
Published as a conference paper at ICLR 2025

METHODS FOR CONVEX (L0, L1)-SMOOTH OPTIMIZA-
TION: CLIPPING, ACCELERATION, AND ADAPTIVITY

Eduard Gorbunov∗
MBZUAI

Nazarii Tupitsa∗
MBZUAI
Innopolis University †

Sayantan Choudhury
Johns Hopkins University

Alen Aliev
MBZUAI

Peter Richtárik
KAUST

Samuel Horváth
MBZUAI

Martin Takáč
MBZUAI

ABSTRACT

Due to the non-smoothness of optimization problems in Machine Learning, gen-
eralized smoothness assumptions have been gaining a lot of attention in recent
years. One of the most popular assumptions of this type is (L0, L1)-smoothness
(Zhang et al., 2020b). In this paper, we focus on the class of (strongly) convex
(L0, L1)-smooth functions and derive new convergence guarantees for several ex-
isting methods. In particular, we derive improved convergence rates for Gradient
Descent with (Smoothed) Gradient Clipping and for Gradient Descent with Polyak
Stepsizes. In contrast to the existing results, our rates do not rely on the standard
smoothness assumption and do not suffer from the exponential dependency on the
initial distance to the solution. We also extend these results to the stochastic case
under the over-parameterization assumption, propose a new accelerated method
for convex (L0, L1)-smooth optimization, and derive new convergence rates for
Adaptive Gradient Descent (Malitsky & Mishchenko, 2020).

1 INTRODUCTION

Modern optimization problems arising in Machine Learning (ML) and Deep Learning (DL) are
typically non-smooth, i.e., the gradient of the objective function is not necessarily Lipschitz continu-
ous. In particular, the gradient of the standard ℓ2-regression loss computed for simple networks is
not Lipschitz continuous (Zhang et al., 2020b). Moreover, the methods that are designed to benefit
from the smoothness of the objective often perform poorly in Deep Learning, where problems are
non-smooth. For example, variance-reduced methods (Schmidt et al., 2017; Johnson & Zhang, 2013;
Defazio et al., 2014; Nguyen et al., 2017; 2021; Beznosikov & Takáč, 2021; Shi et al., 2023) are
known to be faster in theory (for finite sums of smooth functions) but are outperformed by slower
theoretically non-variance-reduced methods (Defazio & Bottou, 2019). All of these reasons motivate
researchers to consider different assumptions to replace the standard smoothness assumption.

One such assumption is (L0, L1)-smoothness originally introduced by Zhang et al. (2020b) for
twice differentiable functions. This assumption allows the norm of the Hessian of the objective to
increase linearly with the growth of the norm of the gradient. In particular, (L0, L1)-smoothness can
hold even for functions with polynomially growing gradients – a typical behavior for DL problems.
Moreover, the notion of (L0, L1)-smoothness can also be extended to the class of differentiable but
not necessarily twice differentiable functions (Zhang et al., 2020a; Chen et al., 2023).

Although Zhang et al. (2020b) focus on the non-convex problems as well as more recent works such
as (Zhang et al., 2020a; Zhao et al., 2021; Faw et al., 2023; Wang et al., 2023; Li et al., 2024b; Chen
et al., 2023; Hübler et al., 2024), the class of (L0, L1)-smooth convex1 function is much weaker
explored. In particular, the existing convergence results for the methods such as Gradient Descent with

∗Equal contribution. Corresponding author – E. Gorbunov (eduard.gorbunov@mbzuai.ac.ae).
†Research Center of the Artificial Intelligence Institute of Innopolis University, Innopolis, Russia
1Although many existing problems are not convex, it is useful to understand methods behavior under the

convexity assumption as well due to several reasons; see further details in Appendix A.

1

Published as a conference paper at ICLR 2025

Clipping (Pascanu et al., 2013) and Gradient Descent with Polyak Stepsizes (Polyak, 1987) applied to
(L0, L1)-smooth convex problems either rely on additional smoothness assumption (Koloskova et al.,
2023; Takezawa et al., 2024) or require (potentially) small stepsizes to ensure that the method stays
in the compact set where the gradient is bounded and, as a consequence of (L0, L1)-smoothness of
the objective, Lipschitz continuous (Li et al., 2024a). This leads us to the following natural question:

How the convergence bounds for different versions of Gradient Descent depend on L0 and L1

when the objective function is convex, (L0, L1)-smooth but not necessarily L-smooth?

In this paper, we address the above question for Gradient Descent with Smoothed Gradient Clipping,
Polyak Stepsizes, Similar Triangles Method (Gasnikov & Nesterov, 2016), and Adaptive Gradient
Descent (Malitsky & Mishchenko, 2020): for each of the mentioned methods, we either improve
the existing convergence results or derive the first convergence results under (L0, L1)-smoothness.
We also derive new results for the stochastic versions of Gradient Descent with Smoothed Gradient
Clipping and Polyak Stepsizes.

1.1 PROBLEM SETUP

Before we continue the discussion of the related work and our results, we need to formalize the
problem setup. That is, we consider the unconstrained minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a (strongly) convex differentiable function.

Assumption 1 (Convexity). Function f : Rd → R is µ-strongly convex with2 µ ⩾ 0:

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Rd. (2)

As we already mentioned earlier, in addition to convexity, we assume that the objective function is
(L0, L1)-smooth. Following3 Chen et al. (2023), we consider two types of (L0, L1)-smoothness.

Assumption 2 (Asymmetric (L0, L1)-smoothness). Function f : Rd → R is asymmetrically
(L0, L1)-smooth (f ∈ Lasym(L0, L1)), i.e., for all x, y ∈ Rd we have

∥∇f(x)−∇f(y)∥ ⩽ (L0 + L1∥∇f(y)∥) ∥x− y∥. (3)

Assumption 3 (Symmetric (L0, L1)-smoothness). Function f : Rd → R is symmetrically (L0, L1)-
smooth (f ∈ Lsym(L0, L1)), i.e., for all x, y ∈ Rd we have

∥∇f(x)−∇f(y)∥ ⩽

(
L0 + L1 sup

u∈[x,y]

∥∇f(u)∥

)
∥x− y∥. (4)

Clearly, Assumption 3 is more general than Assumtpion 2. Due to this reason, we mostly focus on
Assumption 3, and by (L0, L1)-smooth functions, we mean functions satisfying Assumption 3 if the
opposite is not specified. Nevertheless, it is worth mentioning that asymmetric (L0, L1)-smoothness
(under some extra assumptions) is satisfied for a certain problem formulation appearing in Distribu-
tionally Robust Optimization (Jin et al., 2021). Chen et al. (2023) also show that exponential function
satisfies (4), and, more generally, for twice differentiable functions Assumption 3 is equivalent to

∥∇2f(x)∥2 ⩽ L0 + L1∥∇f(x)∥, ∀x ∈ Rd. (5)

Moreover, below, we provide some examples of functions satisfying Assumption 3 but either not
satisfying standard L-smoothness, i.e., (4) with L1 = 0, or satisfying L-smoothness with larger
constants than L0 and L1 respectively. The detailed proofs are deferred to Appendix B.

