stakes, real-world
environments like traffic control [21]], healthcare decision-making [22} 23], and pandemic response
strategies [24].
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Recent work has begun to formalize reward hacking and develop principled mitigations. Laidlaw
et al. [25] define a proxy reward to be r-correlated with the true reward if it maintains a correlation
coefficient > 0 on state-action pairs encountered by a certain reference (baseline) policy. Notably,
their definition permits the proxy and true reward to diverge arbitrarily in parts of the state-action
space not visited by the reference policy, precisely the regions an RL agent might exploit under
intensive optimization. Using this framework, reward hacking is formalized as the situation in
which optimizing an r-correlated proxy yields a policy with lower true reward than that of the
reference policy. Building on this definition, Laidlaw et al. propose Occupancy-Regularized Policy
Optimization (ORPO) as a mitigation strategy. ORPO augments the standard RL objective with
a regularization term that penalizes deviations between the learned policy’s occupancy measure
(state-action visitation distribution) and that of the reference policy.

Despite significant progress, existing solutions to reward hacking show several limitations. First, their
effectiveness relies heavily on the choice of the specific proxy reward. However, designing perfect
proxies is challenging, and in real-world scenarios, reward proxies are often derived heuristically
or empirically from noisy or limited data [26} [27], leading to uncertainty or variability in the exact
correlation with true rewards. Therefore, robustness to variations in proxy rewards is crucial for
dependable deployment. While the regularization method used by ORPO provides a lower bound on
improvement in true reward, its guarantee on the worst-case performance against an adversarially
chosen proxy is weak. Second, current methods like ORPO typically treat a reward function as a black
box and learn a complex policy with no easily interpretable structure, making it hard to understand
why the resulting policy avoids reward hacking or to trust its behavior in novel situations. Further,
they cannot be easily adapted to incorporate prior knowledge of the true reward. These shortcomings
underscore the need for a more robust and transparent approach to reward hacking in RL.

In this work, we formalize reward hacking as a robust RL problem under proxy reward uncertainty and
develop new algorithms to address the above gaps. The key idea is to optimize against an adversarial
proxy reward rather than trusting a single proxy. We assume the true reward could be any function
that remains r-correlated with the proxy (per the reference policy), and we train the agent to perform
well against the worst-case such proxy. This approach explicitly accounts for uncertainty in proxy
design and guards against unintended exploitative behaviors. Concretely, we propose a max-min
formulation in which the policy chooses its strategy to maximize its guaranteed true return while an
adversary minimizes the true return by selecting a reward function from the set of all r-correlated
proxies. By solving this problem, the agent learns a policy that is robust to all plausible deviations of
the proxy reward within the correlation bound. We derive a closed-form solution for the adversary’s
worst-case reward assignment given any candidate policy, which allows efficient evaluation of the
inner minimization and provides insight into how proxy reward flaws are most damaging. Building
on this result, we introduce a practical algorithm for Max-Min Policy Optimization that iteratively
updates the policy against this worst-case reward signal.

Moreover, to improve the tractability and transparency of the inner optimization, we introduce a
Linear Max-Min variant of our method. In this variant, we assume the true reward lies in a class of
linear functions over known features, allowing us to characterize the worst-case proxy reward as a
sparse linear combination of those features. While the policy itself remains parameterized by general
neural networks, the learned worst-case reward function becomes interpretable in terms of its feature
weights. This provides insight into which aspects of the proxy reward space the policy is robust to or
vulnerable against, making it valuable for applications where understanding the failure modes of the
reward design is important.

Finally, we empirically evaluate the proposed approaches on several challenging environments.
Across all domains, our Max-Min and Linear Max-Min policies outperform ORPO in terms of
worst-case reward, indicating substantially improved robustness. Moreover, under a large range
of proxy-true correlation scenarios, our methods exhibit higher average reward and lower variance
compared to ORPO, meaning the performance of our policies remains more consistent and reliable.
These findings demonstrate the practical significance of our robust formulation, paving the way for
safer and more trustworthy RL deployment in real-world applications.

