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Abstract

When humans are given a policy to execute, there can be pol-
icy execution errors and deviations in policy if there is uncer-
tainty in identifying a state. This can happen due to the hu-
man agent’s cognitive limitations and/or perceptual errors. So
an algorithm that computes a policy for a human to execute
ought to consider these effects in its computations. An op-
timal Markov Decision Process (MDP) policy that is poorly
executed (because of a human agent) maybe much worse than
another policy that is suboptimal in the MDP, but consid-
ers the human-agent’s execution behavior. In this paper we
consider two problems that arise from state uncertainty; these
are erroneous state-inference, and extra-sensing actions that a
person might take as a result of their uncertainty. We present
an approach to model the human agent’s behavior with re-
spect to state uncertainty, which can then be used to compute
MDP policies that accounts for these problems. This is fol-
lowed by a hill climbing algorithm to search for good poli-
cies given our model of the human agent. We also present
a branch and bound algorithm which can find the optimal
policy for such problems. We show experimental results in
a Gridworld domain, and warehouse-worker domain. Finally,
we present human-subject studies that support our human
model assumptions.

1 NOTES
2 Introduction

Markov Decision Processes (MDPs) have been used exten-
sively to model settings in many applications((Boucherie
and Van Dijk 2017),(Hu and Yue 2007),(White 1993)) but
when the agent that has to act in such a scenario is a hu-
man, we need to consider how the execution changes. The
human maybe the agent executing the policy because (for
example) certain actions cannot be done by the robots (legal
or ability limitations) or the human has to step-in due to a
failure in automation (fail safe). Human performance in the
latter is called out-of-the-loop (OOTL) performance (Ends-
ley 2017). For such cases, computing a good human policy
is important, and to do so one ought to consider human lim-
itations and behavior when computing a policy for people to
execute.
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Figure 1: A colored gridworld domain in which an agent
determines the states by the color; initial states are annotated
as well.

In this work we focus on problems during execution by a
human agent that arise from uncertainty during state infer-
ence. Specifically, we focus on two issues; erroneous state
inference, and extra-sensing behavior(policy) of the human
agent due to uncertainty. Uncertainty can arise from percep-
tual limitations or cognitive limitations. When a person is
uncertain about the current state, we may take additional
sensing actions, or take longer to decide and may still end
up deciding incorrectly. A simple example of this is if we are
lost or unsure of our location when traveling in a new place,
we might repeat sensing actions (looking for signposts or
landmarks) to locate ourselves better.

For our work, we consider that the human (when uncer-
tain) may take additional sensing actions which may or may
not be helpful. We treat these actions as coming from an
extra-sensing policy of the human, as they are not part of the
state-action mapping in the policy given to the human to exe-
cute; they are a consequence of the human’s uncertainty. We
cannot programmatically control these, as we would with
a non-human agent. In this work, we represent the extra-
sensing policy as a unique extra-sensing action per state (we
will discuss this more).

As a result of the extra-sensing action, the agent’s un-
certainty might get reduced, or the additional sensing may
not make a difference in correcting errors (expected/aver-
age outcomes may not improve); a human agent might do



them anyway as these additional sensing actions are their
only options to resolve uncertainty. In our work, we are not
trying to remove uncertainty during execution; we expect it
to persist in certain problems despite efforts to minimize it.
We instead try to account for the effects of uncertainty when
computing a policy to get better policies. An optimal policy
(in terms of domain dynamics) which ignores the effects of
uncertainty on execution behavior can be markedly subopti-
mal. To help build intuition, we present an example using a
“colored-gridworld” domain in Figure 1.

In this simple example, an agent determines the current
state by the color of its current position (imagine a person is
inside a room, and each room is a grid position). The colors
of grid positions include two shades of red, and two shades
of green in the grid, and lets assume the human can get
confused between similar shades of colors. Then the opti-
mal policy that ignores state identification errors and cost of
extra-sensing actions can be worse off than a simpler policy
that has the same action for similar states; in this example
the better policy would map both red states to the down ac-
tion, and both green states to the ”right” action when getting
to the goal state. The costs might seem more than the opti-
mal policy, but if we account for errors (like confusing the
two red shades) and cost of extra-sensing action to resolve
uncertainty, the optimal policy would be of lower value than
the other; we show this in later in our human subject experi-
ments.

With respect to the likelihood of the human taking an
extra-sensing action, it can be affected by not only the do-
main states, but also the human agent’s mental state. Mental
modeling a human agent can be challenging. However, we
do not need a complex mental model for this problem. In-
stead, we use the likelihoods of events related to the human’s
behavior; specifically, for a given state what are the possi-
ble states for them (how are they uncertain), and what is the
most likely state. We also model how they take extra-sensing
actions. Using a probabilistic model of the human agent’s in-
ference and behavior, we can compute better policies for hu-
man execution by accounting for how people make mistakes
and respond to uncertainty.

In this paper, we formally define the problem of comput-
ing a policy that accounts for human behavior under un-
certainty in an MDP. We do this by converting it into a
constrained Partially Observable Markov Decision Process
(POMDP). Our contributions include : (1)A model of human
agent behavior under state uncertainty (2) A Hill Climbing
algorithm and branch-and-bound algorithm to find reactive
controller policies that incorporate our human model; reac-
tive controllers map observations to actions in POMDPs. (3)
We validate our approach using experiments on a Gridworld
domain. (4)Lastly, we present the results of a human subject
study which shows evidence for the effects of uncertainty
that we assume and model in this work. We delay the related
work comparison to the end as the exposition of the idea first
helps us better compare to the related work.