Example 1.1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is
convex and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ⩾ 2 and any L ⩾ 0.

2In this paper, we consider standard ℓ2-norm for vectors and spectral norm for matrices.
3The first version of Assumptions 2 and 3 is proposed by Zhang et al. (2020a).

2

Published as a conference paper at ICLR 2025

Example 1.2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is
convex, (0, ∥a∥)-smooth, but not L-smooth for a ̸= 0 and any L ⩾ 0.

These two examples illustrate that (L0, L1)-smoothness is quite a mild assumption, and it is strictly
weaker than L-smoothness. However, the next example shows that even when L-smoothness holds, it
makes sense to consider (L0, L1)-smoothness as well.
Example 1.3 (Logistic Function). Consider logistic function: f(x) = log

(
1 + exp(−a⊤x)

)
, where

a ∈ Rd is some vector. It is known that this function is L-smooth and convex with L = ∥a∥2. However,
one can show that f is also (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and
L1 are much smaller than L.

1.2 RELATED WORKS

We overview closely related works below and defer the additional discussion to Appendix A.

Results in the non-convex case. Zhang et al. (2020b) introduce (L0, L1)-smoothness in
the form (5) and show that Clipped Gradient Descent (Clip-GD) has iteration complexity
O
(
max

{
L0∆/ε2, (1+L2

1)∆/L0

})
with ∆ := f(x) − infx∈Rd f(x) for finding ε-approximate first-

order stationary point of (L0, L1)-smooth function. The asymptotically dominant term in this
complexity O (L0∆/ε2) is independent of L1, and thus, this term can be much smaller than
O (L∆/ε2), where L is a Lipschitz constant of the gradient (if finite). Under the assumption that
M := sup{∥∇f(x)∥ | x ∈ Rd such that f(x) ⩽ f(x0)} < +∞ Zhang et al. (2020b) also show
that GD with stepsize Θ(1/(L0+ML1)) has complexity O ((L0+ML1)∆/ε2), which is natural to expect
since on {x ∈ Rd | f(x) ⩽ f(x0)} the norm of the Hessian is bounded as L0 +ML1 (see (5)),
i.e., function is (L0 +ML1)-smooth. Zhang et al. (2020a) generalize the results from (Zhang et al.,
2020b) to the method with heavy-ball momentum (Polyak, 1964) and clipping of both momentum
and gradient. Similar results are derived for Normalized GD (Zhao et al., 2021; Chen et al., 2023),
SignGD (Crawshaw et al., 2022), AdaGrad-Norm/AdaGrad (Faw et al., 2023; Wang et al., 2023),
Adam (Wang et al., 2022; Li et al., 2024b), and Normalized GD with Momentum (Hübler et al.,
2024). Notably, all papers in this paragraph also address stochastic method versions.

Results in the convex case. To the best of our knowledge, convex (L0, L1)-smooth optimization
is studied in three papers4 (Koloskova et al., 2023; Takezawa et al., 2024; Li et al., 2024a). In
particular, under convexity, L-smoothness, and (L0, L1)-smoothness, Koloskova et al. (2023) show
that Clip-GD with clipping level c has O

(
max

{
(L0+cL1)R

2
0/ε,
√

R4
0L(L0+cL1)

2
/c2ε
})

complexity
of finding ε-solution, i.e., x such that f(x) − f(x∗) ⩽ ε, where x∗ ∈ argminx∈Rd f(x) and
R0 := ∥x0 − x∗∥. In particular, if c ∼ L0/L1, then the asymptotically dominant term in the
complexity is O

(
L0R

2
0/ε
)
, i.e., it is independent of L1 and L, which can be significantly better

than the complexity of GD of O
(
LR2

0/ε
)

for convex L-smooth functions. In the same setting,

Takezawa et al. (2024) prove O
(
max

{
L0R

2
0/ε,
√

R4
0LL2

1/ε
})

complexity bound for GD with Polyak
Stepsizes (GD-PS). Finally, under convexity and (L0, L1)-smoothness Li et al. (2024a) show that
for sufficiently small stepsizes standard GD and Nesterov’s method (NAG) (Nesterov, 1983) have
complexities O

(
ℓR2

0/ε
)

and O
(√

ℓR2
0/ε
)

respectively, where ℓ := L0+L1G and G is some constant

depending on L0, L1, R0, ∥∇f(x0)∥, and f(x0)− f(x∗). In particular, constant G and stepsizes are
chosen in such a way that it is possible to show via induction that in all points generated by GD/NAG
and where (L0, L1)-smoothness is used the norm of the gradient is bounded by G. However, these
results have a common limitation: constants L (if finite) and ℓ can be much larger than L0 and L1.
Moreover, for Clip-GD and GD-PS, these results lead to a natural question of whether it is possible
to achieve O

(
LR2

0/ε
)

complexity without L-smoothness non-asymptotically.

1.3 OUR CONTRIBUTION

• Tighter rates for Gradient Descent with (Smoothed) Clipping. We prove that Gradient Descent
with (Smoothed) Clipping, which we call (L0, L1)-GD, has O

(
max

{
L0R

2
0/ε, L2

1R
2
0

})
worst-case

4After the first version of our paper appeared online, another highly-relevant paper appeared online (Vankov
et al., 2024). In particular, Vankov et al. (2024) independently derive similar results to ours for (L0, L1)-GD
and GD-PS, and also obtained new convergence bounds for Normalized GD and improved accelerated rates.

3

Published as a conference paper at ICLR 2025

complexity of finding ε-solution for convex (L0, L1)-smooth functions. In contrast to the previous
results (Koloskova et al., 2023; Li et al., 2024a), our bound is derived without L-smoothness
assumption and does not depend on any bound for ∥∇f(xk)∥. To achieve this, we prove that
(L0, L1)-GD has non-increasing gradient norm and show that the method’s behavior consists of
two phases: initial (and finite) phase when ∥∇f(xk)∥ ⩾ L0/L1 (large gradient), and final phase
when ∥∇f(xk)∥ < L0/L1 and the method behaves similarly to GD applied to 2L0-smooth problem.
We also extend the result to the strongly/stochastic convex cases.

• Tighter rates for Gradient Descent with Polyak Stepsizes. For GD-PS, we also derive
O
(
max

{
L0R

2
0/ε, L2

1R
2
0

})
worst-case complexity of finding ε-solution for convex (L0, L1)-smooth

functions. In contrast to the existing result (Takezawa et al., 2024), our bound is derived without
L-smoothness assumption. We also extend the result to the strongly/stochastic convex cases.

