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Abstract

Despite the widespread use of variational autoen-
coders (VAEs), the consequences of optimizing
the evidence lower bound (ELBO) opposed to the
exact log likelihood remain poorly understood. We
shed light on this matter by studying nonlinear
VAEs in the limit of near-deterministic decoders.
We first prove that, in this regime, the optimal en-
coder approximately inverts the decoder—a com-
monly used but unproven conjecture—which we
call self-consistency. Leveraging self-consistency,
we show that the ELBO converges to a regularized
log-likelihood rather than to the exact one. The
regularization term allows VAEs to perform
what has been termed independent mechanism
analysis (IMA): it adds an inductive bias towards
decoders with column-orthogonal Jacobians.
This connection to IMA allows us to precisely
characterize the gap w.r.t. the log-likelihood
in near-deterministic VAEs. Furthermore, it
elucidates an unanticipated benefit of ELBO
optimization for nonlinear representation learning
as, unlike the unregularized log-likelihood, the
IMA-regularized objective promotes identification
of the ground-truth latent factors.

1 INTRODUCTION
Variational Autoencoders (VAEs) [19, 31] are a popular
framework for generative modelling and nonlinear rep-
resentation learning. Instead of optimizing the exact but
intractable model evidence, VAEs employ a variational
distribution parameterized by a neural network (encoder), to

*Equal contribution. Correspondence to
patrik.reizinger@uni-tuebingen.de. 1University of
Tübingen; 2MPI for Intelligent Systems, Tübingen; 3University of
Cambridge, Cambridge; 4Amazon Web Services, Tübingen. Code:
github.com/rpatrik96/ima-vae

†Senior author

optimize the tractable evidence lower bound (ELBO). While
empirically successful, the consequences of optimizing the
ELBO opposed to the exact log-likelihood in VAEs remain
poorly understood [36, 22].

In this work, we analyze the effects of optimizing the ELBO
for VAEs in a near-deterministic limit for the conditional
distribution parameterized by the nonlinear decoder. Our
first result concerns the encoder’s optimality in this regime.
Previous works relied on the intuitive assumption that
the optimal encoder inverts the decoder [28, 22, 38]. We
formalize this self-consistency assumption and prove
its validity for the optimal variational posterior in the
near-deterministic nonlinear regime.

Using self-consistency, we show that the ELBO tends to a
regularized log-likelihood rather than to the exact one as
conjectured in [28]. The regularization term allows VAEs
to perform what has been termed Independent Mechanism
Analysis (IMA) [11]: it adds an inductive bias towards de-
coders with column-orthogonal Jacobians. This generalizes
previous findings based on linearizations or approximations
of the ELBO [32, 25, 22], and characterizes the gap w.r.t. the
log-likelihood in the near-deterministic limit. Furthermore,
our results elucidate the gap between the ELBO and exact
log-likelihood as a mechanism through which the ELBO
implements a useful inductive bias. Unlike the unregular-
ized log-likelihood, the IMA-regularized objective promotes
identification of the ground-truth latent factors under suit-
able assumptions [11]. Empirically, we verify our theoretical
results as well as show that VAEs recover the ground-truth
latent factors when the IMA assumptions are met.

2 BACKGROUND
Variational Autoencoders. Maximizing the data likelihood
in deep Latent Variable Models (LVMs) over decoder pa-
rameters θ (pθ(x) =

∫
pθ(x|z)p0(z)dz) is intractable in

general, so approximate objectives are required. Variational
approximations [34] replace the true posterior pθ(z|x) by
the approximate variational posterior qϕ(z|x), which is
a stochastic mapping x 7→ z with parameters ϕ, and yields
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Figure 1: Modeling choices in VAEs promote Independent Mechanism Analysis (IMA) [11]. We assume a Gaussian VAE (3), and prove
that in the near-deterministic regime the mean encoder approximatetely inverts the mean decoder, gθ≈fθ−1 (self-consistency, Prop. 1).
Bottom: Closing the gap requires matching the covariances of the variational (LHS, qϕ(z|x)) and the true posterior (RHS, approximated
by gθ

∗[pθ(x|z)], cf. § 3.2 for details). Under self-consistency, an encoder with diagonal covariance enforces a row-orthogonal encoder
Jacobian Jgθ (x)—or equivalently, a column-orthogonal decoder Jacobian Jfθ (z). This regularization was termed Independent
Mechanism Analysis (IMA) [11] and shown to be beneficial for learning the true latent factors. The connection elucidates unintended
benefits of using the ELBO for representation learning.

a tractable evidence lower bound (ELBO) [19, 31] of the
model’s log-likelihood, defined as

ELBO(x,θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]
− KL [qϕ(z|x)||p0(z)] . (1)

The variational approximation trades off computational
efficiency with a difference w.r.t. the exact log-likelihood,
which is expressed alternatively as (see [7, 20] and § 6)

ELBO(x,θ,ϕ)=log pθ(x)−KL [qϕ(z|x)||pθ(z|x)], (2)

where the Kullback-Leibler Divergence (KL) between
variational and true posteriors characterizes the gap.
VAEs [19] rely on the variational approximation in (1)
to train deep LVMs where neural networks parametrize
the encoder qϕ(z|x) and the decoder pθ(x|z). Common
modeling choices include choosing qϕ(z|x) to be a
factorized Gaussian with posterior means µϕ

k (x) and
variances σϕ

k (x)
2 for each zk|x, and choosing pθ(x|z) to

be a factorized Gaussian with mean fθ (z) and an isotropic
covariance in d dimensions,
zk|x∼N (µϕ

k (x),σ
ϕ
k (x)

2);x|z∼N (fθ (z),γ−2Id). (3)

Independent Mechanism Analysis. A common assump-
tion is that observations x can be modeled as the mixing f
of a latent vector z s.t. x = f(z). A core goal of represen-
tation learning is then to learn an unmixing gθ such that the
recovered components y = gθ (x) identify the true ones
up to tolerable ambiguities [2, 17]. When f is nonlinear,
however, it is well known that identifying z is impossible
without further constraints [15, 24]. Recently, Gresele
et al. [11] proposed constraining the function class in an
approach termed Independent Mechanism Analysis (IMA).
IMA postulates that the latent components influence the
observations “independently”, where influences correspond
to the partial derivatives ∂fθ

/∂zk, and their non-statistical
independence amounts to an orthogonality condition. While
full identifiability has not been characterized for this

model class, it was proven to rule out the most common
counterexamples to identifiability, and empirically shown
to help recover the ground-truth latent factors. To estimate a
model in the IMA class, [11] proposed the IMA-regularized
log-likelihood: LIMA(f

θ, z) := logpθ(x)−λ · cIMA(f
θ, z)

where cIMA(f
θ, z) encourages column-orthogonality of

Jfθ (z) and is defined as

cIMA(f
θ, z) =

∑
k
log
∥∥∥∂fθ

∂zk
(z)
∥∥∥−log

∣∣Jfθ (z)
∣∣ (4)

3 THEORY
Our theoretical analysis assumes factorized densities (for
p0(z), qϕ(z|x), and pθ(x|z)) and a Gaussian decoder,
matching common modeling practice in VAEs.

Assumption 1 (Factorized VAE class with isotropic
Gaussian decoder and log-concave prior). We are given
a fixed latent prior and three parameterized classes of
Rd → Rd mappings: the mean decoder class θ 7→ fθ , and
the mean and standard deviation encoder classes, ϕ 7→ µϕ

and ϕ 7→ σϕ s.t.
(i) p0(z) ∼

∏
k m(zk), with a smooth m fully supported

on R, having bounded non-positive second-order, and
bounded third-order logarithmic derivatives;

(ii) the encoder and decoder are of the form in (3), with
isotropic decoder covariance 1/γ2Id;

(iii) the variational mean and variance encoder classes are
universal approximators;

(iv) for all θ, fθ : Rd → Rd is a bijection with inverse gθ ,
and both are C2 with bounded first and second order
derivatives.

Crucially, both the mean encoder and the mean decoder can
be nonlinear. Moreover, the family of log-concave priors
contains the commonly-used Gaussian distribution as a spe-
cial case. We study the near-deterministic decoder regime
of such models, where γ→+∞. This regime is expected to
model data generating processes with vanishing observation
noise well—in line with the typical ICA setting—and is
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commonly considered in theoretical analyses of VAEs, e.g.
in [28] and in [25, 22]. Unlike [28], we consider a large but
finite γ, not at the limit γ=∞, where the decoder is fully
deterministic. In fact, for any large but finite γ, the objective
is well-behaved and amenable to theoretical analysis, while
the KL-divergence is undefined in the deterministic setting.
The requirement in assumption (iv) deviates from common
practice in VAEs—where observations are typically higher-
dimensional—but it allows to connect VAEs and exact like-
lihood methods such as normalizing flows [28].

3.1 SELF-CONSISTENCY

First, we prove self-consistency in the near-deterministic
regime by characterizing optimal variational posteriors (i.e.,
those minimizing the ELBO gap w.r.t. the likelihood) for
a particular point x and fixed decoder parameters θ. Based
on (2), any associated optimal choice of encoder parameters
satisfies
ϕ̂(x,θ) ∈ argmaxϕ ELBO(x;θ,ϕ)

= argminϕ KL [qϕ(z|x)||pθ(z|x)] . (5)

We call self-consistent ELBO the resulting achieved value:
ELBO∗(x;θ) = ELBO(x;θ, ϕ̂(x,θ)) . (6)

The expression in (5) corresponds to a problem of
information projection [4, 27] of pθ(z|x) onto the set of
factorized Gaussian distributions. This means that given
a variational family, we search for the optimal qϕ(z|x)
to minimize the KL to pθ(z|x). While such information
projection problems are well-studied for closed convex sets
where they yield a unique minimizer [5], the set projected
onto in our case is not convex (convex combinations of
arbitrary Gaussians are not Gaussian), making this problem
of independent interest. After establishing upper and
lower bounds on the KL divergence (exposed in Prop. 6-7
in § 8.2), we obtain the following self-consistency result.

Proposition 1. [Self-consistency of near-deterministic
VAEs] Under Assum. 1, ∀ x, θ, as γ→+∞, there exists at
least one global minimum solution of (5), satisfying
µϕ̂(x) = gθ (x) +O(1/γ); σϕ̂

k (x)
2 = O(1/γ2) , ∀k. (7)

Prop. 1 states that minimizing the ELBO gap (equivalently,
maximizing the ELBO) w.r.t. the encoder parameters ϕ
implies in the limit of large γ that the encoder’s mean µϕ(x)
tends to gθ(x), the image of x by the inverse decoder. We
can interpret this as the decoder “inverting” the encoder.
Additionally, the variances of the encoder will converge to
zero, in line with empirical observations of practitioners.

3.2 SELF-CONSISTENT ELBO AND
IMA-REGULARIZED LOG-LIKELIHOOD

We want to investigate how the choice of qϕ(z|x) and
pθ(x|z) implicitly regularizes the Jacobians of their means
µϕ(x) and fθ (z) in the near-deterministic regime. Exploit-
ing self-consistency, we are able to precisely characterize
how this happens: we formalize this in Thm. 1.

