
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPLICATE AND QUANTIZE: A PLUG-AND-PLAY
STRATEGY FOR LOAD BALANCING IN SPARSE
MIXTURE-OF-EXPERTS LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While the rapid increase in the number of model parameters poses significant
benefits to the development of large language models (LLMs), computational
costs are also raised. In order to tackle this difficulty, the sparse mixture-of-
experts(SMoE) model was introduced to tackle LLM scaling by activating a subset
of experts per input. Therefore, how to leverage the knowledge of multiple experts
will be an important topic. Normally, in the most extreme scenario, employing a
balanced expert allocation system will result in a time-saving of n times compared
to utilizing only a single expert. Thus, in this paper we (1) systematically ana-
lyzed the performance and functionality of each expert. (2) Introduced a metric to
fill the blank of evaluating load balance for the sparse mixture-of-experts(SMoE)
model, based on the observation. (3) Proposed a dynamic plug-and-play strategy
that is both trainingless and near-lossless, effectively resolving the load balancing
problem, in contrast to previous works that focused on training strategies.

1 INTRODUCTION

Large-scale language models (LLMs) have become a cornerstone for advancing natural language
processing (NLP) tasks ranging from machine translation to mathematical reasoning, owing to their
numerous model parameters Wang et al. (2023) Yuan et al. (2023) Imani et al. (2023) Huang &
Chang (2022). In face of the computational cost caused by an increasing amount of model parame-
ters, sparse mixture-of-experts (SMoE) architectures Chen et al. (2023) Riquelme et al. (2021) Zhao
et al. (2023) have arosed significant attention due to their empirical success in scaling model capac-
ity efficiently. The core idea behind SMoE is its sparse routing strategy, which enables the model to
selectively activate a subset of experts (specialized sub-models) for each input. This selective activa-
tion mechanism allows SMoE to increase the overall model capacity without a proportional increase
in computational cost. As a result, SMoE is considered as an attractive solution for deploying LLMs
and becomes widely adopted in the state-of-the-art LLMs Jiang et al. (2024); Dai et al. (2024); Bai
et al. (2023).

Load Imbalance of SMoE. Despite these advantages, SMoE architectures face a critical challenge:
load imbalance among experts Zhou et al. (2022) Fedus et al. (2022), i.e., some experts are overbur-
dened with a disproportionate amount of work while others remain underutilized. This issue affects
the inference speed and resource utilization. Therefore, there are some current SMoE model focuses
primarily on the routing mechanism’s adjustment during the training stage, but it’s unpredictable
in the inference period Shazeer et al. (2017); Fedus et al. (2022); Lepikhin et al. (2020b); Zhou
et al. (2022). Moreover, this imbalance issue will be more clearly demonstrated within a fixed time
window in streaming scenarios, which are more common in real-world applications.

Load Imbalance Score. Previous works focused only on optimizing the loss of load balance during
SMoE model training, with the aim of enhancing the model’s overall performance. However, there is
no specific metric target to evaluate the routing strategy in the SMoE model. Based on this situation,
we propose a metric for evaluating this phenomenon inside the SMoE model.

Our Observation: Heavy-Hitter vs Important Experts in SMoE. During the inference period, we
can easily observe which experts are activated more than others, a phenomenon we called ”heavy-
hitter experts.” However, are those experts the most important and unique to the task? Does the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Proposed Replicate and Quanitze pipline.

heavy workload make a significant contribution? In response to these questions, we conducted a
series of experiments and observed two axes in the SMoE model—the most important and the heavy
hitter. Obviously, the most important experts shoulder the model performance improvement, and the
heavy-hitter experts have more workload compared with others.

We Propose Replicate and Quantize: A Plug-and-Play Strategy for SMoE. With the uniform
metric, we suggest a new plug-and-play strategy that effectively and dynamically solves the load
imbalance issues in the SMoE model. Our approach focuses on identifying and optimizing the use
of the model’s heaviest and least important experts. Specifically, we introduce a low-cost method to
pinpoint the most heavily used experts and then replicate these experts using a lower-bit quantized
version to mitigate their load. Simultaneously, we quantize the least important experts to ensure that
the overall model fits within the total memory budget, thereby maintaining efficiency.