Our main contributions can be summarized as follows: 1) We propose a novel robust RL formulation
that explicitly models reward hacking as a max-min optimization problem over proxy rewards
constrained by correlation with the true rewards. 2) We develop a practical algorithm for the max-min
problem, which is further extended to linear rewards with improved robustness and interpretability. 3)
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Experiment results demonstrate improved robustness and worst-case rewards across four real-world
inspired reward hacking environments.

2 Preliminaries

Reinforcement Learning. A reinforcement learning (RL) problem can be formulated as an infinite-
horizon Markov Decision Process (MDP) defined by the tuple (S, A, p, 110, R, ), where S and A
denote the state and action spaces, p(s’ | s, a) is the transition probability from state s to s’ given
action a, and g is the initial state distribution. The agent interacts with the environment over discrete
time steps t = 0,1,2,.... At each time step, it selects an action a; € A based on the current state
s; € S according to a policy 7(a | s), which defines a distribution over actions conditioned on the
state. Upon taking action ay, the agent receives a reward R(s;, a;) € R and transitions to the next
state s¢11 according to p(s¢+1 | St, a). The goal of the agent is to maximize the expected cumulative
discounted return:

J(m, R) = (1= 7)Ex | Y ' R(ss,a0) |, $))
t=0

where v € [0, 1) is the discount factor, and the expectation is taken over trajectories generated by
following policy 7. We define the state-action occupancy measure p, of a policy 7 as: pir(s,a) =
(1= E: Doy I{st = s,a, = a}], which represents the discounted visitation frequency of
each state-action pair under policy 7. Using the occupancy measure, the return can be equivalently
expressed as: J (7, R) = E(s q)~p, [R(s,a)].

Correlated Proxies and Reward Hacking. Below we give an overview of the recently proposed r-
correlated proxy framework proposed in [25]] for detecting and mitigating reward hacking, which our
work is built upon. A detailed discussion of related work on reward hacking and robust reinforcement
learning is given in Appendix [C]In particular, [25]] considers a setting where the agent is given a
reference policy s and a proxy reward Rpoxy, While the true reward is hidden. They further assume
that the proxy reward is r-correlated with the true reward under the reference policy, that is:

Euﬂmf |:<Rpr0xy - J(Wrefv Rproxy) ) (Rtrue - J(ﬂ'refa Rtrue) >:| =, (2)

O Rprony O Rye

~H

2
where o R,

proxy == E,u.,rmf |:(Rproxy - J(’/Trefa Rproxy))2:| and 0—}23["15 - E,u,rmf |:(Rtrue - J(’/Treﬁ Rtrue))2:|
are the variances of the proxy and true rewards, respectively, under the reference policy. Reward
hacking is said to occur when a policy 7 optimized for an r-correlated proxy reward achieves lower
true reward than the reference policy: J(m, Ryue) < J(Tref, Rirue). To mitigate reward hacking,
[25] proposes Occupancy-Regularized Policy Optimization (ORPO) to optimize a regularized policy

objective given below, which is shown to provide a lower bound on improvement in true reward:

max J(Tﬂ Rproxy) - A X2(:u7\' H l’[’ﬂ'ref)7 (3)

s

where X2 (fir || i) denotes the x2-squared divergence between the occupancy measures of 7 and
Tef, and the regularization strength \ is set as: A = o Rpoy V1 — r2. This encourages the learned
policy to stay close to the reference distribution when the proxy reward is weakly correlated with the
true reward.

3 Method

In this section, we discuss our robust policy optimization approach for mitigating reward hacking.
In contrast to regularization-based methods such as ORPO, we consider a max-min formulation
that identifies a robust policy with respect to the worst-case reward across all reward functions that
are r-correlated with the proxy reward. We further extend our framework to settings where the
reward function is a linear combination of known features with unknown weights. Our approach
effectively leverages this structural information, when known a priori, to improve both robustness
and interpretability, a task that is particularly challenging for regularization-based techniques.
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3.1 Max-Min Policy Optimization

Similar to ORPO, we assume that the agent is given a proxy reward R.xy and a reference policy
Tef, While the true reward is hidden. Rather than regularizing the policy under a fixed proxy reward,
we consider the entire space of rewards R that satisfy the correlation constraint with respect to a
known proxy reward, as defined in Equation