• New accelerated method: (L0, L1)-Similar Triangles Method. We propose a version of Similar
Triangles Method (Gasnikov & Nesterov, 2016) for convex (L0, L1)-smooth optimization, and
prove O

(√
L0(1+L1R0 exp(L1R0))R

2
0/ε
)

complexity of finding ε-solution for convex (L0, L1)-
smooth functions. In contrast to the accelerated result from (Li et al., 2024a), our bound is derived
without the usage of stepsizes depending on R0 and f(x0)− f(x∗).

• New convergence results for Adaptive Gradient Descent. We also show new convergence
result for Adaptive Gradient Descent (Malitsky & Mishchenko, 2020) for convex (L0, L1)-smooth
problems: we prove O

(
max

{
L0D

2
/ε,m2(L2

1D
2 + L4

1D
4
1)
})

complexity of finding ε-solution,
whereD is a constant depending on initial suboptimality of the starting point, andm is a logarithmic
factor depending on L1 and D. We also extend the result to the strongly convex case.

• New technical results for (L0, L1)-smooth functions. We derive several useful inequalities for
the class of (convex) (L0, L1)-smooth functions.

2 TECHNICAL LEMMAS

In this section, we provide some useful facts about (L0, L1)-smooth functions. We start with the
following result from (Chen et al., 2023).
Lemma 2.1 (Proposition 1 from (Chen et al., 2023)). Assumption 3 holds if and only if for

∥∇f(x)−∇f(y)∥ ⩽ (L0 + L1∥∇f(y)∥) exp (L1∥x− y∥) ∥x− y∥, ∀x, y ∈ Rd. (6)

Moreover, Assumption 3 implies for all x, y ∈ Rd

f(y) ⩽ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥
2

exp(L1∥x− y∥)∥x− y∥2. (7)

Inequality (6) removes the supremum from (4), but the price for this is a factor of exp(L1∥x− y∥).
When ∥x− y∥ ⩽ 1/L1, this factor is upper-bounded as e. However, in general, it cannot be removed
since (6) is equivalent to (4). Inequality (7) can be seen as a generalization of standard quadratic
upper-bound for L-smooth functions (Nesterov, 2018) to the class of (L0, L1)-smooth functions.
Note, that (Zhang et al., 2020a) provides a Hessian free assumption which is equivalent to (5), it can
be seen as (6) and (7) with improved constants.

Using the above lemma, we derive several useful inequalities that we actively use throughout our
proofs. Most of these inequalities can be further simplified in the case of Assumption 2.
Lemma 2.2. Let Assumption 3 hold and ν satisfy5 ν = e−ν . Then, the following statements hold.

1. For f∗ := infx∈Rd f(x) and arbitrary x ∈ Rd, we have

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
⩽ f(x)− f∗. (8)

2. If additionally Assumption 1 holds with µ = 0, then for any x, y ∈ Rd such that

L1∥x− y∥ exp (L1∥x− y∥) ⩽ 1, (9)

5One can check numerically that 0.56 < ν < 0.57.

4

Published as a conference paper at ICLR 2025

we have
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, (10)

and
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
+
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(x)∥)
⩽ ⟨∇f(x)−∇f(y), x− y⟩. (11)

This lemma provides us with a set of useful inequalities that can be viewed as generalizations of
analogous inequalities that hold for smooth (convex) functions. We provide the complete proof in
Appendix C. Moreover, when Assumption 2 holds, all inequalities from Lemma 2.2 hold with ν = 1,
and requirement (9) is not needed for (10) and (11) to hold. An analog of (8) for a local version of
(L0, L1)-smoothness can be found in (Koloskova et al., 2023). We also refer to (Li et al., 2024a)
for an analog of inequality (11) for (r, ℓ)-smooth functions. However, in contrast to the bound from
(Koloskova et al., 2023), bound (8) is derived for a global version of (L0, L1)-smoothness and thus
differs in numerical constants, and, in contrast to the proof from (Li et al., 2024a), we do not use
local Lipshitzness of the gradient.

3 SMOOTHED GRADIENT CLIPPING

The first method that we consider is closely related to Clip-GD and can be seen as a smoothed
version6 of it – see Algorithm 1. Alternatively, this method can be seen as a version of Gradient
Descent designed for (L0, L1)-smooth functions. Therefore, we call this algorithm (L0, L1)-GD.

Algorithm 1 (L0, L1)-Gradient Descent ((L0, L1)-GD)

Input: starting point x0, number of iterations N , stepsize parameter η > 0, L0 > 0, L1 ⩾ 0
1: for k = 0, 1, . . . , N − 1 do
2: xk+1 = xk − η

L0+L1∥∇f(xk)∥∇f(x
k)

3: end for
Output: xN

Similarly to standard GD, (L0, L1)-GD satisfies two useful properties, summarized below.

Lemma 3.1 (Monotonicity of function value). Let Assumption 3 hold. Then, for all k ⩾ 0 the iterates
generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

f(xk+1) ⩽ f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk). (12)

Proof sketch. The inequality follows from (7) applied to y = xk+1 and x = xk, see the complete
proof in Appendix D.

Lemma 3.2 (Monotonicity of gradient norm). Let Assumptions 1 with µ = 0 and 3 hold. Then, for
all k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

∥∇f(xk+1)∥ ⩽ ∥∇f(xk)∥. (13)

Proof sketch. The inequality follows from (11) applied to x = xk+1 and y = xk, see the complete
proof in Appendix D.

We notice that a similar result to Lemma 3.2 is shown in (Li et al., 2024a) for GD with sufficiently
small stepsize. With these lemmas in hand, we derive the convergence result for (L0, L1)-GD.

6Indeed, when ∥∇f(xk)∥ < L0/L1, the denominator of the stepsize in (L0, L1)-GD lies in [L0, 2L0], and
when ∥∇f(xk)∥ ⩾ L0/L1, this denominator lies in [L1∥∇f(xk)∥, 2L1∥∇f(xk)∥]. Such a behavior is very
similar to the behavior of Clip-GD with clipping level L0/L1 and stepsize η/L0.

5

Published as a conference paper at ICLR 2025

Theorem 3.1. Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated by (L0, L1)-GD
with 0 < η ⩽ ν

2 , ν = e−ν satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ k ⩽

8L2
1∥x0 − x∗∥2

νη
− 1 and ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − νη

8L2
1

. (14)

Moreover, the output after N >
8L2

1∥x
0−x∗∥2

η − 1 iterations satisfies

f(xN)− f(x∗) ⩽
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
, (15)

where T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}.

Proof sketch. Similarly to the proofs from (Koloskova et al., 2023; Takezawa et al., 2024), our
proof is based on careful consideration of two possible situations: either ∥∇f(xk)∥ ⩾ L0/L1 or
∥∇f(xk)∥ < L0/L1. When the first situation happens, the squared distance to the solution decreases
by η/8L2

1. Since the squared distance is non-negative and non-increasing, this cannot happen more
than 8L2

1∥x
0−x∗∥2

/νη times, which gives the first part of the result. Next, when ∥∇f(xk)∥ < L0/L1,
the method behaves as GD on convex 2L0-smooth problem and the analysis is also similar. Together
with Lemmas 3.1 and 3.2, this gives the second part of the proof, see Appendix D for the details.