3 Human Model And Problem Definition
In this work, we assume that the underlying MDP is fully
observable (the ground truth state is knowable), and an AI

agent can detect the state and execute the optimal policy
perfectly. However, when the human enacts a policy, the
human’s limitations leads to suboptimal execution due to
state uncertainty during execution. This uncertainty turns the
MDP into a POMDP where the observation random variable
is over states; we will elucidate this further in Section 3.2.
The problem this paper addresses is how to compute a policy
that accounts for the human’s state-uncertainty and behavior
due to this uncertainty. This paper will build up to the formal
definition of the problem by first discussing the human-agent
model used. Then we will define how it is incorporated into
a POMDP for computing a better policy for humans.

3.1 Human Model
The human model is defined using the probability of infer-
ence events and extra-sensing events given a ground-truth
state. For a set of states S, we define the human model as
H = ⟨pc, pu, ψ0, ψ1⟩, and the terms are defined as follows:

• pc : S × S → [0, 1] pc is the probability of classifying
(identifying) one state as another; pc(ŝ|s∗) where s∗ is
the true state, and ŝ is the best-guess state that the human
agent thinks it is. We will use the ŝ symbol above a state
to indicate the human’s guess of the state.

• pu : S × {Si ∈ 2s} → [0, 1] is the probability of being
uncertain over a set of states (Si) for a given true state.
For example, pu({si, sj}|s∗) is the probability of the
human considering {si, sj} as the possible states when
the true state is s∗. We will refer to such Si sets as a
“possible-set”.

• ψ0 : S → [0, 1] determines the probability of the extra-
sensing action being taken when the human infers only
one possible state but is not certain, or was not able to
infer any state.

• ψ1 : S → [0, 1] determines the probability of the extra-
sensing action when the agent is uncertain about the right
policy action. This happens when the human considers
two or more states as possible, and the policy conflicts
between these two states. If there is more pressure to act,
or the human-agent is impulsive, the probability of extra-
sensing action would be lower, and so ψ1 would be lower
as well.

The arguments of pc(.) and pu(.) can be seen as capturing
the mental-state or belief state of the human agent for a given
ground truth state s∗; pc(.) will give the likelihood of a state
being the most likely state in the human’s mind, and pu(.)
will give the likelihood of a set of states being the possible
states in the human’s mind.

3.2 POMDP With Human Execution Under
Uncertainty

Given this human model, the problem of computing a re-
active controller for the POMDP due to Human Uncer-
tainty in Execution (POMDP-HUE) is defined by the tuple
⟨S,A, T, r, γ, pi, H, S2⟩. Each of the terms are defined as
follows:

• S is the set of states in the MDP.



Figure 2: Additional state added to MDP for State 1 to ac-
count for different inference likelihoods by the human agent

• A is the set of actions in the domain, and an additional
a+ which is the extra-sensing action.

• S2 contains one successor state to every state in S, and is
reached only when a+ is taken. This captures the change
in human’s mental-state (beliefs about the state) after the
extra-sensing action. This is illustrated for a single state
in Figure 2. Using S2 folds the human’s mental state
into the state space. This is needed because of the extra-
sensing action the human takes due to uncertainty.

• T : {S ∪ S2} × A× {S ∪ S2} → [0, 1] is the transition
function that outputs the likelihood of transition from one
state to a successor state after an action. This includes
the extra-sensing action (a+) dynamics. States in S and
S2 have the same action dynamics except for the extra-
sensing action a+, as illustrated in Figure 2.

• r : {S ∪ S2} × A → R is the reward function. This
includes the cost/reward associated to extra-sensing ac-
tions.

• γ is the discount factor
• pi : S → [0, 1] is the probability of a state being the

initial state
• H refers to the human model as defined by
⟨pc, pu, ψ1, ψ0⟩. These terms are probability func-
tions defined for states in S ∪ S2. We discuss how to
compute these terms in section 4.

We consider that the human’s inference does not contin-
ually get better by repeating a+ actions, hence the self loop
from the state in S2 in Figure 2. There can be different suc-
cessor mental states for different extra-sensing actions or
policies taken from the same state. For this presentation, we
limit ourselves by abstracting the human’s extra-sensing be-
havior in each state to an action a+ and it’s associated new
state which will have the human’s (expected) updated be-
liefs.

The objective in the POMDP-HUE problem is to out-
put a deterministic policy (πd : S → A) for the human
agent, which optimizes for policy value (equation 3) after
accounting for effects of uncertainty –that we will shortly
formalize– determined by the human model H . The deter-
ministic policy is a mapping from a problem state to an ac-
tion. The state is what is inferred by the human, and can be
seen as a noisy observation emitted by the real state. This

makes it a POMDP, and why we refer to the objective as
computing a reactive controller for a POMDP.

