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Abstract

Designing robust reinforcement learning (RL) agents in the presence of imperfect1

reward signals remains a core challenge. In practice, agents are often trained with2

proxy rewards that only approximate the true objective, leaving them vulnerable to3

reward hacking, where high proxy returns arise from unintended or exploitative4

behaviors. Recent work formalizes this issue using r-correlation between proxy and5

true rewards, but existing methods like occupancy-regularized policy optimization6

(ORPO) optimize against a fixed proxy and do not provide strong guarantees against7

broader classes of correlated proxies. In this work, we formulate reward hacking8

as a robust policy optimization problem over the space of all r-correlated proxy9

rewards. We derive a tractable max-min formulation, where the agent maximizes10

performance under the worst-case proxy consistent with the correlation constraint.11

We further show that when the reward is a linear function of known features,12

our approach can be adapted to incorporate this prior knowledge, yielding both13

improved policies and interpretable worst-case rewards. Experiments across several14

environments show that our algorithms consistently outperform ORPO in worst-15

case returns, and offer improved robustness and stability across different levels16

of proxy–true reward correlation. These results show that our approach provides17

both robustness and transparency in settings where reward design is inherently18

uncertain.19

1 Introduction20

Real-world reinforcement learning (RL) systems often struggle with reward specification: it is21

notoriously difficult to craft a reward function that perfectly captures the intended goals in all22

scenarios [1, 2, 3]. In practice, designers rely on proxy rewards that approximate the true objective [4].23

However, agents optimizing these imperfect proxies can lead to unintended exploitative behaviors,24

achieving high proxy returns while yielding poor true outcomes, a phenomenon known as reward25

hacking [5, 6, 7, 8]. Such reward hacking behaviors are not merely hypothetical; they have led to26

undesirable or even catastrophic consequences in safety-critical settings (e.g., autonomous driving) [9,27

10] and are alarmingly common in real-world deployments [11, 12, 13, 14]. Beyond reward hacking,28

interpretability and transparency of RL policies are increasingly recognized as critical requirements for29

real-world acceptance [15, 16, 17]. Policymakers and practitioners in safety-critical domains require30

systems not only to be robust but also interpretable; they must understand which specific decision-31

making criteria lead to undesirable outcomes to effectively mitigate risks and ensure compliance with32

safety regulations [18, 19, 20]. These challenges highlight the need for RL algorithms to address33

two fundamental challenges: robustness to uncertain or poorly-specified rewards, and interpretability34

to facilitate oversight and compliance by human stakeholders, especially in high-stakes, real-world35

environments like traffic control [21], healthcare decision-making [22, 23], and pandemic response36

strategies [24].37
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Recent work has begun to formalize reward hacking and develop principled mitigations. Laidlaw38

et al. [25] define a proxy reward to be r-correlated with the true reward if it maintains a correlation39

coefficient r > 0 on state-action pairs encountered by a certain reference (baseline) policy. Notably,40

their definition permits the proxy and true reward to diverge arbitrarily in parts of the state-action41

space not visited by the reference policy, precisely the regions an RL agent might exploit under42

intensive optimization. Using this framework, reward hacking is formalized as the situation in43

which optimizing an r-correlated proxy yields a policy with lower true reward than that of the44

reference policy. Building on this definition, Laidlaw et al. propose Occupancy-Regularized Policy45

Optimization (ORPO) as a mitigation strategy. ORPO augments the standard RL objective with46

a regularization term that penalizes deviations between the learned policy’s occupancy measure47

(state-action visitation distribution) and that of the reference policy.48

Despite significant progress, existing solutions to reward hacking show several limitations. First, their49

effectiveness relies heavily on the choice of the specific proxy reward. However, designing perfect50

proxies is challenging, and in real-world scenarios, reward proxies are often derived heuristically51

or empirically from noisy or limited data [26, 27], leading to uncertainty or variability in the exact52

correlation with true rewards. Therefore, robustness to variations in proxy rewards is crucial for53

dependable deployment. While the regularization method used by ORPO provides a lower bound on54

improvement in true reward, its guarantee on the worst-case performance against an adversarially55

chosen proxy is weak. Second, current methods like ORPO typically treat a reward function as a black56

box and learn a complex policy with no easily interpretable structure, making it hard to understand57

why the resulting policy avoids reward hacking or to trust its behavior in novel situations. Further,58

they cannot be easily adapted to incorporate prior knowledge of the true reward. These shortcomings59

underscore the need for a more robust and transparent approach to reward hacking in RL.60

In this work, we formalize reward hacking as a robust RL problem under proxy reward uncertainty and61

develop new algorithms to address the above gaps. The key idea is to optimize against an adversarial62

proxy reward rather than trusting a single proxy. We assume the true reward could be any function63

that remains r-correlated with the proxy (per the reference policy), and we train the agent to perform64

well against the worst-case such proxy. This approach explicitly accounts for uncertainty in proxy65

design and guards against unintended exploitative behaviors. Concretely, we propose a max-min66

formulation in which the policy chooses its strategy to maximize its guaranteed true return while an67

adversary minimizes the true return by selecting a reward function from the set of all r-correlated68

proxies. By solving this problem, the agent learns a policy that is robust to all plausible deviations of69

the proxy reward within the correlation bound. We derive a closed-form solution for the adversary’s70

worst-case reward assignment given any candidate policy, which allows efficient evaluation of the71

inner minimization and provides insight into how proxy reward flaws are most damaging. Building72

on this result, we introduce a practical algorithm for Max-Min Policy Optimization that iteratively73

updates the policy against this worst-case reward signal.74

Moreover, to improve the tractability and transparency of the inner optimization, we introduce a75

Linear Max-Min variant of our method. In this variant, we assume the true reward lies in a class of76

linear functions over known features, allowing us to characterize the worst-case proxy reward as a77

sparse linear combination of those features. While the policy itself remains parameterized by general78

neural networks, the learned worst-case reward function becomes interpretable in terms of its feature79

weights. This provides insight into which aspects of the proxy reward space the policy is robust to or80

vulnerable against, making it valuable for applications where understanding the failure modes of the81

reward design is important.82

Finally, we empirically evaluate the proposed approaches on several challenging environments.83