A series of empirical experiments demonstrate that our proposed strategy effectively addresses the
load imbalance issue with minimal impact on model performance. By providing a near-lossless
solution to redistribute the computational load among experts, our approach enhances the efficiency
and practicality of deploying SMoE models. This work contributes to the ongoing efforts to optimize
large language models, making them more robust and scalable for real-world applications.

Summary of Contributions. We summarize our contributions as below.

• We observe that there are two angles in addressing the load imbalance issue of SMoE: we need to
determine the heavy-hitter and important experts in SMoE. Moreover, we perform an analysis on
the relationships of these two types of experts in SMoE LLMs.

• We propose a replicate and quantize: a plug-and-play strategy for load balancing in SMoE LLMs.
We replicate the heaviest expert with a lower-bit quantized version. Furthermore, we quantized
the least important expert to fit the total memory budget. Our empirical evaluation suggests that
our approach provides a near-lossless way of addressing the load imbalance issue in SMoE LLMs.

• We demonstrate how the proposed replicate and quantize strategy performs in a streaming setting
and guide the SMoE to dynamically manage the load balance in different workloads. Empirical
results suggest that our strategy significantly reduce the load imbalance during the workload.

• We provide a metric that effectively evaluates the load balance in the SMoE model, thus filling the
gap in evaluating the SMoE model’s routing strategy.

2 RELATED WORK

Sparse Mixture-of-Experts (SMoE). The Mixture-of-Experts model, introduced by Jacobs et
al Jacobs et al. (1991), aims to divide the problem into simpler sub-problems. By including sparsity

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in the MoE model Shazeer et al. (2017), where only a subset of experts is activated, computing
efficiency is significantly enhanced Lepikhin et al. (2020a). Consequently, achieving a comparable
balance among the experts becomes a great challenge. Recently, several works have been carried out,
to ensure load balance during model inference. For instance, integrate an auxiliary loss function to
regulate expert decisions during the model’s training Fedus et al. (2022) Lepikhin et al. (2020b) Zhou
et al. (2022); limit the expert capacity to prevent a select few experts from being overloaded Lepikhin
et al. (2020b); Using random top-k choices, such as top-2 choices, can enhance the probability that
an expert will be selected Team (2023) Zhou et al. (2022),or directly relies on stochastic processes
instead of deterministic routing to improve the model’s generalisation Zuo et al. (2021) Chen et al.
(2023) Roller et al. (2021). Meanwhile, SMoE has been used for various applications Zhao et al.
(2023), such as image segmentation and object recognition Eigen & Fergus (2015) Riquelme et al.
(2021) Zhu et al. (2023), where the ability to focus on specific features of the input is crucial.
Meanwhile, this advantage also attracts lots of LLMs’ workers to accelerate the model’s running
time; they can add more parameters to achieve a higher score with less constant running time ? Dai
et al. (2024).

Improving Efficiency of LLM. Enhancing the efficiency of large language models involves opti-
mising hardware and developing algorithmic breakthroughs. In terms of leveraging hardware, using
multiple GPUs or TPUs Jouppi et al. (2017) significantly increased inference speed. Additionally,
optimising model architecture can be an effective method. For example, quantization Gong et al.
(2014) Jacob et al. (2018) Zhou et al. (2017) Krishnamoorthi (2018), which reduces the precision
of numbers used in computations, decreases the size of a model and increases the speed of infer-
ence. Additionally, algorithms such as pruning Han et al. (2015) Molchanov et al. (2016) Fran-
kle & Carbin (2018) and knowledge distillation Hinton et al. (2015) Zagoruyko & Komodakis
(2016) Polino et al. (2018) reduce the computational burden by removing irrelevant weights and
teaching smaller models to imitate larger ones, respectively, which can still maintain or even im-
prove the model’s performance. Sparse training Mocanu et al. (2018) Bellec et al. (2017) Mostafa
& Wang (2019) was widely used to decrease the computational cost for the large models, which was
performed by reducing the number of active neurons.