One might argue for defining the policy over the combi-
nation of the most likely state and the set of possible states,
i.e. the arguments to function pc(.) and pu(.). However,
there are two negative consequences: (1) We make the pol-
icy larger for the human to memorize which can add to the
likelihood of misremembering policy actions between sim-
ilar belief states; (2) we still do not remove the effects of
uncertainty; it only shifts how the person is uncertain. If (for
example) the policy is different between two belief states
that differ only in the most likely state, and the human is not
sure which the most likely state is, the uncertainty can still
result in extra-sensing actions. In some problems it maybe
worth giving the policy to the human over such a belief-
space (combining the arguments of pc(.) and pu(.)), but we
note that it can still result in extra-sensing actions, and also
carries the cost of a larger policy size. Here we limit the
policy to be over the state-space, which is the same as the
arguments of pc(.).

Let us return to reactive controllers; these were defined in
prior works (Littman 1994) (Meuleau et al. 2013). A reac-
tive controller for a POMDP implies a control policy based
on the current state’s observation only; this maps to the in-
ferred state in the human’s mind for our problem. As one
might surmise, we make the assumption that the human’s
inference and uncertainty is influenced by the current state
only. This limitation can be important in OOTL (out-of-the-
loop) performance when the human has to step in due to
automation failure; automation tends to make people com-
placent and not paying much attention (Endsley 2017) and
so we might only expect current state information to be ac-
cessible to the human. Additionally, high-stress –such as in
OOTL or high speed manufacturing settings– can hamper
cognitive function on tasks(Sandi 2013). So expecting the
human agent to track history accurately, and make good in-
ferences based on that is a tall order; limiting policy condi-
tioning to the current state (using a reactive policy) can be
safer and kinder to the person in such settings.

Other than the policy being conditioned on the current
state, we use the following consideration: If a person is un-
certain over a set of possible states in their mind, and if the
policy conflicts between these states, then the human is more
likely to take extra-sensing actions to try to resolve uncer-
tainty (which we show in our human subject studies). Put
another way, the uncertainty that matters when executing
a policy, is about what the right action is; it is not to per-
fectly detect the state. If the action is the same across possi-
ble states then there is no need for additional resolution. In
accordance with this, we will shortly define the likelihood of
the extra-sensing action (a+) as a function over the policy.

Since extra-sensing actions and uncertainty affect execu-
tion of a policy, any deterministic policy given to the hu-
man (πd), when actually executed by the human becomes a
stochastic policy; πp : (S × A|πd) → [0, 1]. The first effect
from uncertainty, is the likelihood of taking an extra-sensing
action in a state (s∗ ∈ S

⋃
S2) is defined as follows:



πp(s∗, a+|πd) = ψ0(s∗) + (1− ψ0(s∗))× ψ1(s∗)×∑
Si∈2S

pu(Si|s∗)× 1[0 <
∑

s1,s2∈Si

1[πd(s1) ̸= πd(s2)]] (1)

where 1[.] is the indicator function. Succinctly, the equa-
tion says is that if one of the states in the possible-set (Si)
has a policy action that doesn’t match with another, then the
likelihood of extra-sensing action (a+) can increase propor-
tional to pu(Si|s∗)(the probability of inferring the possible-
set Si). For any given state, the number of possible-sets
with non-zero probability are likely to be few, and not the
full powerset (2S). For example, in a gridworld setting, the
possible-sets for the current state –determined by the agent’s
position– may involve neighboring states (positions); how-
ever, the agent is unlikely to think that it could be much fur-
ther away.

The aforementioned extra-sensing action could translate
to many types of actions in a problem instance; these could
include calling a supervisor or colleague for help, or re-
checking state features. The specific dynamics of the extra-
sensing actions are domain dependent. For this paper’s pre-
sentation, we limit the effect of extra-sensing actions in that
it can improve the inference of the human agent, but doesn’t
change the ground truth state. In terms of the problem defi-
nition, this means the POMDP-HUE state transitions from a
state in S to the corresponding state in S2 like in Figure 2.

In addition to taking extra-sensing actions, the other ef-
fect of uncertainty is on the likelihood of choosing a policy
action from the given policy πd, and is as follows:

πp(s∗, a|πd) = (1− πp(s∗, a+, πd))×∑
si∈S

pc(ŝi|s) ∗ 1[πd(si) = a] (2)

This means that the likelihood of an action is the sum of
the likelihood of it’s associated states being inferred as the
current state. This is multiplied by the probability of not tak-
ing the extra-sensing action in the state, which ensures the
probabilities sum to 1.

Finally, we define the overall value of the original policy
πd given to the human as follows:

V (πd) =
∑
s∈S

pi(s) ∗ Vπp
(s) (3)

where Vπp
(s) is the state value in the input MDP by fol-

lowing the stochastic policy πp which included the effects
of uncertainty. The value is a weighted sum of state value,
where the weights are the initial state likelihood given in
pi(.).

4 Computing Human Model Parameters
Our work focuses on the computing the policy for a human
model defined in terms of ⟨pc, pu, ψ0, ψ1⟩. Part of the ap-
peal of this approach for us in modeling the human agent,
is that we only need probabilities of events. We do not have
to make any assumptions on inference-limitations such as

bounded or noisy-rational assumption on human inference
(Simon 1990), (Zhi-Xuan et al. 2020). The probabilities can
be estimated from empirical data. We present an empirical
approach to collect the data needed to compute the probabil-
ities; we use this approach in our human subject studies as
well.

