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Abstract

Sparse autoencoders are a promising new approach for de-
composing language model activations for interpretation
and control. They have been applied successfully to vi-
sion transformer image encoders and to small-scale diffu-
sion models. Inference-Time Decomposition of Activations
(ITDA) is a recently proposed variant of dictionary learn-
ing that takes the dictionary to be a set of data points from
the activation distribution and reconstructs them with gra-
dient pursuit. We apply Sparse Autoencoders (SAEs) and
ITDA to a large text-to-image diffusion model, Flux 1, and
consider the interpretability of embeddings of both by in-
troducing a visual automated interpretation pipeline. We
find that SAEs accurately reconstruct residual stream em-
beddings and beat MLP neurons on interpretability. We are
able to use SAE features to steer image generation through
activation addition. We find that ITDA has comparable in-
terpretability to SAEs.

1. Introduction
In recent years, text-to-image model capabilities have
rapidly improved [5]. These models develop internal rep-
resentations of the physical structure of the world [8, 51].
However, ongoing debates persist regarding the extent to
which text-to-image models memorize training data [44]
and how precisely their outputs can be controlled. A deeper
understanding of the feature compositions of these mod-
els and the ability to intervene in their generation pro-
cess would enhance artistic expression and improve trans-
parency in how these models operate.

In this work, we explore the interpretability of hidden
representations by learning sparse decompositions of model
activations, evaluating the feasibility and scalability of this
approach for large text-to-image diffusion models.

Our work makes the following contributions:
1. We evaluate and scale sparse autoencoders (SAEs;
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Figure 1. Maximum activating examples and steering effects of
some interpretable features from our FLUX SAE. See Appendix B
for more features.

Bricken et al. [3], Cunningham et al. [9], Ng [35]) for
text-to-image diffusion models, implementing several
training efficiency improvements on very large models
(Appendix C).

2. We assess Inference Time Decomposition of Activations
(ITDA; Leask and et al. [31]), a new dictionary learn-
ing technique, and compare its interpretability to sparse
autoencoders.

3. We demonstrate general-purpose steering of image rep-
resentations using sparse autoencoder latents.

2. Related work
Sparse autoencoders (SAEs, [3, 21, 45]) are a method for
training small neural networks to resolve feature superposi-
tion [13] in larger networks. They work by learning a large,
overcomplete decoder basis for the latent space, as well as



an encoder that outputs a sparse set of linear coefficients
for approximately reconstructing vectors in the latent space.
One common SAE variant is TopK, which takes the top-K
matching decoder features after a linear encoder projection
[17].

[1] found that LLMs can find explanations for MLP
neurons in smaller networks and accurately predict (simu-
late) their activations based on the explanations. SAE fea-
tures can similarly be automatically explained and simu-
lated [3, 21], with scores exceeding those of MLP neuron
features and other sparse decomposition techniques. [23]
replaces the expensive per-token simulation step with clas-
sification of images into ones matching the explanation or
not.

Denoising diffusion [19, 47] is a generative modelling
method that learns a score function of the original distribu-
tion mixed with varying amounts of noise. Flow matching
and rectified flows [33, 34] are similar but simpler formula-
tions that learn the expected velocity of a particle in an SDE
at any given timestep. Models trained in this formulation
are what we will consider in this paper because they com-
prise most of the state-of-the-art text-to-image generators.
Transformers have been adapted for image diffusion with
adaptations to the architecture [39], including text-to-image
generation [14] with the multimodal diffusion transformer
(MMDiT) architecture. FLUX.1 is a recent MMDiT trans-
former with 12 billion parameters that achieves state-of-the-
art performance. It has a step-distilled variant, FLUX.1
Schnell, that can generate images in one timestep.