Across all domains, our Max-Min and Linear Max-Min policies outperform ORPO in terms of84

worst-case reward, indicating substantially improved robustness. Moreover, under a large range85

of proxy-true correlation scenarios, our methods exhibit higher average reward and lower variance86

compared to ORPO, meaning the performance of our policies remains more consistent and reliable.87

These findings demonstrate the practical significance of our robust formulation, paving the way for88

safer and more trustworthy RL deployment in real-world applications.89

Our main contributions can be summarized as follows: 1) We propose a novel robust RL formulation90

that explicitly models reward hacking as a max-min optimization problem over proxy rewards91

constrained by correlation with the true rewards. 2) We develop a practical algorithm for the max-min92

problem, which is further extended to linear rewards with improved robustness and interpretability. 3)93
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Experiment results demonstrate improved robustness and worst-case rewards across four real-world94

inspired reward hacking environments.95

2 Preliminaries96

Reinforcement Learning. A reinforcement learning (RL) problem can be formulated as an infinite-97

horizon Markov Decision Process (MDP) defined by the tuple (S,A, p, µ0, R, γ), where S and A98

denote the state and action spaces, p(s′ | s, a) is the transition probability from state s to s′ given99

action a, and µ0 is the initial state distribution. The agent interacts with the environment over discrete100

time steps t = 0, 1, 2, . . . . At each time step, it selects an action at ∈ A based on the current state101

st ∈ S according to a policy π(a | s), which defines a distribution over actions conditioned on the102

state. Upon taking action at, the agent receives a reward R(st, at) ∈ R and transitions to the next103

state st+1 according to p(st+1 | st, at). The goal of the agent is to maximize the expected cumulative104

discounted return:105

J(π,R) = (1− γ)Eπ

[ ∞∑
t=0

γtR(st, at)

]
, (1)

where γ ∈ [0, 1) is the discount factor, and the expectation is taken over trajectories generated by106

following policy π. We define the state-action occupancy measure µπ of a policy π as: µπ(s, a) =107

(1 − γ)Eπ [
∑∞

t=0 γ
tI{st = s, at = a}], which represents the discounted visitation frequency of108

each state-action pair under policy π. Using the occupancy measure, the return can be equivalently109

expressed as: J(π,R) = E(s,a)∼µπ
[R(s, a)].110

Correlated Proxies and Reward Hacking. Below we give an overview of the recently proposed r-111

correlated proxy framework proposed in [25] for detecting and mitigating reward hacking, which our112

work is built upon. A detailed discussion of related work on reward hacking and robust reinforcement113

learning is given in Appendix C.In particular, [25] considers a setting where the agent is given a114

reference policy πref and a proxy reward Rproxy, while the true reward is hidden. They further assume115

that the proxy reward is r-correlated with the true reward under the reference policy, that is:116

Eµπref

[(
Rproxy − J(πref, Rproxy)

σRproxy

)(
Rtrue − J(πref, Rtrue)

σRtrue

)]
= r, (2)

where σ2
Rproxy

= Eµπref

[
(Rproxy − J(πref, Rproxy))

2
]

and σ2
Rtrue

= Eµπref

[
(Rtrue − J(πref, Rtrue))

2
]

117

are the variances of the proxy and true rewards, respectively, under the reference policy. Reward118

hacking is said to occur when a policy π optimized for an r-correlated proxy reward achieves lower119

true reward than the reference policy: J(π,Rtrue) < J(πref, Rtrue). To mitigate reward hacking,120

[25] proposes Occupancy-Regularized Policy Optimization (ORPO) to optimize a regularized policy121

objective given below, which is shown to provide a lower bound on improvement in true reward:122

max
π

J(π,Rproxy)− λ
√
χ2(µπ ∥µπref), (3)

where χ2(µπ ∥µπref) denotes the χ2-squared divergence between the occupancy measures of π and123

πref, and the regularization strength λ is set as: λ = σRproxy

√
1− r2. This encourages the learned124

policy to stay close to the reference distribution when the proxy reward is weakly correlated with the125

true reward.126

3 Method127

In this section, we discuss our robust policy optimization approach for mitigating reward hacking.128

In contrast to regularization-based methods such as ORPO, we consider a max-min formulation129

that identifies a robust policy with respect to the worst-case reward across all reward functions that130

are r-correlated with the proxy reward. We further extend our framework to settings where the131

reward function is a linear combination of known features with unknown weights. Our approach132

effectively leverages this structural information, when known a priori, to improve both robustness133

and interpretability, a task that is particularly challenging for regularization-based techniques.134
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3.1 Max-Min Policy Optimization135

Similar to ORPO, we assume that the agent is given a proxy reward Rproxy and a reference policy136

πref, while the true reward is hidden. Rather than regularizing the policy under a fixed proxy reward,137

we consider the entire space of rewards Rcorr that satisfy the correlation constraint with respect to a138

known proxy reward, as defined in Equation 4:139

Rcorr =

{
R : (s, a) → R

∣∣∣∣Eµπref

[
R−M

V
·Rproxy

]
= r, J(πref, R) = M, σ2

R = V 2

}
. (4)

M and V denote the fixed mean and standard deviation of the reward function R under the reference140

policy πref. For simplicity, we define Rproxy to be the normalized proxy reward Rproxy(s, a) :=141

R̃proxy(s,a)−J(πref,R̃proxy)
σR̃proxy

, where R̃proxy is the original (unnormalized) proxy reward. After normalization,142

we have J(πref, Rproxy) = 0 and Varµπref
(Rproxy) = 1, which simplifies the correlation constraint143

in Equation 4. The hyperparameter r controls the degree of alignment between the proxy and true144

reward. It allows us to interpolate between strong robustness (small r) and high proxy fidelity (large145

r), enabling a principled robustness-accuracy trade-off. We remark that it is without loss of generality146

to consider fixed M and V , which we will further elaborate on later.147

We propose a worst-case optimization framework where the policy is trained to maximize expected148

performance under the least favorable reward within Rcorr. Assuming that the true reward lies149

somewhere within this set, this approach improves robustness by ensuring that the policy does not150

overfit to any single optimistic interpretation of the proxy reward. Formally, the objective becomes a151

max-min problem:152

max
π

min
R∈Rcorr

J(π,R) = max
π

min
R∈Rcorr

E(s,a)∼µπ
[R(s, a)]. (5)