Since the model parameters are dependent on the state,
we can collect data by testing the human agent on just the
task of state detection. The human agent is presented multi-
ple instances (trials) of each state –state samples are ordered
randomly– and asked to look at the state following a prede-
fined perception-policy. The perception policy could be as
simple as a time limit on looking at state information before
acting; for example, in manufacturing, a time limit is impor-
tant as it translates to cost. Alternatively, the perception pol-
icy could be a predefined series of perception actions. After
the perception-policy, we ask what they think the possible
states are (can be more than one) and what they think the
most-likely state is. Most importantly, we ask if they would
like to confirm their answer of they think the correct state is,
or look at the state again (extra-sensing) before confirming
their answer. For this process, we would count the following
for each state:

• Ci(ŝi|s∗):The number of times a state (si) was inferred
(most-likely state to the human) for a given state (s∗).

• Cu(Si|s∗): The number of times the person inferred a
set of possible states (Si ⊂ 2S) for a given state. This
includes the empty set, and singleton sets with one state.
The count Cu({si}|s∗) of a singleton set {si} will be
atleast as much as Ci(ŝi|s∗); it can be greater if (for one
of the trials) the human only considers one state as pos-
sible but is also uncertain, and takes an extra-sensing ac-
tion.

• Ce0(s
∗): How often a person took an extra-sensing action

when uncertain, and their set of possible states was either
1 or none.

• Ce1(s
∗): How often a person took the extra-sensing ac-

tion when they reported they were uncertain over two or
more possible states.

Note than when a person takes one or more extra-sensing
actions, we consider all subsequent counts separately; these
counts are used is to compute the human model parameters
for states in the set S2, separate from S.

Using the data collected we compute the human model
parameters as:

pc(ŝi|s∗) =
Ci(ŝi|s∗)∑

sj∈S Ci(sj |s∗)
(4)

pu(Si|s∗) =
Cu(Si|s∗)∑

Sj∈2S Cu(Sj |s∗)
(5)

ψ0(s
∗) =

Ce0(s
∗)∑

Sj∈{S:S∈2S ,|S|≤1} Cu(Sj |s∗)
(6)

ψ1(s
∗) =

Ce1(s
∗)∑

Sj∈{S:S∈2S ,|S|>1} Cu(Sj |s∗)
(7)



These definitions are so that ψ0 captures the likelihood of
taking extra-sensing action even without any inference con-
flict (but the human was not confident in their inference),
or the human was unable to infer any state. On the other
hand, ψ1 is the likelihood of taking extra-sensing actions
when uncertain; this covers the cases when the human’s in-
ference results in 2 or more states being possible (conflicting
inference). If ψ1 is much less than 1, it would mean that the
human decides to act more often than resolve uncertainty
even if uncertain. One can think of ψ1 as a reflection of the
pressure to act on the human agent, or a reflection of their
patience to resolve uncertainty.

5 Policy Computation For POMDP-HUE
Finding an optimal solution to the POMDP-HUE problem
is at least as difficult as computing a reactive (memoryless)
controller for a POMDP, which is what our problem reduces
to if one ignores the extra-sensing action; this can be done
by setting ψ0 = 0, ψ1 = 0 for all states. Computing a re-
active controller has been shown to be NP-hard ((Littman
1994)). To handle this computational complexity, we present
two algorithms. One is a hill-climbing algorithm for comput-
ing good albeit suboptimal policies quickly, and to handle
larger state spaces. The other is a branch-and-bound algo-
rithm for computing the optimal policy at higher computa-
tional cost, which is suitable for smaller state spaces and
also for bounding the suboptimality of the hill-climbing ap-
proach for larger state spaces.

5.1 Human-Agent Policy Iteration(HAPI)
We call our hill climbing approach Human-Agent Policy It-
eration (HAPI) which takes the greedy best step to change
the policy while accounting for human agent’s uncertainty
effects. In HAPI we start with a random deterministic pol-
icy (πd), and compute the corresponding stochastic policy
after state aliasing (πp as defined by equations 1 and 2). We
then determine the value of this stochastic policy by equa-
tion 3. Then (in the hill climbing step) for each possible pol-
icy change we compute the new policy value, and select the
action to change the policy. This is repeated until no better
changes can be made. Each step’s computational complex-
ity is O(|S|4|A|); this is because each step tests a number
of changes no more than |S||A|, and the value of a fixed
policy can be computed in O(|S|3) by computing the state
transition likelihoods for that policy and using the follow-
ing closed form computation (standard equation for value
computation in a Markov Reward Process (MRP) (See (Ibe
2013) for more details on Markov processes):

v⃗s = (I − γ ∗ Pss′)
−1 ∗ r⃗s (8)

Where v⃗s is the vector of state values, Pss′ is the transition
probability matrix for a given policy, and r⃗s is the vector of
expected rewards at each state (which can be computed for
a fixed policy).

The total time taken for HAPI will naturally be problem
specific; the number of improvement steps will depend on
the initial point and the possible improvements in the do-

main. Additional random restarts can improve the outcome,
as is common in hill-climbing approaches.

