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Abstract

Modern object detectors are vulnerable to adver-
sarial examples, which brings potential risks to nu-
merous applications, e.g., self-driving car. Among
attacks regularized by £, norm, {y-attack aims
to modify as few pixels as possible. Neverthe-
less, the problem is nontrivial since it generally
requires to optimize the shape along with the tex-
ture simultaneously, which is an NP-hard problem.
To address this issue, we propose a novel method
of Adversarial Semantic Contour (ASC) guided
by object contour as prior. With this prior, we
reduce the searching space to accelerate the £y op-
timization, and also introduce more semantic in-
formation which should affect the detectors more.
Based on the contour, we optimize the selection
of modified pixels via sampling and their colors
with gradient descent alternately. Extensive exper-
iments demonstrate that our proposed ASC out-
performs the most commonly manually designed
patterns (e.g., square patches and grids) on task of
disappearing. By modifying no more than 5% and
3.5% of the object area respectively, our proposed
ASC can successfully mislead the mainstream
object detectors including the SSD512, Yolov4,
Mask RCNN, Faster RCNN, etc.

1. Introduction

Deep neural networks (DNNs) have demonstrated great
power in object detection. Modern detectors can mainly
be classified into two types, one-stage detectors (e.g.,
Yolo(Redmon et al., 2016; Redmon & Farhadi, 2016; 2018;
Bochkovskiy et al., 2020)) and two-stage detectors (e.g.,
Faster R-CNN(Ren et al., 2016)). In particular, one-stage
detectors are designed as a single neural network which
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Figure 1. To attack object detectors, we focus on the object contour
area, which is the general shape and outline of an object. To
acquire the object contour, we adopt part segmentation method
(CDCL (Lin et al., 2020)) to produce object semantic contour. By
optimizing the pixel selection around the object contour and the
colors, we can have the optimized Adversarial Semantic Contour
(ASC) to successfully cloak the person from Faster RCNN (Ren
et al., 2016) as the figure shows. To show the details of our method,
we zoom in the part inside the white rectangle.

predicts bounding boxes and classification directly from the
image. The prediction of two-stage detectors consists of re-
gion proposals and classification. Compared with one-stage
detectors, two-stage detectors are generally more accurate
and robust but slower with prediction as reported in (Red-
mon & Farhadi, 2018). For Faster R-CNN, with redundant
candidate proposals from Region Proposal Network (RPN),
the prediction can still be accurate even though some of the
proposals are disturbed making the attack difficult.

However, modern detectors can be affected by carefully de-
signed adversarial perturbations, bringing potential safety
threats to real-world applications. Mainstream methods can
be categorized according to the norm used for regularization.
The earliest methods which reveal the weakness of DNNs
(e.g., PGD (Madry et al., 2019)) mostly adopt ¢, norm,
bounding the perturbations to be imperceptible to human.
Besides, adversarial noises can be regularized by £y, norm,
modifying a limited number of pixels, while the perturba-
tion may not be bounded. The main purpose of this paper
is to improve the performance of ¢ attack on object detec-
tors, because ¢ attack modifies few pixels, which is more
meaningful for object detection. In general, ¢, optimiza-
tion is a typical Non-deterministic Polynomial hard problem
(NP-hard) which makes the optimization non-differential
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and time-consuming. Therefore, most of previous works on
£y attack modify pixels that meet certain patterns which are
designed in advance. Nevertheless, these manually designed
patterns cannot guarantee successful attack depending on
various factors like the implementation of models, especially
for two-stage detectors.

To address these challenges, we propose a novel method of
Adversarial Semantic Contour (ASC), which improves the
£y attack performance on object detectors. Different from
the previous works, we present a generic solution which can
optimize the attack area with enough semantics. To make
£y optimization efficient, we introduce the object contour as
prior to reduce the searching space, which guides the further
optimization. The reason why we take object contour as
prior is that in “What is an object?” (Alexe et al., 2010),
the authors proposed three characteristics of an object, in-
cluding having closed boundaries and different appearance
against the background, which means object contour carries
semantic information of an object. Technically, based on the
prior contour, we optimize the selection of modified pixels
via sampling and their colors with gradient descent alter-
nately. When it converges, we get the Adversarial Semantic
Contour and achieve successful attack.