3 REPLICATE AND QUANTIZE

In this section, we present our plug-and-play strategy for load balancing in sparse mixture-of-experts
LLMs. We begin by demonstrating the difficulty of traditional learning-based load balancing strate-
gies in the setting of pre-trained LLMs. Next, we demonstrate how to identify the heavy-hitter
experts and the least important experts in SMoE model. Then, we show how an expert’s workload
and importance shape our two perspectives of view. Finally, we introduce our proposed replicate
and quantize algorithm.

3.1 LOAD IMBALANCE IN SMOE MODEL

To begin with, we formally define a quantitative metric for load imbalance of SMoE models.
Definition 3.1 (Load Imbalance Score). Let M denote a sparse mixture-of-expert (SMoE) model
with p MoE blocks. In each SMoE block, there are m expert network modules. Each input token
selects k < m expert in each SMoE block for computation. Given a dataset X with n tokens, we
define the number of tokens that select expert j ∈ [m] at block i ∈ [p] as ni,j . Then we define the
load imbalance score for block i as

li =
mmaxj∈[m] ni,j

nk
.

Here maxj∈[m] ni,j denote the heaviest expert that receives the most input tokens. Moreover, we
know that nk/m represents the ideal case that every expert receives the same number of tokens
since nk is the total workload size and m is the number of experts.

According to the definition, the load imbalance score measures the ratio of the maximum expert
workload versus the ideal, averaged expert workload. A higher load imbalance score means poor
load balance in the inference phase of SMoE. For a perfectly balanced SMoE, its load imbalance
score for every layer should be 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Fine-Tuning Switch Transformer for Load Balancing

Load Imbalance Score (See Definition 3.1) AccuracyMethod GSM8K MMLU Truthful QA PIQA Wiki QA Hellaswag Winogrande Wiki QA
Tune router 2nd 2.4556 2.8854 2.4165 2.4814 2.7746 2.6985 2.8346 0.2039

Freeze router 1.8976 1.6155 1.4866 1.5417 1.3630 1.3925 1.4697 0.2035
Tune router 10ep 2.4935 2.7618 2.3970 2.1930 2.8080 2.4694 2.8425 0.2133

Tune both 2.3379 3.2713 2.8660 2.6816 3.2152 2.8884 3.1544 0.2062
Freeze router 1ep 2.1052 1.8082 1.6714 1.5206 1.5710 1.5718 1.7276 0.2057

Tune router 2.7509 3.7665 3.5322 3.3336 3.9062 3.3334 4.1324 0.1135
Tune expert 1.9614 1.7298 1.6715 1.6909 1.5011 1.6527 1.6455 0.1955
Full finetune 2.3056 2.7234 2.4218 2.1323 2.6271 2.3064 2.6285 0.2011

Original 1.9709 1.5405 1.4956 1.5770 1.3910 1.4182 1.5261 0.1396
Our method 1.3937 1.2962 1.3494 1.2756 1.2864 1.3623 1.2146 0.1935

The Hardness of Fine-Tuning for Load Balancing. We show with experiments that it is hard to
further fine-tune the SMoE to enforce load balance. We take the Switch Transformer Fedus et al.
(2022) as an example and explore a series of fine-tuning strategies based on load-balancing loss
proposed in Fedus et al. (2022). As shown in Table 1, we present the results with the following fine-
tuning strategies: (1) Full Finetune: All the parameters in this model participate in the fine-tune,
(2) Tune Expert: Only the experts’ weights should be tuned. (3) Tune Router: Only the router’s
weights should be tuned. (4) Freeze Router 1ep: Only freeze the router weights in the first epoch,
and then release them to finish the full fine-tuning. (5) Tune Both: Only tune the router and experts’
weights. (6) Tune Router 10ep: During each epoch, tune the router weights only in the 10% step
while freezing the remaining weights. For the remaining steps, finish fine-tuning the entire model.
(7) Freeze Router: In this fine-tuning strategy, we only freeze the router weights and tune all of the
others’ weights. (8) Tune Router 2nd: Before the last two epochs, we fully fine-tuned the model,
and in the last two epochs, we only adjusted the router weights, freezing the other weights.

