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ABSTRACT

Dataset distillation aims to streamline the training process by creating a compact
yet effective dataset for a much larger original dataset. However, existing methods
often struggle with distilling large, high-resolution datasets due to prohibitive
resource costs and limited performance, primarily stemming from sample-wise
optimizations in the pixel space. Motivated by the remarkable capabilities of
diffusion generative models in learning target dataset distributions and controllably
sampling high-quality data tailored to user needs, we propose framing dataset
distillation as a controlled diffusion generation task aimed at generating data
specifically tailored for effective training purposes. By establishing a correlation
between the overarching objective of dataset distillation and the trajectory influence
function, we introduce the Influence-Guided Diffusion (IGD) sampling framework
to generate training-effective data without the need to retrain diffusion models. An
efficient guided function is designed by leveraging the trajectory influence function
as an indicator to steer diffusions to produce data with influence promotion and
diversity enhancement. Extensive experiments show that the training performance
of distilled datasets generated by diffusions can be significantly improved by
integrating with our IGD method and achieving state-of-the-art performance in
distilling ImageNet datasets. Particularly, an exceptional result is achieved on the
ImageNet-1K, reaching 60.3% at IPC=50.

1 INTRODUCTION

The escalating need for extensive data in cutting-edge deep learning is evident across various
domains of computer vision (Dosovitskiy et al., 2021; Radford et al., 2021) and natural language
processing (Brown et al., 2020; Gu & Dao, 2023). Dataset distillation consequently gained significant
attention due to its ability to balance the conflict demands of maintaining training effectiveness while
overwhelming resource overhead. This method involves crafting a compact yet effective surrogate
dataset for a large-scale original dataset. The surrogate is optimized to retain essential information
from the cumbersome original, enabling models trained on it to achieve performance comparable to
those trained on the complete one.

Early dataset distillation methods have made significant strides in distillation efficacy through various
insightful paradigms (Zhao et al., 2021; Kim et al., 2022; Zhao & Bilen, 2021b; Wang et al., 2022a;
Nguyen et al., 2021; Zhou et al., 2022; Cazenavette et al., 2022; Du et al., 2023; Cui et al., 2023).
However, their success is mainly limited to distilling small datasets like CIFAR (Krizhevsky &
Hinton, 2009) or downscaled ImageNet (Russakovsky et al., 2015) with low resolution. Extending
these methods to higher-resolution datasets (e.g., ≥ 128 × 128) is hindered by treating data as a
entity and refining it at the pixel level. This escalates time and computational costs with data dimen-
sionality and preset compression ratios, typically indicated by Images Per Class (IPC). Moreover,
prioritizing pixel-level optimization overlooks distributional shifts from the original dataset. Yet, at
higher resolutions, synthetic data retains ineffective high-frequency patterns, leading to performance
degradation (Cazenavette et al., 2023).

Recognizing the robust capability to capture intricate data distributions, a recent approach (Gu
et al., 2024) integrates diffusion models to tackle the high-resolution challenges faced by previous
pixel-oriented methods, achieving cutting-edge performance. This technique entails fine-tuning
a latent diffusion model through a minimax criterion, yielding distilled datasets that harmonize
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representativeness and diversity for better alignment with the authentic data distribution. However,
research on core-set selection techniques (Killamsetty et al., 2021a;b; Iyer et al., 2021) indicates that
even data sampled directly from the authentic distribution can contribute unevenly to model training.
Concerns remain about the effectiveness of the proposed objective in generating distilled datasets
that are optimally tailored for highly effective training.

Figure 1: Enhanced cross-architecture perfor-
mance with average influence by integrating
IGD in distilling ImageNette with IPC=100.

In this work, we introduce a new paradigm of us-
ing diffusion models in the task of dataset distillation,
termed as the Influence-Guided Diffusion (IGD) sam-
pling method. This method is conceptually tailored
to directly guide diffusion models in generating data
under a generalized training-effective condition, elim-
inating the need to retrain the diffusion models. We
highlight the challenge of this task, particularly in
comparison to existing controlled diffusion genera-
tion tasks that involve explicit content specifications
(Rombach et al., 2022; Ho & Salimans, 2022). Unlike
these tasks, our objective focuses on the abstract aim
of generating data suitable for effective training. To
address this challenge, we first establish a correlation
between the overarching objective of dataset distil-
lation and the trajectory influence function (Pruthi
et al., 2020). Building on this connection, an efficient
influence-based guided function is developed as an indicator to steer diffusions to produce data
with influence promotion and diversity enhancement. As evidenced by Figure 1, integrating IGD
significantly enhances the performance of the vanilla Diffusion Transformer (DiT), outperforming
results obtained through the fine-tuning method Minimax. Moreover, IGD complements Minimax to
achieve even better results, with a simultaneous increase in influence 1.

In summary, our contributions are as follows:

• We propose a novel scheme for dataset distillation by framing the task as a training-free
guided-diffusion generation problem.

• We establish an efficient diffusion sampling framework that pioneers the integration of the
influence function as a guidance for the controlled diffusion generation, with the aim of
achieving generalized training-enhancing objectives.

• Experimental results illustrate that our method significantly improves the performance of
diffusion models across different architectures on two ImageNet subsets. Furthermore, a
state-of-the-art result is achieved on the ImageNet-1K, reaching 60.3% at IPC=50.

2 PRELIMINARIES

2.1 BACKGROUND ON DATASET DISTILLATION

We refer to the target dataset as T = {(xi,yi)}|T |
i=1. Each sample xi is drawn i.i.d. from a natural

distribution q(x), where xi ∈ Rd and yi ∈ Y = {1, 2, . . . , C} refers to the ground-truth label.
Dataset Distillation (DD) aims to condense this large labelled dataset T into a smaller synthetic
dataset S = {(ui,yi)}|S|

i=1, with ui ∈ Rd and yi ∈ Y , such that |S| ≪ |T |. The reduced dataset S is
optimized to retain essential information from T to ensure that any model initialized with parameters
θ0 can be optimized to minimize the validation loss on the target dataset T :

min
S

1

|T |

|T |∑
i=1

[
ℓ
(
xi,yi;θ

S
∗
)
− ℓ (xi,yi;θ0)

]
s.t. θS

∗ = Alg(S,θ0). (1)

Here, Alg(S,θ0) = argminθ E(ui,yi)∈S [ℓ(ui,yi;θ)] represents the training algorithm that opti-
mizes the initialized parameters θ0 over the synthetic data S, and ℓ(x,y;θ) denotes the prediction

1Influence is calculated as the complement of normalized influence-guided loss defined in Section 3.2
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loss of a model with parameters θ on a data pair (x,y). To prevent unexpected distributional shift,
we propose to frame the dataset distillation as learning a conditional distribution of the authentic
distribution, e.g., p(x|C), to sample near-real data under the generalized training-effective conditions.