We conduct comprehensive experiments to evaluate the per-
formance of our algorithm. Object localization is what
distinguishes object detectors from classifiers. Therefore
we design the task of disappearing, which aims to cloak
the object completely from the detectors. We select square
patch as a comparison method, which is one of the most
commonly used methods in ¢y attack on object detection,
e.g., AdvPatch (Thys et al., 2019). Also, we take grid-like
pattern from DPAttack (Wu et al., 2020), which got the
second place in the CIKM2020 AnalytiCup “Adversarial
Challenge on Object Detection”. From the result, by setting
the threshold of ¢y norm at 5% and 3.5% of object area re-
spectively, our method, ASC, outperforms these methods on
four main-stream detectors, including one-stage detectors
like SSD512 (Liu et al., 2016) and Yolov4 (Bochkovskiy
et al., 2020), and two-stage detectors like Mask RCNN (He
et al., 2018) and Faster RCNN (Ren et al., 2016).

In summary, we make the technical contributions as:

* Different from the existing methods that use patterns
with fixed shapes, we propose a new ¢, adversarial
attack method on object detectors which optimize the
selection and texture of modified pixels jointly.

* In order to avoid the exhausting search over the whole
image, we introduce the detected contour as prior to
reduce the searching space. Guided by the prior con-
tour, we optimize the pixel selection via sampling and
the texture with gradient descent alternately, which im-
proves the efficiency of optimization and increases the

chance of successful attack.

2. Methodology

Our goal is to develop a pattern to carry out more effective
£y attack on object detectors, which modifies as fewer pixels
as possible while guarantees successful attack. Here, we
present our formulation of ¢, attack and our contour-based
method.

2.1. Problem Formulation

£y Attack on Object Detection. In general, to attack the
object detectors with £y regularization, we need to decide
the pixels to be disturbed, which should be as few as pos-
sible, and their adversarial textures which can corrupt the
prediction of the detector most. We consider a formulation
of finding the best adversarial noises for each image in a
general form as

(M, T) = argmax J (fy(z @ P).y) — alo(M), (1)
P=(M,T)

where z is the original image, ¥ is its corresponding ground-
truth label, fy denotes the pretrained detector with 6 repre-
senting the structure and weights of the model, J(fp(x),y)
denotes the objective function which describes the similarity
between output and label, M is a 0-1 mask in which each
value represents whether a pixel is selected to be modified,
T is a matrix of the same size with x which represents the
colors for each pixel, and c® P = x® (M, T) is a simplified
form of (1 — M) - + M - T which is more accurate math-
ematically. Our goal is to maximize the objective function
J to corrupt the detector prediction.

However, among these attributes, the optimization of M
is an ¢y problem and cannot reach its optimal points by
traditional gradient descent methods, which makes the op-
timization of these nondifferentiable parameters a Non-
deterministic Polynomial hard problem (NP-hard). This
will lead to low efficiency in our attack if we apply global
search over the image with blindness. To release this prob-
lem, we review the problem with a Bayesian perspective
and introduce a prior which may narrow the searching space
and improve the efficiency of ¢, optimization, while still
being able to find an approximate optimal solution.

2.2. Using Object Contour?

With reference to “What is an object?” (Alexe et al., 2010),
we notice the proposed attributes of objects and evaluation
metrics on object detection. Among them, the attributes,
including closed boundaries and significance against back-
ground, are closely related to the boundary between object
and background, while two of the metrics, Color Contrast
and Edge Density, also take use of the object significance
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and contours. Thus, we believe the contours carry enough
object semantics and can be taken as the focus area. Tech-
nically, with the modern methods of part segmentation and
contour detection, we take the detected contour map as the
prior and denote it as M, which is a prior case for M in-
troduced in Sec.2.1. We don’t adopt instance segmentation
or edge detection because we want to acquire the exact and
clear boundaries between different parts of the object. We
will make use of the prior knowledge carried with the con-
tour map to optimize the selection of pixels to be modified
and their colors to attack the detector by turns.

For a 0-1 matrix M, we define a set of pixel coordi-
nates whose corresponding values in M are 1 as M =
{(z1,91), (2,Y2)s .y (Tn, Yn)}. Clearly, our optimization
restriction, (M), equals to |M]|, the size of M. With the
semantic information in the prior M,,, we believe the approx-
imate optimal solution of pixel selection should be near the
pixels in Ml,,. By optimizing the colors of the selected pixels
and observing the performance, we can evaluate the attack
effectiveness of the pixel set Ml. Thus, we may optimize
the adversarial noises iteratively. Starting from the prior
contour pixels My = M,, we may sample around these pix-
els, acquire new pixel sets, evaluate their effectiveness and
decide whether to update M, until we get an approximate
optimal solution.