Bound (15) implies that (L0, L1)-GD with η = ν/2 satisfies f(xN) − f(x∗) ⩽ ε after N =
O
(
max

{
L0R

2
0/ε, L2

1R
2
0

})
iterations. In contrast, Koloskova et al. (2023); Takezawa et al. (2024)

derive O
(
max

{
L0R

2
0/ε,
√

R4
0LL2

1/ε
})

complexity bound that depends on the smoothness constant L,

which can be much larger than L0 and L1, e.g., when f(x) = ∥x∥4 constant L depends on the starting
point (since it defines a compact set, where the method stays) as L0 +L1∥∇f(x0)∥ = O(1+ ∥x0∥3)
(see Appendix B), while L0 = 4 and L1 = 3. That is, by moving x0 away from the solution, one can
make our bound arbitrarily better than the previous one, even for this simple example. Moreover,
unlike the result from (Li et al., 2024a) for GD with small enough stepsize, our bound depends neither
on f(x0)− f(x∗) nor on ∥∇f(x0)∥ that can be significantly larger than R0 (according to Lemma 2.1
– exponentially larger). Finally, we highlight that our analysis shows that (L0, L1)-GD exhibits a
two-stage behavior: during the first stage, the gradient is large (this stage can be empty), and the
squared distance to the solution decreases by a constant, and during the second stage, the method
behaves as standard GD. This observation is novel on its own and gives a better understanding of the
method’s behavior. We also provide the result for the strongly convex case in Appendix D.

4 GRADIENT DESCENT WITH POLYAK STEPSIZES

Next, we provide an improved analysis under (L0, L1)-smothness for celebrated Gradient Descent
with Polyak Stepsizes (GD-PS, Algorithm 2).

Algorithm 2 Gradient Descent with Polyak Stepsizes (GD-PS)

Input: starting point x0, number of iterations N , minimal value f(x∗) := minx∈Rd f(x)
1: for k = 0, 1, . . . , N − 1 do
2: xk+1 = xk − f(xk)−f(x∗)

∥∇f(xk)∥2 ∇f(xk)
3: end for

Output: xN

Theorem 4.1. Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated by GD-PS
satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − ν2

16L2
1

. (16)

Moreover, the output after N steps the iterates satisfy
4L0

ν
∥xN+1 − x∗∥2 +

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0

ν
∥x0 − x∗∥2 − νL0T

4L2
1

, (17)

6

Published as a conference paper at ICLR 2025

where T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
}, T := |T |, and if N > T − 1, it holds that

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

(18)

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). In particular, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed and

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N + 1)
. (19)

Proof sketch. The proof is similar to the one for (L0, L1)-GD, see the details in Appendix E.

In other words, the above result shows that GD-PS has the same worst-case complexity as (L0, L1)-
GD, and the comparison with the results from (Koloskova et al., 2023; Takezawa et al., 2024; Li
et al., 2024a) that we provided after Theorem 3.1 is valid for GD-PS as well. However, in contrast to
(L0, L1)-GD, GD-PS requires to know f(x∗) only. In some cases, the optimal value is known in
advance, e.g., for over-parameterized problems (Vaswani et al., 2019a) f(x∗) = 0. In such situations
GD-PS can be called parameter-free. The price for this is the potential non-monotonic behavior of
GD-PS, which we observed in our preliminary computer-aided analysis using PEPit (Goujaud et al.,
2024) even in the case of L-smooth functions. Therefore, unlike Theorem 3.1, Theorem 4.1 does not
provide last-iterate convergence rates in the convex case and also does not imply that GD-PS has a
clear two-stage behavior (although the iterates can be split into two groups based on the norm of the
gradient as well). We also provide the result for the strongly convex case in Appendix E.

5 ACCELERATION: (L0, L1)-SIMILAR TRIANGLES METHOD

In this section, we present an accelerated version of (L0, L1)-GD called (L0, L1)-Similar Triangles
Method ((L0, L1)-STM, Algorithm 3). This method can be seen as an adaptation of STM (Gasnikov
& Nesterov, 2016) to the case of (L0, L1)-smooth functions. The main modification in comparison
to the standard STM is in Line 5: stepsize for GD-type step is now proportional to 1/Gk+1, where
Gk+1 is some upper bound on L0 +L1∥∇f(xk+1)∥, while in STM Gk+1 should be an upper bound
for the smoothness constant.

Algorithm 3 (L0, L1)-Similar Triangles Method ((L0, L1)-STM)

Input: starting point x0, number of iterations N , stepsize parameter η > 0
1: y0 = z0 = x0, Ak = 0
2: for k = 0, 1, . . . , N − 1 do
3: Set αk+1 = η(k+2)

2 and Ak+1 = Ak + αk+1

4: xk+1 = Aky
k+αk+1z

k

Ak+1

5: zk+1 = zk − αk+1

Gk+1
∇f(xk+1), where Gk+1 ⩾ L0 + L1∥∇f(xk+1)∥

6: yk+1 = Aky
k+αk+1z

k+1

Ak+1

7: end for
Output: yN

The next lemma is valid for any choice of Gk+1 ⩾ L0 + L1∥∇f(xk+1)∥.
Lemma 5.1. Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated by
(L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν satisfy for all N ⩾ 0

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k︸ ︷︷ ︸
(20)

−
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2︸ ︷︷ ︸

(21)

,

where Rk := ∥zk − x∗∥ for all k ⩾ 0.

7

Published as a conference paper at ICLR 2025

Since AN ⩾ ηN(N+3)
4 (see Lemma F.1) and the term from (21) is non-positive, the above lemma

gives an accelerated convergence rate, if we manage to bound the sum from (20). Unfortunately, in
the case of Gk+1 = L0 + L1∥∇f(xk+1)∥, it is unclear whether this sum is bounded due to the well-
known non-monotonic behavior (in particular, in terms of the gradient norm) of accelerated methods.
Nevertheless, if we enforce Gk+1 to be non-decreasing as a function of k, then from the above lemma
one can show that Rk remains bounded by R0 and all iterates generated by (L0, L1)-STM lie in the
ball centered at x∗ with radius R0. This observation is formalized in the theorem below (see the
complete proof in Appendix F).
Theorem 5.1. Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated by
(L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν , G1 = L0 + L1∥∇f(x0)∥, and

Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥}, k ⩾ 0, (22)
satisfy

f(yN)− f(x∗) ⩽
2L0(1 + L1∥x0 − x∗∥ exp(L1∥x0 − x∗∥))∥x0 − x∗∥2

ηN(N + 3)
. (23)

In the special case ofL0-smooth functions (L1 = 0), the above result recovers the standard accelerated
convergence rate (Gasnikov & Nesterov, 2016). In the general (L0, L1)-smooth case, the rate is
also accelerated and implies an optimal O