2.2 GUIDED DIFFUSION GENERATION

Given samples from the data distribution q(x), diffusion models are capable of learning a parameter-
ized distribution pϕ(x) that approximates q(x) and is easy to sample from it (Song et al., 2020b). On
a high level, this is implemented through a forward noising process and a reverse denoising process.
Concretely, the forward process gradually adds Gaussian noise ϵ ∼ N (0, I) of different magnitudes
to clean data point z0: zt =

√
αtz0 +

√
1− αtϵ, where αt controls the noise scale at step t. A

diffusion model is a denoising function that learns by minimizing the dissimilarity, e.g., mean squared
error, between the predicted noise ϵϕ(zt, t, c) and ϵ, where c is a conditional input such as labels. The
reverse process generates denoised samples by sampling from pϕ(zt−1|zt, z0), which is generally
parameterized as a Gaussian distribution and varies across studies in its approximation (Ho et al.,
2020). For instance, Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020a) first predicts
the clean data point ẑ0|t based on zt as:

ẑ0|t =
1
√
αt

(zt −
√
1− αtϵϕ(zt, t, c)). (2)

zt−1 is then sampled from N
(√

αt−1ẑ0|t +
√
1− αt−1 − σ2

t ϵϕ(zt, t, c), σ
2
t I
)

, where σt is the
predefined noise factor. For notation simplicity, we abstract this process as: zt−1 = s(zt, t, ϵϕ). In
this work, we adopt the widely utilized latent diffusion (Peebles & Xie, 2023) as the backbone. Here,
an encoder is employed to transform images to latent codes z = E(x) and a decoder reconstructs
latent codes back to the image space to obtain the distilled dataset S = {(D(zi),yi)}|S|

i=1.

Diffusion models typically employ conditioning to tailor outputs to specific user inputs, such as labels
or text prompts. However, our purpose diverges from explicit content specifications, focusing instead
on more abstract requirements. We aim to guide the diffusion model to identify conditional distribu-
tions within the learned distribution and selectively sample data to optimize training effectiveness. To
this end, we employ a more adaptable method of controlling model outputs through training-free
guidance (Bansal et al., 2023; Yu et al., 2023; Gopalakrishnan Nair et al., 2023). These methods are
largely inspired by the energy-based model (EBM) used for formulating score-based diffusions (Song
et al., 2020b; 2021). Intuitively, any metric function fC(.) that subtly measures the compatibility of
the noisy sample zt to the condition C is valid for providing steering guidance. By this means, the
sampling step can generally be implemented as:

zt−1 = s(zt, t, ϵϕ)− ρt∇zt
fC(zt), (3)

where ρt is defined to align with the denoising scale of the current ϵϕ(zt, t). By introducing
a meticulously designed guided function that effectively measures the impact of data on training
efficacy (e.g., as depicted by validation loss), this implementation seamlessly aligns with our objective
of framing dataset distillation as sampling data from a desirable conditional distribution.

3 METHOD

3.1 ESTIMATING DATA INFLUENCE AS DIFFUSION CONDITIONAL GUIDANCE

We identify influence function (Koh & Liang, 2017) as insightful parallel research that can quantify
the impact of specific training data on model validation loss. This is highly relevant to the design of
metric functions used for steering guidance in diffusion models under our training-effective condition.
Leveraging the Fundamental Theorem of Calculus, Pruthi et al. (2020) introduced trajectory influence
to estimate the cumulative influence of a training data pair (x,y) on validation data pair (x′,y′).
This method integrates the stepwise changes in the loss of the validation data throughout the training
process. In our case, employing Stochastic Gradient Descent (SGD) as the training algorithm Alg,
the model update can be expressed as θt+1 − θt = −ηt∇θℓ (x,y;θt) , where ηt represents the
learning rate at timestep t. Utilizing the first-order Taylor expansion, the loss change of (x′,y′) at
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each timestep can be approximated by:

ℓ(x′,y′;θt+1)− ℓ(x′,y′;θt) ≈ ∇θℓ(x
′,y′;θt) · (θt+1 − θt)

= −ηt∇θℓ(x
′,y′;θt) · ∇θℓ(x,y;θt).

(4)

The overall influence of (x,y) on (x′,y′) throughout the training trajectory is quantified by aggre-
gating these stepwise changes across epochs:

I(x,x′) =

E∑
e=0

η̄e∇θℓ (x
′,y′;θe) · ∇θℓ (x,y;θe) ∝ ℓ(x′,y′;θ0)− ℓ(x′,y′;θE), (5)

where η̄e denotes the learning rate of the e-th epoch, for a total of E epochs. By substituting
the validation data (x′,y′) as the real data in the original dataset, this formulation is an effective
approximation to the general objective of dataset distillation defined in Equation (1). Based on this
insight, we define the objective of the guidance for a latent code z given a certain class c as:

max
z

1

|Tc|

|Tc|∑
i=1

I(D(z),xi) = max
z

E∑
e=0

η̄e∇̄θℓc
(
X c;θ

S
e

)
· ∇θℓc

(
D(z);θS

e

)
, (6)

where ∇̄θℓc(X c;θ
S
e ) = 1

|Tc|
∑|Tc|

i=1∇θℓ
(
xi, c;θ

S
e

)
based on the Fubini’s Theorem and Tc is the

subset of the given class c, θS
e represents a checkpoint obtained on the decoded data. Intuitively, this

objective can be optimized if models trained on synthetic data obtain trajectories equivalent to those
trained on Tc, thereby maximizing the validation loss drop. This essentially shares a similar purpose
with the Gradient-Matching (GM) scheme (Zhao et al., 2021; Zhao & Bilen, 2021a). However,
we identify three primary issues with directly adapting this formulation as the metric function for
guided diffusion in dataset distillation: (1) prohibitive cost: the necessity of model retraining at each
diffusion sampling step is computationally burdensome; (2) accumulated error: akin to the limitations
of the GM method, the gap between trajectories inevitably accumulates during training on synthetic
data, leading to ineffective matching and consequently degraded performance (Cazenavette et al.,
2022); (3) information redundancy: the relatively poor diversity of diffusion-generated data limits its
effectiveness for dataset distillation (Du et al., 2023), and matching with the averaged real gradients,
as shown in Equation (6), may further exacerbate this issue.