R-M
V

M and V denote the fixed mean and standard deviation of the reward function R under the reference
policy . For simplicity, we define Rpoxy to be the normalized proxy reward Rpyoxy(s,a) =
RP“‘XY (s,a) = J (e, Rpmw)
7 Rproxy
we have J(Tef, Rproxy) = 0 and Var,, (Rproxy) = 1, which simplifies the correlation constraint
in Equation[d The hyperparameter r controls the degree of alignment between the proxy and true
reward. It allows us to interpolate between strong robustness (small ) and high proxy fidelity (large
r), enabling a principled robustness-accuracy trade-off. We remark that it is without loss of generality
to consider fixed M and V, which we will further elaborate on later.

Reor = {R :(s,a) = R ‘ E., [ : Rpmy] =7, J(Tet, R) = M, 0% = V2} @

, where Rproxy is the original (unnormalized) proxy reward. After normalization,

We propose a worst-case optimization framework where the policy is trained to maximize expected
performance under the least favorable reward within Rco;. Assuming that the true reward lies
somewhere within this set, this approach improves robustness by ensuring that the policy does not
overfit to any single optimistic interpretation of the proxy reward. Formally, the objective becomes a
max-min problem:

. _ i B ).
mfog%Il"'](ﬂ’R) max min E,q) un [ R(s,a)] Q)

However, a challenge arises: the objective E,, [R(s,a)] depends on the state-action occupancy
W, Whereas the constraints defining Rorr are expressed in terms of jir . This mismatch com-
plicates direct optimization. To resolve this, we apply a change-of-measure technique [28,29] to
rewrite the expectation under p, .. Specifically, let L(s, a) denote the Radon-Nikodym derivative:

L(s,a) = /Z:;f(?ea«i) By definition, L(s,a) > 0 and E,, [L(s,a)] = 1. Applying the change-of-

measure formula, we can express the return as: E,, _[R(s,a)] = [q, 4 #x(s,a)R(s,a)d(s,a) =

Jswa time(5,0) 2= R(s,a) d(s,a) = By, [L(s,a)R(s,a)]. Thus, both the objective and the
Tref b rel

constraints can be rewritten as expectations with respect to the reference distribution zi,.

For notational simplicity, we will suppress the variables (s, a) and write for example, L to denote
L(s,a) and R to denote R(s, a). Under this reparameterization, the inner minimization in Equation|5]
can be reformulated as:

RIél,]i?,Iclon‘ E’“‘ﬂ-r&f [L . R} ' (6)

Although the feasible set in Problem [6]is not convex due to the equality constraint on the variance,
we still derive an optimal solution using a Lagrangian formulation. Our approach leverages tools
from duality theory, commonly used in robust optimization [30,[31]]. We further justify the validity of
our solution in Appendix Specifically, the Lagrangian functional associated with this problem is
defined as: lo(A1, A2, A3, R) = B, [L-R—X E5M - Ryroxy —Aa R—As R+ A7+ Ao M+ A3 (M +
V2), where A1, A2, A3 are the Lagrange multipliers corresponding to the correlation constraint, mean
constraint, and variance constraint, respectively. Then the original problem in Equation [6]is equivalent
to the following problem:

in lg(A1, A2, A3, R). 7
\max - min 0(A1, A2, Az, R) 7

We now solve the inner minimization problem in Equation [7]by finding the optimal R for fixed dual
variables (A1, A2, A3). Taking the functional derivative of the Lagrangian [ with respect to R(s, a)
gives: % = fn (s, 0)[(L — /\1% — A2) — 2XA3R]. When pir (s, a) > 0, setting the derivative of
the Lagrangian to zero yields the optimal adversarial reward function:

L(s,a) — A 2 — Ay
23 '