(√
L0(1+L1R0 exp(L1R0))R

2
0/ε
)

in ε complexity. In the

case of (L0, L1)-smooth functions, the complexity O
(√

ℓR2
0/ε
)

from (Li et al., 2024a) derived for
Nesterov’s method applied to convex (r, ℓ)-smooth problem coincides with our result in the worst-
case. Indeed, in this special case, ℓ = L0 + 2L1G, where G ∼ ∥∇f(x0)∥ (Li et al., 2024a, Theorem
4.4). However, according to Lemma 2.1, ∥∇f(x0)∥ ∼ L0R0 exp(L1R0) in the worst case, implying
that ℓ ∼ L0(1 + 2L1R0 exp(L1R0)) in the worst case. Nevertheless, the derived complexity is
clearly not optimal if L1 is large, R0 is large, and ε is not too small since

√
L0(1+L1R0 exp(L1R0))R

2
0/ε

can be larger than max
{
L0R

2
0/ε, L2

1R
2
0

}
, i.e., (L0, L1)-GD and GD-PS can be faster in achieving

ε-solutiion for some values of L1, R0, and ε. Deriving a tight lower bound and optimal method for
convex (L0, L1)-smooth optimization remains an open problem.

6 ADAPTIVE GRADIENT DESCENT

In this section, we consider Adaptive Gradient Descent (AdGD, Algorithm 4) proposed by Malitsky
& Mishchenko (2020). In the original paper, the method is analyzed under the assumption that
the gradient of f is locally Lipschitz, i.e., for any compact set C gradient of f is assumed to be
bounded. Clearly, (L0, L1)-smoothness of f implies that ∇f is locally Lipschitz, e.g., this can be
deduced from (6). In particular, Malitsky & Mishchenko (2020) prove O(LD2

/N) convergence rate
for AdGD, where L is smoothness constant on the convex combination of {x∗, x0, x1, . . .}: this
set is bounded since the authors prove that AdGD does not leave ball centered at x∗ with radius
D > 0 such that D2 := ∥x1−x∗∥2+ 1

2∥x
1−x0∥2+2λ1θ1(f(x

0)− f(x∗)). Moreover, they derive
∥xk − xk−1∥2 ⩽ 2D2 for all k ⩾ 1.

Algorithm 4 Adaptive Gradient Descent (Malitsky & Mishchenko, 2020)

1: Input: x0 ∈ Rd, λ0 > 0, θ0 = +∞, γ ⩽ 1
2

2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: λk = min

{√
1 + θk−1λk−1,

γ∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)∥

}
5: xk+1 = xk − λk∇f(xk)
6: θk = λk

λk−1

7: end for

In the case of (L0, L1)-smoothness, constant L can be estimated explicitly: in view of the mentioned
upper bounds on ∥xk − x∗∥ and ∥xk − xk−1∥, we have

∥∇f(xk)∥
(6)
⩽ L0 exp(L1∥xk − x∗∥)∥xk − x∗∥ ⩽ L0 exp(L1D)D, (24)

8

Published as a conference paper at ICLR 2025

which allows us to lower-bound γ∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)∥ and λk as γ

L0(1+L1D exp (L1D)) exp (
√
2L1D)

for

all k ⩾ 1. Then, following the proof by Malitsky & Mishchenko (2020), we get the following rate
(for the definition of x̂N and the detailed statement of the result we refer to Appendix G):

f(x̂N)− f(x∗) ⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

N
. (25)

Although this result shows that AdGD has the same rate 1/N of convergence for smooth and (L0, L1)-
smooth functions, constant (1 + L1D exp (L1D)) exp

(√
2L1D

)
appearing in the upper bound can

be huge. To address this issue, we derive a refined convergence result for AdGD.

Theorem 6.1. Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we define point x̂N :=
1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1+ θk)−λk+1θk+1, SN := λ1θ1+
∑N

k=1 λk,

and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/4. Then, forN > mK−
√
2N(m+1)L1D

ν

iterate x̂N satisfies

f(x̂N)− f(x∗) ⩽
2L0D

2

ν(N −mK)−
√
2N(m+ 1)L1D

, (26)

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0)− f(x∗)),

m := 1 + log√2

⌈
(1+L1D exp (2L1D))

2

⌉
, K :=

2L2
1D

2

ν2 , and ν = e−ν . In particular, for N ⩾(
2mK + 4(m+1)L1D

ν

)2
, we have

f(x̂N)− f(x∗) ⩽
4L0D

2

νN
. (27)

The above states that AdGD converges at least ∼ (1 + L1D exp (L1D)) exp
(√

2L1D
)

faster (for
sufficiently large N) than the upper bound from (25). This is a noticeable factor: if L1 = 1, D = 10,
it is of the order 8 · 106. Moreover, in contrast to (25), Theorem 6.1 does not follow its counterpart
from Malitsky & Mishchenko (2020). To achieve it, we use γ = 1/4 to get a new potential function

Φk := ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) +
1

2

k−1∑
i=0

∥xi+1 − xi∥2, (28)

and show that Φk+1 ⩽ Φk ∀k ⩾ 1. In contrast, the potential function from (Malitsky & Mishchenko,
2020) does not have term 1

2

∑k−1
i=0 ∥xi+1 − xi∥2, which is the key for obtaining a better guarantee

under (L0, L1)-smoothness. Finally, we also note that up to the numerical factors bound (27)
coincides with the bound from (Malitsky & Mishchenko, 2020) derived for L-smooth problems.
Moreover, up to the numerical factors and the replacement of ∥x0 − x∗∥2 with D2, which might be
larger than ∥x0 − x∗∥2, our bound (27) for AdGD coincides with the ones derived for (L0, L1)-GD
and GD-PS. These facts highlight the adaptivity of AdGD in theory.

7 STOCHASTIC EXTENSIONS

In this section, we consider the finite-sum minimization problem, i.e., we assume that f(x) :=
1
n

∑n
i=1 fi(x). Problems of this type are typical for ML applications (Shalev-Shwartz & Ben-David,

2014), where fi(x) represents the loss function evaluated for i-th example in the dataset and x are
parameters of the model. Since the size of the dataset n is usually large, stochastic first-order methods
such as Stochastic Gradient Descent (Robbins & Monro, 1951) are the methods of choice for this
class of problems. However, to proceed, we need to impose some assumptions on functions {fi}ni=1.

Assumption 4. For all i = 1, . . . , n function fi is convex and symmetrically (L0, L1)-smooth, i.e.,
inequalities (2) with µ = 0 and (4) for function fi as well. Moreover, we assume that there exists
x∗ ∈ Rd such that x∗ ∈ argminx∈Rd fi(x) for all i = 1, . . . , n, i.e., functions {fi}ni=1 have a
common minimizer.