In the following section, we tackle these challenges by developing diversity-constrained guided
functions and detailing our Influence-Guided Diffusion (IGD) sampling framework.

3.2 EFFICIENT INFLUENCE-GUIDED DIFFUSION SAMPLING WITH DIVERSITY CONSTRAINT

Denote θTc
e = θTc

e−1 − η̄e−1∇̄θℓc(X c;θ
Tc
e−1) as checkpoints trained on the real subset Tc with SGD

and the same learning rate schedule as on the synthetic data. Replacing the checkpoints θS
e with

θTc
e in Equation (6) is an optimizably equivalent target. This equivalence holds because these two

targets converge to the same optimal solution when z can provide the same training dynamics as
Tc, i.e., ∇̄θℓc(X c;θ

Tc
e ) = ∇θℓc(D(z);θTc

e ) ∀e ∈ [0, E]. Building on this insight, in practical
implementation, we extend this usage to the checkpoints θT

e obtained through standard mini-batch
updates over the entire dataset T . This adjustment mitigates the mismatch caused by the discrepancy
between synthetic and real trajectories (Kim et al., 2022), while also eliminating the time cost
associated with retraining models on S at each sampling step. Additionally, we use cosine similarity
instead of the dot product to stabilize the magnitude of the guidance signal provided by the influence
function. These modifications yield the influence guided loss function as:

GI(z) =
1

|E|

E∑
e=1

η̄e

(
1−

∇̄θℓc
(
X c;θ

T
e

)
· ∇θℓc

(
D(z);θT

e

)∥∥∇̄θℓc (X c;θT
e )
∥∥ ∥∇θℓc (D(z);θT

e )∥

)
. (7)

Directly computing the influence over an intermediate noisy zt is undesirable, as the checkpoints θT
e

are trained on clean data and do not adapt to provide meaningful guidance as a metric function when
the input is noisy (Ho & Salimans, 2022). To mitigate this issue, we utilize the predicted clean data
ẑ0|t of the current zt, based on Equation (2) as defined by DDIM, as an approximation of the real z0.
Subsequently, we compute the influence guidance GI(ẑ0|t) on the predicted clean data and derive the
guided gradient ∇ztGI((zt −

√
1− αtϵϕ(zt, t))/

√
αt) through backpropagation.
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Algorithm 1: Influence-Guided Diffusion Sampling

1 Parameters: Class c, influence factor ρt, deviation factor γt, scales {αt}Tt=1, guided range A,B
2 Required: Pre-trained diffusion model ϵϕ, list of retained checkpointsR, list of averaged

gradients Gc, generated data memoryMc, decoder model D
3 Initialize: Sample initial random noise zT ∼ N (0, I);
4 for t = T to 1 do
5 Obtain the denoised signal ϵϕ(zt, t, c) from the diffusion model;
6 if t in [A,B] then
7 Calculate the influence metric GI(ẑ0|t) as Equation (7) withR and Gc;
8 Calculate the deviation metric GD(zt) as Equation (8) withMc;
9 Implement guided sampling zt−1 = s(zt, t, ϵϕ)− ρt∇zt

GI(ẑ0|t)− γt∇zt
GD(zt);

10 else
11 Implement vanilla sampling zt−1 = s(zt, t, ϵϕ);

12 return Decoded synthetic image D(z0);

To ensure diversity and avoid excessive redundancy in the surrogate dataset’s training signals, we
propose adding a constraint to the generation objective. This constraint ensures that the similarity
between generated data within a certain class does not exceed a specified threshold: sim(zi, zj) ≤
δ, ∀zi, zj ∈ Zc, where zi ̸= zj . In practice, we incorporate this constraint using a Lagrangian
multiplier and propose a deviation guidance function to optimize it in each guided sampling step:

GD(z) =
z · z̃∗

∥z∥∥z̃∗∥
subject to z̃∗ = argmax

z̃∈Mc

z · z̃
∥z∥∥z̃∥

, (8)

whereMc represents the set of all previously generated data for a certain class c.

Ultimately, we utilize the influence guidance of GI(ẑ0|t) alongside the deviation guidance of GD(zt),
reformulating the guided sampling step as:

zt−1 = s(zt, t, ϵϕ)−ρt∇ztGI(ẑ0|t)−γt∇ztGD(zt), where ρt = k ·
√
1− αt

∥ϵϕ(zt, t, c)∥
∥∇ztGI(ẑ0|t)∥

(9)

is the scale factor designed to adaptively adjust the magnitude of the influence guidance alongside
the dynamics of the denoised signal ϵϕ, and γt is empirically preset for the deviation guidance.
Furthermore, we introduce two practical techniques that are essential for enhancing both the efficiency
and efficacy of the proposed IGD framework.

Choosing representative checkpoints via gradient similarity. For efficiency, trajectory influence
initially suggests saving checkpoints at regular intervals to compute step-wise influence. However,
given the non-linear nature of training dynamics, evenly spaced checkpoints may scatter attention
to critical stages. To efficiently calculate the influence guidance, we propose a simple yet effective
filtering algorithm. We store θT

0 as the first checkpoint in a listR and compute its averaged gradient
Ec[∇̄θℓc(X c;θ

T
0 )] as the initial reference. For each subsequent checkpoint, we compute the averaged

gradient and calculate its cosine similarity with the reference. If the similarity is below a given
threshold, we store the current checkpoint and update its averaged gradient as the new reference. This
process traverses all epochs, and only the retained checkpoints inR are used by influence guidance.