This table illustrates the performance of the fine-tuned model. Except for the ”Tune Router” strat-
egy, the others all have obvious improvements in accuracy, as demonstrated by the results. However,
when we used those fine-tuning strategies, almost all of the load imbalance scores (see Defini-
tion 3.1) for each dataset in each strategy increased. This suggests that despite having sufficient
computing resources and time to refine the model in various ways, achieving the load balance in
token allocation remains challenging.

3.2 THE HEAVY-HITTER EXPERT ORACLE IN SMOE

We argue that due to the load imbalance of SMoE. There exists a heavy-hitter expert. Formally, we
introduce the following oracle.

Oracle 3.2 (Heavy-Hitter Expert). LetM denote a sparse mixture-of-expert (SMoE) model with p
MoE blocks. In each SMoE block, there are m expert network modules. Each input token selects
k < m expert in each SMoE block for computation. Given a dataset, X with n tokens, the expert
j at a layer at MoE block i that has the maximum ni,j among block i is viewed as the heavy-hitter
expert in block i.

Next, we describe how to identify heavy-hitters using input data. As shown in Algorithm 1, given an
input set of tokens X , we keep track of the expert choices for each input x ∈ X . We then quantify
an expert’s workload by counting the number of input tokens that have selected this expert. For each
MoE block, we designate the expert with the heaviest workload as the heavy-hitter for that block.
According to our study, we can select up to 10% of the tokens and estimate the heavy-hitter. As a
result, we can use Algorithm 1 to retrieve the heavy-hitter expert as suggested in Oracle 3.2.

3.3 QUANTIFYING EXPERT IMPORTANCE IN SMOE

We argue that there is another angle we need to consider in load balancing SMoE: the importance
of experts. Here we quantify the importance of an expert following a straightforward rule: if we
remove an expert in a MoE block and experience a significant accuracy drop in the end-to-end
SMoE predictive performance, we say that the removed expert is an important expert. Compared to
the approaches mentioned in those training-based strategies, we propose a gradient-free metric that,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

modified from the Wanda metric, has shown outstanding effectiveness in extracting less important
experts. We compared this method with random-selected experts and determined that the heavy-
hitter expert was the less important one, which is shown in the table 2.

Algorithm 1 Search for Heavy-Hitter Expert

Input:
X = Input tokens, En = Expert numbers, L = MoE Layers, T = Token numbers, s = Sparsity

factor
Output: List of Heavy Experts EC
Initialize: EC ← list[L]
for l ∈ L do
expert chosen← []
for x ∈ X do
expert chosen← l(x)

end for
expert num← count(expert chosen)
heavy expert← argmax(expert num)
EC[l]← heavy expert

end for
return EC

Let W be the weight matrix with dimensions Cout×Cin, where Cout is the number of output channels
and Cin is the number of input channels. And X be the input matrix with dimensions (N ·L)×Cin,
where N denote batch size and L the length of each input sequence. The s be the desired sparsity
level, a fraction between 0 and 1 indicating the portion of weights to be pruned. We calculate the
Wanda metric S via element-wise multiplication between absolute value of W and ∥X∥2 which is
L2 norm of X , computed as:

∥X∥2 =

√√√√N ·L∑
i=1

X2
ij for each column j.

After calculating the metric, the indices of W are sorted in ascending order based on their metric
values for each output feature. It then selects the indices with the smallest metric values, which
correspond to the weights that have the least impact on the output. With the pruned indices, we
extract the corresponding values in the weight matrix W . Then, we calculate the mean value of
those pruned weights. In this setting, a larger mean value indicates that the expert contains more
redundant information. And the expert with the largest mean value can be determined to be the less
important expert. We summarize the whole procedure in Algorithm 2.