9

Published as a conference paper at ICLR 2025

The first part of the assumption (convexity and (L0, L1)-smoothness of all {fi}ni=1) is a natural
generalization of convexity and (L0, L1)-smoothness of f to the finite-sum case. Next, the existence
of common minimizer x∗ for all {fi}ni=1 is a typical assumption for over-parameterized models
(Belkin et al., 2019; Liang & Rakhlin, 2020; Zhang et al., 2021; Bartlett et al., 1998) and used in
several recent works on the analysis of stochastic methods (Vaswani et al., 2019a;b; Loizou et al.,
2021; Gower et al., 2021). Although Assumption 4 does not cover all possibly interesting stochastic
scenarios, it does allow the variance of the stochastic gradients to depend on x and grow with the
growth of ∥x− x∗∥, which is typical for DL, unlike the standard bounded variance assumption.

For such problems, we consider a direct extension of (L0, L1)-GD called (L0, L1)-Stochastic Gradi-
ent Descent ((L0, L1)-SGD, Algorithm 5 in Appendix H.1).

Theorem 7.1. Let Assumption 4 hold. Then, the iterates generated by (L0, L1)-SGD with 0 < η ⩽ ν
2 ,

ν = e−ν after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

2L0∥x0 − x∗∥2

η(N + 1)
. (29)

As in the deterministic case, the upper bound is proportional toL0 and 1/(N+1) and does not depend on
a smoothness constant on some ball around the solution. However, one can notice that the convergence
criterion in the above result is quite non-standard: typically, the results are given in terms of
E
[
f(xk)− f(x∗)

]
. This happens because although functions {fi}ni=1 have a common minimizer, we

cannot guarantee that for some k0 and any k ⩾ k0 we have ∥∇fi(xk)∥ ⩽ L0/L1 with probability 1 for
all i ∈ {1, . . . , n}, i.e., the method does not have to converge uniformly for all samples. This implies
that with some small probability f(xk)−f(x∗) can be larger than νL0/(4nL2

1) for any k = 0, 1, . . . , N

and any N ⩾ 0. However, in view of (29), this probability has to be smaller than 8nL2
1∥x

0−x∗∥2

ην(N+1) , i.e.,

with probability at least 1− 8nL2
1∥x

0−x∗∥2

ην(N+1) for k(N) such that E
[
min

{
νL0

4nL2
1
, f(xk(N))− f(x∗)

}]
=

mink=0,...,N E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
we have f(xk(N))− f(x∗) ⩽ νL0

4nL2
1

, which is small
for large enough n.

Next, we consider SGD-PS proposed by Loizou et al. (2021) (Algorithm 6 in Appendix H.2). In
contrast to the deterministic case, SGD-PS requires to know {fi(x∗)}ni=1 in advance. Nevertheless,
these values equal 0 for some existing over-parameterized models, and thus, the method can be
applied in such cases. Under the same assumptions, we also derive a similar result for SGD-PS.

Theorem 7.2. Let Assumption 4 hold. Then, the iterates of SGD-PS after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

4L0∥x0 − x∗∥2

ν(N + 1)
. (30)

The result is very similar to the one we derive for (L0, L1)-SGD. Therefore, the discussion provided
after Theorem 7.1 (with η = ν/2) is valid for the above result as well.

8 CONCLUSION AND FUTURE WORK

In this paper, we derive improved convergence rates for (L0, L1)-GD and GD-PS, derive convergence
guarantees for the new accelerated method called (L0, L1)-STM, and also derive a new result for
AdGD in the case of (strongly) convex (L0, L1)-smooth optimization. Our results for (L0, L1)-GD
and GD-PS depend neither on ∥∇f(x0)∥ nor on f(x0) − f(x∗) nor on exponential functions of
R0. We also prove new results for the stochastic extensions of (L0, L1)-GD and GD-PS in the case
of finite sums of functions having a common minimizer. Nevertheless, several important questions
remain open. One of these questions is the lower bounds for the class of (strongly) convex (L0, L1)-
smooth functions and optimal methods for this class. Moreover, it would be interesting to develop
stochastic extensions of (L0, L1)-GD and GD-PS with strong theoretical guarantees beyond the case
of finite sums with shared minimizer.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

All authors affiliated with the Innopolis University were supported by the Research Center of the
Artificial Intelligence Institute of Innopolis University. We thank Konstantin Mishchenko for his
useful suggestions for improving the writing. We also thank the anonymous reviewers for their
valuable feedback.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, and Martin Takáč. Stochastic gradient
descent with preconditioned polyak step-size. Computational Mathematics and Mathematical
Physics, 64(4):621–634, 2024.

Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686,
1998.

Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient
continuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict
statistical optimality? In The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 1611–1619. PMLR, 2019.

Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Training neural networks for and by
interpolation. In International Conference on Machine Learning, 2020.

Aleksandr Beznosikov and Martin Takáč. Random-reshuffled sarah does not need a full gradient
computations. In Optimization for Machine Learning Workshop @ NeurIPS 2021, 2021.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points ii: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782,
2020.

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimization is
as efficient as smooth nonconvex optimization. In International Conference on Machine Learning,
pp. 5396–5427. PMLR, 2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955–9968, 2022.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
with heavy tails. Advances in Neural Information Processing Systems, 34:4883–4895, 2021.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. Advances in Neural Information Processing Systems, 32, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information
processing systems, 27, 2014.

11

Published as a conference paper at ICLR 2025

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

Ilyas Fatkhullin, Niao He, and Yifan Hu. Stochastic optimization under hidden convexity. arXiv
preprint arXiv:2401.00108, 2023.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 89–160. PMLR, 2023.

Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don't be so monotone: Relaxing stochastic line
search in over-parameterized models. In Advances in Neural Information Processing Systems,
2023.

Alexander Gasnikov and Yurii Nesterov. Universal fast gradient method for stochastic composit
optimization problems. arXiv preprint arXiv:1604.05275, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with heavy-
tailed noise via accelerated gradient clipping. Advances in Neural Information Processing Systems,
33:15042–15053, 2020.

Eduard Gorbunov, Marina Danilova, Innokentiy Shibaev, Pavel Dvurechensky, and Alexander
Gasnikov. Near-optimal high probability complexity bounds for non-smooth stochastic op-
timization with heavy-tailed noise. arXiv preprint arXiv:2106.05958, 2021. URL https:
//arxiv.org/pdf/2106.05958.pdf.

Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: O(1/k) last-iterate
convergence for monotone variational inequalities and connections with cocoercivity. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 366–402. PMLR, 2022.

Baptiste Goujaud, Céline Moucer, François Glineur, Julien M Hendrickx, Adrien B Taylor, and
Aymeric Dieuleveut. PEPit: computer-assisted worst-case analyses of first-order optimization
methods in python. Mathematical Programming Computation, pp. 1–31, 2024.

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. SGD for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1315–1323. PMLR, 2021.

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some slack
for sgd with adaptive polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022.

Elad Hazan and Sham M. Kakade. Revisiting the Polyak step size. In arXiv, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Samuel Horváth, Konstantin Mishchenko, and Peter Richtárik. Adaptive learning rates for faster
stochastic gradient methods. arXiv preprint arXiv:2208.05287, 2022.