SAEs have been applied to vision transformers previ-
ously, with activations similarly being taken from the resid-
ual stream: [11, 15]. Some have been trained on class-
conditioned and text-to-image diffusion models [10, 22,
25]. Some are trained on the innermost bottleneck of a
diffusion U-Net [22] (see [28] for evidence that this site
is especially interpretable), others are spaced through the
network; they are trained either on a single timestep or all
of them distributed equally. A priori, we may expect that
features activate specifically on some timesteps or spatial
positions, and that different types of features are more or
less frequent at earlier or later layers. With MMDiT, we
can apply the same dictionary learning technique to differ-
ent layers with similar results.

While we’re not aware of any work applying autoint-
erpretation to diffusion models, [43] is an example of ad-
vanced automated interpretability for vision models. The
agent presented in the work has many functions, explana-
tion and scoring being just a small subset of its capabilities.

[49] introduces the technique of adding vectors to the
residual stream for manipulating transformer internals –
though there is a rich history of applying the same tech-
nique for GANs and diffusion models mentioned in the pa-
per. There are many works on steering diffusion models

with feature-like disentangled representations, discovered
through training or unsupervised methods [16, 28, 38].

Steering with SAE features is a natural application of re-
sults from dictionary learning. [7, 11, 37] explore it in var-
ious contexts like steering language models for various be-
haviors or controlling CLIP-conditioned image generators
with a global latent addition.

[48] trains SAEs on various hidden layers of the Stable
Diffusion XL Turbo UNet [41, 42]. It thoroughly evalu-
ates steering and even shows image generation from pure
feature guidance. We scale up a similar approach, iden-
tify unique challenges arising for the MMDiT architecture
of FLUX.1(normalization) and show successful examples
of steering. [24] trains SAEs on both SDXL-Turbo and
FLUX.1 Dev, showing controllability comparable to or ex-
ceeding non-steering-based baselines in real-world scenar-
ios under adversarial attacks. Unlike our work, they train
SAEs on the text encoder of the model, thus affecting the
conditioning instead of the generation process. This site for
inserting SAEs is less likely to show concepts used by the
vision transformer or enable circuits-based mechanistic in-
terpretability [4].

Inference-time decomposition of activations (ITDA)
[31] has been proposed as a modification to SAEs. It re-
moves the learnable encoder and replaces it with ITO [46],
also known as gradient pursuit [2]. Instead of being trained
with gradient descent, decoder rows are selected from train-
ing input batches according to a reconstruction loss criterion
with an additional pruning step. ITDA promises significant
efficiency gains, being able to train models in several min-
utes – orders of magnitude faster than SAEs. It also of-
fers more straightforward interpretability of latents, as each
one corresponds to a token which may be traced to the SAE
training dataset.

3. Methodology
We train SAEs and ITDAs on various layers and timesteps
of the FLUX.1[29] model with varying amounts of
inference-time and training time resources granted to the
SAEs/ITDA. In this section, we discuss the algorithms we
use and the modifications we made to them for training.
We give a full discussion of background research such as
SAEs, diffusion and steering in the related work section
(Section 2).

3.1. SAE formulation
We build on TopK SAEs [17] due to their simplicity. The
TopK SAE encodes input vectors x ∈ Rn into sparse vec-
tors e ∈ Rd : L0(e) ≤ k, where k is the SAE’s sparsity
constant. The encoding process is usually affine. In our
implementation, it is e = Topk(Wenc(x − bpost + bpre)),
where Wenc ∈ Rd×n and the biases bpost, bpre ∈ Rn. k is
a hyperparameter that controls the complexity of the prob-
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Figure 2. Residual SAEs for FLUX.1

lem, with higher k allowing better reconstruction, but also
potentially decreasing interpretability. The vector e is then
decoded into y ∈ Rd, y ≈ x, through an affine decoder:
y = Wdece + bdec. This SAE is trained with MSE recon-
struction loss against the original activations MSE(x, y) =∑n

i=1
1
n (yi − xi)

2 with no additional penalties like AuxK.1

3.2. ITDA formulation

Smith [46]’s Inference-Time Optimization (ITO) is the al-
gorithm behind ITDA. Originally, ITO was proposed as a
way of replacing the SAE encoder – finding sparse encoded
vectors e without learning the encoder. Using an efficient
implementation of gradient pursuit [2], ITO can encode sig-
nals without encoder weights: e = ITO(x,Wdec). For fur-
ther details, see [46].