R*(s,a) = 8)
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However, for state-action pairs where i (s, a) = 0, i.e., those not visited under the reference policy,
the correlation and moment constraints become vacuous. In these regions, the adversarial reward
R*(s,a) can be driven arbitrarily poor, reflecting that no constraint prevents the adversary from
assigning highly penalizing values to rarely visited or unobserved state-action pairs. Nevertheless,
consider the case where jir,(s,a) > 0, we can substitute the optimal R* from Equation|[8]into the
Lagrangian [ and get the dual objective. After some process detailed in Appendix we get the
optimal solution to the inner problem (6)), so the original max-min problem (3] reduces to:

max -V B, [Rpoxy] =V - V1 =172 \/X2(Mw | ) — B [Rproxy] + M. ©

s

Thus, the final policy optimization objective becomes maximizing the proxy reward, regularized by a
penalty that depends on the distributional shift between j, and pi,, and the expectation of the current
policy under proxy reward E,, [Rproxy|, and the correlation strength r. We observe that the constants
M and V do not affect the optimal policy: while they influence the absolute value of the worst-case
reward for a given policy 7, they only apply a linear transformation (scaling by V' and shifting by
M) and do not change the relative ordering of policies. Therefore, for simplicity, we set V' = 1 and
M = 0 in our implementation. This also provides a fair way to compare the worst-case rewards of
different policies. Notice that the optimization objective in Equation[9]closely resembles the ORPO
objective proposed in Equation [3] However, there are two key differences: (1) our regularization
strength is ¥="" instead of o', v/1 — 2, and (2) our penalty term is Xt || ftroy) — E2_[Rproxy]
rather than simply x> (tir || fix,,). The proof that x?(ix || fir.) — E2_[Rproxy] > 0 holds can be

found in Appendix [D.3] A detailed comparison between our policy gradient and that of ORPO is
provided in Appendix [D.§]

3.2 Structured Reward Spaces via Feature Linearization

A natural concern with worst-case optimization is over-conservatism: if the reward uncertainty set
Reorr 18 too broad, the resulting policy may become overly cautious or deviate from realistic task
objectives. Additionally, the learned worst-case rewards may themselves be implausible or uninter-
pretable. To address these issues, we introduce structure into the reward space by assuming that all
rewards are linear combinations of known features. Specifically, we assume: R(s,a) = 0 ¢(s,a),
where ¢(s,a) = [p1(s,a), da(s,a),...,drn(s,a)]T € RM denotes a vector of M known or engi-
neered feature functions, and 8 = [61,0s,...,6 M]—r € RM represents the uncertain feature weights.
The linearization yields two key benefits: 1) Realism and Interpretability: In many real-world
tasks, reward functions are naturally approximated as linear combinations over interpretable features.
For example, in a traffic control environment, features might include total commute time, vehicle
speed, acceleration, and inter-vehicle headway distances. 2) Better-Constrained Robustness: By
restricting uncertainty to structured, feature-based rewards, the worst-case optimization problem
becomes more grounded and avoids pathological, unrealistic reward functions.

In this section, we assume that the agent is aware of the set of features but not their true weights. We
show that our robust optimization framework can be naturally extended to incorporate the structure in
rewards to improve robustness. In our experiments, we further demonstrate that linear rewards help
interpret a policy’s performance even when it is trained without such prior knowledge. Under our
assumption, the uncertainty set reduces to the set of feature weights @ € RM satisfying:

Rlcigrr = {9 € RM ’ E#wmr [0T¢ ’ Rproxy] =T E#wmr [GT(N = 07 E#wmf [(0T¢)2] = 1} . (10)

To simplify the analysis, we assume without loss of generality that the worst-case reward R(s, a) =
0T¢(s, a) is normalized to have zero mean and unit variance under the reference policy s This
corresponds to setting M = 0 and V' = 1, which, as shown in our earlier derivation, does not affect
the resulting optimal policy. As before, Rxy denotes the normalized proxy reward under mf,
satisfying B, [Rproxy] = 0 and Var,, [Rproxy] = 1.