Figure 2: Self-consistency (Prop. 1) in VAE training, on a
log-log plot, cf. 4 for details. Left: convergence of σϕ̂

k (x)
2

to 0; Right: convergence of µϕ̂(x) to gθ (x)

Theorem 1. [VAEs with a near-deterministic decoder ap-
proximate the IMA objective] Under Assumption 1, the
variational posterior satisfies (denoting n′′ = d2 log p0

dz2
k

)

σϕ̂
k (x)

2 = [γ2∥
[
Jfθ

(
gθ(x)

)]
:k
∥2 − n′′(gθk (x))]

−1

+O(1/γ3) , (8)

and the self-consistent ELBO (6) approximates the IMA-
regularized log-likelihood [11]:

ELBO∗(x;θ) = log pθ(x)− cIMA(f
θ, gθ(x))

+Oγ→∞ (1/γ2) . (9)

Proof is in § 7. We qualitatively describe the interplay
between distributional assumptions in the VAE and implicit
constraints on the decoder’s Jacobian and its inverse.

Modeling assumptions implicitly regularize the mean
decoder class fθ under self-consistency. In the near
deterministic regime, pθ(x) gets close to the pushfor-
ward distribution of the prior by the mean decoder
fθ

∗ [p0(z)], which can be used to show that the true
posterior pθ(z|x) = pθ(x|z)p0(z)/pθ(x) is approxi-
mately the pushforward through the inverse mean decoder
gθ

∗ [pθ(x|z)] (cf. § 6 for details). If we select a given latent
z0 and denote its image by fθ (z0) , then we can locally
linearize gθ by its Jacobian Jgθ = Jgθ (fθ (z0)), yielding
a Gaussian for the pushforward distribution gθ

∗ [pθ(x|z)]
with covariance 1/γ2JgθJT

gθ (Fig. 1). As the sufficient
statistics of a Gaussian are given by its mean and covariance,
the structure of the posterior covariance Σϕ

z|x (by design
diagonal, cf. (3)) is crucial for minimizing the gap in (2).
Thus, in the zero gap limit, the covariances of qϕ(z|x) and
pθ(z|x) should match, i.e., 1/γ2JgθJT

gθ will be diagonal

with entries σϕ
k (x)

2 and therefore Jgθ has orthogonal
rows. We can express the decoder Jacobian via the inverse
function theorem as Jfθ (z0) = Jgθ (fθ (z0))

−1. As
the inverse of a row-orthogonal matrix has orthogonal
columns, fθ satisfies the IMA principle. Additionally,
we can relate the variational posterior’s variances to the
column-norms of Jfθ as σϕ

k (x)
2 = 1/γ2∥

[
Jfθ (z0)

]
:k
∥−2

.
The self-consistent ELBO therefore converges to the
IMA-regularized log-likelihood [11].

Our argument indicates that minimizing the gap between
the ELBO and the log-likelihood encourages column-
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Figure 3: Comparison of the ELBO∗, the IMA-regularized
and unregularized log-likelihoods over different γ2. Error
bars are omitted as they are orders of magnitude smaller

Figure 4: cIMA and Mean Correlation Coefficient (MCC) for
3-dimensional Möbius mixings

orthogonality in Jfθ by matching the covariances of
qϕ(z|x) and gθ

∗ [pθ(x|z)]. When qϕ(z|x)=pθ(z|x), the
gap is closed; this is only possible if the decoder is in the
IMA class, for which cIMA vanishes and the ELBO tends to
an exact log-likelihood. To the best of our knowledge, we
are the first to prove this for nonlinear functions, extending
related work for linear VAEs [25].

4 EXPERIMENTS
Self-consistency in practical conditions Fig. 2 empiri-
cally verifies Prop. 1 of self-consistency. We generate data
by mixing latents sampled from a standard normal distri-
bution using an MLP with smooth nonlinearities [10] and
orthogonal weights—which intentionally does not belong
to the IMA class, as our results are more general. We then
train a Gaussian VAE (Assum. 1) with 20 seeds for each γ2

from {1e1; 1e2; 1e3; 1e4; 1e5}. The left plot shows that the
posterior variances σϕ

k (x)
2 converge to zero with a 1/γ2 rate,

as predicted by (7). The right plot shows approximate con-
vergence of the mean encodings µϕ̂(x) to gθ(x) with a 1/γ
rate. As fθ is not guaranteed to be invertible, we use instead
the optimal encoder and decoder parameters to compare
fθ(µϕ̂(x)) to x.

Relationship between ELBO∗, IMA-regularized, and un-
regularized log-likelihoods Fig. 3 compares the differ-
ence of the estimate of ELBO∗ and the unregularized/IMA-

regularized log-likelihoods after convergence. We generate
data by mixing latents with an invertible MLP not in the
IMA class [11]. This way, we ensure that the unregular-
ized and IMA-regularized log-likelihoods differ and make
the claim of Nielsen et al. [28] comparable to ours. We
then train a VAE where we fix the decoder to the ground-
truth mixing. With a fixed decoder, the ELBO∗ depends
only on ϕ; thus, we only train the encoder with γ2 values
from [1e1; 1e5] (5 seeds each). As the decoder and the data
are fixed, log pθ(x) and CIMA will not change during train-
ing, only ELBO∗ does. The figure shows that as γ→+∞,
ELBO∗ approaches LIMA(f

θ, z), as predicted by Thm. 1,
and not log pθ(x), as stated in [28]—the difference is CIMA.

Connecting IMA, γ2, and disentanglement Fig. 4 quan-
tifies the relationship between the orthogonality of the de-
coder’s Jacobian measured by the cIMA and identifiability
of the ground-truth latents measured by the Mean Cor-
relation Coefficient (MCC) [14]. We use 3-dimensional
Möbius transforms [29], which are in the IMA class [11],
for the ground-truth mixing with uniform ground-truth and
model prior distributions. By increasing γ2, MCC increases,
while cIMA decreases, suggesting that VAEs in the near-
deterministic regime promote identifiability by enforcing
column-orthogonality of the decoder’s Jacobian.

5 DISCUSSION

The near-deterministic regime. Our theory relies on
γ→+∞, however, in practice large values of γ2 may be
harder to optimize due to an exploding reconstruction term
in (1). This may be one explanation for the slight deviation
of Fig. 2, right from our theory’s predictions: while conver-
gence of µϕ(x) to gθ matches the prediction in Prop. 1, its
rate is not precisely the one predicted for the self-consistent
ELBO (6). Another cause could be the encoder’s finite ca-
pacity. Nonetheless, we have experimentally shown that
for realistic hyperparameters, VAEs’ behavior matches the
predictions of our theory for the near-deterministic regime.

Characterizing the ELBO gap for nonlinear mod-
els. Thm. 1 characterizes the gap between the ELBO and
true log-likelihood for nonlinear VAEs, extending the linear
analysis of [25]; we also empirically characterize the gap
in the deterministic limit. An unanticipated consequence of
this is that (consistent with [25]) VAEs optimize the IMA-
regularized log-likelihood in the near-deterministic limit,
and not the unregularized one, as stated in [28].

Conclusion. We theoretically justify the widely-used self-
consistency assumption in the near-deterministic regime
of small decoder variance. Using this result, we show that
the self-consistent ELBO converges to the IMA-regularized
log-likelihood, and not to the unregularized one. Thus,
we can characterize the gap between the ELBO and true
log-likelihood and reason about its role as an inductive bias
for representation learning in nonlinear VAEs.
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6 COMPLEMENTARY NOTES

6.1 VAESELBO DECOMPOSITIONS

Connection between (1) and (2). Here we show how the two decompositions of the ELBO objective in (1) and (2) can be
connected. We start from equation (2):

ELBO(x,θ,ϕ) = log pθ(x)− KL [qϕ(z|x)||pθ(z|x)] .

By definition of KL-divergence, and applying Bayes rule, we get

ELBO(x,θ,ϕ) = log pθ(x)−
∫

qϕ(z|x) (log qϕ(z|x)− log pθ(z|x)) dz

= log pθ(x)−
∫

qϕ(z|x)
(
log qϕ(z|x)− log

(
pθ(x|z)

p0(z)

pθ(x)

))
dz .

We observe that the two terms involving pθ(x) cancel, resulting in

ELBO(x,θ,ϕ) = −
∫

qϕ(z|x) (log qϕ(z|x)− log (pθ(x|z)p0(z))) dz,

which leads to (1) by rearranging the terms:

ELBO(x,θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]− KL [qϕ(z|x)||p0(z)] .

Expressions for the two terms in equation (1) under Assum. 1. The above two terms take the following form in our
setting. For the second (“KL”) term, we get

− KL [qϕ(z|x)||p0(z)] =
∫

qϕ(z|x) log p0(z)dz −
∫

qϕ(z|x) log qϕ(z|x)dz

= Eqϕ(z|x)[log(p0(z))] +H(qϕ(z|x)) ,

where H denotes the entropy. Writing the expression for the entropy of univariate Gaussian variables (1/2 log(2πσ2) + 1/2),
we have under Assum. 1

H(qϕ(z|x)) =
d

2
(log(2π) + 1) +

1

2

d∑
k=1

log σϕ
k (x)

2 = κd +
1

2

d∑
k=1

log σϕ
k (x)

2,

where we introduce the dimension dependent constant κd = d
2 (log(2π) + 1) . This leads to

−KL [qϕ(z|x)||p0(z)] = Eqϕ(z|x)[log(p0(z))] +
1

2

d∑
k=1

log σϕ
k (x)

2 + κd . (10)

The first (“reconstruction”) term, under the isotropic Gaussian decoder of Assum. 1, takes the form

Eqϕ(z|x) [log pθ(x|z)] = −γ2

2
Eqϕ(z|x)

[
∥x− fθ (z) ∥2

]
+ d log γ − d

2
log(2π) . (11)

Expression for the gap between ELBO and log-likelihood Let us now write the KL divergence between variational and
true posteriors, which is the gap appearing in (2).

KL [qϕ(z|x)||pθ(z|x)] = −
∫

qϕ(z|x) log pθ(x|z)dz −H(qϕ(z|x))

Using again the expression of the entropy of Gaussian variables, this leads to

KL [qϕ(z|x)||pθ(z|x)] = −
∫

qϕ(z|x) log pθ(x|z)dz −
d∑

k=1

log σϕ
k (x)−

d

2
(log(2π) + 1) ,

9



such that, using the Bayes formula for the true posterior and Assum. 1, we get

KL [qϕ(z|x)||pθ(z|x)] = −
d∑

k=1

log σϕ
k (x) + c(x, γ)

+
1

2
Ez∼qϕ(·|x)

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
, (12)

with additive constant c(x, γ) = −d
2

(
log(γ2) + 1

)
+ log pθ(x). Note the log(2π) term in the previous expression cancels

with the one coming from the true log posterior.

The analysis of the optima of (12) is non-trivial due to the second term which involves taking expectations of functions of z
w.r.t. its posterior distribution qϕ parameterized by µϕ and σϕ. Much of the derivations to obtain our results will revolve
around constructing bounds that no longer involve such expectations, but instead only depend on µϕ and σϕ.

6.2 JUSTIFICATION OF THE INTUITION

We add here more qualitative details to the statement of subsection 3.2 that the true posterior density is approximately the
pushforward of pθ(x|z = z0). Note that they are not meant to replace a rigorous treatment, which is deferred to § 7.

As the decoder becomes deterministic, the marginal observed density becomes the pushforward of the latent prior by fθ 1

such that
pθ(x) ≈ p0

(
gθ(x)

)
|Jgθ (x)| .