However, a challenge arises: the objective Eµπ [R(s, a)] depends on the state-action occupancy153

µπ, whereas the constraints defining Rcorr are expressed in terms of µπref . This mismatch com-154

plicates direct optimization. To resolve this, we apply a change-of-measure technique [28, 29] to155

rewrite the expectation under µπref . Specifically, let L(s, a) denote the Radon-Nikodym derivative:156

L(s, a) = µπ(s,a)
µπref (s,a)

. By definition, L(s, a) ≥ 0 and Eµπref
[L(s, a)] = 1. Applying the change-of-157

measure formula, we can express the return as: Eµπ
[R(s, a)] =

∫
S×A µπ(s, a)R(s, a) d(s, a) =158 ∫

S×A µπref(s, a)
µπ(s,a)
µπref (s,a)

R(s, a) d(s, a) = Eµπref
[L(s, a)R(s, a)]. Thus, both the objective and the159

constraints can be rewritten as expectations with respect to the reference distribution µπref .160

For notational simplicity, we will suppress the variables (s, a) and write for example, L to denote161

L(s, a) and R to denote R(s, a). Under this reparameterization, the inner minimization in Equation 5162

can be reformulated as:163

min
R∈Rcorr

Eµπref
[L ·R]. (6)

Although the feasible set in Problem 6 is not convex due to the equality constraint on the variance,164

we still derive an optimal solution using a Lagrangian formulation. Our approach leverages tools165

from duality theory, commonly used in robust optimization [30, 31]. We further justify the validity of166

our solution in Appendix D.2. Specifically, the Lagrangian functional associated with this problem is167

defined as: l0(λ1, λ2, λ3, R) = Eµπref
[L·R−λ1

R−M
V ·Rproxy−λ2R−λ3R

2]+λ1r+λ2M+λ3(M
2+168

V 2), where λ1, λ2, λ3 are the Lagrange multipliers corresponding to the correlation constraint, mean169

constraint, and variance constraint, respectively. Then the original problem in Equation 6 is equivalent170

to the following problem:171

max
λ1,λ2,λ3

min
R∈Rcorr

l0(λ1, λ2, λ3, R). (7)

We now solve the inner minimization problem in Equation 7 by finding the optimal R for fixed dual172

variables (λ1, λ2, λ3). Taking the functional derivative of the Lagrangian l0 with respect to R(s, a)173

gives: ∂l0
∂R = µπref(s, a)[(L− λ1

Rproxy

V − λ2)− 2λ3R]. When µπref(s, a) > 0, setting the derivative of174

the Lagrangian to zero yields the optimal adversarial reward function:175

R∗(s, a) =
L(s, a)− λ1

Rproxy

V − λ2

2λ3
. (8)
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However, for state-action pairs where µπref(s, a) = 0, i.e., those not visited under the reference policy,176

the correlation and moment constraints become vacuous. In these regions, the adversarial reward177

R∗(s, a) can be driven arbitrarily poor, reflecting that no constraint prevents the adversary from178

assigning highly penalizing values to rarely visited or unobserved state-action pairs. Nevertheless,179

consider the case where µπref(s, a) > 0, we can substitute the optimal R∗ from Equation 8 into the180

Lagrangian l0 and get the dual objective. After some process detailed in Appendix D.1, we get the181

optimal solution to the inner problem (6), so the original max-min problem (5) reduces to:182

max
π

r · V · Eµπ
[Rproxy]− V ·

√
1− r2

√
χ2(µπ ∥µπref)− E2

µπ
[Rproxy] +M. (9)

Thus, the final policy optimization objective becomes maximizing the proxy reward, regularized by a183

penalty that depends on the distributional shift between µπ and µπref and the expectation of the current184

policy under proxy reward Eµπ
[Rproxy], and the correlation strength r. We observe that the constants185

M and V do not affect the optimal policy: while they influence the absolute value of the worst-case186

reward for a given policy π, they only apply a linear transformation (scaling by V and shifting by187

M ) and do not change the relative ordering of policies. Therefore, for simplicity, we set V = 1 and188

M = 0 in our implementation. This also provides a fair way to compare the worst-case rewards of189

different policies. Notice that the optimization objective in Equation 9 closely resembles the ORPO190

objective proposed in Equation 3. However, there are two key differences: (1) our regularization191

strength is
√
1−r2

r instead of σRproxy

√
1− r2, and (2) our penalty term is χ2(µπ ∥µπref)−E2

µπ
[Rproxy]192

rather than simply χ2(µπ ∥µπref). The proof that χ2(µπ ∥µπref) − E2
µπ

[Rproxy] ≥ 0 holds can be193

found in Appendix D.3. A detailed comparison between our policy gradient and that of ORPO is194

provided in Appendix D.8.195

3.2 Structured Reward Spaces via Feature Linearization196

A natural concern with worst-case optimization is over-conservatism: if the reward uncertainty set197

Rcorr is too broad, the resulting policy may become overly cautious or deviate from realistic task198

objectives. Additionally, the learned worst-case rewards may themselves be implausible or uninter-199

pretable. To address these issues, we introduce structure into the reward space by assuming that all200

rewards are linear combinations of known features. Specifically, we assume: R(s, a) = θ⊤ϕ(s, a),201

where ϕ(s, a) = [ϕ1(s, a), ϕ2(s, a), . . . , ϕM (s, a)]⊤ ∈ RM denotes a vector of M known or engi-202

neered feature functions, and θ = [θ1, θ2, . . . , θM ]⊤ ∈ RM represents the uncertain feature weights.203

The linearization yields two key benefits: 1) Realism and Interpretability: In many real-world204

tasks, reward functions are naturally approximated as linear combinations over interpretable features.205