Algorithm 2 Search for Less Important Expert

Input: Layer inputs X , All experts’ weights W , MoE Layer L, Experts number E
Output: List of Less Important Expert IE
Initialize: IE ← list[L], S ← list[L][E], IS ← list[L][E]
Extract the Less Important Expert e1, e2, .., en for each MoE layers L, based on the Layer inputs
X
for l ∈ L do

for e ∈ E do
S[l][e] ← |WT

[l][e]| × ||X[l]||2
sorted idx[l][e] ← sorted(S[l][e], descending=True)
pruned idx[l][e] ← sorted idx[l][1...int(Cin×s)]

expert score← mean(Spruned idx[l][e]
)

IS[l][e]+ = expert score
end for
IEl ← argmax(IS[l][e])

end for
return IE

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Moreover, we propose to quantify the importance of an expert with the proposed score.

Definition 3.3 (Importance Score). LetM denote a sparse mixture-of-expert (SMoE) model with p
MoE blocks. In each SMoE block, there are m expert network modules. Each input token selects
k < m expert in each SMoE block for computation. Given a dataset X with n tokens, before feeding
the input into the MoE blocks, we multiplied each expert’s output weights to obtain the Wanda metric
values. Next, we sorted the values and applied the sparsity s to eliminate the ”unimportant” weights
from the Wanda metrics. We then collected the dropped values and take their inverse values as the
importance score.

If the importance score is large, it indicates that the expert has more ”important” information in
SMoE.

3.4 HEAVY-HITTER V.S. IMPORTANCE, A CASE STUDY

236 238 240 242 244 246

Importance Score

0.0

20.0K

40.0K

60.0K

80.0K

100.0K

A
ll

oc
at

ed
 T

ok
en

s
Expert 0

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Expert 6Expert 7

Figure 2: Visualization of the allocated tokens
vs. inverse importance score for the first MoE
blocks at LLaMA-MoE on the PIQA dataset.

In the previous sections, we introduced two perspec-
tives on load balancing in SMoE LLMs: address-
ing load imbalance by considering both heavy-hitter
and less important experts. Using LLaMA-MoE as a
case study, we analyzed the PIQA dataset. As shown
in Figure 2, the X-axis represents the workload of an
expert by the number of allocated tokens, while the
Y-axis displays the inverse importance score of an
expert (see Definition 3.3). We focused on the per-
formance of the first MoE blocks in LLaMA-MoE.
From the figure, it is evident that there is no strong
correlation between these two perspectives. An ex-
pert with lower importance can still receive a lesser
workload. Consequently, we can optimize a pre-
trained SMoE by reducing the heavy-hitters’ work-
load with additional resources, while simultaneously
decreasing the resources allocated to the least important experts to maintain the overall resource bud-
get.

3.5 OUR PROPOSAL: REPLICATE AND QUANTIZE

We propose a novel, plug-and-play strategy. As shown in Figure 1, our approach focuses on identi-
fying and optimizing the utilization of the heaviest and least important experts in the model. Specif-
ically, we introduce a low-cost method to pinpoint the most heavily used experts and then replicate
these experts using a lower-bit quantized version to mitigate their load. This replication not only re-
duces the computational burden but also enhances the parallel processing capabilities of the model,
allowing it to handle more complex tasks efficiently. Simultaneously, we quantize the least impor-
tant experts to ensure the overall model fits within the total memory budget, thereby maintaining
efficiency.

Table 2: Baseline for the less important experts

Ours random heavy-hitter raw
gsm8k 0.0417 0.0364 0.0296 0.0425
hellaswag 0.5179 0.5166 0.5126 0.5414
mmlu 0.2669 0.2639 0.2681 0.2781
piqa 0.7579 0.7535 0.7524 0.7693
truthfulqa 0.2864 0.3001 0.2864 0.2726

LLaMa

winogrande 0.648 0.5572 0.6369 0.6701
gsm8k 0.0045 0.0106 0.0038 0
hellaswag 0.2826 0.2821 0.2825 0.2746
mmlu 0.2295 0.2295 0.2295 0.2295
piqa 0.5941 0.5843 0.5925 0.5811
truthfulqa 0.3756 0.3614 0.3792 0.3692

Switch 8

winogrande 0.5454 0.5193 0.5225 0.4964

Our strategy leverages a dy-
namic assessment mechanism
that continually monitors the
performance and usage pat-
terns of each expert during the
training and inference phases.
By adapting in real-time, our
method ensures that the model
remains optimized under vary-
ing workloads and input com-
plexities. The lower-bit quan-
tization of heavily used experts
is performed using advanced
techniques that preserve accu-
racy while significantly reduc-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ing memory and computational overhead. This dual approach of replication and quantization creates
a balanced distribution of computational resources across the model.