Mitigating overfitting and reducing runtime by early-stage Guidance. Guided diffusion tasks
face a trade-off between generation quality and the impact of guidance (Lugmayr et al., 2022;
Bansal et al., 2023). In our problem, we observe that samples generated with a large preset k in ρt
achieve significant influence loss reduction but also exhibit noticeable abnormalities and degraded
performance. Detailed evaluations are provided in Section 4.4. Empirical observations in diffusion
generation demonstrate that most semantic content is generated during the early-to-mid stages of
sampling (Yu et al., 2023). We adopt guided sampling only in these partial steps, allowing vanilla
sampling to refine details in the remaining steps. For example, in DDIM with 50 sampling steps,
guided sampling is applied only when t is in [30, 45]. This approach allows data generated with
strong guidance to maintain comparable influence without noticeable abnormalities or performance
degradation. Consequently, this also reduces the runtime associated with guidance calculation.
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Table 1: ImageNette & ImageWoof: Performance comparison with state-of-the-art pixel-level
distillation methods, pretrained DiT and Minimax-tuned DiT models with vanilla generation. DiT-
IGD and Minimax-IGD denote utilizing our proposed IGD sampling framework for generation.

Dataset Model IPC Random DM IDC-1 DiT DiT-IGD Minimax Minimax-IGD Full

Nette

ConvNet-6
10 46.0±0.5 49.8±1.1 48.2±1.2 56.2±1.3 61.9±1.9 58.2±0.9 58.8±1.0

94.3±0.550 71.8±1.2 70.3±0.8 72.4±0.7 74.1±0.6 80.9±0.9 76.9±0.9 82.3±0.8
100 79.9±0.8 78.5±0.8 80.6±1.1 78.2±0.3 84.5±0.7 81.1±0.3 86.3±0.8

ResNetAP-10
10 54.2±1.2 60.2±0.7 60.4±0.6 62.8±0.8 66.5±1.1 63.2±1.0 63.5±1.1

94.6±0.550 77.3±1.0 76.7±1.0 77.4±0.7 76.9±0.5 81.0±1.2 78.2±0.7 82.3±1.1
100 81.1±0.6 80.9±0.7 81.5±1.2 80.1±1.1 85.2±0.5 81.3±0.9 86.1±0.9

ResNet-18
10 55.8±1.0 60.9±0.7 61.0±0.8 62.5±0.9 67.7±0.3 64.9±0.6 66.2±1.2

95.3±0.650 75.8±1.1 75.0±1.0 77.8±0.7 75.2±0.9 81.0±0.7 78.1±0.6 82.0±0.3
100 82.0±0.4 81.5±0.4 81.7±0.8 77.8±0.6 84.4±0.8 81.3±0.7 86.0±0.6

Woof

ConvNet-6
10 25.2±1.1 27.6±1.2 34.1±0.8 32.3±0.8 35.0±0.8 33.5±1.4 36.2±1.6

85.9±0.450 41.9±1.4 43.8±1.1 42.6±0.9 48.5±1.3 54.2±0.7 50.7±1.8 55.7±0.8
100 52.3±1.5 50.1±0.9 51.0±1.1 54.2±1.5 61.1±1.0 57.1±1.9 63.0±1.8

ResNetAP-10
10 31.6±0.8 29.8±1.0 38.5±0.7 39.0±0.9 41.0±0.8 39.6±1.2 43.3±0.3

87.2±0.650 50.1±1.6 47.8±1.2 49.3±0.9 55.8±1.1 62.7±1.2 59.8±0.8 65.0±0.8
100 59.2±0.9 59.8±1.3 56.4±0.5 62.5±0.9 69.7±0.9 66.8±1.2 71.5±0.8

ResNet-18
10 30.9±1.3 30.2±0.6 36.7±0.8 40.6±0.6 44.8±0.8 42.2±1.2 47.2±1.6

89.0±0.650 54.0±0.8 53.9±0.7 54.5±1.0 57.4±0.7 62.0±1.1 60.5±0.5 65.4±1.8
100 63.6±0.5 64.9±0.7 57.7±0.8 62.3±0.5 70.6±1.8 67.4±0.7 72.1±0.9

Algorithm 1 outlines the detailed process of our influence-guided diffusion sampling framework
for generating each synthetic image. Before constructing the surrogate dataset, we first obtain
checkpoints {θT

e }Ee=1 trained on T and apply the proposed filtering algorithm to retain representative
checkpoints in the listR. Before initiating generation for a specific class c, we calculate the averaged
gradient ∇̄θℓc(X c;θ

T
e ) across each retained checkpoint and store them in a list Gc. Subsequently,

we execute the algorithm, storing the generated images in memoryMc until the desired number of
images reaches the preset target IPC (images per class).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. As our primary interest lies in large-scale, high-resolution distillation tasks, we assess the
performance of our method on the complete ImageNet-1K dataset (224×224) (Russakovsky et al.,
2015). To provide comparable evaluations across varying task difficulties, we conduct comprehensive
experiments on two representative subsets, ImageNette and ImageWoof (Howard, 2019). ImageNette,
consisting of 10 classes with less similarity and therefore easier to distinguish between, contrasts
with ImageWoof, a challenging subset containing 10 classes of dog breeds.

Baselines and evaluation metric. We compare our method with several state-of-the-art dataset
distillation methods including DM (Zhao & Bilen, 2021b), IDC-1 (Kim et al., 2022), SRe2L (Yin et al.,
2024), G-VBSM (Shao et al., 2023), and RDED (Sun et al., 2024). Additionally, we regard pretrained
DiT (Peebles & Xie, 2023) as a notable baseline because it achieves performance comparable to
state-of-the-art methods even without tailored optimizations for dataset distillation. Furthermore,
we include Minimax (Gu et al., 2024), a recent work refined DiT specifically for dataset distillation
through a fine-tuning scheme, as a perpendicular baseline. Test architectures include ConvNet-6,
ResNet-10 (He et al., 2016) with Average Pooling, ResNet-18, ResNet-101, MoblieNet-V2 (Sandler
et al., 2018), EfficientNet-B0 (Tan, 2019) and Swin Transformer (Liu et al., 2021). The top-1 test
accuracies of models trained on distilled datasets with different IPC (Image Per Class) are reported.