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024.

Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-convex distributionally robust
optimization: Non-asymptotic analysis. Advances in Neural Information Processing Systems, 34:
2771–2782, 2021.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/pdf/2106.05958.pdf
https://arxiv.org/pdf/2106.05958.pdf

Published as a conference paper at ICLR 2025

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning, pp. 5311–5319. PMLR, 2021.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, 2023.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36, 2024a.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
Advances in Neural Information Processing Systems, 36, 2024b.

Shuang Li, William J Swartworth, Martin Takáč, Deanna Needell, and Robert M Gower. Sp2: A
second order stochastic polyak method. ICLR 2023, 2022.

Tengyuan Liang and Alexander Rakhlin. Just interpolate. The Annals of Statistics, 48(3):1329–1347,
2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Vien V Mai and Mikael Johansson. Stability and convergence of stochastic gradient clipping: Beyond
lipschitz continuity and smoothness. In International Conference on Machine Learning, pp.
7325–7335. PMLR, 2021.

Grigory Malinovsky, Peter Richtárik, Samuel Horváth, and Eduard Gorbunov. Byzantine robustness
and partial participation can be achieved simultaneously: Just clip gradient differences. arXiv
preprint arXiv:2311.14127, 2023.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Interna-
tional Conference on Machine Learning, pp. 6702–6712. PMLR, 2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018.

Arkadi Semenovich Nemirovski and David Borisovich Yudin. Problem Complexity and Method
Efficiency in Optimization. A Wiley-Interscience publication. Wiley, 1983.

Arkaddii S Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018.

Yurii Evgenievich Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In In 34th International Conference on
Machine Learning, ICML 2017, 2017.

Lam M Nguyen, Katya Scheinberg, and Martin Takáč. Inexact sarah algorithm for stochastic
optimization. Optimization Methods and Software, 36(1):237–258, 2021.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, 2013.

Vivak Patel and Albert S Berahas. Gradient descent in the absence of global lipschitz continuity of
the gradients. arXiv preprint arXiv:2210.02418, 2022.

13

Published as a conference paper at ICLR 2025

Vivak Patel, Shushu Zhang, and Bowen Tian. Global convergence and stability of stochastic gradient
descent. Advances in Neural Information Processing Systems, 35:36014–36025, 2022.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

B.T. Polyak. Introduction to Optimization. Optimization Software, 1987.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel
Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochastic
optimization and variational inequalities: the case of unbounded variance. In International
Conference on Machine Learning, 2023.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Zheng Shi, Abdurakhmon Sadiev, Nicolas Loizou, Peter Richtárik, and Martin Takáč. Ai-sarah:
Adaptive and implicit stochastic recursive gradient methods. 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
free clipped gradient descent. arXiv preprint arXiv:2405.15010, 2024.

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimiz-
ing (L0, L1)-smooth functions by gradient methods. arXiv preprint arXiv:2410.10800, 2024.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pp. 1195–1204. PMLR, 2019a.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
neural information processing systems, 32, 2019b.

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Zhi-Ming Ma, Tie-Yan Liu, and Wei Chen.
Provable adaptivity in adam. arXiv preprint arXiv:2208.09900, 2022.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. In Advances in Neural Information Processing Systems, 2020a.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020b.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In Advances in
Neural Information Processing Systems, 2020c.

Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. On the convergence and improvement of stochastic
normalized gradient descent. Science China Information Sciences, 64:1–13, 2021.

14

Published as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Problem Setup . 2

1.2 Related Works . 3

1.3 Our Contribution . 3

2 Technical Lemmas 4

3 Smoothed Gradient Clipping 5

4 Gradient Descent with Polyak Stepsizes 6

5 Acceleration: (L0, L1)-Similar Triangles Method 7

6 Adaptive Gradient Descent 8

7 Stochastic Extensions 9

8 Conclusion and Future Work 10

A Extra Related Work 16

B Examples of (L0, L1)-Smooth Functions 18

C Proof of Lemma 2.2 20

D Missing Proofs for (L0, L1)-GD 22

D.1 Comparison with the Proofs from (Koloskova et al., 2023; Takezawa et al., 2024;
Chen et al., 2023) . 25

E Missing Proofs for Gradient Descent with Polyak Stepsizes 27

F Missing Proofs for (L0, L1)-Similar Triangles Method 29

G Missing Proofs for Adaptive Gradient Descent 32

G.1 Derivation of (25) . 32

G.2 Proof of Theorem 6.1 . 33

G.3 Convergence in the Strongly Convex Case . 36

H Stochastic Extensions: Missing Proofs and Details 39

H.1 (L0, L1)-Stochastic Gradient Descent . 39

H.2 Stochastic Gradient Descent with Polyak Stepsizes 41

I Numerical Experiments 43

15

Published as a conference paper at ICLR 2025

A EXTRA RELATED WORK

On the importance of convex analysis. Although many existing problems are not convex, it
is useful to understand methods behavior under the convexity assumption as well due to several
reasons. First of all, since the class of non-convex functions is too broad, the existing results for
this class are quite pessimistic. In particular, among first-order methods, Gradient Descent is the
best (in theory) first-order method if only smoothness is assumed (Carmon et al., 2021). In contrast,
while accelerated/momentum methods do not have theoretical advantages over Gradient Descent
for non-convex problems and shine in theory only under convexity-like assumptions, they work
better in practice even when the problems are not convex (Sutskever et al., 2013). Last but not least,
several recent works show that some problems appearing in Deep Learning, Optimal Control, and
Reinforcement Learning have properties akin to (strongly) convex functions (Liu et al., 2022) and are
even hiddenly convex (Fatkhullin et al., 2023).

Results for stochastic methods. In the main part of the paper, we mainly discuss the existing
convergence results under (L0, L1)-smoothness for deterministic methods. However, there ex-
ist several stochastic extensions. For non-convex twice differentiable (L0, L1)-smooth problems
with σ-bounded noise, Zhang et al. (2020b) show O

(
max

{
(L0+L1σ)∆̂/ε2, (L1∆̂/ε, ∆̂

2
/ε4
})

com-
plexity bound with ∆̂ := f(x) − infx∈Rd f(x) + (5L0 + 2L1σ)σ

2 + 9σL2
0/L1 for Clip-SGD with

a clipping level dependent on the noise level. Zhang et al. (2020a) generalize the result from
(Zhang et al., 2020b) to the case of (L0, L1)-smooth functions that are not necessarily twice dif-
ferentiable and derive improved O