For example, in a traffic control environment, features might include total commute time, vehicle206

speed, acceleration, and inter-vehicle headway distances. 2) Better-Constrained Robustness: By207

restricting uncertainty to structured, feature-based rewards, the worst-case optimization problem208

becomes more grounded and avoids pathological, unrealistic reward functions.209

In this section, we assume that the agent is aware of the set of features but not their true weights. We210

show that our robust optimization framework can be naturally extended to incorporate the structure in211

rewards to improve robustness. In our experiments, we further demonstrate that linear rewards help212

interpret a policy’s performance even when it is trained without such prior knowledge. Under our213

assumption, the uncertainty set reduces to the set of feature weights θ ∈ RM satisfying:214

Rlin
corr =

{
θ ∈ RM

∣∣∣Eµπref
[θ⊤ϕ ·Rproxy] = r, Eµπref

[θ⊤ϕ] = 0, Eµπref
[(θ⊤ϕ)2] = 1

}
. (10)

To simplify the analysis, we assume without loss of generality that the worst-case reward R(s, a) =215

θ⊤ϕ(s, a) is normalized to have zero mean and unit variance under the reference policy πref. This216

corresponds to setting M = 0 and V = 1, which, as shown in our earlier derivation, does not affect217

the resulting optimal policy. As before, Rproxy denotes the normalized proxy reward under πref,218

satisfying Eµπref
[Rproxy] = 0 and Varµπref

[Rproxy] = 1.219

We now derive the corresponding max-min optimization under the structured reward assumption:220

max
π

min
θ∈Rlin

corr, θ≥0
E(s,a)∼µπ

[
θ⊤ϕ(s, a)

]
. (11)
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Similar to previous steps, we introduce the Radon-Nikodym derivative L(s, a) = µπ(s,a)
µπref (s,a)

, use a221

change-of-measure, and define the Lagrangian functional for the inner minimization in Equation 11222

as: l1(λ1, λ2, λ3,θ) = θ⊤
(∑

(s,a) uλ1,λ2
(s, a)ϕ(s, a)

)
− λ3θ

⊤Qθ + λ1r + λ3, where uλ1,λ2
=223

µπ − λ1µπrefRproxy − λ2µπref , Q =
∑

(s,a) µπref(s, a)ϕ(s, a)ϕ(s, a)
⊤. A detailed derivation can be224

found in Appendix D.4. Note that Q is positive semi-definite since it is a sum of outer products225

ϕ(s, a)ϕ(s, a)⊤ weighted by non-negative coefficients (occupancy measure of πref ≥ 0). Then226

solving the inner minimization over θ in Equation 11 is equivalent to solving:227

max
λ1,λ2,λ3

min
θ≥0

l1(λ1, λ2, λ3,θ) = θ⊤
(∑

uλ1,λ2
ϕ
)
− λ3θ

⊤Qθ + λ1r + λ3. (12)

Notice that l1(λ1, λ2, λ3,θ) is a convex quadratic function of θ (assuming λ3 ≤ 0) subject to228

linear inequality constraints θ ≥ 0. Thus, the original problem is a standard convex quadratic229

program (QP) with non-negativity constraints [32]. However, it is not possible to derive a universal230

closed-form solution for the optimal θ∗ under arbitrary Q. To further simplify the problem and231

obtain a closed-form solution, we transform the feature vector ϕ into a whitened version ϕ̃ such232

that the matrix Q becomes the identity matrix I and we formally show this in Appendix D.5.233

Specifically, we perform a whitening transformation using the Cholesky decomposition [32]. Let234

W = Q− 1
2 , ϕ̃(s, a) = Wϕ(s, a), where Q− 1

2 denotes a matrix square root of Q−1 (which exists235

since Q is positive semi-definite and non-singular assuming ∃(s, a) such that µπref(s, a) > 0). Then236

the original problem in Equation 12 can be further simplified into:237

max
λ1,λ2,λ3

min
θ̃≥0

l1(λ1, λ2, λ3, θ̃) = θ̃
⊤

∑
(s,a)

uλ1,λ2(s, a)ϕ̃(s, a)

− λ3θ̃
⊤
θ̃ + λ1r + λ3. (13)

where we now optimize over the parameter θ̃ using the transformed features ϕ̃. For notational238

simplicity, we will drop the tilde and henceforth use ϕ to represent the whitened feature ϕ̃, and θ239

to represent the whitened weights θ̃. Then we can get a closed-form solution (we detail the steps240

in Appendix D.6) for optimal θ∗ as: θ∗ = max
(
0, −

∑
(s,a) uλ1,λ2

(s,a)ϕ(s,a)

2λ3

)
, where the max(·, 0)241

is applied elementwise. Details for solving the outer maximization in Equation 13 can be found in242

Appendix D.7. After obtaining the optimal dual variables (λ∗
1, λ

∗
2, λ

∗
3), we can substitute them back243

into Equation 11 and solve the outer maximization over the policy π using standard reinforcement244

learning algorithms, such as PPO [33].245

ORPO with Linear Awards. While ORPO provides a general guarantee based on occupancy246

measure regularization, it does not exploit any structural assumptions about the reward function.247

In particular, even when the true reward is linear in a set of features, ORPO does not explicitly248

incorporate this structure into its policy optimization or theoretical analysis. While the lower bound249

(Theorem 5.1 in [25]) continues to hold, it is unclear how to leverage this structure to obtain a tighter250

lower bound or to guide policy updates more effectively. This suggests a missed opportunity: by251

explicitly modeling the reward as a linear function, it becomes possible to derive stronger guarantees,252

interpret worst-case reward directions, and efficiently optimize against them. Our Linear Maxmin253

method fills this gap by parameterizing reward uncertainty directly in the space of reward weights,254

enabling both robustness and greater transparency.255

3.3 Implementation Details and Algorithms256

A core step in both our algorithms and ORPO is to estimate the Radon-Nikodym derivative L(s, a).257

To this end, we follow prior works [25, 34, 35] and train a discriminator network. Specifically, we258

use a discriminator architecture identical to that in [25], denoted by dϕ(s, a), which is optimized259

according to:260

ϕ = argmin
ϕ

Eµπref
[log(1 + edϕ(s,a))] + Eµπ [log(1 + e−dϕ(s,a))]. (14)