5.2 HUE Branch-And-Bound Policy Search
(H-B&B)

HAPI is helpful to quickly find a good policy. However, if
one wanted the optimal policy, then the following branch
and bound approach –which we will refer to as H-B&B can
be used for smaller state spaces. It can also be used to bound
the suboptimality of the policy found by HAPI, which can be
used to decide if further iterations of HAPI would be worth-
while or not.

This branch-and-bound searches in policy space by
choosing an action for a state at each level in the search tree.
We assume the reader is familiar with the basics of branch
and bound (Brusco, Stahl et al. 2005). At any given point in
the policy search, only a partial policy is defined. We need a
lowerbound, and an upperbound to determine if the node in
the search tree should be expanded. We set the initial lower-
bound as the value of the policy output by HAPI search.

We still need a helpful upperbound that accounts for the
extra-sensing action. To compute this, we use an MDP re-
laxation of the POMDP-HUE for a given partial policy.
This is done by assuming perfect state observability only
for the remainder of the undefined states (policy not yet as-
signed), and using a lower-bound for the likelihood of er-
rors and extra-sensing actions for the other states. We call
this a “Partially-Controlled MDP” (PC-MDP). We compute
the optimal policy (including extra-sensing actions) for this
PC-MDP using value iteration and that is the upperbound.
This idea of using an easier MDP to bound the state-value
in branch-and-bound is similar to the bound employed in
(Meuleau et al. 2013) except theirs does not consider or al-
low any notion of extra-actions. The gist of it is as follows:
If one can set a lower-bound for the probability of state-
misidentification and extra-sensing actions in all states, then
by optimizing for the remainder of the policy action proba-
bility in each state, the policy-value obtained will be equal
to or greater than any other possible policy completion. A
trivial lower-bound would be to assign zero probability to
errors, i.e. s1 ̸= s2 → pc(s1|s2) = 0, and extra-sensing
actions (πp(s, a+|πd) = 0) for the states whose policy is
not yet defined. Then optimizing the PC-MDP policy would
give the upperbound for state-value. Our bound considers
the effect of prior decisions in H-B&B to give a tighter, more
helpful upperbound for the search process. This is done by
using the human model H parameters and lower-bounding
the likelihood of extra-sensing action by removing unde-
fined states from the probability computation in Equation 1.
The pruning effects of our upperbound will be shown in the
results. If the reader is interested in the details and proof of
the bound, please see our supplemental material 1.

In each step in the branch and bound, we need to run value
iteration on the PC-MDP. In our algorithm, we stop value
iteration after a certain number of iterations; we set number
of iterations(k) to 1000 in our experiments. We then take
an upperbound for each state’s value computed as vk(s) +

1https://tinyurl.com/5n9y7dzh



ϵ∗γ
1−γ (Chapter 17 (Russell and Norvig 2021)) where ϵ here is
||vk − vk−1||. This error is added to the policy value to set
the upperbound.

The size of the policy search tree is unfortunately large;
it is |A||S| if we assume the same number of actions (|A|)
in each state. However, a good upperbound and ordering the
states intelligently can greatly prune the tree. We order the
nodes in the search tree using the following score:

score(s) = (
1

|S|
+ pi(s))×

∑
s′inS

pc(s|s′)× max
a∈A(s′)

r(s′, a)

(9)

This function increases the score of a state based on how
likely a state is to be the initial state (pi(s)) since those state
values determine the overall policy value (Equation 3). It
also considers the likelihood that other states are confused
with it, because the policy decision for those states will af-
fect the state value for others too (due to state confusion).
This likelihood is scaled by the max reward possible in the
other states. The scaling is because we want to order pol-
icy decisions for states based on how much they influence
the policy-value; so we prioritize decisions affecting higher
reward/lower cost states. This score (Equation 9) can help
us make pivotal policy decisions sooner in the search pro-
cess, and work with the upperbound to prune the search tree
faster.

6 Experiments and Results
We tested our algorithms on two qualitatively different do-
mains; gridworld and warehouse-worker. We present the
gridworld experimental results here as we thought it most
informative for the ideas in this work and evaluating per-
formance. In the warehouse-worker domain, an agent has to
make packing decisions for a set of products to be shipped
to a customer. The errors come from not knowing which is
the best box for a set of products (small, medium, or large
boxes). A detailed description of the warehouse-worker do-
main and experimental results are in the supplemental mate-
rial 1.

For testing our algorithms, we repeated HAPI ten times
(10 random restarts) for each experimental setting and con-
sider the best value as the output from HAPI. As for H-B&B
search, it ofcourse need only be run once. All results can be
consistently reproduced from our codebase all variability in
the program is controlled by a random-seed parameter that
is set to 0.

6.1 Experimental Setup
First we present the Gridworld experiments on 5 × 5 grids
where H-B&B was allowed to run to completion. We varied
the properties of the MDP to see how well HAPI performs
compared to H-B&B. The actions for each state (defined by
agent position) are the standard ones; these are move up,
down, left, and right. The goal is the bottom right square
like in Figure 1, albeit without the colors (colors are used
in the human subject studies). The goal state is an absorb-
ing state, and the reward is 100 upon transitioning into it.