The true posterior is therefore approximately

pθ(z|x) = pθ(x|z)p0(z)/pθ(x) ≈ pθ(x|z)p0(z)/p0
(
gθ(x)

)
|Jgθ (x)|−1 .

Conditioning on a given observation x = fθ (z0), we get

pθ(z|x = fθ (z0)) = pθ(f
θ (z0) |z)p0(z)/pθ(x = fθ (z0))

≈ pθ(f
θ (z0) |z)p0(z)/p0

(
gθ(fθ (z0))

)
|Jgθ (fθ (z0)) |−1

≈ pθ(f
θ (z0) |z)p0(z)/p0 (z0) |Jgθ (fθ (z0)) |−1

Neglecting the variations of the prior relative to those of the posterior (due to near-determinism), we make the approximation
p0(z) ≈ p0 (z0) such that the above approximation becomes

pθ(z|x = fθ (z0)) ≈ pθ(f
θ (z0) |z)|Jfθ (z0) | .

Using the isotropic Gaussian decoder assumption, we get

pθ(z|x = fθ (z0)) ≈
γd

√
2π

d
exp

(
−γ2

2

∥∥∥fθ (z0)− fθ (z)
∥∥∥2) |Jfθ (z0) | .

In the near-deterministic regime, this posterior distribution should be concentrated in the region where z is close to z0, we
can then further approximate this density using a Taylor formula

pθ(z|x = fθ (z0)) ≈
γd

√
2π

d
exp

(
−γ2

2

∥∥Jfθ (z0) (z0 − z)
∥∥2) |Jfθ (z0) |

=

√
2π

−d
γd√∣∣∣GGT
∣∣∣ exp

(
− 1

γ2
(z0 − z)

T
(
GGT

)−1

(z0 − z)

)
,

with G = Jgθ (fθ (z0)) = Jfθ (z0)
−1, which is also matching the expression of the pushforward of the Gaussian density

pθ(x|z = z0) by the linearization of gθ around fθ (z0) (i.e. replacing the mapping by its Jacobian at that point, G).
1because the conditional distribution of the decoder tends to a Dirac measure at fθ
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6.3 A CONNECTION BETWEEN THE β PARAMETER OF β-ZVAES AND THE DECODER PRECISION γ2

In the context of disentanglement, a commonly used variant of standard VAEs [19] is the β-VAE [3, 12, 18, 32, 22]. In this
model, an additional parameter β is added to modify the weight of the KL term in (1), whereas the decoder precision γ2 is
typically set to one [6, 9, 22, 32]. The β-VAE objective [12] can be written as

Lβ(x;θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]− βKL [qϕ(z|x)∥p0(z)] . (13)

The influence of the decoder precision γ2 and the β parameters on the objective have been related in the literature, see for
example [7, § 2.4.3]—and similar observations can be found in [33, § 3.1]. Under the assumption of a Gaussian decoder, the
ELBO from eq. (1) can be written as

ELBO(x;θ,ϕ) = −KL [qϕ(z|x)||p0(z)] + Eqϕ(z|x) [log pθ(x|z)]

= −KL [qϕ(z|x)||p0(z)]−
γ2

2
Eqϕ(z|x)

[∥∥∥x− fθ (z)
∥∥∥2]+d log γ− d

2
log(2π)

= γ2

[
− 1

γ2
KL [qϕ(z|x)||p0(z)]−

1

2
Eqϕ(z|x)

[∥∥∥x− fθ (z)
∥∥∥2]+ c(γ)

]
; (14)

c(γ) :=
d

γ2
log γ − d

2γ2
log(2π)

Given that usually optimization is performed with a fixed value for γ for the ELBO (and with fixed β for Lβ), this suggests
that β and 1/γ2, play a similar role in (13) and (14)—since the γ2 outside parenthesis only changes the objective and its
gradients by a global scaling factor.

7 MAIN THEORETICAL RESULTS

7.1 PROOF OF ??

We proceed in two steps: first we prove the existence of variational parameters that achieve a global minimum of the
ELBO gap, then we characterize its near-deterministic properties. We then combine these results, which rely on specific
assumptions, to obtain our main text result under Assum. 1.

We initially use the following milder assumptions than in main text to prove intermediate results.

Assumption 2 (Gaussian Encoder-Gaussian Decoder VAE, minimal properties). We are given a fixed latent prior and three
parameterized classes of Rd → Rd mappings: the mean decoder class θ 7→ fθ, and the mean and standard deviation
encoder classes, ϕ 7→ µϕ and ϕ 7→ σϕ such that

(i) the latent prior has a factorized independent and identically distributed (i.i.d.) density p0(z) ∼
∏

k m(zk), with m
smooth fully supported on R, with concave logm,

(ii) conditional on the latent, the decoder has a factorized Gaussian density pθ with mean fθ such that

x|z ∼ N
(
fθ (z) , γ−2Id

)
(15)

(iii) the encoder is factorized Gaussian with posterior mean and variance maps µϕ
k (x), σ

ϕ
k (x)

2 for each component k,
leading to the factorized posterior density qϕ(z|x) such that

zk|x ∼ N (µϕ
k (x), σ

ϕ
k (x)

2) (16)

(iv) the mean and variance encoders classes can fit any function,
(v) for all possible θ, fθ is a diffeomorphism of Rd with inverse gθ.

Existence of at least one global minimizer of the gap between true and variational posterior is given by the following
proposition.

Proposition 2 (Existence of global minimum). Under Assumption 2. For a fixed θ assume additionally that gθ is Lipschitz
continuous with Lipschitz constant B > 0, in the sense that

∀x,y ∈ Rd :
∥∥gθ (x)− gθ(y)

∥∥
2
≤ B∥x− y∥2 .

Then there exists at least one choice (µϕ ∈ Rd, σϕ ∈ Rd
>0) that achieves the minimum of KL [qϕ(z|x)||pθ(z|x)].
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Proof. Using Prop. 6, we have the lower bound

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x) + logm(µϕ
k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]
. (17)

We then notice (see lemma 4) that for all k,

σϕ
k (x) → − log σϕ

k (x) +
γ2

2
B−2σϕ

k (x)
2

achieves a global minimum n(B, γ) = − log(B/γ) + 1/2 at σϕ
k (x) = B/γ.

For arbitrary k0, we now 1) lower bound the k ̸= k0 terms by n(B, γ); 2) lower bound and all the logm terms by their
global maximum, which exists by Assum. 1i (log-concave prior); and 3) drop the non-negative squared norm term, leading
to the following weaker lower bound:

KL [qϕ(z|x)||pθ(z|x)] ≥ (d− 1)n(B, γ)− log σϕ
k0
(x)

− dmax
t

(logm(t)) + c(x, γ) +
γ2

2
B−2

[
σϕ
k0
(x)2

]
. (18)

The KL divergence is well-defined and finite for any choice of parameters in their domain, therefore it achieves a particular
value K0 ≥ 0 at one arbitrary selected point of the domain. Since for all k, the lower bound tends to +∞ for both σϕ

k → +∞
(as the quadratic term dominates the − log term) and σϕ

k → 0+, there exist a > b > 0 (possibly dependent on (γ,x)) such
that KL [qϕ(z|x)||pθ(z|x)] > K0 for any σϕ

k < b or σϕ
k > a.

Moreover, starting again from the lower bound from Prop. 6,

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x) + logm(µϕ
k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]
, (19)

we now focus on µϕ and lower bound all σϕ terms. With this, we get the following weaker lower bound in terms of µϕ:

KL [qϕ(z|x)||pθ(z|x)] ≥ dn(B, γ)− dmax
t

(logm(t)) + c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2] . (20)

The lower bound also tends to +∞ for ∥µϕ∥ → +∞, so there exists a radius R > 0 (possibly dependent on (γ,x)) such
that KL [qϕ(z|x)||pθ(z|x)] > K0 if ∥µϕ∥ > R.

As a consequence, the infimum (≤ K0) of the minimization problem (5) cannot be achieved outside the compact set
(µϕ,σϕ) ∈ {µϕ ∈ Rd : ∥µϕ∥ ≤ R} × [a, b]d. Since the divergence is continuous in (µϕ,σϕ), there exists a value
(µϕ̂,σϕ̂) in this compact set achieving the minimum of the KL over the whole parameter domain, and all values achieving
this minimum are in this compact set.

For given x, θ and γ > 0, the variational posterior KL divergence mapping

(µϕ(x),σϕ(x)) → KL [qϕ(z|x)||pθ(z|x)]

thus has a minimum, and by smoothness of this mapping, this minimum can be characterized by the vanishing gradient of
the KL divergence with respect to the parameters. Now, let us try to characterize how this minimum behaves for large γ.

12



Proposition 3 (Self-consistency of the encoder in the deterministic limit). Under Assum. 2, assume additionally fθ and gθ

are Lipschitz continuous with respective Lipschitz constants C,B > 0, in the sense that

∀z,w ∈ Rd :
∥∥∥fθ (z)− fθ(w)

∥∥∥
2
≤ C∥z −w∥2 , (21)

∀x,y ∈ Rd :
∥∥gθ (x)− gθ(y)

∥∥
2
≤ B∥x− y∥2 . (22)

Assume additionally that − logm is quadratically dominated, in the sense that

∃D > 0, E > 0 : − logm(u) ≤ D|u|2 + E , ∀u ∈ R.

Then for all x,θ, as γ → +∞, any global minimum of (5) satisfies

µϕ̂(x) = gθ (x) +O(1/γ) (23)

σϕ̂(x)2 = O(1/γ2) . (24)

More precisely, for all x ∈ Rd, γ > 0

∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 ≤ B2 2d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2
log(B2)

)
.

and

d∑
k=1

σϕ̂
k (x)

2 ≤ B2 4d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2

(
log(2B2)

))
.

Proof. We start from the lower bound expression of Prop. 6

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x) + logm(µϕ
k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ
∥∥2 + d∑

k=1

σϕ
k (x)

2

]
,

with c(x, γ) = −d
2

(
log(γ2) + 1

)
+ log pθ(x). For any ν ∈ (0, 1], we can thus write

KL [qϕ(z|x)||pθ(z|x)] ≥
d∑

k=1

[
− log σϕ

k (x) + νγ2B−2σ
ϕ
k (x)

2

2
− logm(µϕ

k )

]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ
∥∥2 + (1− ν)

d∑
k=1

σϕ
k (x)

2

]
.

Now, from lemma 4 we get

∀u > 0 : − log u+ αu2/2 ≥ 1

2
log(α) +

1

2
.

We exploit this lower bound to obtain

KL [qϕ(z|x)||pθ(z|x)] ≥
d

2

(
log(νγ2B−2) + 1

)
−

d∑
k=1

[
logm(µϕ

k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ
∥∥2 + (1− ν)

d∑
k=1

σϕ
k (x)

2

]
.
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Using the expression of c(x, γ) we get

KL [qϕ(z|x)||pθ(z|x)] ≥
d

2

(
log(νB−2) + log γ2 + 1

)
−

d∑
k=1

[
logm(µϕ

k )
]
− d

2

(
log γ2 + 1

)
+ log pθ(x) +

γ2

2
B−2

[∥∥gθ (x)− µϕ
∥∥2 + (1− ν)

d∑
k=1

σϕ
k (x)

2

]
.

and both the “d log γ” as well as “d/2” terms cancel out such that

KL [qϕ(z|x)||pθ(z|x)] ≥
d

2

(
log(νB−2)

)
−

d∑
k=1

[
logm(µϕ

k )
]
+ log pθ(x)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ
∥∥2 + (1− ν)

d∑
k=1

σϕ
k (x)

2

]
.