It is known that the optimal discriminator satisfies d∗(s, a) = log µπ(s,a)
µπref (s,a)

and we estimate L(s, a)261

as L̃(s, a) = exp dϕ(s, a) with dϕ(s, a) ≈ d∗(s, a). As discussed in Section 3.1, if the policy π262

visits state-action pairs that the reference policy πref rarely or never visits, the adversarial reward263

can be arbitrarily poor. In theory, the estimated L̃(s, a) is expected to grow arbitrarily large in this264
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case, which should discourage the learned policy from exploiting such regions. However, we observe265

empirically (Section 4.2) that the ORPO policy still visits some of these low-coverage regions under266

πref. This is because in the original ORPO implementation1, the discriminator is not fully optimized267

during policy learning. Specifically, the discriminator receives only a small number of gradient268

updates per reinforcement learning iteration, resulting in underfitting and inaccurate estimates of the269

Radon-Nikodym derivative L̃(s, a). To address this, we substantially increase the number of gradient270

updates per iteration and carefully tune the learning rate. Our goal is to strike a practical balance271

between training time and discriminator quality, which we further discuss in Appendix E.1.272

To compute the final objective for our Max-Min policy in Equation 9, we estimate the χ2 divergence,273

the normalized proxy reward Rproxy, and the first and second moments Eµπ
[Rproxy] and E2

µπ
[Rproxy].274

These components together define the robust optimization objective used to update the policy.275

A simplified Max-Min policy optimization procedure is outlined in Algorithm 1. We provide276

detailed descriptions of each estimation step, as well as the complete algorithmic implementation in277

Appendix E.2. Corresponding derivations and implementation details for the Linear Max-Min variant278

are included in Appendix E.3.279

Algorithm 1 Max-Min Policy Optimization (Simplified)

1: Initialize policy parameters θ
2: Initialize reference policy πref and collect trajectories
3: Estimate mean and variance of the proxy reward under πref
4: for each iteration do
5: Collect trajectories from current policy πθ

6: Normalize the proxy rewards for state-action pairs in the collected trajectories
7: Estimate the expected proxy reward and its second moment under the current policy
8: Estimate the discriminator using Equation (14) and χ2 divergence between µπ and µπref

9: Update the policy using PPO to maximize the Max-Min objective in Equation (9)
10: end for

4 Experiment280

4.1 Experiment Setup281

We evaluate our method across four realistic benchmark environments: Traffic, Pandemic, Glucose282

Monitoring, and Tomato Watering GridWorld. These environments were originally proposed in [36, 5]283

and represent diverse forms of proxy reward hacking, including misweighting, ontological mismatch,284

and scope misalignment [36]. Each setting presents unique challenges in reward specification and285

policy robustness. A detailed description of the environments and their respective reward structures is286

provided in Appendix E.4. In each of the four environments, we train policies using both our Max-Min287

and Linear Max-Min optimization algorithms. For baselines, we compare against the ORPO policy.288

To isolate the impact of discriminator training, we also include an ablation: ORPO*, where we train the289

ORPO policy using the same full discriminator training schedule as in our algorithms. This variant290

shares the same architecture and optimization settings as the original ORPO, differing only in the291

extent of discriminator training. Including this baseline allows us to evaluate the specific contribution292

of discriminator optimization to policy robustness. We include more detailed experimental settings in293

Appendix E.5 and a discussion of training time and complexity of all algorithms in Appendix E.6.294

As for evaluation metrics, we report both the expected proxy and true rewards, along with the expected295

worst-case reward as described in Section 3.1. Note that some policies may visit state-action pairs296

that are not covered by the reference policy πref. In such cases, we exclude those trajectories and297

report the occupancy measure of the unseen state-action pairs. Additionally, we evaluate each policy298

using two variants of the expected linear worst-case reward introduced in Section 3.2. The first299

uses only the features present in the proxy reward, while the second variant, denoted Linear Worst*,300

leverages features from the true reward, some of which remain unseen during training. This setup301

mimics a more realistic real-world scenario in which the true reward function may depend on features302

not explicitly modeled at training time. Comparing performance under this setting allows us to assess303

the robustness of each policy to unseen or misaligned reward structures. All rewards are normalized304

with respect to the reference policy πref to ensure a consistent scale across metrics, enabling fair and305

1https://github.com/cassidylaidlaw/orpo/tree/main
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Table 1: Evaluation results on Traffic and Pandemic environments. All policies are trained using only the proxy
reward. In Traffic, the proxy reward is based on vel, accel, headway (1, 1, 0.1), while the true reward uses
commute, accel, headway (1, 1, 0.1). In Pandemic, the proxy reward includes infection, lower stage, smooth
changes (10, 0.1, 0.01), while the true reward additionally includes political with weight 10 after infection. We
report θ in the same order as feature weights. Occ denotes total occupancy over state-action pairs unseen by πref,
where discriminator outputs infinity.

Env Traffic
Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ) Occ ↓
ORPO 16.93 3.31 -1.97e+04 -0.68 (0.71, 0.21, 0.69) -0.81 (0.63, 0.12, 0.97) 3.71e-04
ORPO* 10.31 1.32 -1.33e+04 -0.42 (0.46, 0.18, 0.86) -0.44 (0.58, 0.06, 0.81) 1.90e-05

Max-Min 12.64 3.64 -270.84 -0.07 (0.01, 0.02, 0.96) -0.07 (0.001, 0.02, 0.99) 0
Linear Max-Min 16.36 2.53 -1.19e+04 0.21 (0.64, 0.07, 0.76) -0.12 (0.91, 0.01, 0.67) 0

Env Pandemic
Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ)
ORPO -0.91 1.81 -5.30e+06 -2.42 (0.23, 0.95, 0.17) -2.63 (0.02, 0.95, 0.92, 0.08)
ORPO* 1.24 1.24 -4.42e+06 -1.35 (0.25, 0.97, 0.13) -1.35 (0.25, 0, 0.97, 0.13)

Max-Min 1.15 1.15 -65.69 -1.11 (0.14, 0.99, 0.01) -1.11 (0.14, 0, 0.99, 0.01)
Linear Max-Min 2.61 7.56 -6.83e+05 0.66 (0.001, 0.23, 0.02) -0.17 (0.01, 0.97, 0.22, 0.09)

meaningful comparisons. Note that all worst-case rewards are reported using the fixed correlation306

level r specified during training: r = 0.3 for Traffic, r = 0.7 for Pandemic, with values for other307

environments provided in Appendix E.5.308

4.2 Results309

Figure 1: Mean reward and standard deviation under sampled θ and true reward features at different proxy–true
reward correlation levels r for the Traffic and Pandemic environments. Our methods (Maxmin and Linear
Maxmin) yield more stable and higher average performance across all choices of r.