ITDA builds on ITO by providing a simple algorithm
for learning a dictionary without training an SAE. In short,
it adds elements directly from the training dataset. It keeps
the dictionary size low by prioritizing data points which
are reconstructed poorly by the current version of the
ITDA autoencoder. Taken together: Wdec,t+1 = Wdec,t ∪
{x|x ∈ data ∧ MSE(x, ITO(x,Wdec,t)) > threshold},
where threshold is a hyperparameter we find using sweeps.

3.3. SAE training

For training SAEs and ITDAs, there are a few input parame-
ters that determine the learning problem and its complexity.
These include the input distribution – determined by the site
at which activations are taken, the resolution, the time step,
as well as the distribution of input text – and the SAE’s ca-

1Gao et al. [17] trains with an auxiliary loss for avoiding “dead fea-
tures” – encoder latent space dimensions that activate rarely. We also found
AuxK helpful; see Appendix C.

pacity – the k and d/n parameters.2

We train most of our SAEs on single-step generations
from FLUX.1 Schnell3 at 256x256 resolution given re-
source constraints. We focus on layer 18 of the double
blocks for many of the sweeps, as it is halfway through the
model’s parameter count. We also train on layers 9 (double
and single) and layer 18 (single) (Figure 2). We train all
SAEs for 30k steps, or 30M tokens.

The variance of FLUX.1 residual streams is largely con-
centrated in the first few dozen eigenvalues (Section 4.2).
We found that standard training SAEs on residual stream
data produces many dead features (> 99%), regardless of
whether we use AuxK or not. While these autoencoders
can have high proportions of variance explained (> 60%),
the features will be concentrated in one low-dimensional
subspace, similarly to the training data.

We propose a solution: normalizing the spectral compo-
nents of the inputs before the SAE through PCA whitening
in input space (see Section 3.4). We compare outputs for
training in the whitened space, but for inference we trans-
form reconstructions back to the original residual stream:
y∗ = WT (y ⊙ σ⃗(x1) + µ⃗(x2)).4

Training with this normalization produces manageable
amounts of dead latents (< 30%). In other experiments, we
found that normalizing by the mean and standard deviation
without PCA has similar performance, but all our SAE work
here also does the PCA transformation.

We repeat that normalization is necessary for training

2Where k is the sparsity from Section 3.1 and d/n is expansion factor
– the dictionary size divided by the hidden size.

3One of the two released FLUX.1models. Schnell is timestep-distilled
and can generate images in 1 step. Dev is guidance-distilled and requires
≥ 20 timeseps.

4This is an affine transformation that can be “folded into” the weights
of the SAE (as in Rajamanoharan et al. [40], Appendix A).



Flux SAEs without the majority of neurons being dead due
high anisotropy of the residual stream (Section 4.2).

3.4. PCA normalization
Based on the first few batches of the training data, we com-
pute the orthonormal projection matrix of the PCA decom-
position W ∈ O(n). We use it to transform the data
(x⃗1 = Wx⃗0) into a space where the components have zero
covariance, anisotropic variance, and an unknown, poten-
tially large mean. We further remove the mean and vari-
ance through standardization (x⃗2 = x⃗1 ⊙ 1

σ⃗(x1)
, x⃗3 =

x⃗2 − µ⃗(x2)). In sum, we perform whitening of the input
data.

3.5. ITDA training
We similarly normalize training inputs to ITDA without
PCA. We tried several modifications to ITDA: restricting
feature growth early on by taking the top-k feature addi-
tions; adding the residual reconstruction error instead of the
datapoint to the dictionary; pruning the ITDA after train-
ing with K-Means clustering. None of them significantly
improved on the dictionary size to reconstruction accuracy
tradeoff.