Finally, using Prop. 7, the above right hand side is bounded from above by a constant as γ → +∞, and as a consequence,
the positive factor of the γ2 term must vanish (by continuity assumption and its limits note − logm is bounded from below)

∥∥gθ (x)− µϕ
∥∥2 + (1− ν)

d∑
k=1

σϕ
k (x)

2 → 0

This entails that both positive terms it comprises must vanish too.

More precisely, we get the inequality between lower and upper bounds at the optimal solution

d

2

(
log(νB−2)

)
−

d∑
k=1

[
logm(µϕ̂

k )
]
+ log pθ(x)

+
γ2

2
B−2

[∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 + (1− ν)

d∑
k=1

σϕ̂
k (x)

2

]

≤ d

(
1

2
C2 + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

])
− d

2
+ log pθ(x),

which simplifies to

d

2

(
log(νB−2)

)
−

d∑
k=1

[
logm(µϕ̂

k )
]
+

γ2

2
B−2

[∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 + (1− ν)

d∑
k=1

σϕ̂
k (x)

2

]

≤ d

(
1

2
C2 + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

])
− d

2
.

Moreover by continuity assumption and its limits, − logm is bounded from below by −M = −maxt logm(t), yielding

d

2

(
log(νB−2)− 2M

)
+

γ2

2
B−2

[∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 + (1− ν)

d∑
k=1

σϕ̂
k (x)

2

]

≤ d

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

])
such that

γ2

2
B−2

[∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 + (1− ν)

d∑
k=1

σϕ̂
k (x)

2

]

≤ d

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
− 1

2

(
log(νB−2)− 2M

))
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and finally

B−2

[∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 + (1− ν)

d∑
k=1

σϕ̂
k (x)

2

]

≤ 2d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2
log(B2/ν)

)
(25)

Taking ν = 1 in (25) we get the first intended inequality

∥∥∥gθ (x)− µϕ̂(x)
∥∥∥2 ≤ B2 2d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2
log(B2)

)
.

Alternatively, (25) implies

(1− ν)

d∑
k=1

σϕ̂
k (x)

2 ≤ B2 2d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2

(
log(B2/ν)

))

Taking a fixed value of ν, say 1/2, we get the second intended inequality

d∑
k=1

σϕ̂
k (x)

2 ≤ B2 4d

γ2

(
1

2
(C2 − 1) + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

]
+M +

1

2

(
log(2B2)

))
.

We now restate the main text proposition and provide the proof.

Proposition 1. [Self-consistency of near-deterministic VAEs] Under Assum. 1, ∀ x, θ, as γ→+∞, there exists at least one
global minimum solution of (5), satisfying

µϕ̂(x) = gθ (x) +O(1/γ); σϕ̂
k (x)

2 = O(1/γ2) , ∀k. (7)

Proof. We only have to check that Assum. 1 allow fulfilling the following requirements of Prop. 3:

• the Lipschitz continuity requirements in Prop. 3 results from the boundedness of the first order derivatives of the
decoder mean and of its inverse (by using the multivariate Taylor theorem),

• concavity of logm, required by Assum. 2, is a direct consequence of non-positivity of the second-order logarithmic
derivative of m in Assum. 1i,

• quadratic domination of − logm comes from the boundedness of the second-order logarithmic derivative of m (by
integrating twice).

Then Prop. 3 follows and the O(1/γ) convergence of the variational posterior mean of the inverse, as well as the O(1/γ2)
convergence of the variational posterior variance.

Finer approximation of parameter values We now derive a finer result for the convergence of the mean, that we will
exploit in Thm. 1. This relies on the existence of an optimum shown by Prop. 2.

At such optimum ϕ̂ we thus have for all k

∂

∂µϕ
k

[KL [qϕ(z|x)||pθ(z|x)]]|ϕ̂ = 0 ,

15



and
∂

∂σϕ
k

[KL [qϕ(z|x)||pθ(z|x)]]|ϕ̂ = 0 .

We derive the constraints entailed by the first expression:

∂

∂µϕ
k

[KL [qϕ(z|x)||pθ(z|x)]]|ϕ̂ =
1

2

∫
∂

∂µϕ
k

qϕ(z)

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
dz

=
1

2

∫ ∏
j ̸=k

qjϕ(zj)
∂qkϕ(zk)

∂µϕ
k

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
dz

with
∂qkϕ(zk)

∂µϕ
k

=
µϕ
k − zk

σϕ
k

2 qkϕ(zk),

which leads to a set of constraints at optimum

∫
qϕ̂(z)µ

ϕ̂
k (x)

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
dz

=

∫
qϕ̂(z)zk

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
dz , ∀k (26)

Based on this expression we derive the following result.

Proposition 4. Under Assum. 1, as γ → +∞

fθ(µϕ̂(x)) = x+
1

γ2
J−T

fθ|µϕ̂(x)
n′(µϕ̂(x)) +O(1/γ3). (27)

and

µϕ̂(x) = gθ (x) +
1

γ2
J−1
fθ|gθ(x)

J−T
fθ|gθ(x)

n′(gθ (x)) +O(1/γ3) (28)

Proof. We start from the constraints of (26) that we rewrite

∫
qϕ̂(z)

(
zk − µϕ̂

k (x))
) [

∥x− fθ (z) ∥2γ2
]
dz

=

∫
qϕ̂(z)

(
zk − µϕ̂

k (x))
)[

2

d∑
k=1

logm(zk)

]
dz

We then proceed to approximate the left hand side using a Taylor formula. Assuming bounded Hessian components, we can
upper and lower bound using third order centered absolute moments of the Gaussian as

γ2

∫
qϕ̂(z)

(
zk − µϕ̂

k (x)
) [

∥x− fθ(µϕ̂(x))− Jfθ|µϕ̂(x)(z − µϕ̂(x))∥2
]
dz + O(1/γ),

which we can rewrite (by 1) expanding the norm of the sum; 2) removing constants in the bracket, which lead to zeros after

16



multiplying the zero mean variable and taking the expectation; 3) using Gaussianity, all centered third order terms vanish.)

γ2

∫
qϕ̂(z)

(
zk − µϕ̂

k (x)
) [

∥x− fθ(µϕ̂(x))∥2 + ∥Jfθ|µϕ̂(x)(z − µϕ̂(x))∥2

−2
〈
x− fθ(µϕ̂(x)), Jfθ|µϕ̂(x)(z − µϕ̂(x))

〉]
dz +O(1/γ)

= γ2

∫
qϕ̂(z)

(
zk − µϕ̂

k (x)
) [

∥Jfθ|µϕ̂(x)(z − µϕ̂(x))∥2

−2
〈
x− fθ(µϕ̂(x)), Jfθ|µϕ̂(x)(z − µϕ̂(x))

〉]
dz +O(1/γ)

= γ2

∫
qϕ̂(z)

(
zk − µϕ̂

k (x)
) [

(z − µϕ̂(x))TJT
fθ|µϕ̂(x)

Jfθ|µϕ̂(x)(z − µϕ̂(x))

−2
〈
x− fθ(µϕ̂(x)), Jfθ|µϕ̂(x)(z − µϕ̂(x))

〉]
dz +O(1/γ)

= γ2

∫
qϕ̂(z)

(
zk − µϕ̂

k (x)
) [

−2
〈
x− fθ(µϕ̂(x)), Jfθ|µϕ̂(x)(z − µϕ̂(x))

〉]
dz +O(1/γ)

Finally computing this integral we get the left hand side as

−2γ2σϕ̂
k (x)

2
〈
x− fθ(µϕ̂(x)), [Jfθ|µϕ̂(x)].k

〉
+O(1/γ)

For the right hand side we get using a Taylor expansion (with notation n : z → log(m(z)))

∫
qϕ̂(z)

(
zk − µϕ̂

k (x))
)[

2

d∑
k=1

logm(zk)

]
dz

=

∫
qϕ̂(z)

(
zk − µϕ̂

k (x))
)[

2

d∑
k=1

logm(µϕ̂
k (x)) + n′(µϕ̂

k (x))(zk − µϕ̂
k (x))

]
dz +O(1/γ2)

= 2σϕ̂
k (x)

2n′(µϕ̂
k (x)) +O(1/γ2).

Equating the non-negligible terms of the left and right-hand sides we get for each k

γ2
〈
x− fθ(µϕ̂(x)), [Jfθ|µϕ̂(x)].k

〉
= −n′(µϕ̂

k (x)) +O(1/γ)

such that
(x− fθ(µϕ̂(x)))TJfθ|µϕ̂(x) = − 1

γ2
n′(µϕ̂(x)) +O(1/γ3),

where n′ is applied component-wise. Because the Jacobian is everywhere invertible (implicit consequence of Lipschitz
assumptions), we can solve for this equations and get

fθ(µϕ̂(x)) = x+
1

γ2
J−T

fθ|µϕ̂(x)
n′(µϕ̂(x)) +O(1/γ3). (29)

Using again a similar Taylor approximation we get

µϕ̂(x) = gθ (x) +
1

γ2
J−1

fθ|µϕ̂(x)
J−T

fθ|µϕ̂(x)
n′(µϕ̂(x)) +O(1/γ3).

This equation has the shortcoming of still referring to the posterior mean on both sides. To fix this, we first note that it
implies, by boundedness of the Jacobian, that

|µϕ̂(x)− gθ (x) | ≤ 1

γ2
K|n′(µϕ̂(x))|+O(1/γ3).
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By bounding the second-order derivative of the log prior, we get

|µϕ̂(x)− gθ (x) | ≤ 1

γ2
K|n′(gθ (x)) +O(µϕ̂(x)− gθ (x))|+O(1/γ3),

which implies

µϕ̂(x) = gθ (x) +O(1/γ2) ,

i.e., we obtain an improved convergence rate. Using this rate and Taylor theorem, we obtain the final equation by replacing
the variational posterior mean by the inverse decoder in (29)

µϕ̂(x) = gθ (x) +
1

γ2
J−1
fθ|gθ(x)

J−T
fθ|gθ(x)

n′(gθ (x)) +O(1/γ3)

7.2 PROOF OF ??

This will be a corollary of the following result, that uses as a key assumption a rate of O(1/γ2) in the convergence of the
self-consistency equation of the variational mean.

Proposition 5 (VAEs with log-concave factorized prior and close-to-deterministic decoder approximate the IMA objective).
Under Assum. 1, if additionally the VAE satisfies the following self-consistency in the deterministic limit∥∥∥µϕ̂(x)− gθ (x)

∥∥∥ = Oγ→+∞(1/γ2) , (30)∥∥∥σϕ̂(x)2
∥∥∥2 = Oγ→+∞(1/γ2) . (31)

then

σϕ̂
k (x)

2 =

(
−d2 log p0

dz2k
(gθk (x)) + γ2

∥∥∥[Jfθ

(
gθ(x)

)]
:k

∥∥∥2)−1

+O(1/γ3) , (32)

and the self-consistent ELBO (6) approximates the IMA-regularized log-likelihood (4):

ELBO∗(x;θ) = log pθ(x)− cIMA(f
θ, gθ(x)) +Oγ→∞ (1/γ2) . (33)

Proof. We start from the self-consistent ELBO decomposition as “reconstruction error plus posterior regularization” terms:

ELBO∗(x;θ) = −KL
[
qϕ̂(z|x)||p0(z)

]
+ Eq

ϕ̂
(z|x) [log pθ(x|z)] , (34)

and continue with reformulating both terms, based on Assum. 1. That is, p0 is factorized with components i.i.d. distributed
according to a fully supported log-concave density zk ∼ m.