We now derive the corresponding max-min optimization under the structured reward assumption:

. T
max 967%&111920 E(s,a)~pn [0 (b(s,a)} . (11)

corr?
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Br(s,a)
.uﬂ',ef(saa) ’
change-of-measure, and define the Lagrangian functional for the inner minimization in Equation[TT]

as: I[1(A1, Ao, A3,0) = 01 (Z(Sﬂ) Uy as (8, a)@(s, a)) —2307Q0 + \i7 + A3, where uy, », =

fir = Atfhm Rproxy — A2fimes @ = D25 o) M (8, @) B(s, @) P (s, a)'. A detailed derivation can be
found in Appendix Note that @) is positive semi-definite since it is a sum of outer products
¢(s,a)¢(s,a)’ weighted by non-negative coefficients (occupancy measure of 7y > 0). Then
solving the inner minimization over 6 in Equation [l I]is equivalent to solving:

. _ AT B T
Al,ni?i\gglzlg l1(A1, A2, A3,0) =0 (ZUA17>\2¢) A30 QO + A1 + As. (12)

Similar to previous steps, we introduce the Radon-Nikodym derivative L(s,a) = use a

Notice that I3 (A1, A2, A3, 0) is a convex quadratic function of 6 (assuming A3 < 0) subject to
linear inequality constraints & > 0. Thus, the original problem is a standard convex quadratic
program (QP) with non-negativity constraints [32]]. However, it is not possible to derive a universal
closed-form solution for the optimal 8* under arbitrary (). To further simplify the problem and
obtain a closed-form solution, we transform the feature vector ¢ into a whitened version ¢ such
that the matrix (Q becomes the identity matrix I and we formally show this in Appendix
Specifically, we perform a whitening transformation using the Cholesky decomposition [32]. Let
W = Q_%,gb(s, a) = We¢(s,a), where Q™% denotes a matrix square root of Q! (which exists
since @ is positive semi-definite and non-singular assuming 3(s, ) such that ., (s, a) > 0). Then
the original problem in Equation [I2]can be further simplified into:

max min ll(/\l,/\g,)\g,é) = é—r Z u,\h)\z(s,a)a)(s,a) —A39T9+)\1T+/\3. (13)
A1,A2,A3 §>0 (5:)

where we now optimize over the parameter 0 using the transformed features <ES For notational
simplicity, we will drop the tilde and henceforth use ¢ to represent the whitened feature ¢, and 6

to represent the whitened weights 6. Then we can get a closed-form solution (we detail the steps

C Xsia) Urrae (5,0)@(s,a)
2)\3

is applied elementwise. Details for solving the outer maximization in Equation |13|can be found in

Appendix After obtaining the optimal dual variables (A}, A5, A%), we can substitute them back

into Equation |l 1}and solve the outer maximization over the policy 7 using standard reinforcement

learning algorithms, such as PPO [33].

in Appendix for optimal 8™ as: * = max (0, ) where the max(-,0)

ORPO with Linear Awards. While ORPO provides a general guarantee based on occupancy
measure regularization, it does not exploit any structural assumptions about the reward function.
In particular, even when the true reward is linear in a set of features, ORPO does not explicitly
incorporate this structure into its policy optimization or theoretical analysis. While the lower bound
(Theorem 5.1 in [25]]) continues to hold, it is unclear how to leverage this structure to obtain a tighter
lower bound or to guide policy updates more effectively. This suggests a missed opportunity: by
explicitly modeling the reward as a linear function, it becomes possible to derive stronger guarantees,
interpret worst-case reward directions, and efficiently optimize against them. Our Linear Maxmin
method fills this gap by parameterizing reward uncertainty directly in the space of reward weights,
enabling both robustness and greater transparency.

3.3 Implementation Details and Algorithms

A core step in both our algorithms and ORPO is to estimate the Radon-Nikodym derivative L(s, a).
To this end, we follow prior works [25)134,135]] and train a discriminator network. Specifically, we
use a discriminator architecture identical to that in [25]], denoted by dy(s, a), which is optimized
according to:

¢ =argmin B, [log(1+e™(*))] + B, [log(1 + ™)), (14)

pr(8,a)
g (5,0)

as L(s,a) = expdy(s,a) with dy(s,a) ~ d*(s,a). As discussed in Section if the policy 7
visits state-action pairs that the reference policy 7.t rarely or never visits, the adversarial reward
can be arbitrarily poor. In theory, the estimated L(s, a) is expected to grow arbitrarily large in this