Implementation detail. For a fair comparison, we follow the official implementation of Minimax,
utilizing a latent DiT model from Pytorch’s official repository and an open-source VAE model from
Stable Diffusion. DDIM (Song et al., 2020a) with 50 denoised steps is used as the vanilla sampling
method for generation. For each test dataset, we train a 6-layer ConvNet (ConvNet-6) for 50 epochs
with the learning rate 1 × 10−2 to collect the surrogate checkpoints used in Equation (7). The
similarity threshold for choosing representative checkpoints is set as 0.7. The detailed setup of
hyperparameters k and γt for each datasets is discussed in Appendix A.6. All the experimental results
of our method can be obtained on a single RTX 4090 GPU.
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Table 2: ImageNet-1K: Performance comparison over ResNet-18 with state-of-the-art dataset
distillation methods, pretrained DiT and Minimax-tuned DiT models with vanilla DDIM generation.

Dataset IPC SRe2L G-VBSM RDED DiT DiT-IGD Minimax Minimax-IGD

ImageNet-1K 10 21.3±0.6 31.4±0.5 42.0±0.1 39.6±0.4 45.5±0.5 44.3±0.5 46.2±0.6
50 46.8±0.2 51.8±0.4 56.5±0.1 52.9±0.6 59.8±0.3 58.6±0.3 60.3±0.4

Table 3: ImageNet-1K: Cross-architecture generalization performance comparison.

ResNet101 MobileNet-V2 EfficientNet-B0 Swin Transformer

IPC10 IPC50 IPC10 IPC50 IPC10 IPC50 IPC10 IPC50

RDED 48.3±1.0 61.2±0.4 40.4±0.1 53.3±0.2 31.0±0.1 58.5±0.4 42.3±0.6 53.2±0.8
DiT-IGD 52.6±1.2 66.2±0.2 39.2±0.2 57.8±0.2 47.7±0.1 62.0±0.1 44.1±0.6 58.6±0.5

Minimax-IGD 53.4±0.9 66.8±0.2 39.7±0.4 58.5±0.3 48.5±0.1 62.7±0.2 44.8±0.8 58.2±0.5

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Evaluation on Woof & Nette. As a training-free sampling framework, our IGD method can
be incorporated into the pretrained DiT and Minimax-tuned DiT during the generation process.
We designate these two methods as DiT-IGD and Minimax-IGD, respectively. As depicted in
Table 1, our IGD-based methods demonstrate a significant improvement over the original backbone
methods, and achieve state-of-the-art performance across both Woof and Nette datasets in all IPC
settings. These enhancements are consistently observed across all evaluations conducted on the three
tested architectures, highlighting a robust cross-architecture generalization ability. Particularly for
IPC ≥50, DiT-IGD notably enhances the performance of DiT by 5.8% on Nette and by 6.6% on
Woof, on average. Comparing with Minimax, Minimax-IGD averagely provides a 4.7% boost on
Nette and a 5.1% boost on Woof. Moreover, we observed that DiT-IGD outperforms Minimax in
most evaluations. Especially for the easier dataset Nette, despite the class distinctions facilitating
knowledge condensation, Minimax only shows a marginal average improvement of 2.5% over DiT at
IPC=100. In contrast, DiT-IGD achieves an average boost of 6.1%. Compared to diffusion-based
methods, the pixel-level optimization methods DM and IDC-1 achieve moderate performance gains
over random original images at IPC=10. However, as the IPC increases, the performance gain
drastically diminishes or even becomes negative.

Evaluation on ImageNet-1K. Recent approaches proposed for efficiently distilling ImageNet-1K
data rely on using well-trained models to provide synthetic images with soft labels to acquire richer
information. Following the evaluation protocol of the RDED, we employ a ResNet-18 model, trained
on the original dataset, to generate soft labels for synthetic images. The performances shown in
Table 2 are evaluated over the same ResNet-18 architecture. The results demonstrate consistent
improvements in integrating our IGD method over the DiT and Minimax methods. In particular,
DiT-IGD demonstrates significant improvement to raw DiT, with enhancements of 5.9% at IPC=10
and 6.9% at IPC=50. This also positions our Minimax-IGD method at the forefront of this practical
distillation task, surpassing the state-of-the-art image-based method RDED by 4.0%. In the cross-
architecture comparison detailed in Table 3, synthetic datasets generated using our IGD methods
generally outperform those created by RDED across four different unseen networks. Notably, our
DiT-IGD and Minimax-IGD methods surpass RDED by an average margin of 4.6% and 5.0% at
IPC=50, respectively. These remarkable performance improvements underline the promising potential
of diffusion-based methods in the future of dataset distillation research.

4.3 CROSS-ARCHITECTURE ROBUSTNESS OF INFLUENCE GUIDANCE

In our IGD framework, influence guidance necessitates a surrogate model to be trained on the
original dataset, collecting representative checkpoints for calculating guided loss. Here, we test the
impact of influence guidance obtained over networks of different architectures, including ConvNet-
6, ResNetAP-10, and ResNet18. We then train these networks on generated surrogate datasets
from scratch and evaluate their cross-architecture performance. Table 4 demonstrates that datasets
generated based on ConvNet-6 generally exhibit superior performance. In most cross-architecture
evaluations involving ResNetAP-10 and ResNet-18, they even outperform datasets generated with
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Table 4: Cross-architecture performance of DiT-IGD using different surrogate architectures to
calculate influence guidance.