We use the FVU (fraction of variance unex-
plained) metric as the loss function: FVU(y, y∗) =
MSE(y, y∗)/MSE(y∗, µy∗), where y∗ is the ground truth.
This metric can go above 1, but typically takes values from
0.1 to 0.5.

4. Basic Flux interpretability
While FLUX.1 uses the Transformer architecture, there are
differences that could cause techniques applicable to Trans-
formers to not work with it. For example: Flux uses AdaLN
layers [20], and Layernorm layers are commonly known
to hamper interpretability because they are nonlinear and
can cause anomalies like [26]; a more complex version of
LN could cause more issues because of the timestep and
prompt dependence. Similarly, the gradients induced by the
architecture and data distribution can render some optimiz-
ers less effective and potentially cause artifacts [52].

4.1. Across layers and timesteps
We start by comparing the norms of the residual stream
throughout the layers. At the last layer of the double
blocks (Figure 3), the norm of the text component jumps
up rapidly. This may correspond to a distinct stage of infer-
ence [30].

The residual stream norms generally increase through
timesteps, but they only rise by an order of magnitude.

4.2. Latent space spectrum
When we trained SAEs without any normalization (Sec-
tion 3.3), we found adequate reconstruction quality with

Figure 3. Residual stream norms for double blocks

Figure 4. Residual stream norms for single blocks

many dead features. The alive features seemed inter-
pretable, but there were less than 1000 of them. This sug-
gests that there may be a small subspace in the residual
stream that contains most of the variance for the SAE to
explain.

We measure the variances of each PCA component (Fig-
ure 5) and residual stream element, and find that they are
anisotropic to an extent that would be unusual for a text
model. That these dimensions containing most of the vari-
ance are basis-aligned is perplexing, and may be related to
outlier dimensions [26]. It’s possible they encode CLIP im-
age embeddings, the model’s encoding for noise in the VAE



Figure 5. Variances explained by principal components
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space,5 or positional embeddings.

5. Evaluations
5.1. Reconstruction
The primary objective of SAEs is reconstructing ac-
tivations. We evaluate ITDAs and SAEs on us-
ing the variance explained metric: VE(y, y∗) =∑n

i=0
1

σ2
yσ

2
y∗

(
1
|y|

∑|y|
j=0(y − µy)j,i(y

∗ − µy∗)j,i

)2

.

As mentioned above, we compare SAEs and ITDAs in
two settings: comparing various settings of k and d/n on
layer 18, and testing the performance on various layers in
the network. Figure 6 demonstrates the former, showing

5This explains the low rank but not the interpretability of these latents.

that ITDA is generally superior in terms of reconstruction
performance at similar dictionary sizes.

We compare FVU scores across different layers in Ap-
pendix A.

5.2. Automated interpretability
Bills et al. [1] introduced automated interpretability for
feedforward block (MLP, [50]) neurons: a pipeline that
uses a language model to generate explanations for maxi-
mum activating examples of neurons, and then predicts the
strength of the neuron’s activations on a test set. Detection
scoring [23] replaces the regression task of predicting how
strongly a neuron activates on each token with the classi-
fication task of detecting whether the neuron was correctly
labeled, reducing the token usage of the autointerpretation
pipeline.

Since we are not working with raw language models,
unlike this prior work, we need to adapt these autointer-
pretability methods. We introduce a visual autointerpreta-
tion pipeline with two components: the explainer and the
classifier. The explainer looks at images with activations
painted in blue on top of them and generates a shared ex-
planation. The scorer looks at a single image and decides if
it belongs to the chosen explanation. Both the explainer and
the scorer use google/gemini-2.0-flash-001 as the backend.
Their prompts are included in Appendix D.