Furthermore, our method includes a feedback loop that reassesses the importance and utilization of
experts periodically. This allows the model to adapt to new data patterns and maintain optimal per-
formance over time. By integrating seamlessly with existing models without the need for extensive
retraining, our plug-and-play strategy offers a practical solution for enhancing the efficiency and
scalability of large neural networks. This approach is particularly beneficial in environments with
limited computational resources or in applications requiring real-time processing, where maintain-
ing high performance and efficiency is crucial.

Algorithm 3 Replicate and Quantize

Input: Model M , Experts numbers E
Output: Replicated and Quantified model RQ
Initialize: replicate expert← Algorithm 1(), quantization expert← Algorithm 2()
layer idx← 0
for layers ∈M do
re← replicate expert[layer idx]

qe← quantization expert[layer idx]

layers+ = quant(layers[re])
layers[qe] ← quant(layers[qe])
layer idx+ = 1

end for
return M

0 2 4 6 8
Timesteps

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

L
oa

d
 B

al
an

ce
 S

co
re

Raw Score
R&D Score

(a) Option1: relay on all of the previous informa-
tion

0 2 4 6 8
Timesteps

1.1

1.2

1.3

1.4

1.5

1.6

L
oa

d
 B

al
an

ce
 S

co
re

Raw Score
R&D Score

(b) Option2: only relay on the information from the
previous one

0 1 2 3 4 5 6 7

Sorted Experts Order

0

1

2

3

4

5

L
ay

er

0.00

0.01

0.02

0.03

0.04

0.05

G
ap

 V
al

u
e

(c) Replicate and Quantize

0 1 2 3 4 5 6

Sorted Experts Order

0

1

2

3

4

5

L
ay

er

0.00

0.01

0.02

0.03

0.04

0.05

G
ap

 V
al

u
e

(d) Raw

Figure 3: (Top row) Load balance score comparison between R&D and Raw for the LLaMa MoE
Model in the streaming data. (Bottom row) Comparison between the R&D and raw gap value
among each expert in each layer for the Switch Transformer model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

In this section, we want to validate the effectiveness of our proposed replicate and quantize strategy.
We would like to answer the following research questions:

• RQ1: How does the proposed replicate and quantize strategy perform in improving the load
imbalance of a pre-trained SMoE?

• RQ2: How does the proposed replicate and quantize strategy preserve the predictive performance
of SMoE when applied to a pre-trained SMoE?

• RQ3: How does the proposed replicate and quantize strategy help SMoE to dynamically adapt to
streaming workflow?

4.1 DATASET

In this work, we evaluate the performance of our proposed method using a diverse set of bench-
mark datasets to test different aspects of model performance across a variety of domains and task
types. The datasets include Massive Multitask Language Understanding (MMLU), TruthfulQA,
Grade School Math (GSM8K), Winogrande, Hellaswag, and Physical Interaction Question Answer-
ing (PIQA). For the fine-tuning experiment, we tuned the model using the WikiQA dataset, a public
question-answering benchmark focused on the quality of Wikipedia content. During the evaluation
of the fine-tuned model, we incorporate the WikiQA dataset into the existing evaluation datasets.

4.2 TESTBED

We fine-tuned the Switch Transformer model on one NVIDIA Tesla V100-SXM2-32GB, and all
Switch Transformers evaluation experiments were conducted on the NVIDIA 8 Tesla V100-SXM2-
32GB U servers. The LLaMa-MoE and DeepSeek-MoE were evaluated on the NVIDIA 4 A100-
SXM4-40GB and NVIDIA 8 Quadro RTX 8000. Evaluation Metric We use lm-eval-harness to
calculate model accuracy for Massive Multitask Language Understanding (MMLU), TruthfulQA,
Grade School Math (GSM8K), Winogrande, Hellaswag, and Physical Interaction Question Answer-
ing (PIQA).For the Hellaswag datasets, we use a 10-shot approach, while the GSM8K and MMLU
datasets use a 5-shot approach. In our evaluation of the fine-tuned Switch Transformer model, we
use the generation F1 score as our criterion.