Worst-Case Performance. Table 1 presents the evaluation results on the Traffic and Pandemic310

environments. Additional results for other environments are provided in Appendix F. Our Max-Min311

and Linear Max-Min policies achieve better expected worst-case performance under both general312

and linear adversarial rewards, while remaining competitive with baselines in terms of expected313

true and proxy rewards. Notably, the Max-Min policy attains the highest expected worst-case return,314

followed by Linear Max-Min. Conversely, Linear Max-Min yields the highest expected linear315

worst-case reward, followed by Max-Min, demonstrating the robustness of both approaches under316

worst-case scenarios. For the Linear Worst* evaluation, which uses reward features unseen during317

training, we observe minimal degradation in Max-Min policy’s performance, indicating its strong318

robustness to feature variation. In contrast, the performance of Linear Max-Min declines in this case,319

suggesting its advantage diminishes when prior assumptions about feature structure are inaccurate.320

We find that ORPO* exhibits better worst-case performance than the original ORPO. In particular, train-321

ing the discriminator more thoroughly significantly reduces the occupancy of state-action pairs that are322

not visited by the reference policy, indicating that more accurate estimation of the Radon–Nikodym323

derivative leads to improved policy robustness. Notably, in the Pandemic environment, we observe no324

such unvisited state-action pairs, and the discriminator outputs remain small across all policies. This325
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could be due to either the discriminator network not being fully optimized or its inability to capture326

rare events that fall outside the support of πref. Developing more reliable techniques for handling327

such rare or unseen state-action pairs remains an open direction for future work.328

We also report the adversarial weight vectors θ for each policy. These weights reveal which features329

are most vulnerable to proxy exploitation under the learned policy and can be used to diagnose and330

revise the proxy reward function, thereby improving robustness. This highlights the interpretability331

benefits of our framework. Moreover, several patterns emerge from the results. In the Traffic332

environment, first, we observe a clear dominance of the headway feature, with all methods assigning333

it the highest weight. This suggests that headway is the most critical component exposed to reward334

hacking under correlation constraints. Second, the acceleration feature is consistently downweighted335

across all methods. This indicates that acceleration may be less prone to exploitation or already336

well aligned with the reference policy. Third, the velocity feature is moderately emphasized by337

Linear Max-Min and ORPO (e.g., 0.64 and 0.71), while Max-Min nearly suppresses it (0.01). This338

contrast suggests that Linear Max-Min anticipates some vulnerability from velocity deviations,339

while Max-Min focuses almost entirely on headway. In the Pandemic environment, first, both340

ORPO* and Max-Min assign zero weight to the political feature. This occurs because the expected341

feature value under their policies is exactly zero, making the correlation constraint inactive for that342

dimension. Interestingly, this feature plays a significant role in the adversarial rewards for both343

ORPO and Linear Max-Min, with their corresponding θ assigning non-negligible weight to it (e.g.,344

0.95 and 0.97 respectively). This suggests that these policies expose themselves to vulnerability345

in feature dimensions that are entirely ignored by Max-Min and ORPO*. Second, the lower stage346

feature consistently receives the highest weight across all methods, indicating it is the most sensitive347

component under proxy misalignment.348

Robustness Across Correlation Levels. To further assess the robustness of each policy across a349

broader range of proxy–true correlation scenarios, we also compute the Linear Worst* for each policy350

under varying r values. Specifically, for each r, we sample 1000 vectors θ such that θ ∈ Rlin
corr,351

and report the average return and variance achieved by each policy over these sampled rewards.352

Importantly, the variation in r is applied only during evaluation; all policies are fixed and trained353

using the specific r values reported in Appendix E.5. Unlike evaluations that only consider several354

reward functions, this approach evaluates policy performance across the entire reward set Rlin
corr,355

providing a more comprehensive measure of robustness and better reflecting real-world scenarios356

where the true reward and correlation r are unknown.357

Figure 1 shows the average reward and variance achieved by each method under different levels of358

proxy–true reward correlation r. As expected, the base policy πbase (blue) performs the worst across359

all correlation levels in both environments. In Traffic, its variance is relatively small, suggesting360

consistently poor but stable behavior. In contrast, variance is highest in the Pandemic environment,361

indicating increased policy fragility. Notably, ORPO* (purple) consistently achieves lower variance362

than ORPO (red) across both environments and outperforms it in terms of average reward at r ≈ 0.9363

and r ≈ 0.7 in Traffic, and across nearly all r values in Pandemic. This underscores the importance364

of accurate discriminator training for improving both stability and robustness. Max-Min (green)365

demonstrates the highest average reward and lowest variance across a wide range of r values in366

both environments, showing strong resilience to reward misspecification. While Linear Max-Min367

(orange) achieves the best performance at specific correlation levels, particularly r ≈ 0.3 in Traffic368

and r ≈ 0.7–0.9 in Pandemic. As r decreases and the proxy becomes less informative, differences369

in average reward among methods shrink, while variance increases. These results highlight the370

significance of variance control in low-correlation regimes and demonstrate that Max-Min and371

Linear Max-Min offer robust and stable performance under high uncertainty.372

5 Conclusion373

In this work, we propose a robust policy optimization framework that explicitly accounts for reward374

hacking by training policies against the worst-case proxy reward drawn from a correlation-constrained375

uncertainty set. Our approach formalizes reward hacking as a robust optimization problem and376

introduces both a Max-Min formulation with a closed-form adversarial reward and a Linear Max-Min377

variant that further improves interpretability and tractability. We develop efficient algorithms and378

empirically validate our methods across diverse environments known to exhibit reward hacking379

behavior. Our results demonstrate that both Max-Min and Linear Max-Min policies achieve stronger380

worst-case performance and improved stability compared to prior baselines such as ORPO.381
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NeurIPS Paper Checklist512