We run autointerp on layer 18, k = 64, d = 64000.
We compare SAEs and ITDAs to an MLP neuron base-
line, similarly to [21]. We use max-activating examples and
only consider activating features from each method. We see
that SAEs and ITDA have comparable performance and that
MLP neurons are generally less interpretable, although they
contain several features with exceedingly high autointerp
scores. From visual inspection (Appendix B), highly inter-
pretable MLP neurons activate on contiguous areas of the
image with fixed semantic meaning and are likely causally
relevant to the image generation process.

5.3. Steering
As mentioned in Section 2, steering has a rich history in dif-
fusion models, and steering with SAE features is a common
technique. We explore steering FLUX.1 with our trained
SAEs at the intended layers through simple activation addi-
tion at areas of the image: y[a:b, c:d] += Wdec[f ].

We primarily study Layer 18. We found that steer-
ing with features often leads to an effect associated with
their max activating patterns. However, the effects are con-
strained, in a sense that the initial prompt should be related
to the feature: for example the anime style feature from Fig-
ure 1 had effect only on the ”A cartoon” prompt (but not on
a prompt like ”A person”). This suggests that images may
have a localized feature space, and steering may work only
inside them.
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Figure 7. Histograms of autointerp accuracy scores for three meth-
ods.

We steered only on a fraction of the steps. In the exam-
ples (Figure 1), we applied steering only to the first 5 steps
out of 7. Steering on all steps introduced noticeable arti-
facts. Negative steering was also successful in some cases,
although it could remove only small details of the image and
required much more complex prompts than positive steer-
ing.

6. Future Work
We evaluated our SAEs and ITDAs on simple metrics like
autointerp. In vision, there are many tasks, like classifica-
tion, segmentation and depth estimation, that SAEs could
be used to perform [8]; this would be analogous to sparse
probing [17].

In this work, we apply the SAE architecture as used
in large language models (LLMs) without modifications.
However, it is reasonable to expect some changes to be nec-
essary: in images, latent activations of nearby spatial posi-
tions are more similar than those of random patches.6 We
could adapt the encoder architecture to add spatial inductive
bias, like by making it convolutional. We could improve
steering by making the process more similar to finetuning
[28, 53] or otherwise aware of the effects of the steering.

We only consider SAEs on image activations in this
work. It is likely that the multimodal DiT architecture
shares features between text and image streams, which is

6Especially if they correspond to semantically meaningful contiguous
regions of the image. See [36] for discussion of a similar problem with
LLMs.

something that could be the cosine similarity of SAEs. This
paper also does not consider variable image resolution and
timesteps other than pure noise. Carter et al. [6]’s Acti-
vation Atlas could be a useful technique for dealing with
intermediate timesteps.

Another promising avenue for future work is compar-
ing FLUX.1’s two variants, Dev and Schnell. We only
considered the latter, but crosscoders [32] may let us find
corresponding pairs of features and features unique to step-
distilled models.

It is also important to investigate biases specific to our
autointerp pipeline. Similarly to Heap et al. [18], it is possi-
ble that our pipeline may pick up on simple characteristics
of the image like color. We leave detailed investigation to
future work.

7. Conclusion

In this work, we have demonstrated the successful ap-
plication of Sparse Autoencoders (SAEs) and Inference-
Time Decomposition of Activations (ITDA) to large text-
to-image diffusion models. Our experiments with FLUX.1
show that these methods can effectively decompose com-
plex residual stream activations into interpretable features
that enable targeted steering of image generation. We find
that both SAEs and ITDAs outperform MLP neurons on
interpretability metrics, while maintaining high reconstruc-
tion quality across various model layers and configurations.

Our manual examination revealed important distinctions
between SAEs and ITDAs not captured by automated met-
rics. Despite similar autointerp scores, ITDA features typ-
ically encoded general attributes (colors, textures, regions)
while SAE features captured more concrete objects (hats,
faces). This qualitative difference highlights a limitation
of autointerp metrics - they don’t distinguish between ab-
stract visual properties and manipulable semantic concepts.
SAE features also demonstrated superior pixel-wise cover-
age compared to the sparser activation patterns of ITDA fea-
tures (Appendix B).