It is known that the optimal discriminator satisfies d*(s,a) = log and we estimate L(s, a)
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case, which should discourage the learned policy from exploiting such regions. However, we observe
empirically (Section4.2)) that the ORPO policy still visits some of these low-coverage regions under
Tf. This is because in the original ORPO implementatiorﬂ the discriminator is not fully optimized
during policy learning. Specifically, the discriminator receives only a small number of gradient
updates per reinforcement learning iteration, resulting in underfitting and inaccurate estimates of the
Radon-Nikodym derivative L(s, a). To address this, we substantially increase the number of gradient
updates per iteration and carefully tune the learning rate. Our goal is to strike a practical balance
between training time and discriminator quality, which we further discuss in Appendix [E.T}

To compute the final objective for our Max-Min policy in Equation@ we estimate the x? divergence,
the normalized proxy reward Rproxy, and the first and second moments E,, [Rproxy] and Eiw [Rproxy]-
These components together define the robust optimization objective used to update the policy.
A simplified Max-Min policy optimization procedure is outlined in Algorithm [T, We provide
detailed descriptions of each estimation step, as well as the complete algorithmic implementation in
Appendix[E.2] Corresponding derivations and implementation details for the Linear Max-Min variant
are included in Appendix [E.3]

Algorithm 1 Max-Min Policy Optimization (Simplified)

1: Initialize policy parameters 6
2: Initialize reference policy ¢ and collect trajectories
3: Estimate mean and variance of the proxy reward under 7f
4: for each iteration do
5:  Collect trajectories from current policy my
6:  Normalize the proxy rewards for state-action pairs in the collected trajectories
7 Estimate the expected proxy reward and its second moment under the current policy
8 Estimate the discriminator using Equation (T4) and x? divergence between i, and fi,,
9:  Update the policy using PPO to maximize the Max-Min objective in Equation (9)
10: end for

4 Experiment

4.1 Experiment Setup

We evaluate our method across four realistic benchmark environments: Traffic, Pandemic, Glucose
Monitoring, and Tomato Watering GridWorld. These environments were originally proposed in [36} 5]
and represent diverse forms of proxy reward hacking, including misweighting, ontological mismatch,
and scope misalignment [36]. Each setting presents unique challenges in reward specification and
policy robustness. A detailed description of the environments and their respective reward structures is
provided in Appendix[E.4] In each of the four environments, we train policies using both our Max-Min
and Linear Max-Min optimization algorithms. For baselines, we compare against the ORPO policy.
To isolate the impact of discriminator training, we also include an ablation: ORPO*, where we train the
ORPO policy using the same full discriminator training schedule as in our algorithms. This variant
shares the same architecture and optimization settings as the original ORPO, differing only in the
extent of discriminator training. Including this baseline allows us to evaluate the specific contribution
of discriminator optimization to policy robustness. We include more detailed experimental settings in
Appendix [E.5|and a discussion of training time and complexity of all algorithms in Appendix [E.6]

As for evaluation metrics, we report both the expected proxy and true rewards, along with the expected
worst-case reward as described in Section[3.1] Note that some policies may visit state-action pairs
that are not covered by the reference policy 7. In such cases, we exclude those trajectories and
report the occupancy measure of the unseen state-action pairs. Additionally, we evaluate each policy
using two variants of the expected linear worst-case reward introduced in Section [3.2] The first
uses only the features present in the proxy reward, while the second variant, denoted Linear Worst*,
leverages features from the true reward, some of which remain unseen during training. This setup
mimics a more realistic real-world scenario in which the true reward function may depend on features
not explicitly modeled at training time. Comparing performance under this setting allows us to assess
the robustness of each policy to unseen or misaligned reward structures. All rewards are normalized
with respect to the reference policy s to ensure a consistent scale across metrics, enabling fair and

"https://github.com/cassidylaidlaw/orpo/tree/main
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Table 1: Evaluation results on Traffic and Pandemic environments. All policies are trained using only the proxy
reward. In Traffic, the proxy reward is based on vel, accel, headway (1, 1, 0.1), while the true reward uses
commute, accel, headway (1, 1, 0.1). In Pandemic, the proxy reward includes infection, lower stage, smooth
changes (10, 0.1, 0.01), while the true reward additionally includes political with weight 10 after infection. We
report @ in the same order as feature weights. Occ denotes total occupancy over state-action pairs unseen by mref,
where discriminator outputs infinity.