Workload Within each layer, we initially calculate the allocation of tokens to each expert, observing
the expert who receives the highest number of tokens as the ”most heavy expert.” Concurrently, we
employ the tool ”Wanda” to calculate the expert who is considered as the ”less significant expert.”
Next, we apply quantization to the ”less important expert” by reducing its value to a half float
compared to the original one. Then, we reproduce the ”most heavy expert” and apply it to the same
quantization process as the ”less important expert.”

4.3 RESULTS

Answers to RQ1 & RQ2. We present our results on three pre-trained SMoE LLMs. Given the pre-
trained SMoE LLMs with load imbalance, our R&Q method significantly reduces its load imbalance
score 3.1 while preserving its predictive performance. Moreover, before that, we have tried to use the
different tuning strategies to adjust the router mechanism to solve the load imbalance issues. Clearly,
it does not work as we expected, and the part of the strategies emplifies the imbalanced distribution
among the different experts. These results answer the first and the second research questions, the
proposed R&Q method improves the load imbalance of a pre-trained SMoE while preserving their
predictive performance.

Answers to RQ3 We first feed all the tokens from the MMLU benchmark into the LLaMa MoE
model, calculate the tokens that each expert in each layer receives, and then identify the heavy-hitter
experts in each layer. Then, we extract those tokens as our streaming data. In this setting, we set the
timesteps to 10, so we split the data into 10 portions. For option 1, we apply our method at all time
steps when replicating the experts; the current window depends on all of the previous information
to determine which expert needs to be replicated; and quantized experts are previously predicted
at 10% of the MMLU benchmark. For option 2, the representative information only relies on the
former one. In the figure 3, it’s obvious that our method can effectively relieve the load imbalance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparision of the Load Balance and Accuracy

Model Dataset Load Imbalance Accuracy
Raw R&Q Raw R&Q

Switch Transformer
(8 experts)

GSM8K 1.9709 1.3937 \ \
Truthful QA 1.4956 1.3494 0.3692 ± 0.0111 0.3640 ± 0.011
Winogrande 1.5261 1.2146 0.4964 ± 0.0141 0.4917 ± 0.0141
Hellaswag 1.4182 1.3623 0.2746 ± 0.0045 0.2763 ± 0.0045
MMLU 1.5405 1.2962 0.2295 ± 0.0035 0.2522 ± 0.0037
PIQA 1.5770 1.2756 0.5811 ± 0.0115 0.5832 ± 0.0115

Switch Transformer
(16 experts)

GSM8K 1.4352 1.2864 \ \
Truthful QA 2.0121 1.6856 0.3738 ± 0.0112 0.3694 ± 0.0112
Winogrande 2.0063 1.5394 0.4901 ± 0.014 0.4854 ± 0.014
Hellaswag 1.9681 1.7369 0.2857 ± 0.0045 0.2872 ± 0.0045
MMLU 1.9964 1.7067 0.2295 ± 0.0035 0.2495 ± 0.0036
PIQA 2.0355 1.6080 0.5457 ± 0.0116 0.5501 ± 0.0116

LLaMa MoE

GSM8K 1.3565 1.1963 0.0349 ± 0.0051 0.0364 ± 0.0052
Truthful QA 1.2946 1.2025 0.2726 ± 0.0098 0.2730 ± 0.0098
Winogrande 1.3925 1.2791 0.6732 ± 0.0132 0.6669 ± 0.0132
Hellaswag 1.3047 1.2258 0.5414 ± 0.0050 0.5403 ± 0.0050
MMLU 1.3289 1.1964 0.2797 ± 0.0038 0.2797 ± 0.0038
PIQA 1.2943 1.2366 0.7704 ± 0.0098 0.7704 ± 0.0098