When the agent takes the extra-sensing action (a+), it re-
duces by half both the error likelihood (pc() of incorrect
state detection) and probability of incorrect possible-sets pu
(possible-sets that have states other than the ground truth).
Taking a+ results in a state transition to a parallel state in S2

(as in problem definition and Figure 2). S2 states have the
same action effects but with different pc and pu functions.
Subsequent extra-sensing actions from this state, returns to
the same state. This means additional extra-sensing actions
from S2 does not change the inference outcomes (pc and pu)
of the agent in our experiments.

All action transitions are stochastic with a 5% chance of
transitioning to a random neighboring grid position or stay
in place. All actions will have a random cost for each ex-
perimental setting. An invalid action (like moving up from
the top of the grid) results in the agent staying in the same
state and incur the cost assigned to that state and action. The
extra-sensing action has a cost of 1.

As for the likelihoods of confusing states (pc), we de-
fine the likelihood of confusing a grid state (position) with
another based on the L1 distance between positions. pc is
defined in Equation 10. The equation is simply saying that
neighboring states are much more likely to be confused with
each other than with those further away.

pc(s|s′) =
1/(L1(s, s′) + 1[s = s′])m∑

s′′∈S 1/(L1(s, s′′) + 1[s = s′′])m
(10)

where m is a scalar. We set it to 5 for our experiments.
This makes the likelihood of confusing one state with an-
other that is more than 1 step away to be very small. Lastly,
we add the +1 to avoid dividing by zero. As for the possible-
sets in pu, we limit ourselves to sets of size 1 and 2. The
probability of each set (pu(.)) are computed using equation
11.

pu({s2, s1}|s∗) = pc(ŝ2|s1) ∗ pc(ŝ1|s∗)+
pc(ŝ1|s2) ∗ pc(ŝ2|s∗)

(11)

Note s1 can be the same as s2 in Equation 11; those cases
correspond to the pu(.) probability for possible-sets of size
1. Lastly, in the agent model, ψ0 was set to 0.05 –which
means when there is no inference conflict the agent may still
take a+ 5% of the time– and ψ1 to 0.9.

With respect to the experimental settings, we first present
results of a 5x5 grid, with one additional mental-state (S2

state) per state. We used a smaller grid first because while
HAPI (hill-climbing) can handle larger sizes of grids, branch
and bound (H-B&B) speed drops very quickly. This is be-
cause the policy space grows as |A||S|; even a 5x5 grid has
425 ≈ 1.1×1015 policies. However, the search process elim-
inates most policies quickly, and the bound helps immensely
with pruning the policy space. Engineering improvements to
speed up H-B&B through parallelization and memory man-
agement is left as future improvements. We posit that for
a single task’s policy (for a human agent) even state-sizes
around 25 can be sufficient for some problems. For exam-
ple, a basic car-maintenance policy for owners would have a
few states and associated actions to deal with issues such as



oil-change, car battery-health and such. In the supplemen-
tal section1, we discuss an application motivated domain-
example via the warehouse-worker domain that can be de-
scribed with 12 states. If the problem requires a larger state-
space, we can use HAPI search to find policies.

To evaluate the algorithms, we focused on varying three
parameters: (1) The discount factor γ, whose default value
is 0.7; (2) the likelihood of random actions whose default
value is ρ = 0.05; (3) A “reward noise range” parameter
(RNR) to add random rewards to each of the actions in the
grid and whose default value is 2; anRNR = 2 would result
in random rewards for each action in the range [−1, 1], i.e.,
uniformly distributed about 0.

We chose to vary the discount factor since a larger dis-
count factor couples the policy decisions more strongly
(since the state value is affected by states further away). We
also chose to add random rewards to each of the actions other
than the goal actions to make the search more challenging.
Lastly, increased random action likelihood meant that states
which had both high reward and high cost actions are less
attractive than if there was no random action likelihood.

Our code was implemented in python using “pybnb” li-
brary for branch and bound, and PyTorch and NumPy for
matrix operations. The experiments were run on a PC with
Intel® Core™ i7-6700 CPU, running at 3.40GHz on Ubuntu
20.04 with 32 GB of memory.

6.2 Results
We first present the values of the policies discovered for the
5x5 grid experiments in Table 1. The best policy discovered
by HAPI approach was either very close to optimal, or opti-
mal in all cases. The takeaway is that for this experimental
setting, HAPI with 10 iterations found either a very compet-
itive value or the optimal policy value in all cases. We found
this to be the case in the 10x10 grid setting as well (with
the random costs and stochastic transitions) in Table 2. For
those experiments, we only used H-B&B to find an upper-
bound and use it to define the suboptimality of the policy
value found by HAPI; the last number in each table entry is
the ratio with the upperbound. In the 10x10 grid setting as
well, HAPI was able to perform well. A related point is that
H-B&B was able to find a good upperbound to the policy
value within 30 minutes, which can be helpful in deciding
if further iterations of HAPI might be worthwhile or not. In
our supplemental material1, we present results for the time-
taken for the same experiments, as well as the number of
nodes openend by H-B&B search. The nodes opened is a
fraction of the policy space which shows the efficacy of the
upperbound used in the search; even in the worst result (most
nodes opened) it is a miniscule fraction of the total (ratio of
4.2× 10−21)