Dataset Surrogate ConvNet-6 ResNetAP-10 ResNet-18

IPC10 IPC50 IPC100 IPC10 IPC50 IPC100 IPC10 IPC50 IPC100

Nette
ConvNet-6 61.9±1.9 80.9±0.9 84.5±0.7 66.5±1.1 81.0±1.2 85.2±0.5 67.7±0.3 81.0±0.7 84.4±0.8

ResNetAP-10 58.9±0.4 79.5±0.8 83.7±0.4 66.2±0.8 82.3±0.2 84.4±0.8 66.7±0.6 82.3±0.9 85.4±0.4
ResNet18 62.2±0.3 78.5±0.9 80.1±0.3 63.3±1.6 79.5±0.8 82.1±0.5 63.1±0.3 80.3±0.7 83.3±1.4

Woof
ConvNet-6 35.0±0.8 54.2±0.7 61.1±1.0 41.0±0.8 62.7±1.2 69.7±0.9 44.8±0.8 62.0±1.1 70.6±1.8

ResNetAP-10 33.8±1.0 53.5±0.3 60.0±0.4 39.6±0.4 61.5±0.8 68.8±0.5 43.6±0.5 65.5±0.7 69.3±0.4
ResNet18 34.3±0.8 54.3±0.8 61.0±1.8 39.5±1.1 61.0±1.4 68.7±0.7 43.8±1.4 62.9±1.0 69.5±0.4

Table 5: The ablation study of proposed influence
guidance GI and deviation guidance GD tested with
ResNet-18 on ImageNette .

DiT-IGD Minimax-IGD

GI GD IPC50 IPC100 IPC50 IPC100

✗ ✗ 75.2±0.9 77.8±0.6 78.1±0.6 81.3±0.7
✓ ✗ 76.5±0.6 79.1±0.4 81.5±0.4 85.1±0.4
✗ ✓ 78.2±0.4 80.7±0.7 78.5±0.2 82.8±0.3
✓ ✓ 81.0±0.7 84.4±0.8 82.0±0.3 86.0±0.6

Table 6: Comparison of checkpoint selec-
tion strategies for Minimax-IGD: the gradient-
similarity-based method versus regular interval
selection, on ImageNette with ResNet-18.

Threshold # Checkpoints Regular Ours

0.65 3 79.5±0.6 80.4±0.7
0.70 4 79.8±1.1 82.0±0.3
0.75 6 80.5±0.4 81.4±0.5
0.80 10 81.1±0.5 80.8±0.3

the test architecture. Additionally, due to fewer model parameters compared to the other two, the
computational time required for influence loss calculations is reduced. Based on these observations,
we choose to utilize ConvNet-6 as the surrogate in our formal implementation. However, we also note
that the performance gap between datasets generated with different architectures is not significant.
Particularly, datasets generated with ResNetAP-10 notably outperform ConvNet-6 in several tests
against ResNet-18. These results further validate the robustness and generalization ability of our
proposed IGD sampling framework.

4.4 ABLATION STUDY AND ANALYSIS

Guidance component analysis. Table 5 presents the performance achieved by independently
applying influence guidance and deviation guidance to raw DiT and Minimax. The independent
utilization of the two proposed guidance mechanisms still enhances the performance of both backbone
methods. Specifically, in the case of raw DiT, the incorporation of deviation guidance yields results
akin to those obtained with raw Minimax, primarily due to its ability to augment the diversity of
generated data. Conversely, for Minimax, sole reliance on influence guidance markedly elevates
its performance, achieving parity with the comprehensive framework. Despite Minimax’s inherent
focus on refining sample diversity through fine-tuning, additional gains can be attained through
the integration of deviation guidance. Moreover, it is important to note that although influence
guidance yields moderate improvements for raw DiT, the integration of deviation guidance results in
significant enhancements. These observations substantiate our discourse regarding the critical role
of data diversity in optimizing influence effectiveness. Conclusively, the synergy between influence
guidance and deviation guidance complements each other, facilitating our guided sampling framework
harmoniously in aligning with the training-enhancing objective.

Early-stage guidance analysis. We assess the practicability of our early-stage guidance strategy
by comparing it with the entire guided sampling approach on ImageWoof, with variations in the
influence guidance scaling factor k. Figure 2b demonstrates that applying the influence guidance
throughout the entire generation stage with a large preset k can significantly reduce influence loss.
However, as illustrated by Figure 2c, when k ≥ 10, despite a reduction in loss, validation accuracy
notably drops, likely due to overfitting to the surrogate used for influence calculation. Moreover, this
also leads to abnormal image generation shown in Figure 2a. In contrast, the early-stage guidance
strategy allows strong guidance signals to steer the generation process effectively while mitigating
the overfitting problem. Consequently, this strategy achieves superior performance in less generation
time, thereby enhancing both the efficacy and efficiency of the process.
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(a) (b) (c)

Figure 2: (a) Examples generated using entire and early-stage guidance with varying influence
magnitude k on ImageWoof; (b) Averaged normalized loss GI of datasets generated with different
values of k and IPC=100; (c) Corresponding validation accuracies for varying k.

(a) DiT (b) DiT-IGD

(c) Minimax (d) Minimax-IGD

Figure 3: Visualization study for sample distributions of synthetic datasets (IPC=100) generated by
four methodologies versus the original ImageWoof dataset. Smaller Wasserstein distances to the
original dataset T signify closer alignment with the authentic distribution.

Checkpoints selection strategy analysis. We assess the efficacy of the gradient-similarity-based
checkpoint selection strategy proposed for computing the influence-guided loss (Equation (7)). A
predetermined threshold is utilized to determine checkpoint selection based on the similarity of its
averaged real gradient to the current reference, with an empirically identified suitable range set as
[0.6, 0.8]. Thresholds beyond this range result in excessive checkpoint selection, leading to diminished
efficiency, while overly small thresholds yield minimal selection. The baseline comparison involves
the original trajectory influence’s strategy, which saves checkpoints at fixed regular intervals. In Table
6, we contrast our strategy’s results with various thresholds against the original regular strategy. To
ensure fairness, an equal number of regularly collected checkpoints is used for guidance calculation
at each threshold scenario. Comparative analysis reveals superior performance of our strategy over
the regular approach. Notably, at a threshold of 0.7, our strategy with 4 checkpoints outperforms the
results of 10 regularly selected checkpoints, demonstrating enhanced efficiency and efficacy. For a
case study, checkpoint selection indexes of {0, 4, 11, 40} are observed at a threshold of 0.7, compared
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Figure 4: Comparison of image generation results from raw DiT, DiT-IGD, Minimax, and Minimax-
IGD. Images in each column share the same random seed. Integrating IGD directly into the generation
process produces high-quality data with varying semantic content and enhanced diversity compared
to vanilla generation. Many instances exhibit robust consistency under the guidance of IGD.

to the regular indexes {0, 16, 32, 48}. This adaptive selection indicates better alignment with typical
training dynamics, as more checkpoints are selected from the early stages of training.