Posterior regularization term Assum. 1 gives us the formula of (10) for this term in the ELBO. Taking optimal encoder
parameters, we get the posterior regularization term for the ELBO∗

−KL
[
qϕ̂(z|x)||p0(z)

]
= Eq

ϕ̂
(z|x)[log(p0(z))] +

1

2

d∑
k=1

[
log σϕ̂

k (x)
2
]
+ κd ,

with κd = d
2 (log(2π) + 1) . Using the factorized Gaussian encoder and i.i.d. prior assumptions we get

− KL
[
qϕ̂(z|x)||p0(z)

]
=

d∑
k=1

E
zk∼N (µϕ̂

k (x),σϕ̂
k (x)2)

[log(m(zk))] +
1

2

d∑
k=1

[
log σϕ̂

k (x)
2
]

+ κd ,

where we rewrote the distribution p0 as p0 =
∏

k m(zk).
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Based on the Taylor theorem, with a residual in Lagrange form of n = logm, we have that for all k and u there exists
ξ ∈ [µϕ

k (x), u] if u ≥ µϕ
k (x), or ξ ∈ [u, µϕ

k (x)] if u ≤ µϕ
k (x) such that

n(u) = log(m(u)) = log(m(µϕ̂
k (x))) + n′(µϕ̂

k (x))(u− µϕ̂
k (x))

+
1

2
n′′(µϕ̂

k (x))(u− µϕ̂
k (x))

2 +
1

3!
n(3)(ξ)(u− µϕ̂

k (x))
3

We assumed that |n(3)| is bounded over R by F , such that

− F
∣∣∣u− µϕ̂

k (x)
∣∣∣3 ≤ log(m(u))− log(m(µϕ̂

k (x)))− n′(µϕ̂
k (x))(u− µϕ̂

k (x))

− 1

2
n′′(µϕ̂

k (x))(u− µϕ̂
k (x))

2 ≤ F
∣∣∣u− µϕ̂

k (x)
∣∣∣3 .

Taking the expectation and using the expression of centered Gaussian absolute moments2∣∣∣∣Ezk∼N (µϕ̂
k (x),σϕ̂

k (x)2)
[log(m(zk))]− log(m(µϕ̂

k (x)))−
1

2
n′′(µϕ̂

k (x))σ
ϕ̂
k (x)

2

∣∣∣∣
≤ FE

[∣∣∣u− µϕ̂
k (x)

∣∣∣3] = Fσϕ̂
k (x)

3 2
3/2

√
π

. (35)

As the assumptions entail that optimal posterior variances σϕ̂
k (x)

2 get small for γ large (cf. (31)), this implies the near-
deterministic approximation

E
zk∼N (µϕ̂

k (x),σk(x)2)
[log(m(zk))] = log(m(µϕ̂

k (x))) +
1

2
n′′(µϕ̂

k (x))σ
ϕ̂
k (x)

2 +Oγ→+∞(1/γ3) .

In addition, using again a Taylor formula and the self-consistency assumption for the mean

log(m(µϕ̂
k (x))) = log(m(gθk (x))) + n′(gθk (x))(µ

ϕ̂
k (x)− gθk (x)) +Oγ→+∞(1/γ2)

= log(m(gθk (x))) +Oγ→+∞(1/γ2).

Moreover, using again a Taylor formula for n′′ under boundedness of n(3) and again using the self-consistency assumption
for the mean yields

n′′(µϕ̂
k (x)) = n′′(gθk (x)) +O(µϕ̂

k (x)− gθk (x)) = n′′(gθk (x)) +Oγ→+∞(1/γ2) .

Overall this leads to the approximation of the posterior regularization term

− KL
[
qϕ̂(z|x)||p0(z)

]
=

d∑
k=1

log(m(gθk (x))) +
1

2
n′′(gθk (x))σ

ϕ̂
k (x)

2 +
1

2
log σϕ̂

k (x)
2

+ κd +Oγ→+∞(1/γ2) . (36)

Reconstruction term Now switching to the first (reconstruction) term of the ELBO∗, adapting the decomposition of (11)
by using optimal encoder parameters we get

Eq
ϕ̂
(z|x) [log pθ(x|z)] = −γ2

2
Eq

ϕ̂
(z|x)

[
∥x− fθ (z) ∥2

]
+ d log γ − d

2
log(2π).

Then in the small encoder noise limit σk(x)
2 ≪ 1,∀k (justified by Prop. 1), we rely on a Taylor approximation around the

posterior mean zo = µϕ(x) based on Lemma 3, which bounds this approximation as follows

Eqϕ(z|x)

∥∥∥∥∥fθ (z)− fθ(µϕ̂(x))−
d∑

k=1

∂fθ

∂zk |zo

(zk − µϕ̂
k (x))

∥∥∥∥∥
2
 ≤ d3

4
3K2

∑
i

σϕ̂
i (x)

4 . (37)

2see e.g. https://arxiv.org/pdf/1209.4340
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The linear term in this approximation is easily computed using successively Lemma 1 and Lemma 2 to get an expression
with the squared column norms of the partial derivatives scaled by the standard deviations ∂fθ

∂zk |µϕ
k (x)

. We get

Eqϕ(z|x)

∥∥∥∥∥
d∑

k=1

∂fθ

∂zk |zo

(zk − µϕ
k (x))

∥∥∥∥∥
2
 = trace

[
Cov

[
d∑

k=1

∂fθ

∂zk |µϕ
k (x)

(zk − µϕ
k (x))

]]

=

d∑
k=1

∥∥∥∥∥∂fθ

∂zk |µϕ
k (x)

∥∥∥∥∥
2

σϕ
k (x)

2

 . (38)

This term can be used as an approximation for the expectation term in the reconstruction loss thanks to the following reverse
triangle inequality∣∣∣∣∣∣Eqϕ(z|x)

[
∥x− fθ (z) ∥2

]
− Eqϕ(z|x)

∥∥∥∥∥
d∑

k=1

∂fθ

∂zk |zo

(zk − µϕ
k (x))

∥∥∥∥∥
2
∣∣∣∣∣∣

=

∣∣∣∣∣∣Eqϕ(z|x)

[
∥x− fθ (z) ∥2

]
−

d∑
k=1

∥∥∥∥∥∂fθ

∂zk |µϕ
k (x)

∥∥∥∥∥
2

σϕ
k (x)

2

∣∣∣∣∣∣
≤ Eqϕ(z|x)

∥∥∥∥∥x−

(
fθ (z)−

d∑
k=1

∂fθ

∂zk |zo

(zk − µϕ
k (x))

)∥∥∥∥∥
2
 ,

such that the resulting upper bound can be itself bounded as follows

Eqϕ(z|x)

∥∥∥∥∥x−

(
fθ (z)−

d∑
k=1

∂fθ

∂zk |zo

(zk − µϕ
k (x))

)∥∥∥∥∥
2


≤ Eqϕ(z|x)

[∥∥∥x− fθ(µϕ(x))
∥∥∥2]+ Eqϕ(z|x)

∥∥∥∥∥fθ (z)− fθ(µϕ(x))−
d∑

k=1

∂fθ

∂zk |µϕ(x)

(zk − µϕ
k (x))

∥∥∥∥∥
2
 .

Each term of the upper bound can be bounded for the optimum encoder parameters: using from left to right the assumption
of (30) and (37), respectively, leading to∣∣∣∣∣∣Eq

ϕ̂
(z|x)

[
∥x− fθ (z) ∥2

]
−

d∑
k=1

∥∥∥∥∥∂fθ

∂zk |µϕ̂
k (x)

∥∥∥∥∥
2

σϕ̂
k (x)

2

∣∣∣∣∣∣
≤ Oγ→+∞(1/γ4) +

d3

4
3K2

∑
i

σϕ̂
i (x)

4 .

Getting back to the whole reconstruction term, using additionally the variance self-consistency assumption (31), the above
shows that we can make the approximation

Eq
ϕ̂
(z|x) [log pθ(x|z)] = −γ2

2

d∑
k=1

∥∥∥∥∥∂fθ

∂zk |µϕ̂
k (x)

∥∥∥∥∥
2

σϕ̂
k (x)

2

+ d log γ − d

2
log(2π) +Oγ→+∞(1/γ2)

We can further replace the dependency of the derivatives on the encoder mean using a Taylor formula for the derivative

∂fθ

∂zk |µϕ̂(x)

=
∂fθ

∂zk |gθ(x)

+O(µϕ̂(x)− gθ(x)) =
∂fθ

∂zk |gθ(x)

+O(1/γ2)
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such that

Eq
ϕ̂
(z|x) [log pθ(x|z)] = −γ2

2

d∑
k=1

∥∥∥∥∥∂fθ

∂zk |gθ(x)

∥∥∥∥∥
2

σϕ̂
k (x)

2

+ d log γ

− d

2
log(2π) +Oγ→+∞(1/γ2) (39)

ELBO∗ approximation As a consequence of (36) and (39) the ELBO∗ becomes

ELBO∗(x;θ) = −1

2

d∑
k=1

log 1

σϕ̂
k (x)

2
+ σϕ̂

k (x)
2

−n′′(gθk(x)) + γ2

∥∥∥∥∥∂fθ

∂zk |gθ
k

∥∥∥∥∥
2


− 2 log(m(gθk(x)))

]
+ d log γ + κd −

d

2
log(2π) +Oγ→∞(1/γ2)

= −1

2

d∑
k=1

log 1

σϕ̂
k (x)

2
− 1 + σϕ̂

k (x)
2

−n′′(gθk(x)) + γ2

∥∥∥∥∥∂fθ

∂zk |gθ(x)

∥∥∥∥∥
2


− 2 log(m(gθk(x)))

]
+ d log γ +Oγ→∞(1/γ2)

= ÊLBO(σϕ̂(x)2;x,θ, ϕ̂) +

d∑
k=1

log(m(gθk(x))) +Oγ→∞(1/γ2) ,

where we isolated the terms that depend on parameters σϕ̂
k (x)

2 and γ in the approximate objective ÊLBO(σ2 =

σϕ̂(x)2;x,θ, ϕ̂) that we define for arbitrary σ2.

ÊLBO(σ2;x,θ, ϕ̂) = −1

2

d∑
k=1

log 1

γ2σ2
k

− 1 + σ2
k

−n′′(gθk(x)) + γ2

∥∥∥∥∥∂fθ

∂zk |gθ(x)

∥∥∥∥∥
2

=

d∑
k=1

ÊLBOk(σ
2
k;x,θ, ϕ̂)

Where we further break this objective in d components ÊLBOk(σ
ϕ̂
k (x)

2;x,θ, ϕ̂) according to the terms of the sum as
follows

ÊLBOk(σ
2
k;x,θ, ϕ̂) = −1

2

log 1

γ2σ2
k

− 1 + γ2σ2
k

− 1

γ2
n′′(gθk(x)) +

∥∥∥∥∥∂fθ

∂zk |gθ(x)

∥∥∥∥∥
2


and where we note that −n′′ ≥ 0 due to the log-concavity assumption.