DeepSeek MoE

GSM8K 4.8182 3.9725 0.1562 ± 0.01 0.1539 ± 0.0099
Truthful QA 2.9672 2.1749 0.3109 ± 0.0103 0.3105 ± 0.0103
Winogrande 3.1386 2.4475 0.7001 ± 0.0129 0.7064 ± 0.0128
Hellaswag 3.0387 2.6403 0.5984 ± 0.0049 0.5975 ± 0.0049
MMLU 3.7359 2.8222 0.4472 ± 0.0041 0.4467 ± 0.0041
PIQA 4.0780 3.0585 0.7884 ± 0.0095 0.7905 ± 0.0095

issue, even though those data are considered the most severe load imbalance input for this model.
Whatever depends on all of the previous information or the only former one, it all shows a clear
decrease in the load imbalance score in the line chart. Figure 4 shows the gaps between the ordered
expert hitter ratios. The hitter ratio is calculated from the mean value of each expert’s allotted
tokens, and we sort this ratio to get the difference between the neighboring ones. This heatmap
shows that the raw switch transformer model illustrates strong performance by always choosing one
expert rather than all of others. But, after applying our method, we found the tokens allocated to
each expert to be more balanced; they have a lower gap between the ratios of activation.

5 CONCLUSION

In conclusion, large language models with sparse mixture-of-experts (SMoE) architectures have
shown empirical success across various tasks. This architecture allows SMoEs to scale up the num-
ber of experts without the need for a proportional increase in computational resources, offering an
efficient way to improve performance on diverse tasks. However, despite these advantages, SMoE’s
sparse routing can lead to significant load imbalances among experts, some may become overloaded
with too many tasks while others remain underutilized, causing efficiency issues during deployment.
Our paper presents a plug-and-play strategy to address this load imbalance. We propose a low-cost
method that identifies and replicates the heaviest expert using a lower-bit quantized version while
also quantizing the least important expert to maintain the memory budget. We conducted thorough
empirical evaluations to validate the effectiveness of this approach. The results indicate that our
strategy successfully alleviates the load imbalance issue in SMoE architectures. Furthermore, the
R&Q strategy we used resulted in minimal loss of performance, making our method a practical and
efficient improvement for the deployment of SMoE models in large-scale systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the
new dropout: Scaling dense and self-slimmable transformers. arXiv preprint arXiv:2303.01610,
2023.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in
mixture-of-experts language models, January 2024.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE international conference on
computer vision, pp. 2650–2658, 2015.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

RA Jacobs, MI Jordan, SJ Nowlan, and GE Hinton. ªadaptive mixtures of local experts, º neural
computation, vol. 3. 1991.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

10

https://arxiv.org/abs/2401.04088

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

D Lepikhin, H Lee, Y Xu, D Chen, O Firat, Y Huang, M Krikun, N Shazeer, and Z Gshard.
Scaling giant models with conditional computation and automatic sharding. arXiv preprint
arXiv:2006.16668, 2020a.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020b.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):2383, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quanti-
zation. arXiv preprint arXiv:1802.05668, 2018.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

LLaMA-MoE Team. Llama-moe: Building mixture-of-experts from llama with continual pre-
training, Dec 2023. URL https://github.com/pjlab-sys4nlp/llama-moe.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Xinyu Zhao, Xuxi Chen, Yu Cheng, and Tianlong Chen. Sparse moe with language guided rout-
ing for multilingual machine translation. In The Twelfth International Conference on Learning
Representations, 2023.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

11

https://github.com/pjlab-sys4nlp/llama-moe

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Yinghao Xu, Zifan Shi, and Yujun Shen. Exploring
sparse moe in gans for text-conditioned image synthesis. arXiv preprint arXiv:2309.03904, 2023.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao,
and Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.

12

	Introduction
	Related Work
	Replicate and Quantize
	Load Imbalance in SMoE Model
	The Heavy-Hitter Expert Oracle in SMoE
	Quantifying Expert Importance in SMoE
	Heavy-Hitter v.s. Importance, A Case Study
	Our Proposal: Replicate and Quantize

	Experiment
	Dataset
	Testbed
	Results

	Conclusion