4.5 VISUALIZATION STUDY ON GENERATED DATA

Data distribution comparison. To clearly investigate the effect of our guided sampling method
on diffusion generation, Figure 3 shows t-SNE distribution comparisons among the full ImageWoof
training dataset and data produced by two baseline methods, DiT and Minimax, as well as our
two IGD-based approaches, each set at IPC=100. Additionally, we use the Wasserstein distance
to quantitatively evaluate how well the distributions of the generated datasets align with the entire
training dataset. Relative to the Minimax method, our IGD approach guides the diffusion process to
achieve a closer match to the original training set’s distribution, offering more comprehensive coverage
and lower Wasserstein distances. Notably, Minimax-IGD surpasses DiT-IGD in performance, despite
a higher Wasserstein distance from the original dataset. This finding lends partial support to our
hypothesis that pinpointing a pivotal conditional distribution within the authentic distribution can be
more beneficial than mere distribution alignment.

Synthetic image comparison. Figure 4 compares images generated by vanilla sampling of raw
DiT and Minimax with those from guided sampling methods DiT-IGD and Minimax-IGD, using the
same random seeds for each column. While baseline DiT generates high-quality images, they often
share similar content, such as poses and structures. Minimax attempts to address the diversity issue
in the generated data through fine-tuning DiT, but in many cases, the primary content or layout of
the objects does not significantly change. In contrast, our method introduces additional signals in
each guided generation step, achieving significant content variation and enhanced diversity without
reducing quality. Furthermore, the guided signal from IGD is robust, producing similar content in
both Minimax fine-tuned DiT and raw DiT in many cases.

5 CONCLUSION

In this work, we introduce a novel approach to dataset distillation by framing it as a guided diffusion
generation problem. We correlate the general objective of dataset distillation with the trajectory
influence function, designing an efficient influence-guided function for the diffusion sampling
process. Additionally, we implement a deviation guidance function to ensure diversity and prevent
training signal redundancy. These innovations enable us to create an efficient influence-guided
diffusion sampling framework. Comprehensive experimental results illustrate that our method
significantly improves the performance of diffusion models and demonstrate remarkable cross-
architecture generalization ability.
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A APPENDIX

A.1 RELATED WORK

Datset Distillation. Current dataset distillation methods can be categorized into meta-learning,
data-matching, and model-inversion approaches. Meta-learning methods (Nguyen et al., 2021; Zhou
et al., 2022; Loo et al., 2023) tackle dataset distillation as a nested optimization problem, aiming
to minimize generalization errors on original data caused by models trained on distilled data. Data-
matching methods involve synthesizing data to replicate specific behaviours from the original dataset,
such as latent distributions (Zhao & Bilen, 2021b; Wang et al., 2022a), gradients (Zhao et al., 2021;
Zhao & Bilen, 2021a; Kim et al., 2022), and training trajectories (Cazenavette et al., 2022; Du et al.,
2023; Cui et al., 2023). Model-inversion methods (Yin et al., 2024; Shao et al., 2023) are established
on data-free knowledge distillation (DFKD) techniques with specific batch normalization statistic
alignment. Additionally, recent research (Gu et al., 2024) has integrated diffusion models into dataset
distillation alongside a fine-tuning scheme, perpendicular to our training-free, sampling-oriented
approach.

Guided Diffusion Sampling. Works in this category employ a pre-trained diffusion model as a
foundation but modify the sampling method to guide generation with feedback from the guidance
function (Kawar et al., 2022; Chung et al., 2022; Graikos et al., 2022). Early work employed classifiers
as guidance, adjusting gradients during sampling (Dhariwal & Nichol, 2021). However, classifiers
for noisy images are domain-specific and often unavailable. (Wang et al., 2022b) introduced linear
operator-based external guidance, generating images in the null space of these operators, though
extending to non-linear functions is challenging. Several recent works (Gopalakrishnan Nair et al.,
2023; Yu et al., 2023; Bansal et al., 2023) explored general guidance functions, modifying the
sampling process with gradients of the guidance function on expected denoised images. However,
these methods rely on existing metric functions that can concretely measure specific requirements.
In contrast, our contribution lies in guiding the model to generate data that meets abstract, training-
enchaining criteria.

A.2 LIMITATIONS AND FUTURE WORK

The main limitation of our method is the additional time incurred by guidance calculations during
the diffusion sampling process. Despite efforts to improve efficiency, our sampling framework takes
5 to 6× longer than the vanilla method. For example, raw DDIM generates a 256× 256 image in
∼1.5 seconds, our method takes ∼8.2 seconds on a RTX 4090 GPU. This is particularly challenging
for distilling extensive datasets in resource-constrained scenarios. Consequently, improving the
generation efficiency of guided diffusion sampling method will be a key focus of our future research.

A.3 GRADIENT-SIMILARITY-BASED CHECKPOINT SELECTION ALGORITHM

In Algorithm 2, we present a detailed implementation of the gradient-similarity-based checkpoint
selection algorithm introduced in Section 3.2. This algorithm is designed to select representative
checkpoints for calculating the influence guidance GI . The core intuition behind this algorithm is that
if the gradients at a checkpoint closely resemble those at the previous one, the previous checkpoint
can effectively represent the current one.

Complexity analysis. The computational overhead primarily stems from calculating the averaged
gradient gt w.r.t the model parameters θ at each of the E checkpoints collected during training. When
using the same cross-entropy loss as in model training, due to its additive nature, the computational
complexity of calculating gt at a given checkpoint θt is equivalent to the complexity of one epoch of
gradient descent, approximately O(|θ| · B · NB · d), where B is the batch size, N is the number of
data instances, and d is the data dimension. Essentially, without any optimization, the complexity of
this algorithm is similar to training a model parameterized by θ for E epochs. In practice, instead of
loading the entire dataset into the dataloader to compute the average gradient ∇̄θℓc for each class,
we first load all images from a class folder into CPU memory and slice them into GPU memory for
gradient computation and accumulation. Empirically, this approach further reduces the runtime of the
filtering algorithm. Additionally, the cross-architecture evaluation discussed in Section 4.3 and Table
4 demonstrates that using models with simpler architectures (e.g., ConvNet) as surrogates can provide
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more effective influence guidance, further reducing the time overhead for selecting representative
checkpoints.