Based on the above analysis, our optimization of contour
involves the contour map M and the corresponding color T’
separately and alternately. Assuming we have set a contour
map M, we adopt a method similar to Projected Gradient
Descent (PGD) (Madry et al., 2019) to optimize the color,
which projects the updated color 7" into the acceptable range
for pixel values. With more details, we update the adversar-
ial noises following the equation,

Tis1 = Clipyy ) (Ti+a-Vod (folw® (M, T3, 9) ), @

where we only optimize 71" with gradients of objective func-
tion J for a given M and « is a hyperparameter as step size.
For a image with pixel values ranging from O to 1, we clip
the modified pixel values within the acceptable range after
every updating step. Thus, we can optimize the color T’
iteratively with gradients to attack the object detectors.

Therefore, we formulate our problem into a prior-guided it-
erative optimization with object contour, which circumvents
the low-efficient £y optimization and improve the chance of
successful attack due to the object semantic information.

3. Experiments

We conduct a series of experiments on four different main-
stream detectors to prove that adversarial attack based on
Adversarial Semantic Contour can achieve more satisfying
performance than the most popular existing patterns.

3.1. Experiment Settings

Dataset.  We select 1000 images from Microsoft
COCO02017 (Lin et al., 2015). In consideration of the previ-
ous studies and the convenience to acquire object contours,
we only attack these 1000 objects categorized as “Person”.
We believe this setting is reasonable and with no loss of
generality.

Models. We attack 4 models in total, including 2 two-
stage detectors (Faster R-CNN (Ren et al., 2016) and
Mask R-CNN (He et al., 2018)) and 2 one-stage detectors
(SSD512 (Liu et al., 2016) and Yolov4 (Bochkovskiy et al.,
2020)). Concretely, Yolov4 (Bochkovskiy et al., 2020) is
a pytorch implementation', while the other three detectors
are implemented by mmdetection® (Chen et al., 2019).

(b) FourPatch (¢) 2 x 2Grid (d) SmallGrid
Conf. 0.9243  Conf. 0.7457 Conf. 0.9259

(a) AdvPatch
Conf. 0.9948

(g) F-ASC (h) O-ASC
Conf. 0.5887 Cloaked

(e) Strip (f) PartSeg

Conf. 0.7739

Figure 2. Attack performance of 6 patterns. All comparison pat-
terns fail to cloak the person from Faster RCNN (Ren et al., 2016).
Though also failed, the fixed ASC (F-ASC) depresses the ob-
jectness confidence the most comparing to other patterns. After
adjusting the contour shape with ground-truth label and sampling
around the contour, we have the optimized ASC (O-ASC) which
successfully makes the person invisible to the detector.

Adversarial Patterns. Our methods (ASC) is based on
the semantic boundaries on objects. For prior contour map
mentioned in Sec.2.2, we acquire it with CDCL (Lin et al.,
2020). We demonstrate two cases, among which the “F-
ASC” stands for the fixed case that directly uses contours
generated with CDCL as target pixels and the “O-ASC”
stands for the optimized case that consists of the iterative
optimization introduced in Sec.2.2. What worths notice is
that we only carry out the complete optimization on exam-
ples that fail to be attacked as mentioned with “F-ASC”.

'https://github.com/Tianxiaomo/pytorch-YOLOv4
Zhttps://github.com/open-mmlab/mmdetection
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To verify the effectiveness of our contour-based attack, we
select five patterns for comparative experiments. To be
specific, we use “AdvPatch” and “FourPatch” for square
patches referring to (Thys et al., 2019) and (Huang et al.,
2020) and “2 x 2Grid” and “SmallGrid” for grid-like pat-
terns referring to (Wu et al., 2020). Additionally, we use
the pattern, “Strip”, which is composed of the diameter
lines of the part segmentation of the object. The intention
of setting this pattern is to prove that the contour area is
more effective, comparing to inner area of the segmentation.
Since we stress the £y norm, we have the area cost budget
bounded by 3.5% and 5% of the object area respectively
and the area cost of the five comparison patterns is restricted
to be no less than the contour pattern, which is equivalent
to our optimization formulation in Sec.2. An example of
forms and results of 6 patterns is given in Fig.3.1.