6.3 Human Subject Experiments
For our human subject experiments we wanted to see if our
assumptions hold with respect to human policy execution
under state uncertainty. We use a small grid world setting,
and use colors to define each state in order to introduce state
uncertainty from perception. The full grid is as illustrated
in Figure 1. In the underlying MDP, each action has costs

Discount Factor
(RNR=2, ρ=0.05)

Reward Noise Range
(ρ=0.05, γ=0.7)

Random Action Probability
(RNR=2, γ=0.7)

γ Values RNR Values ρ Values
0.3 11.87, 11.87, 1.0 0 33.67, 33.67, 1.0 0.05 34.16, 34.17, 1.0
0.5 19.05, 19.05, 1.0 1 33.89, 33.89, 1.0 0.1 33.65, 33.65, 1.0
0.7 34.16, 34.17, 1.0 2 34.16, 34.17, 1.0 0.15 33.08, 33.08, 1.0
0.9 69.45, 69.45, 1.0 4 34.75, 34.75, 1.0 0.2 32.46, 32.46, 1.0

Table 1: Policy value results for a 5x5 grid. Each of the pri-
mary columns changes one experiment-parameter, and holds
the other two constant. Each entry has the best policy value
from HAPI, the optimal value found by H-B&B, and the
ratio of the two. All values rounded down to two decimal
places

Discount Factor
(RNR=2, ρ=0.05)

Reward Noise Range
(ρ=0.05, γ=0.7)

Random Action Probability
(RNR=2, γ=0.7)

γ Values RNR Values ρ Values
0.3 3.17, 3.48, 0.91 0 11.14, 11.47, 0.97 0.05 11.56, 12.29, 0.94
0.5 5.26, 5.65, 0.93 1 11.27, 11.83, 0.95 0.1 11.17, 11.86, 0.94
0.7 11.56, 12.29, 0.94 2 11.56, 12.29, 0.94 0.15 10.77, 11.4, 0.94
0.9 43.9, 45.91, 0.96 4 12.28, 13.48, 0.91 0.2 10.36, 10.97, 0.94

Table 2: Policy value results for a 10x10 grid. Each of the
primary columns changes one experiment-parameter, and
holds the other two constant. Each entry has the best policy
value from HAPI, the best upperbound found by H-B&B af-
ter 30 minutes, and the ratio of the two. All values rounded
down to two decimal places

as illustrated in Figure 1, and all undisplayed actions have
a cost of -10. There is a reward for reaching the goal at the
bottom right position (+10). After reaching the goal position,
the state then changes to a random new position from a set
of initial states.

Our objective in this study was to first build an averaged
human model using the procedure described in Section 4,
and then use that model to compute a policy that accounts for
the uncertainty effects. The performance using this policy is
then compared to the human agents’ performance using the
optimal policy for the underlying MDP. The state space was
designed so that some sets of states (the color associated to
them) are visually similar, like “Green 1” and “Green 2” in
Figure 1, and cause uncertainty.

All participants were recruited using the “Prolific” service
for online studies, and prescreened using using their service
for vision (can see colors clearly). We also asked 3 ques-
tions at the start of our study to test if participants could
distinguish between lighter and darker shades that look sim-
ilar. All prolific participants are above 18 years of age, and
equal division of male and female participants (as they iden-
tify) was requested for the study (Prolific handles this part).
No other demographic information was collected. Gender
or age based comparisons are out of the scope of this study.
Our human-subject studies had IRB approval, and we gave
clear information about the purpose of the experiments to
our participants in the consent form before the experiments.
We also debriefed the participants, and gave the option to
contact us for more information.

In the first phase, we collect data to build an (averaged)



model of a human agent for the task. This means comput-
ing < pc, pu, ψ0, ψ1 > for each state (including S2 states).
We do this using a preliminary study that displays the col-
ors used in the main study, and asks the human to match a
color displayed (colored square) on the left of the screen to a
list of numbered colors on the right of the screen. The color
was only shown for 0.5 seconds, but the table on the right
was permanently displayed. They were given the option to
see-again if they were uncertain by pressing the back arrow
key; doing so gives us a clear indication of the extra-sensing
action.

In this study, before the human can submit their answer or
ask to see the color again, we ask them to enter their guesses
as to which colors they think it could have been. Example,
if a color Green1 was displayed the user might enter (1, 2)
which are the indices for the two green shades, or just enter
one color if they were confident in their decision.

The participants were paid a flat amount, as well as an ad-
ditional 0.1 dollars for every correct answer as an incentive
to get it correct. We used data from 16 participants for this
phase, each participants was asked 15 questions; colors were
randomly sampled during testing. We use the data collected
to compute the parameters of the human model as per the
equations in Section 4.

As one might expect, the two shades of green, and two
shades of red causes participants to request to see the color
again, as well as make the most mistakes. All the unique
(non-similar) colors that we tested the participants with were
easily identified with almost no errors and no extra-sensing
actions. We saw this for many unique colors during our ini-
tial testing, and so felt confident that we were not showing
the colors for too short a duration. One interesting note was
that people seemed more likely to confuse the darker shade
of red with the lighter shade than vice versa; this was not the
case for the shades of green which was much less confusing.