Solving term in k ÊLBOk(σ
2
k) for optimal γ2σ∗

k we get (see lemma 4):

γ2σ∗2
k =

− 1

γ2
n′′(gθk(x)) +

∥∥∥∥∥∂fθ

∂zk |gθ
k(x)

∥∥∥∥∥
2
−1

(40)

and the resulting optimal value ÊLBO
∗
k(x,θ, ϕ̂) = ÊLBOk(σ

∗2
k ;x,θ, ϕ̂) is

ÊLBO
∗
k(x,θ, ϕ̂)

∗ = −1

2
log

− 1

γ2
n′′(gθk(x)) +

∥∥∥∥∥∂fθ

∂zk |gθ
k(x)

∥∥∥∥∥
2
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A Taylor formula around this optimum leads, for some value ξγ(x) lying between σ∗2
k and σ2

k to (note the first order
derivative vanishes, and the second order derivative is upper bounded hence the second line)

ÊLBOk(σ
2
k;x,θ, ϕ̂) = ÊLBO

∗
k(θ, ϕ̂) +

dÊLBOk(x;θ, ϕ̂)

dγ2σ2
k |σ∗2

k

(γ2σ2
k − γ2σ∗2

k )

+
d2ÊLBOk(x;θ, ϕ̂)

d(γ2σ2
k)

2
|ξγ(x)

(γ2σ2
k − γ2σ∗2

k )2

≤ ÊLBO
∗
k(θ, ϕ̂)−

1

2

∥∥∥∥∥∂fθ

∂zk |gθ(x)

∥∥∥∥∥
2

(γ2σ2
k − γ2σ∗2

k )2

as a consequence the non-approximate solution for the true optimal ELBO∗, as γ grows, must achieve a value below this
quadratic function, up to a term in O(1/γ2), and at the same time above ÊLBO

∗
, also up to a term in O(1/γ2). This entails

that it is restricted to a smaller and smaller domain near the approximate solution and we get

σϕ̂
k (x)

2 = σ∗2
k +O(1/γ3) =

−n′′(gθk(x)) + γ2

∥∥∥∥∥∂fθ

∂zk |gθ
k(x)

∥∥∥∥∥
2
−1

+O(1/γ3). (41)

Leading to the approximation of the true objective

ELBO∗(x;θ) =−1

2

d∑
k=1

log
− 1

γ2
n′′(µϕ

k (x)) +

∥∥∥∥∥∂fθ

∂zk |µϕ
k (x)

∥∥∥∥∥
2
− 2 log(m(µϕ

k (x)))

+O(1/γ2),

which reduces to

ELBO∗(x;θ) = log p0(g
θ(x))− 1

2

d∑
k=1

[
log
∥∥∥[Jfθ (gθ(x))

]
:k

∥∥∥2]+O(1/γ2),

which is the IMA objective.

We now restate the main text theorem and provide its proof.

Theorem 1. [VAEs with a near-deterministic decoder approximate the IMA objective] Under Assumption 1, the variational
posterior satisfies (denoting n′′ = d2 log p0

dz2
k

)

σϕ̂
k (x)

2 = [γ2∥
[
Jfθ

(
gθ(x)

)]
:k
∥2 − n′′(gθk (x))]

−1

+O(1/γ3) , (8)

and the self-consistent ELBO (6) approximates the IMA-regularized log-likelihood [11]:

ELBO∗(x;θ) = log pθ(x)− cIMA(f
θ, gθ(x))

+Oγ→∞ (1/γ2) . (9)

Proof. This is just a corollary of Proposition 5 because Proposition 4 entails through (28) the required O(1/γ2) rate of
convergence for the optimal variational mean in (30), while (31) is fulfilled through Prop. 1.
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8 AUXILIARY RESULTS

8.1 SQUARED NORM STATISTICS

Lemma 1 (Squared norm variance decomposition). For multivariate RV X with mean m

E
[
∥X∥2

]
= trace [Cov(X)] + ∥m∥2

Proof.
E∥X −m∥2 = E ⟨X −m, X −m⟩ = E [⟨X, X⟩ − 2E ⟨m, X⟩+ ⟨m, m⟩]

hence
E∥X −m∥2 = E

[
∥X∥2

]
− ∥m∥2

This leads to (using that the trace of a scalar is the scalar itself)

E
[
∥X∥2

]
= E

[
trace

[
∥X −m∥2

]]
+ ∥m∥2 = trace

[
E
[
(X −m)T (X −m)

]]
+ ∥m∥2

because trace[AB] = trace[BA] we get

E
[
∥X∥2

]
= trace

[
E
[
(X −m)(X −m)T

]]
+ ∥m∥2 = trace [Cov(X)] + ∥m∥2

Lemma 2 (Trace of transformed unit covariance). When the covariance matrix Cov(ϵ) is the identity, then

trace[Cov(Aϵ)] =
∑
k

∥[A].k∥2 ,

Proof. For arbitrary matrix A, Cov(Aϵ) = ACov(ϵ)AT and thus

trace[Cov(Aϵ)] = trace[ACov(ϵ)AT ] = trace[ATACov(ϵ)] .

Moreover, in our case Cov(ϵ) is the identity such that

trace[Cov(Aϵ)] = trace[ATA] =
∑
k

∥[A].k∥2 ,

8.2 KL DIVERGENCE BOUNDS

Proposition 6 (Lipschtiz continuity-based lower bound). Assume gθ is Lipschitz continuous with Lipschitz constant B > 0,
in the sense

∀x,y ∈ Rd,
∥∥gθ (x)− gθ(y)

∥∥
2
≤ B∥x− y∥2 .

Then for any encoder parameter choice

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x) + logm(µϕ
k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]
, (42)

with c(x, γ) = −d
2

(
log(γ2) + 1

)
+ log pθ(x).
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Proof. Starting from the KL divergence expression (12),

KL [qϕ(z|x)||pθ(z|x)] = −
d∑

k=1

log σϕ
k (x) +

1

2
Ez∼qϕ

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
+ c(x, γ)

with additive constant c(x, γ) = −d
2

(
log(γ2) + 1

)
+ log pθ(x). By Lipschitz continuity

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

log σϕ
k (x)

+
1

2
Ez∼qϕ

[
B−2∥gθ (x)− z∥2γ2 − 2

d∑
k=1

logm(zk)

]
+ c(x, γ) .

using Lemma 1 applied to gθ (x)− z, z ∼ qϕ(z|x) we get

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

log σϕ
k (x) +

γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + trace [Cov [z]]

]
− Ez∼qϕ

[
d∑

k=1

logm(zk)

]
+ c(x, γ)

≥ −
d∑

k=1

log σϕ
k (x) +

γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]

− Ez∼qϕ

[
d∑

k=1

logm(zk)

]
+ c(x, γ) .

Using Jensen’s inequality for − logm (convex by Assum. 1(i)), we get

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x)
]
+

γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]

−
d∑

k=1

[
logm(µϕ

k )
]
+ c(x, γ)

by reordering the terms we finally get

KL [qϕ(z|x)||pθ(z|x)] ≥ −
d∑

k=1

[
log σϕ

k (x) + logm(µϕ
k )
]
+ c(x, γ)

+
γ2

2
B−2

[∥∥gθ (x)− µϕ(x)
∥∥2 + d∑

k=1

σϕ
k (x)

2

]
which is the stated KL lower bound.

Proposition 7 (Optimal encoder KL divergence upper bound). Assume fθ is Lipschitz continuous with Lipschitz constant
C > 0, in the sense that

∀z,w ∈ Rd :
∥∥∥fθ (z)− fθ(w)

∥∥∥
2
≤ C∥z −w∥2 .

Assume, − logm is quadratically dominated, in the sense that

∃D > 0, E > 0,∀u ∈ R,− logm(u) ≤ D|u|2 + E .

Then for the optimal encoder solution of (5)

KL
[
qϕ̂(z|x)||pθ(z|x)

]
≤ d

(
1

2
C2 + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

])
− d

2
+ log pθ(x) , (43)
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and

lim sup
γ→+∞

KL
[
qϕ̂(z|x)||pθ(z|x)

]
≤ d

(
1

2
C2 + E

)
+D∥gθ (x) ∥2

− d

2
− log |Jfθ (gθ (x))|+ log(p0(g

θ (x))) (44)

Proof. Starting from the KL divergence expression (12),

KL [qϕ(z|x)||pθ(z|x)] = −
d∑

k=1

log σϕ
k (x) +

1

2
Ez∼qϕ

[
∥x− fθ (z) ∥2γ2 − 2

d∑
k=1

logm(zk)

]
+ c(x, γ)

with additive constant c(x, γ) = −d
2

(
log(γ2) + 1

)
+ log pθ(x).

Let us choose the following posterior (by universal approximation capabilities of the encoder):

µϕ∗
(x) = gθ (x) (45)

σϕ∗
(x) =

1

γ
(46)

Using Lipschitz continuity we get

KL [qϕ∗(z|x)||pθ(z|x)] ≤ −
d∑

k=1

log σϕ∗

k (x) +
1

2
Ez∼qϕ∗

[
C2∥µϕ∗

(x)− z∥2γ2 − 2

d∑
k=1

logm(zk)

]
+ c(x, γ)

then, using

Ez∼qϕ∗

[
∥µϕ∗

(x)− z∥2
]
=

d∑
k=1

E
zk∼N (µϕ∗

k (x),σϕ∗
k (x)2)

[
|µϕ∗

k (x)− zk|2
]
=

d∑
k=1

σϕ∗

k (x)2 ,

we get

KL [qϕ∗(z|x)||pθ(z|x)] ≤
d∑

k=1

(
− log σϕ∗

k (x) +
1

2
C2σϕ∗

k (x)2γ2

)

− Ez∼qϕ∗

[
d∑

k=1

logm(zk)

]
+ c(x, γ)

using quadratic domination

KL [qϕ∗(z|x)||pθ(z|x)] ≤
d∑

k=1

(
− log σϕ∗

k (x) +
1

2
C2σϕ∗

k (x)2γ2

)

+ Ez∼qϕ∗

[
dE +

d∑
k=1

D|zk|2
]
+ c(x, γ)

≤
d∑

k=1

(
− log σϕ∗

k (x) +
1

2
C2σϕ∗

k (x)2γ2

)
+ dE +DEz∼qϕ∗

[
|zk|2

]
+ c(x, γ)
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Using Lemma 1 we get

KL [(qϕ∗(z|x)||pθ(z|x)] ≤
d∑

k=1

(
− log σϕ∗

k (x) +
1

2
C2σϕ∗

k (x)2γ2

)
+ dE +D

[
∥µϕ∗

(x)∥2 + ∥σϕ∗
(x)∥2

]
+ c(x, γ)

≤ d

(
log γ +

1

2
C2

)
+ dE +D

[
∥gθ (x) ∥2 + d

γ2

]
− d

2

(
log(γ2) + 1

)
+ log pθ(x)

hence for a parameter ϕ̂ achieving the minimum divergence we get

KL
[
qϕ̂(z|x)||pθ(z|x)

]
≤ KL [qϕ∗(z|x)||pθ(z|x)] ≤ d

(
log γ +

1

2
C2

)
+ dE +D

[
∥gθ (x) ∥2 + d

γ2

]
− d

2

(
log(γ2) + 1

)
+ log pθ(x)

≤ d

(
1

2
C2 + E +D

[
∥gθ (x) ∥2

d
+

1

γ2

])
− d

2
+ log pθ(x)

As γ → +∞, log pθ(x) → |Jfθ (gθ (x))|−1p0(g
θ (x)) such that the KL divergence for the optimal solutions is upper

bounded by a finite number.