Metric. We define “detected” as the case where the detector
can make a prediction which has the IoU above 0.5 with
the ground-truth label and has the confidence more than 0.5.
We use the Successful Detection Rate (SDR) as the metric
to evaluate the performance in this task. For one image,
if the detector gives a prediction which makes the target
“detected”, the image is counted as a successful detection.

3.2. Performance

We aim to make the objects invisible to the detectors. To
some extents, this is an extreme case of targeted attack,
where we try to maximize the possibility of the object being
the background. We set the loss function in Eq.1 for an
image as

I(fo,y) = — Z log(ps), 3)

where p; is the objectness score of the i*" bounding box

which has the IoU above 0.5 with the ground-truth label.

Table 1. Successful Detection Rate (%, |.) in task of disappearing.
On two-stage detectors, the fixed case of ASC outperforms other
patterns with at least a gap of 3% while performing above average
on one-stage detectors. With further optimization, performance of
our method increases and takes the lead on all detectors.

Pattern [ FRCN [ MRCN [ SSD512 | Yolov4
Lo budget(%) [ 50 [ 35 [ 50 [ 35 [ 50 ] 35 [50] 35
Clean 98.3 98.9 95.6 91.4

AdvPatch 706 | 868 | 748 | 89.6 | 20 | 156 | 2.6 | 238
FourPatch 550 | 78.6 | 58.1 | 81.2 | 3.5 | 348 | 3.9 | 29.6
SmallGrid 337 | 542 | 408 | 602 | 1.1 6.1 1.7 | 53
2 X 2Grid 127 | 246 | 145 | 295 | 0.3 19 | 20 | 5.1
Strip 151 | 386 | 172 | 450 | 12 | 68 | 0.7 | 76
F-ASC 9.7 134 | 108 | 147 | 1.1 | 22 12 | 46
0-ASC 2.0 6.6 2.7 74 | 01| 09 | 00 | 14

Table 1 shows the the results of our experiments with differ-
ent patterns. The two methods with square patches perform

the worst on the four models, especially with a large gap on
two-stage detectors. The other two methods with grids have
better performance comparing to the square patch methods
and the performance of “2 x 2Grid” group improves more
with SDR dropping down to 12.7% on Faster RCNN. The
“Strip” group also performs better than average among the
5 comparison groups. As for our method, the fixed ASC
outperforms all 5 comparison groups with at least SDR of
3% on two-stage detectors and have performance above
average on one-stage detectors. After optimizing the ex-
amples which fail in the fixed case according to the shape
optimization method mentioned in Sec.2.2, we see that the
performance of ASC improves further. From the data with
5% ¢ constraint, our method leads on all models and the
gaps between the minimum SDR of comparison groups and
ours are widened, from 12.7% to 2.0% on Faster RCNN,
from 14.5% to 2.7% on Mask RCNN, from 0.3% to 0.1%
on SSD512 and from 0.7% to 0.0% on Yolov4. By re-
stricting the £y budget from 5% to 3.5%, the gap between
our method and other comparison methods becomes signifi-
cantly greater, indicating with stricter o bound, our method
(ASC) can be more effective. Experimental result proves
that using contour area as prior knowledge to attack object
detectors has more effective performance than other fixed
patterns which are designed manually, since it carries more
object semantic information. Meanwhile, having smaller
SDR than “Strip” group provides further evidence that ob-
ject detectors can be more sensitive to object contours than
object inner area.

4. Conclusion

Objects have clear and definite attributes, among which
having closed boundaries is a significant one. Therefore,
detectors which need to localize objects are highly likely
to learn using contours. Thus, in this paper, we propose
the Adversarial Semantic Contour (ASC) as a new method,
which does joint optimization of pixel selection and texture,
to carry out ¢, attack on object detectors. We introduce
the contour area as the prior knowledge and optimize the
adversarial pattern based on that, to avoid the challenge that
£y optimization is NP-hard. With the guide of prior con-
tour, we optimize the selection of pixels to be modified by
sampling and their texture with gradient descent alternately.
From the concrete experiments, we see that with limitation
of £y norm, ASC outperforms other existing patterns (square
patch and grid), especially with a large margin on two-stage
detectors. This proves that optimizing both shape and color
of the contour pattern which is full of semantic information
is more effective in £, attack on object detectors. We believe
that object detectors are more vulnerable and sensitive to
attack around the contour area which is relatively easy to
be realized in real-world scenarios and may worth further
research.
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