Env Traffic
Method True Proxy Worst Linear Worst (8) Linear Worst* (0) Occ |
ORPO 1693 331 -1.97e+04 -0.68 (0.71,0.21,0.69) -0.81(0.63,0.12,0.97) | 3.71e-04
ORPO* 10.31 1.32 -1.33e+04 -0.42(0.46,0.18,0.86) -0.44 (0.58,0.06,0.81) | 1.90e-05
Max-Min 12.64  3.64 -270.84 -0.07 (0.01, 0.02, 0.96)  -0.07 (0.001, 0.02, 0.99) 0
Linear Max-Min | 16.36 2.53  -1.19e+04  0.21 (0.64,0.07,0.76)  -0.12 (0.91, 0.01, 0.67) 0
Env Pandemic
Method True Proxy Worst Linear Worst (0) Linear Worst* (0)
ORPO -0.91 1.81  -5.30e+06 -2.42(0.23,0.95,0.17) -2.63 (0.02, 0.95, 0.92, 0.08)
ORPO* 1.24 1.24  -4.42e+06 -1.35(0.25,0.97,0.13) -1.35(0.25, 0, 0.97, 0.13)
Max-Min 1.15 1.15 -65.69 -1.11 (0.14, 0.99, 0.01) -1.11 (0.14, 0, 0.99, 0.01)
Linear Max-Min | 2.61 7.56  -6.83e+05 0.66 (0.001, 0.23, 0.02) -0.17 (0.01, 0.97, 0.22, 0.09)

meaningful comparisons. Note that all worst-case rewards are reported using the fixed correlation
level r specified during training: r = 0.3 for Traffic, » = 0.7 for Pandemic, with values for other
environments provided in Appendix [E-3]

4.2 Results
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Figure 1: Mean reward and standard deviation under sampled 6 and true reward features at different proxy—true
reward correlation levels r for the Traffic and Pandemic environments. Our methods (Maxmin and Linear
Maxmin) yield more stable and higher average performance across all choices of 7.

Worst-Case Performance. Table |1| presents the evaluation results on the Traffic and Pandemic
environments. Additional results for other environments are provided in Appendix[F} Our Max-Min
and Linear Max-Min policies achieve better expected worst-case performance under both general
and linear adversarial rewards, while remaining competitive with baselines in terms of expected
true and proxy rewards. Notably, the Max-Min policy attains the highest expected worst-case return,
followed by Linear Max-Min. Conversely, Linear Max-Min yields the highest expected linear
worst-case reward, followed by Max-Min, demonstrating the robustness of both approaches under
worst-case scenarios. For the Linear Worst* evaluation, which uses reward features unseen during
training, we observe minimal degradation in Max-Min policy’s performance, indicating its strong
robustness to feature variation. In contrast, the performance of Linear Max-Min declines in this case,
suggesting its advantage diminishes when prior assumptions about feature structure are inaccurate.

We find that ORPO* exhibits better worst-case performance than the original ORPO. In particular, train-
ing the discriminator more thoroughly significantly reduces the occupancy of state-action pairs that are
not visited by the reference policy, indicating that more accurate estimation of the Radon—Nikodym
derivative leads to improved policy robustness. Notably, in the Pandemic environment, we observe no
such unvisited state-action pairs, and the discriminator outputs remain small across all policies. This
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could be due to either the discriminator network not being fully optimized or its inability to capture
rare events that fall outside the support of m.s. Developing more reliable techniques for handling
such rare or unseen state-action pairs remains an open direction for future work.