1. Claims513

Question: Do the main claims made in the abstract and introduction accurately reflect the514

paper’s contributions and scope?515

Answer: [Yes]516

Justification: The claim is supported by the theoretical and experiment results.517

Guidelines:518

• The answer NA means that the abstract and introduction do not include the claims519

made in the paper.520

• The abstract and/or introduction should clearly state the claims made, including the521

contributions made in the paper and important assumptions and limitations. A No or522

NA answer to this question will not be perceived well by the reviewers.523

• The claims made should match theoretical and experimental results, and reflect how524

much the results can be expected to generalize to other settings.525

• It is fine to include aspirational goals as motivation as long as it is clear that these goals526

are not attained by the paper.527

2. Limitations528

Question: Does the paper discuss the limitations of the work performed by the authors?529

Answer: [Yes]530

Justification: The limitation can be found in the Appendix.531

Guidelines:532

• The answer NA means that the paper has no limitation while the answer No means that533

the paper has limitations, but those are not discussed in the paper.534

• The authors are encouraged to create a separate "Limitations" section in their paper.535

• The paper should point out any strong assumptions and how robust the results are to536

violations of these assumptions (e.g., independence assumptions, noiseless settings,537

model well-specification, asymptotic approximations only holding locally). The authors538

should reflect on how these assumptions might be violated in practice and what the539

implications would be.540

• The authors should reflect on the scope of the claims made, e.g., if the approach was541

only tested on a few datasets or with a few runs. In general, empirical results often542

depend on implicit assumptions, which should be articulated.543

• The authors should reflect on the factors that influence the performance of the approach.544

For example, a facial recognition algorithm may perform poorly when image resolution545

is low or images are taken in low lighting. Or a speech-to-text system might not be546

used reliably to provide closed captions for online lectures because it fails to handle547

technical jargon.548

• The authors should discuss the computational efficiency of the proposed algorithms549

and how they scale with dataset size.550

• If applicable, the authors should discuss possible limitations of their approach to551

address problems of privacy and fairness.552

• While the authors might fear that complete honesty about limitations might be used by553

reviewers as grounds for rejection, a worse outcome might be that reviewers discover554

limitations that aren’t acknowledged in the paper. The authors should use their best555

judgment and recognize that individual actions in favor of transparency play an impor-556

tant role in developing norms that preserve the integrity of the community. Reviewers557

will be specifically instructed to not penalize honesty concerning limitations.558

3. Theory assumptions and proofs559

Question: For each theoretical result, does the paper provide the full set of assumptions and560

a complete (and correct) proof?561

Answer: [Yes]562
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Justification: We provide detailed proof in the Appendix563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

• The proofs can either appear in the main paper or the supplemental material, but if569

they appear in the supplemental material, the authors are encouraged to provide a short570

proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental result reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: We give experiment design details in the paper and the Appendix.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612

5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in the supplemental615

material?616
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Answer: [Yes]617

Justification: We will provide our code in the supplementary material.618

Guidelines:619

• The answer NA means that paper does not include experiments requiring code.620

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/621

public/guides/CodeSubmissionPolicy) for more details.622

• While we encourage the release of code and data, we understand that this might not be623

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not624

including code, unless this is central to the contribution (e.g., for a new open-source625

benchmark).626

• The instructions should contain the exact command and environment needed to run to627

reproduce the results. See the NeurIPS code and data submission guidelines (https:628

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.629

• The authors should provide instructions on data access and preparation, including how630

to access the raw data, preprocessed data, intermediate data, and generated data, etc.631

• The authors should provide scripts to reproduce all experimental results for the new632

proposed method and baselines. If only a subset of experiments are reproducible, they633

should state which ones are omitted from the script and why.634

• At submission time, to preserve anonymity, the authors should release anonymized635

versions (if applicable).636

• Providing as much information as possible in supplemental material (appended to the637

paper) is recommended, but including URLs to data and code is permitted.638

6. Experimental setting/details639

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-640

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the641

results?642

Answer: [Yes]643

Justification: We provide details in the experiment section and the Appendix.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The experimental setting should be presented in the core of the paper to a level of detail647

that is necessary to appreciate the results and make sense of them.648

• The full details can be provided either with the code, in appendix, or as supplemental649

material.650

7. Experiment statistical significance651

Question: Does the paper report error bars suitably and correctly defined or other appropriate652

information about the statistical significance of the experiments?653

Answer: [Yes]654

Justification: We report error bars in Figure 1.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The authors should answer "Yes" if the results are accompanied by error bars, confi-658

dence intervals, or statistical significance tests, at least for the experiments that support659

the main claims of the paper.660

• The factors of variability that the error bars are capturing should be clearly stated (for661

example, train/test split, initialization, random drawing of some parameter, or overall662

run with given experimental conditions).663

• The method for calculating the error bars should be explained (closed form formula,664

call to a library function, bootstrap, etc.)665

• The assumptions made should be given (e.g., Normally distributed errors).666

• It should be clear whether the error bar is the standard deviation or the standard error667

of the mean.668
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• It is OK to report 1-sigma error bars, but one should state it. The authors should669

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis670

of Normality of errors is not verified.671

• For asymmetric distributions, the authors should be careful not to show in tables or672

figures symmetric error bars that would yield results that are out of range (e.g. negative673

error rates).674

• If error bars are reported in tables or plots, The authors should explain in the text how675

they were calculated and reference the corresponding figures or tables in the text.676

8. Experiments compute resources677

Question: For each experiment, does the paper provide sufficient information on the com-678

puter resources (type of compute workers, memory, time of execution) needed to reproduce679

the experiments?680

Answer: [Yes]681

Justification: In Appendix E.6682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,685

or cloud provider, including relevant memory and storage.686

• The paper should provide the amount of compute required for each of the individual687

experimental runs as well as estimate the total compute.688

• The paper should disclose whether the full research project required more compute689

than the experiments reported in the paper (e.g., preliminary or failed experiments that690

didn’t make it into the paper).691

9. Code of ethics692

Question: Does the research conducted in the paper conform, in every respect, with the693