Algorithm 2: Filtering Algorithm for Influence Guidance

Input: Original dataset T , Initial checkpoint θT
0 , Threshold δ

Output: Retained checkpoints listR
1 Initialize: R ← θT

0 ;
2 Compute Ec[∇̄θℓc(Xc;θ

T
0 )] as reference gradient gref;

3 for t = 1 to E do
4 Compute averaged gradient gt = Ec[∇̄θℓc(Xc;θ

T
t )];

5 Calculate cosine similarity s = gt·gref
∥gt∥∥gref∥ ;

6 if s < δ then
7 R ← R∪ {θT

t };
8 Update reference gradient gref = gt;

9 returnR;

A.4 ADDITIONAL PERFORMANCE EVALUATION ON FOOD-101 DATASET

We evaluate the performance of our IGD methods on Food-101 (Bossard et al., 2014) dataset to provide
further test on distilling other large, high-resolution datasets. Food-101 is a challenging dataset that
includes 101 food categories, totaling 101,000 images, with each category containing 250 manually
reviewed test images and 750 training images. All images are scaled to a maximum side length of
256 pixels. Results detailed in Table 7 show that our IGD methods achieve superior performances
over all IPC scenarios. Furthermore, applying our method to baseline methods, including DiT and
Minimax, results in noticeable performance enhancements, with average improvements of 3.8% and
3.5%, respectively. In contrast, the Minimax method yields only a marginal average improvement
of 0.8% to DiT. These findings align with evaluations conducted on ImageNet, indicating robust
scalability across large, high-resolution datasets.

Table 7: Food-101: performance comparison with state-of-the-art pixel-level distillation methods,
pretrained DiT and Minimax-tuned DiT models with vanilla generation. The results are obtained on
ResNetAP-10 at different IPCs.

IPC Random DM DiT DiT-IGD Minimax Minimax-IGD Full

10 16.2±0.5 18.5±0.8 23.9±1.0 27.2±0.9 24.8±0.9 28.3±0.9
78.6±0.450 36.9±0.3 37.8±0.4 40.8±0.7 45.2±0.7 41.6±1.0 44.8±0.7

100 46.8±0.3 44.8±0.3 45.9±0.5 49.7±0.3 46.5±0.5 50.3±0.6

A.5 PARAMETER ANALYSIS

In our IGD sampling framework, two critical hyper-parameters are k, which controls the magnitude
of influence guidance, and γt, which controls the magnitude of deviation guidance. In Figure 5, we
examine the impact of these scaling factors on DiT-IGD and Minimax-IGD using the ImageNette
dataset as an instance. For DiT-IGD, variations in both k and γt significantly influence performance.
Increasing the values of these parameters enhances performance, highlighting the importance of
influence and dataset diversity for model training. However, setting k too high results in a notable
performance drop. As discussed in Section 3.2, this is likely due to excessive overfitting to the
surrogate data with distorted content. In contrast, for Minimax-IGD, increasing γt contributes
marginally to performance improvement. This is because Minimax-IGD inherently focuses on
increasing diversity as a core aspect of its fine-tuning-based scheme. However, increasing influence
guidance by enlarging k significantly improves its results. Despite this improvement, a similar
performance drop is observed when k becomes excessively large. These findings underscore the
necessity of carefully tuning k and γt to optimize the effectiveness of our IGD sampling framework,
ensuring balanced influence and diversity without overfitting.
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(a) (b)

(c) (d)

Figure 5: Hyper-parameter analysis on (a) & (c) the scaling factor k of influence guidance, and (b) &
(d) the scaling factor γt of deviation guidance for DiT-IGD and Minimax-IGD.

A.6 HYPERPARAMETER SETUP AND GUIDELINES

In Table 8, we provide a detailed hyperparameter configuration for k and γt in Equation (7) to
replicate the results obtained across ImageNette, ImageWoof, and ImageNet-1K datasets. Despite
incorporating an adaptive scaling factor based on the ratio between the denoised signal magnitude
from diffusion and the guided signal from the influence guidance GI , manual specification of the scale
factor k remains essential to forestall unexpected overfitting resulting from the influence guidance.
Drawing from insights gleaned from our ablation study, as illustrated in Figure 5, we recommend
setting the value range of k within [1, 50] for scaling our method in distillation tasks involving other
ImageNet subsets. Similarly, we suggest a grid-search range for the scaling factor γt of the deviation
guidance as [10, 200]. Particularly for scenarios with small IPC, we advocate for starting from a
relatively smaller value of k to hold the representatives of generated data.

Table 8: Detailed setup of hyperparameters k and γt in Equation (7) for reproducing the results
reported in Table 1 & 2.

DIT-IGD Minimax-IGD

Parameter IPC10 IPC50 IPC100 IPC10 IPC50 IPC100

Nette k 5 5 5 15 15 15
γt 50 120 120 10 10 10

woof k 5 5 5 10 10 10
γt 50 120 120 50 100 100

1K k 5 5 - 10 10 -
γt 120 120 - 100 100 -

A.7 MORE VISUALIZATION COMPARISON OF SYNTHETIC DATA.

Here, we provide an additional visual comparison between images generated by two backbone models
with vanilla DDIM sampling: the raw DiT and the Minimax-tuned DiT, and with our IGD-sampling
framework: DiT-IGD and Minimax IGD. All synthetic data were generated for the ImageWoof and
ImageNette datasets.
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Figure 6: Visualizaiton comparison between raw DiT and DiT-IGD on ImageWoof.
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Figure 7: Visualizaiton comparison between Minimax and Minimax-IGD on ImageWoof.
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Figure 8: Visualizaiton comparison between raw DiT and DiT-IGD on ImageNette.
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Figure 9: Visualizaiton comparison between Minimax and Minimax-IGD on ImageNette.
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