We also report the adversarial weight vectors @ for each policy. These weights reveal which features
are most vulnerable to proxy exploitation under the learned policy and can be used to diagnose and
revise the proxy reward function, thereby improving robustness. This highlights the interpretability
benefits of our framework. Moreover, several patterns emerge from the results. In the Traffic
environment, first, we observe a clear dominance of the headway feature, with all methods assigning
it the highest weight. This suggests that headway is the most critical component exposed to reward
hacking under correlation constraints. Second, the acceleration feature is consistently downweighted
across all methods. This indicates that acceleration may be less prone to exploitation or already
well aligned with the reference policy. Third, the velocity feature is moderately emphasized by
Linear Max-Min and ORPO (e.g., 0.64 and 0.71), while Max-Min nearly suppresses it (0.01). This
contrast suggests that Linear Max-Min anticipates some vulnerability from velocity deviations,
while Max-Min focuses almost entirely on headway. In the Pandemic environment, first, both
ORPO* and Max-Min assign zero weight to the political feature. This occurs because the expected
feature value under their policies is exactly zero, making the correlation constraint inactive for that
dimension. Interestingly, this feature plays a significant role in the adversarial rewards for both
ORPO and Linear Max-Min, with their corresponding 6 assigning non-negligible weight to it (e.g.,
0.95 and 0.97 respectively). This suggests that these policies expose themselves to vulnerability
in feature dimensions that are entirely ignored by Max-Min and ORPO*. Second, the lower stage
feature consistently receives the highest weight across all methods, indicating it is the most sensitive
component under proxy misalignment.

Robustness Across Correlation Levels. To further assess the robustness of each policy across a
broader range of proxy-true correlation scenarios, we also compute the Linear Worst* for each policy
under varying 7 values. Specifically, for each 7, we sample 1000 vectors @ such that § € RID |
and report the average return and variance achieved by each policy over these sampled rewards.
Importantly, the variation in 7 is applied only during evaluation; all policies are fixed and trained
using the specific r values reported in Appendix [E.5] Unlike evaluations that only consider several
reward functions, this approach evaluates policy performance across the entire reward set RI%
providing a more comprehensive measure of robustness and better reflecting real-world scenarios
where the true reward and correlation r are unknown.

Figure[T|shows the average reward and variance achieved by each method under different levels of
proxy—true reward correlation r. As expected, the base policy 75 (blue) performs the worst across
all correlation levels in both environments. In Traffic, its variance is relatively small, suggesting
consistently poor but stable behavior. In contrast, variance is highest in the Pandemic environment,
indicating increased policy fragility. Notably, ORPO* (purple) consistently achieves lower variance
than ORPO (red) across both environments and outperforms it in terms of average reward at r ~ (0.9
and r ~ 0.7 in Traffic, and across nearly all r values in Pandemic. This underscores the importance
of accurate discriminator training for improving both stability and robustness. Max-Min (green)
demonstrates the highest average reward and lowest variance across a wide range of r values in
both environments, showing strong resilience to reward misspecification. While Linear Max-Min
(orange) achieves the best performance at specific correlation levels, particularly » ~ 0.3 in Traffic
and r ~ 0.7-0.9 in Pandemic. As r decreases and the proxy becomes less informative, differences
in average reward among methods shrink, while variance increases. These results highlight the
significance of variance control in low-correlation regimes and demonstrate that Max-Min and
Linear Max-Min offer robust and stable performance under high uncertainty.

5 Conclusion

In this work, we propose a robust policy optimization framework that explicitly accounts for reward
hacking by training policies against the worst-case proxy reward drawn from a correlation-constrained
uncertainty set. Our approach formalizes reward hacking as a robust optimization problem and
introduces both a Max-Min formulation with a closed-form adversarial reward and a Linear Max-Min
variant that further improves interpretability and tractability. We develop efficient algorithms and
empirically validate our methods across diverse environments known to exhibit reward hacking
behavior. Our results demonstrate that both Max-Min and Linear Max-Min policies achieve stronger
worst-case performance and improved stability compared to prior baselines such as ORPO.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claim is supported by the theoretical and experiment results.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation can be found in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide detailed proof in the Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We give experiment design details in the paper and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?
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Answer: [Yes]
Justification: We will provide our code in the supplementary material.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details in the experiment section and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars in Figure[I]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix [E.6|
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research conforms the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mentioned it in the Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited every previous work we build upon.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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