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?694

Answer: [Yes]695

Justification: Yes, our research conforms the NeurIPS Code of Ethics.696

Guidelines:697

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.698

• If the authors answer No, they should explain the special circumstances that require a699

deviation from the Code of Ethics.700

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-701

eration due to laws or regulations in their jurisdiction).702

10. Broader impacts703

Question: Does the paper discuss both potential positive societal impacts and negative704

societal impacts of the work performed?705

Answer: [Yes]706

Justification: We mentioned it in the Appendix707

Guidelines:708

• The answer NA means that there is no societal impact of the work performed.709

• If the authors answer NA or No, they should explain why their work has no societal710

impact or why the paper does not address societal impact.711

• Examples of negative societal impacts include potential malicious or unintended uses712

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations713

(e.g., deployment of technologies that could make decisions that unfairly impact specific714

groups), privacy considerations, and security considerations.715

• The conference expects that many papers will be foundational research and not tied716

to particular applications, let alone deployments. However, if there is a direct path to717

any negative applications, the authors should point it out. For example, it is legitimate718

to point out that an improvement in the quality of generative models could be used to719
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generate deepfakes for disinformation. On the other hand, it is not needed to point out720

that a generic algorithm for optimizing neural networks could enable people to train721

models that generate Deepfakes faster.722

• The authors should consider possible harms that could arise when the technology is723

being used as intended and functioning correctly, harms that could arise when the724

technology is being used as intended but gives incorrect results, and harms following725

from (intentional or unintentional) misuse of the technology.726

• If there are negative societal impacts, the authors could also discuss possible mitigation727

strategies (e.g., gated release of models, providing defenses in addition to attacks,728

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from729

feedback over time, improving the efficiency and accessibility of ML).730

11. Safeguards731

Question: Does the paper describe safeguards that have been put in place for responsible732

release of data or models that have a high risk for misuse (e.g., pretrained language models,733

image generators, or scraped datasets)?734

Answer: [NA]735

Justification:736

Guidelines:737

• The answer NA means that the paper poses no such risks.738

• Released models that have a high risk for misuse or dual-use should be released with739

necessary safeguards to allow for controlled use of the model, for example by requiring740

that users adhere to usage guidelines or restrictions to access the model or implementing741

safety filters.742

• Datasets that have been scraped from the Internet could pose safety risks. The authors743

should describe how they avoided releasing unsafe images.744

• We recognize that providing effective safeguards is challenging, and many papers do745

not require this, but we encourage authors to take this into account and make a best746

faith effort.747

12. Licenses for existing assets748

Question: Are the creators or original owners of assets (e.g., code, data, models), used in749

the paper, properly credited and are the license and terms of use explicitly mentioned and750

properly respected?751

Answer: [Yes]752

Justification: We have properly cited every previous work we build upon.753

Guidelines:754

• The answer NA means that the paper does not use existing assets.755

• The authors should cite the original paper that produced the code package or dataset.756

• The authors should state which version of the asset is used and, if possible, include a757

URL.758

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.759

• For scraped data from a particular source (e.g., website), the copyright and terms of760

service of that source should be provided.761

• If assets are released, the license, copyright information, and terms of use in the762

package should be provided. For popular datasets, paperswithcode.com/datasets763

has curated licenses for some datasets. Their licensing guide can help determine the764

license of a dataset.765

• For existing datasets that are re-packaged, both the original license and the license of766

the derived asset (if it has changed) should be provided.767

• If this information is not available online, the authors are encouraged to reach out to768

the asset’s creators.769

13. New assets770

Question: Are new assets introduced in the paper well documented and is the documentation771

provided alongside the assets?772
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Answer: [NA]773

Justification:774

Guidelines:775

• The answer NA means that the paper does not release new assets.776

• Researchers should communicate the details of the dataset/code/model as part of their777

submissions via structured templates. This includes details about training, license,778

limitations, etc.779

• The paper should discuss whether and how consent was obtained from people whose780

asset is used.781

• At submission time, remember to anonymize your assets (if applicable). You can either782

create an anonymized URL or include an anonymized zip file.783

14. Crowdsourcing and research with human subjects784

Question: For crowdsourcing experiments and research with human subjects, does the paper785

include the full text of instructions given to participants and screenshots, if applicable, as786

well as details about compensation (if any)?787

Answer: [NA]788

Justification:789

Guidelines:790

• The answer NA means that the paper does not involve crowdsourcing nor research with791

human subjects.792

• Including this information in the supplemental material is fine, but if the main contribu-793

tion of the paper involves human subjects, then as much detail as possible should be794

included in the main paper.795

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,796

or other labor should be paid at least the minimum wage in the country of the data797

collector.798

15. Institutional review board (IRB) approvals or equivalent for research with human799

subjects800

Question: Does the paper describe potential risks incurred by study participants, whether801

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)802

approvals (or an equivalent approval/review based on the requirements of your country or803

institution) were obtained?804

Answer: [NA]805

Justification:806

Guidelines:807

• The answer NA means that the paper does not involve crowdsourcing nor research with808

human subjects.809

• Depending on the country in which research is conducted, IRB approval (or equivalent)810

may be required for any human subjects research. If you obtained IRB approval, you811

should clearly state this in the paper.812

• We recognize that the procedures for this may vary significantly between institutions813

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the814

guidelines for their institution.815

• For initial submissions, do not include any information that would break anonymity (if816

applicable), such as the institution conducting the review.817

16. Declaration of LLM usage818

Question: Does the paper describe the usage of LLMs if it is an important, original, or819

non-standard component of the core methods in this research? Note that if the LLM is used820

only for writing, editing, or formatting purposes and does not impact the core methodology,821

scientific rigorousness, or originality of the research, declaration is not required.822

Answer: [NA]823
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Justification:824

Guidelines:825

• The answer NA means that the core method development in this research does not826

involve LLMs as any important, original, or non-standard components.827

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)828

for what should or should not be described.829
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