When exploring steering capabilities, we observed
that SAE feature steering was effective but constrained,
requiring initial prompts to align with steered fea-
tures. This suggests a localized nature of feature rep-
resentation in diffusion models, where later layer fea-
tures have low effect if they are not directly related
to the image representation generated by earlier lay-
ers.
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[10] Bartosz Cywiński and Kamil Deja. Saeuron: Interpretable
concept unlearning in diffusion models with sparse autoen-
coders, 2025. 2

[11] Gytis Daujotas. Interpreting and steering features in images.
LessWrong, 2024. 2

[12] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. Qlora: Efficient finetuning of quantized llms,
2023. 1

[13] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas
Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger
Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,
Martin Wattenberg, and Christopher Olah. Toy models
of superposition. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/toy model/index.html.
1

[14] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim

Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yan-
nik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis, 2024. 2

[15] Hugo Fry. Towards multimodal interpretability: Learning
sparse interpretable features in vision transformers. Less-
Wrong, 2024. 2

[16] Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Anto-
nio Torralba, and David Bau. Concept sliders: Lora adaptors
for precise control in diffusion models, 2023. 2
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Figure 8. Reconstruction quality for ITDAs and SAEs across lay-
ers.

A. Detailed evaluation statistics
In Figure 8, we compare ITDAs and SAEs across multiple
layers.

B. Additional example feature activations
Figure 9 contains max activating examples for 5 different
SAE features. Figure 10 contains max activating examples
for 5 different ITDA features. We can notice a difference in
pixel coverage with these two types of features.

C. Specifics of the SAE training codebase
We implemented our SAE training code in Jax for Google
TPUs. To our knowledge, we produced the first Jax imple-
mentation of FLUX.1. The diffusion transformer and the
T5 text encoder take 48GB of memory combined at bfloat16
precision. We used v4-8 TPUs, which have 128GB of HBM
combined. We implemented 4-bit NormalFloat quantiza-
tion [12] together with inference kernels to avoid material-
izing the dequantized weight matrices in memory. We im-
plemented FSDP across the output axis for partitioning the
weights across devices.

We used Oryx and jax.lax.cond clobber to
gather activations through multiple timesteps as outlined in
[27]. We had previously sent activations into CPU mem-
ory and found that the throughput was not reduced. It is
possible that caching activations with the diffusion model is
a bottleneck that overshadows a CPU-TPU transfer, or that
we missed where the transfer occurs.
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Figure 9. Maximum activating examples of some interpretable
features from our FLUX.1 SAE.

Finally, we sped up the TopK SAE decoder similarly to
[17]. We did not write a sparse matrix multiplication ker-
nel for TPUs due to a lack of time, but we came up with a
batched implementation that, while using up HBM, doesn’t
need to store all pre-activation values.

The overall most important practical improvements are
running the decoder in vmap and collecting activations with
layer-scanned Oryx. We share our TPU training code in
github.com/neverix/fae.

http://github.com/neverix/fae
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Figure 10. Maximum activating examples of some interpretable
features from ITDA.

D. Autointerpretation prompts

Autointepretation prompt

You will be given a list of images. Each image will
have activations for a specific neuron highlighted in
blue. You should describe a common pattern or fea-
ture that the neuron is capturing. First, write for each
image, which parts are higlighted by the neuron. Then,
write a common pattern or feature that the neuron is
capturing.

Judge prompt

You will be given an image. And a neuron’s activations
description. The image will have activations for the
neuron highlighted in blue. You should judge whether
the description of the neuron’s pattern is accurate or
not. Return a score between 0 and 1, where 1 means

the description is accurate and 0 means it is not. Be
very critical. The pattern should be literal and specific,
and vague or general descriptions should be rated low.
The activation pattern is {pattern}.

Our autointerpretation code is public at
github.com/kisate/flux-saes-gpu.

https://github.com/kisate/flux-saes-gpu
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