8.3 TAYLOR FORMULA-BASED APPROXIMATIONS

Lemma 3 (Bound on expectation of multivariate Taylor expansion). Assume f : Rd → R is C2 and assume z is a
multivariate RV on Rd with indepedent Gaussian components such that

zk ∼ N (µϕ
k (x), σ

ϕ
k (x)

2)

then for all zo ∈ Rd

Ez

∥∥∥∥∥f(z)− f(zo)−
∑
k

∂f

∂zk |zo

(zk − zok)

∥∥∥∥∥
2
 ≤ d3

4
3K2

∑
i

(
σϕ
i

)4
(47)

Proof. As described in [26, p. 162], for the l-th component of the function

fl(z) = fl(zo) +
∑
k

∂fl
∂zk |zo

(zk − zok) +
1

2!

∑
i,j

∂fl
∂zi∂zj |zo+tij(z−zo)

(zi − zoi )(zj − zoj ) , tij ∈ (0; 1) .

= fl(zo) +
∑
k

∂fl
∂zk |zo

(zk − zok) +
1

2!

∑
i,j

(z − zo)
THk(z − zo) , (48)

where the second line puts 1/2 of the partial derivatives in matrix form (note it is not exactly the Hessian as derivatives are
taken at different points). As a consequence(

fl(z)− fl(zo)−
∑
k

∂fl
∂zk |zo

(zk − zok)

)2

=
(
(z − zo)

THk(z − zo)
)2

,

≤ ∥Hk∥22 ∥z − zo∥4

≤ ∥Hk∥2F ∥z − zo∥4
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where ∥Hk∥2 is the spectral norm of the matrix and ∥Hk∥F is the Frobenious norm 3 leading to the bound(
fl(z)− fl(zo)−

∑
k

∂fl
∂zk |zo

(zk − zok)

)2

≤ d2

4
K2 ∥z − zo∥4 ,

where K is an upper bound on the absolute second order derivatives. We have (zk − zok) = σϕ
k (x)ϵk, with ϵ multivariate

normal, so taking the expectation of the above simplifies to:

EZ

(
fl(z)− fl(zo)−

∑
k

∂fl
∂zk |zo

(zk − zok)

)2

≤ d2

4
K2EZ ∥z − zo∥4 ,

=
d2

4
K2EZ

∑
i,j

∥∥zi − zoj
∥∥2 ∥∥zi − zoj

∥∥2
=

d2

4
K2
∑
i

EZ ∥zi − zoi ∥
4

=
d2

4
3K2

∑
i

(
σϕ
i

)4
.

Now gathering all components fl to get the squared norm yields:

EZ

∥∥∥∥∥f(z)− f(zo)−
∑
k

∂f

∂zk |zo

(zk − zok)

∥∥∥∥∥
2
 ≤ d3

4
3K2

∑
i

(
σϕ
i

)4
.

8.4 VARIATIONAL POSTERIOR VARIANCE OPTIMIZATION PROBLEM

Lemma 4. For α > 0, the function

hα :R>0 → R

u 7→ − log u− 1

2
+ αu2/2 =

1

2
log

1

u2
− 1

2
+ αu2/2

is strictly convex and achieves its global minimum minhα = 1
2 logα for u∗ = 1√

α
.

Proof. Function hα is stricly convex as a sum of two stricly convex functions. Its derivative,

dhα

du
(u) = − 1

u
+ αu,

thus vanishes only at the minimum for u∗ = 1√
α

. We then get that

minhα = hα(u
∗) =

1

2
logα .

3first inequality comes from Cauchy-Schwartz: < x,Ax >≤ ∥x∥∥Ax∥ ≤ ∥x∥∥A∥2∥x∥, second is a classical inequality between
norms
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9 RELATED WORK

9.1 IMPLICIT INDUCTIVE BIASES IN THE ELBO

Rolinek et al. [32] reason about the connection to Principal Component Analysis (PCA) in the context of nonlinear Gaussian
VAEs with an isotropic prior and assume that the variational posterior has diagonal covariance with distinct singular values.
The authors make it explicit that they investigate the consequences of optimizing the ELBO. They locally linearize the decoder
to show the inductive bias in VAEs that promotes decoder orthogonality. Their results hold for β-VAEs, where β should be in
the range of satisfying the polarized regime assumption (i.e., when the VAE is close to partial posterior collapse). The validity
of the assumptions (polarized regime and distinct singular values in Σϕ

z|x) are only experimentally investigated. The same
authors extend their work in [38], completing the connection to PCA for linear models. Their experiments, inspired by the
connection to PCA for linear models, show that local perturbations in the data prohibit disentanglement for non-linear models.

Lucas et al. [25] prove that linear Gaussian VAEs with an isotropic prior give rise to a column-orthogonal decoder and
therefore uniquely recover the PCA coordinate axes (not just the correct subspace, as Probabilistic Principal Component
Analysis (PPCA) [35] does), yielding identifiability for Gaussian models—but only when the eigenvalues of the data
covariance are distinct. In their work, the decoder variance is shown to be small when avoiding posterior collapse. More
interestingly, the authors derive a formula for the ELBO gap in the linear case that is remarkably similar to the IMA objective.
We show in § 10.1 that in the limit of a deterministic decoder linear Gaussian VAEs optimize the IMA objective with λ = 1.

Kumar and Poole [22] generalizes [32], as it admits a variational posterior qϕ(z|x) with block-diagonal covariance with a
uniqueness result for diagonal Σϕ

z|x. The authors derive a formula for the optimal Σϕ
z|x [22, Eq. 12], showing that when the

decoder Hessian H is diagonal, the decoder Jacobian will be column-orthogonal even for non-Gaussian decoders. Their
analysis relies on a “concentrated” qϕ(z|x) (i.e., they work in what we term the near-deterministic regime) and sufficiently
small values of β—this relationship can be read off from [22, Eq. 12]. Interestingly, the authors also show that rotations
of the latents can be ruled out, though they do not connect the decoder structure (especially, column-orthogonality of its
Jacobian) to any specific generative model for the data, or to considerations on identifiability of the ground truth sources.

9.2 (NEAR)-DETERMINISTIC VAES

Recent work was inspired by the normalizing flow literature and the shortcomings of the stochastic VAE architecture
to propose designs that are (near)-deterministic. Arguments for this regime range from avoiding posterior collapse (as
demonstrated in [25]) to avoiding sampling for the reconstruction loss term [22]. Several papers argued for a similar setting:
Rolinek et al. [32] refer to the polarized regime (a property of which is that encoder variances are small, cf. [32, Definition
1]), Kumar and Poole [22] argue for “concentrated” variational posteriors. Ghosh et al. [9] substitute stochasticity with
a regularizer on the decoder Jacobian from an intuitive, whereas Kumar et al. [23] motivate these results from an injective
flow perspective. Nielsen et al. [28] also take a normalizing flow perspective to connect VAEs to deterministic models.
Besides benefits of avoiding posterior collapse or possible improvements during optimization, this regime serves as a
potential connection to the identifiability literature.

10 FURTHER REMARKS ON THE THE IMA–VAE CONNECTION
In this section, we elaborate on the connection between VAEs and IMA, by showing that previous work on linear VAEs can
be directly connected to optimizing LIMA. Our intent with this analysis is to provide additional insights about the role of γ in
a simpler setting.

10.1 LINEAR VAE FROM LUCAS ET AL.

We restate the linear VAE model of [25]:

pθ(x|z) = N
(
Wz + µ;

1

γ2
Id

)
(49)

qϕ(z|x) = N (V (x− µ) ;D) , (50)

where D is a diagonal matrix, W the decoder and V the encoder weights, µ the mean latent representation.

The authors show that in stationary points, the optimal value for D is

D∗ =
1

γ2

(
diag

(
WTW

)
+

1

γ2
Id

)−1

(51)

28



If we substitute this expression into the ELBO gap (i.e., the KL between the variational and true posteriors), we get a similar
expression to cIMA—as formalized in Prop. 8.

Proposition 8 (The ELBO converges to LIMA for linear Gaussian VAEs if γ → +∞). For linear Gaussian VAEs, in the
limit of γ → ∞, the ELBO equals the IMA-regularized log-likelihood in stationary points with λ = 1.

Proof. In [25, Appendix C.2], it is shown that the gap between exact log-likelihood and ELBO for linear Gaussian VAEs in
stationary points reduces to

KL [qϕ(z|x)||pθ(z|x)] =
1

2

(
log det M̃− log detM

)
(52)

M = WTW +
1

γ2
Id (53)

M̃ = diag
(
WTW

)
+

1

γ2
Id, (54)

where W is the decoder weight matrix. Reformulating the above expression, we arrive at :

KL [qϕ(z|x)||pθ(z|x)] = log

∣∣∣diag (WTW
)
+ 1

γ2 Id

∣∣∣∣∣∣WTW + 1
γ2 Id

∣∣∣ (55)

= log

∣∣∣diag (WTW + 1
γ2 Id

)∣∣∣∣∣∣WTW + 1
γ2 Id

∣∣∣ (56)

Noting that WTW is symmetric with a Singular Value Decomposition (SVD) of UΛUT (U is orthogonal, Λii =
∥[W]:k∥

2), and Id = UUT ; thus:

WTW +
1

γ2
Id = UΛUT +

1

γ2
UUT = U

[
Λ+

1

γ2
Id

]
UT

Therefore, (56) can be reformulated as the left KL-measure of diagonality [1] of the matrix U [Λ+ 1/γ2Id]U
T :

KL [qϕ(z|x)||pθ(z|x)] = log

∣∣∣diag (WTW + 1
γ2 Id

)∣∣∣∣∣∣WTW + 1
γ2 Id

∣∣∣ (57)

= log

∣∣∣diag (U [Λ+ 1
γ2 Id

]
UT
)∣∣∣∣∣∣U [Λ+ 1

γ2 Id

]
UT
∣∣∣ , (58)

which is by definition the local IMA contrast cIMA (cf. [11, Appendix C.1]). When γ → +∞, the above expression converges
to the left KL-measure of diagonality for WTW, i.e., the local IMA contrast for the decoder.

γ→+∞ thus means that the ELBO converges to the IMA regularized log-likelihood LIMA with λ = 1 :

ELBO = log pθ(x)− KL [qϕ(z|x)||pθ(z|x)]
= log pθ(x)− cIMA(W, z),

which concludes the proof.

Prop. 8, especially (58), gives us intuitive understanding on why and how γ influences how much the orthogonality of W is
enforced.

1. Small γ (high observation noise) means that there is no reason to promote the orthogonality of the decoder, as the high
noise level (i.e., low-quality fit of x) will drive (58) towards diagonality via 1/γ2.
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2. On the other hand, when γ → +∞, then the orthogonality of the decoder is promoted. That is, the decoder precision
γ2 acts akin to a weighting factor influencing how strong the IMA principle should be enforced.