After computing the human model parameters, we use it
to compute the optimal policy using H-B&B for the grid
MDP in the study. We also computed the optimal policy by
value iteration which ignores state-uncertainty. These were
the two policies given to the humans in phase 2 of the study,
and are displayed in Figure 3; the policy on the left is the op-
timal policy of the MDP (ignores) uncertainty, and the pol-
icy on the right is the one that accounts for uncertainty. The
discount factor γ was set to 0.9 to compute the policies.

Just as in phase 1, we display a color on the left of the
screen for 0.5 seconds. This color corresponds to their cur-
rent position in the grid as in Figure 1. We ask the participant
to press the arrow key corresponding to the color seen using
the policy displayed on the right, and so navigate through
the underlying grid. After each step the color of the new po-
sition is displayed. The participant can see a color again by
pressing the ”Control” button (extra-sensing a+ action). We
track every button press and their progress through the grid.
When they reach the goal state, the state is reset to another of
the initial states, for a total of 3 times. The initial states are
shown in Figure 1. We used 20 participants for this phase,
and had to drop one data point as the data suggested they
were randomly guessing for both policies.

Using the data collected, we wanted to see if using the

Figure 3: The two policies for the second phase of human
subject experiments. The left policy is the optimal policy
without considering the effects of uncertainty, and the right
is the optimal policy after accounting for uncertainty.

policy that accounted for uncertainty translated to more re-
ward accrued. We took the difference between the reward ac-
crued in each run (initial to goal state) with it’s correspond-
ing run in the other policy. On average the cost incurred by
the policy that accounts for uncertainty is less by 1.45. We
ran a dependent t-test for paired samples; the same partici-
pant did both corresponding runs, and so we treat the data
as paired samples. We set the significance level for t-test at
α = 0.05, and ran the paired t-test using the scipy-stats li-
brary in python (Virtanen et al. 2020) to see if the policy
with uncertainty was better (one-sided test). We got a t-test
statistic value of 2.240 which corresponds to a p-value of
0.0147. Thus we can reject the null hypothesis that the pol-
icy with uncertainty gives the same or worse value than the
optimal policy without uncertainty.

For our experiments, given the simplicity of the problem
we found it sufficient and easier to build an averaged human
model and use it for all participants. Ideally one would build
a human model unique to a person. Such an averaged model
could be tuned with fewer additional data points per person,
using a Bayesian approach to computing the parameters (us-
ing a dirichlet distribution for tracking the priors). Overall,
our human-subject studies give support to the idea that poli-
cies which consider state uncertainty are executed faster and
more reliably.

7 Related Work
If the effect of uncertainty was limited to only erroneous
state detection (as captured by pc(.) in the human model),
one can frame the problem in this paper as computing a
reactive controller for a POMDP and use prior methods in
(Littman 1994) and (Meuleau et al. 2013). However, none of
the prior methods handle the case where additional (extra-
sensing) actions are taken by the agent due to uncertainty.
This can result in different policies between our approach
and prior reactive controller approaches. We verified this
by setting ψ1, ψ0 to be zero (so no extra-policy actions are
taken); doing so changes our H-B&B algorithm to compute
the optimal POMDP reactive controller based on pc(.) as
the observation likelihood. We found that this policy and it’s
value was suboptimal in gridworld experiments when there



were higher costs for extra-sensing actions; this fits our ex-
pectations as one would ignore extra-sensing actions when
computing a standard reactive controller for a POMDP.

An extension and generalization of the reactive controllers
work is computing history-based controllers (Kumar and
Zilberstein 2015) which considers mapping a history of ob-
servations to actions as opposed to just the current observa-
tion (which is a state-history of 1). For this work we limited
ourselves to history of 1 state. One could reasonably extend
our approach to longer history-based controllers if needed.
There are additional concerns such as the higher cognitive
load for inferring the most likely sequence of states, and
larger policy size that must be considered when doing so.

In the direction of considering human errors, there is work
that considers “blindspots” in an agent’s representation, and
how to transfer control between an automated agent and a
human based on their blindspots (Ramakrishnan et al. 2019).
These blindspots can arise due to a mismatch in the state
space during training versus execution, or limitations in rep-
resentational capabilities. There is a follow-up work that fo-
cuses specifically on a human agent’s blindspots (Ramakr-
ishnan et al. 2021) and reducing errors. Our work attacks
the problem from a different angle. Instead of minimizing
errors for a given policy, we try to compute a policy that ac-
counts for human errors and human’s behavior in response
to uncertainty.

8 Conclusion and Future Work
In this paper, we define the problem of computing a reac-
tive policy that accounts for human execution behavior un-
der state uncertainty. We formalized a probabilistic model
of the human agent’s inference and behavior, as well as how
to compute the parameters in it. We then presented two al-
gorithms (HAPI and H-B&B) to compute policies for our
problem, and show experimental results in a gridworld set-
ting. We also have results for a warehouse-worker domain
in the supplemental material1. Lastly, we conducted human
subject studies to show an example of how the human model
can be empirically derived, and use it with our H-B&B al-
gorithm to compute the optimal policy for our problem. We
show that this policy resulted in statistically more reward ac-
crued than the optimal MDP policy that ignores the effects
of uncertainty. Our human-subject studies supports the con-
siderations we make for our human model such as expecting
identification errors between similar states and extra-policy
actions.
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