We can observe that the ELBO recovers the exact log-likelihood for column-orthogonal W:

Corollary 1 (For column-orthogonal W the ELBO equals the exact log-likelihood). When W is in the form W = OD,
then diag

(
WTW

)
= WTW = DOTOD = D2, i.e. the ELBO corresponds to the exact log-likelihood since (58) is

zero.

Corollary 1 also implies that γ does not affect the gap between ELBO and exact log-likelihood for column-orthogonal W.

11 EXPERIMENTAL DETAILS

11.1 SELF-CONSISTENCY IN PRACTICAL CONDITIONS (??)

For the self-consistency experiments, the mixing is a 3-layer MultiLayer Perceptron (MLP) with smooth Leaky ReLU
nonlinearities [10] and orthogonal weight matrices—which intentionally does not belong to the IMA class, since our
self-consistency result is not constrained to the IMA class. The 60,000 source samples are drawn from a standard normal
distribution and fed into a VAE composed of a 3-layer MLP encoder and decoder with a Gaussian prior. We use 20 seeds for
each γ2 ∈ {1e1; 1e2; 1e3; 1e4; 1e5}. Additional parameters are described in Tab. 1. Training is continued until the ELBO∗

improves on the validation set (we use early stopping [30]), then all metrics are reported for the maximum ELBO∗ (Fig. 2).

Table 1: Hyperparameters for the self-consistency experiments (§ 4)

PARAMETER VALUES

ENCODER 3-LAYER MLP
DECODER 3-LAYER MLP
ACTIVATION SMOOTH LEAKY RELU [10]
BATCH SIZE 64
# SAMPLES (TRAIN-VAL-TEST) 42− 12− 6K

LEARNING RATE 1e−3
d 3
GROUND TRUTH GAUSSIAN

p0(z) GAUSSIAN

Σϕ
z|x DIAGONAL

γ2 {1e1; 1e2; 1e3; 1e4; 1e5}
# SEEDS 20
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11.2 RELATIONSHIP BETWEEN ELBO∗, IMA-REGULARIZED, AND UNREGULARIZED
LOG-LIKELIHOODS (??)

Table 2: Hyperparameters for the triangular MLP (not from the IMA class) ELBO∗–LIMA–log-likelihood experiments (??)

PARAMETER VALUES

ENCODER 3-LAYER MLP
DECODER 2-LAYER TRIANGULAR MLP (GROUND TRUTH)
ACTIVATION SIGMOID

BATCH SIZE 64
# SAMPLES (TRAIN-VAL-TEST) 100− 30− 15K

LEARNING RATE 1e−4
d 2
GROUND TRUTH GAUSSIAN

p0(z) GAUSSIAN

Σϕ
z|x DIAGONAL

γ2 [1e1; 1e5]
# SEEDS 5
CIMA (MIXING) 7.072

Figure 5: Comparison of the ELBO∗, the IMA-
regularized and unregularized log-likelihoods
over different γ2 with an IMA-class mixing

For the experiments comparing the ELBO∗, IMA-regularized, and unreg-
ularized log-likelihoods, data is generated by mixing points from a stan-
dard Gaussian prior using an invertible neural network. When the mixing
is not in the IMA-class (Tab. 2), we use a two-layer neural network with
sigmoid nonlinearites and triangular weight matrices. When the mixing
is from the IMA-class (Tab. 3), we use a one-layer neural network with
orthogonal weight matrices. The data dimensionality in both cases is two.

Training is carried out using a VAE with a decoder fixed to the
ground-truth and separate encoder models for the means and variances
of the approximate posterior. The encoder comprises two three-layer
neural networks with ReLU non-linearities and a hidden layer size of 50.
Due to training instabilities when using a large γ, we train the model by
first fixing the mean encoder to the ground-truth inverse of the mixing
for the first 30 epochs; thus, only training the variances. We then train
both for the remaining epochs. Training is stopped after the ELBO∗

plateaus on the validation set. A training set of 100,000 samples is used,
with a validation set and test set of 30,000 and 15,000 samples, respectively. The learning rate is 1e−4 and the batch size 64.

We provide additional results when the mixing is from the IMA class (Tab. 3): as CIMA is zero, we expect that both LIMA
and the unregularized log-likelihood match. Indeed, this is what Fig. 5 demonstrates.
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Table 3: Hyperparameters for the orthogonal MLP (from the IMA class) ELBO∗–LIMA–log-likelihood experiments (??)

PARAMETER VALUES

ENCODER 3-LAYER MLP
DECODER 1-LAYER ORTHOGONAL MLP (GROUND TRUTH)
ACTIVATION SIGMOID

BATCH SIZE 64
# SAMPLES (TRAIN-VAL-TEST) 100− 30− 15K

LEARNING RATE 1e−4
d 2
GROUND TRUTH UNIFORM

p0(z) UNIFORM

Σϕ
z|x DIAGONAL

γ2 [1e1; 1e5]
CIMA (MIXING) 0

11.3 CONNECTING THE IMA PRINCIPLE, γ2, AND DISENTANGLEMENT (??)

Synthetic data (Möbius transform) We use 3-dimensional conformal mixings (i.e., the Möbius transform [29]) from the
IMA class with the functional form:

x = t+ α
W (z − b)

∥z − b∥ϵ
,

where t, b ∈ Rd, W ∈ Rd×d, α ∈ R, and ϵ = 2 (to ensure nonlinearity) with d = 3. Both ground-truth and prior
distributions are uniform to avoid the singularity when z = b.

To determine whether a mixing from the IMA class is beneficial for disentanglement, we apply a volume-preserving linear
map after the Möbius transform (using 100 seeds) to construct a mixing outside of the IMA class. We fix γ2 = 1e5 and
report further parameters in Tab. 4. Training is continued until the ELBO∗ improves on the validation set (we use early
stopping [30]), then all metrics are reported for the maximum ELBO∗ (Fig. 4).

Table 4: Hyperparameters for the synthetic (Möbius) IMA–disentanglement experiments (??) with a linear map

PARAMETER VALUES

ENCODER 3-LAYER MLP
DECODER 3-LAYER MLP
ACTIVATION SMOOTH LEAKY RELU [10]
BATCH SIZE 64
# SAMPLES (TRAIN-VAL-TEST) 42− 12− 6K

LEARNING RATE 1e−3
d 3
GROUND TRUTH UNIFORM

p0(z) UNIFORM

Σϕ
z|x DIAGONAL

γ2 1e5
# SEEDS 100
CIMA (MIXING) [0.398; 6.761]

Image data (Sprites) We train a VAE (not β-VAE) with a factorized Gaussian posterior and Beta prior on a Sprites image
dataset generated using the spriteworld renderer [37] with a Beta ground truth distribution. Similar to [16], we use four
latent factors, namely, x- and y-position, color and size, and omit factors that can be problematic, such as shape (as it is
discrete) and rotation (due to symmetries) [32, 21]. Our choice is motivated by [13, 8] showing that the data-generating
process presumably is in the IMA class. The architecture both for encoder and decoder consists of four convolutional and
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Nomenclaturethree linear layers with ReLU nonlinearities (Tab. 5). Training is continued until the ELBO∗ improves on the validation set
(we use early stopping [30]), then all metrics are reported for the maximum ELBO∗.

Table 5: Hyperparameters for the image (Sprites) IMA–disentanglement experiments (??)

PARAMETER VALUES

ENCODER 4-LAYER CONV2D + 3-LAYER MLP
DECODER 4-LAYER CONV2D + 3-LAYER MLP
ACTIVATION RELU
BATCH SIZE 64
# SAMPLES (TRAIN-VAL-TEST) 42− 12− 6K

LEARNING RATE 1e−5
d 3
GROUND TRUTH BETA

p0(z) BETA

Σϕ
z|x DIAGONAL

γ2 1e0
# SEEDS 10

12 COMPUTATIONAL RESOURCES
The self-consistency (§ 4), the likelihood comparison (??), and the synthetic experiments with the Möbius transform (??,
particularly Fig. 4) were ran on a MacBook Pro with a Quad-Core Intel Core i5 CPU and required approximately nine days.
The Sprites experiments (??, particularly ??) required approximately four and a half days on an Nvidia RTX 2080 GPU.

13 SOCIETAL IMPACT
Our paper presents basic research and is mainly theoretical, though the lack of direct connection to a specific application does
not mean that our results could not be used for malevolent purposes. We acknowledge that providing a possible mechanism
for why unsupervised VAEs can learn disentangled representations can inform specific actors that unsupervised VAEs might
be used to extract the true generating factors. Since no auxiliary variables, labels, or conditional distributions are required,
this might lead to a broader use of unsupervised VAEs for trying to learn the true generating factors—including applications
with potentially negative societal impact such as extracting features from images, video, or text for personal identification;
thus, possibly violating the desire of those who intend to remain anonymous.

14 NOTATION

ACRONYMS

ELBO evidence lower bound
IMA Independent Mechanism Analysis

i.i.d. independent and identically distributed
ICA Independent Component Analysis

KL Kullback-Leibler Divergence

LVM Latent Variable Model

MCC Mean Correlation Coefficient
MLP MultiLayer Perceptron

PCA Principal Component Analysis
PPCA Probabilistic Principal Component Analysis

SVD Singular Value Decomposition

VAE Variational Autoencoder

NOMENCLATURE
Independent Mechanism Analysis
CIMA global IMA contrast
α scalar field
D general diagonal matrix
O orthogonal matrix
y reconstructed sources
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NomenclatureLIMA IMA loss function
cIMA local IMA contrast

Variational Autoencoder
V weight matrix of a linear encoder
W weight matrix of a linear decoder
µϕ̂(x) optimal mean of qϕ(z|x)
µϕ(x) mean of qϕ(z|x)
ϕ parameters of the variational posterior qϕ(z|x)
σϕ̂(x)2 optimal variance of qϕ(z|x)
θ parameters of the decoder pθ(x|z)
γ square root of the precision of the VAE decoder
Σϕ

z|x covariance matrix of qϕ(z|x)
Lβ β-VAE loss function
fθ decoder
gθ inverse decoder
ϕ̂ optimal parameters of the variational posterior qϕ(z|x)
p0(z) latent prior distribution
pθ(z|x) true posterior distribution of the decoded samples of the VAE, mapping x 7→ z, parametrized by θ
pθ(x) marginal likelihood
pθ(x|z) conditional distribution of the decoded samples of the VAE, mapping z 7→ x, parametrized by θ
qϕ(z|x) variational posterior of the VAE, mapping x 7→ z parametrized by ϕ
qϕ̂(z|x) optimal variational posterior of the VAE, mapping x 7→ z parametrized by ϕ

µϕ̂
k (x) optimal mean of qϕ(z|x) in dimension k

µϕ
k (x) mean of qϕ(z|x) in dimension k

σϕ̂
k (x)

2 optimal variance of qϕ(z|x) in dimension k

σϕ
k (x)

2 variance of qϕ(z|x) in dimension k
gθ inverse decoder component

H Hessian matrix
Id d-dimensional identity matrix
J Jacobian matrix
Σ covariance matrix
x observation vector
z latent vector
X observation space
d dimensionality of the observation space X
z latent single component
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