(
∆L0σ

2
/ε4
)

complexity for sufficiently small ε. Next, Zhao
et al. (2021) derive O

(
max

{
L1∆/ε, L0∆/ε2, L1∆σ2

/ε3, L0∆σ2
/ε4
})

complexity bound for Normal-
ized SGD with sufficiently large batchsize under σ-bounded variance assumption. Under the
additional assumption of expected (L0, L1)-smoothness, Chen et al. (2023) improve the previ-
ous results and derive O ((L1σ+L0)∆/ε−3) complexity for SPIDER (Fang et al., 2018). Craw-
shaw et al. (2022) derive a similar bound to the one from (Zhang et al., 2020a) for a Generalized
SignSGD under coordinate-wise (L0, L1)-smoothness. Next, Faw et al. (2023); Wang et al. (2023)
derive (high-probability) complexity bounds for AdaGrad-Norm under the affine variance as-
sumption. Similar results are obtained for Adam by Wang et al. (2022), and Li et al. (2024b)
analyze Adam for (L0, L1)-smooth problems under bounded noise assumption. Recently, Koloskova
et al. (2023) derive O (max {∆/ηε2,∆/ηcε}) complexity bound of finding ε-stationary point for
Clip-SGD under σ-bounded variance assumption, where c is the clipping level, η ⩽ 1/9(L0+cL1)

is the stepsize, and ε = Ω
(
min

{
σ2, σ

2
/c
}
+
√
η(L0 + cL1)σ

)
. Next, Li et al. (2024a) obtain

O
(
max

{
L∆̃/ε2, (L

2
1∆̃

4+L0∆̃
3)/ε4

})
high-probability complexity bound7 for SGD with sufficiently

small stepsize, where ∆̃ := (∆+σ)/δ, δ is failure probability, and L := L0 + L1(L1∆̃ +
√
L0∆̃)

Finally, Hübler et al. (2024) prove O
(
(∆eL

2
1+σ+eL

2
1L0)

4
/ε4
)

and O
(
(L1∆+σ+

L0
L1

)4/ε4
)

complex-
ity bounds for parameter-agnostic and parameter-non-agnostic versions of Normalized SGD with
momentum. To the best of our knowledge, there are no results in the literature for convex (L0, L1)-
smooth stochastic optimization.

Gradient clipping. As follows from the above discussion, gradient clipping is a useful tool for
handling possible non-smoothness of the objective, which is also confirmed in practice (Goodfellow
et al., 2016). However, it is worth mentioning that clipping has also other applications. In particular,
gradient clipping is used to handle heavy-tailed noise (Zhang et al., 2020c; Gorbunov et al., 2020;
Cutkosky & Mehta, 2021), to achieve differentiable privacy (Abadi et al., 2016; Chen et al., 2020),
and also to tolerate Byzantine attacks (Karimireddy et al., 2021; Malinovsky et al., 2023).

Polyak Stepsizes. GD with Polyak Stepsizes (GD-PS) is a celebrated approach for making GD
parameter-free (under the assumption that f(x∗) is known) (Polyak, 1987). In particular, Hazan
& Kakade (2019) show that GD-PS achieves the same rate as GD with optimally chosen constant
stepsize (up to a constant factor) for convex Lipschitz functions, convex smooth functions, and
strongly convex smooth functions. Moreover, some recent works (Loizou et al., 2021; Galli et al.,

7The complexity bound from (Li et al., 2024a) for more general notion of smoothness. The complexity bound
we provide in the text is the special case of the one from (Li et al., 2024a).

16

Published as a conference paper at ICLR 2025

2023; Berrada et al., 2020; Horváth et al., 2022; Gower et al., 2022; Abdukhakimov et al., 2024; Li
et al., 2022) also consider different stochastic extensions of GD-PS.

Other Notions of Generalized Smoothness. (L0, L1)-smoothness belongs to the class of as-
sumptions on so-called generalized smoothness. Classical assumptions of this type include Hölder
continuity of the gradient (Nemirovski & Yudin, 1983; Nemirovskii & Nesterov, 1985), relative
smoothness (Bauschke et al., 2017), and local smoothness, i.e., Lipschitzness of the gradient on
any compact (Malitsky & Mishchenko, 2020; Patel & Berahas, 2022; Patel et al., 2022; Gorbunov
et al., 2021; Sadiev et al., 2023). Although these assumptions are quite broad (e.g., for local smooth-
ness, it is sufficient to assume just continuity of the gradient), they do not relate the growth of
non-smoothness/local Lipschitz constant of the gradient with the growth of the gradient or distance to
the solution. From this perspective, assumptions such as polynomial growth of the gradient norm (Mai
& Johansson, 2021), α-symmetric (L0, L1)-smoothness (Chen et al., 2023) which also introduces the
key technical tools, and (r, ℓ)-smoothness (Li et al., 2024a) are closer to Assumption 3 than local
Lipschitz/Hölder continuity of the gradient and relative smoothness.

17

Published as a conference paper at ICLR 2025

B EXAMPLES OF (L0, L1)-SMOOTH FUNCTIONS

Example B.1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is
convex and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ⩾ 2.

Proof. Convexity of f follows from convexity and monotonicity of φ(t) = t2n for t ⩾ 0 and
convexity of h(x) = ∥x∥, since f(x) = φ(h(x)). To show (L0, L1)-smoothness, we compute
gradient and Hessian of f(x):

∇f(x) = 2n∥x∥2(n−1)x,

∇2f(x) =

{
2I, if n = 1

4n(n− 1)∥x∥2(n−2)xx⊤ + 2n∥x∥2(n−1)I, if n > 1.

Therefore,

∥∇f(x)∥ = 2n∥x∥2n−1,

∥∇2f(x)∥2 =

{
2, if n = 1

2n(2n− 1)∥x∥2(n−1), if n > 1

= 2n(2n− 1)∥x∥2n−2,

which implies

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ = 2n(2n− 1)∥x∥2n−2(1− ∥x∥).

If ∥x∥ ⩾ 1, then we have ∥∇2f(x)∥2 ⩽ (2n− 1)∥∇f(x)∥. If ∥x∥ ⩽ 1, then

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ ⩽ 2n(2n− 1) max
t∈[0,1]

ψ(t),

where ψ(t) := t2n−2(1 − t). For n = 1 we have maxt∈[0,1] ψ(t) = 1 and ∥∇2f(x)∥2 − (2n −

1)∥∇f(x)∥ ⩽ 2. For n > 1 we have maxt∈[0,1] ψ(t) =
(

2n−2
2n−1

)2n−2
1

2n−1 ⩽ 1
2n−1 , which gives

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ ⩽ 2n. Putting two cases together, we get

∥∇2f(x)∥2 ⩽ 2n+ (2n− 1)∥∇f(x)∥

that is equivalent to (2n, 2n− 1)-smoothness (Chen et al., 2023, Theorem 1). Non-smoothness of f
for n > 1 follows from the unboundedness of ∥∇2f(x)∥2 in this case.

Example B.2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is
convex, (0, ∥a∥)-smooth, but not L-smooth for any L ⩾ 0.

Proof. Let us compute the gradient and Hessian of f :

∇f(x) = a exp(a⊤x), ∇2f(x) = aa⊤ exp(a⊤x).

Clearly ∇2f(x) ≽ 0, meaning that f(x) is convex. Moreover,

∥∇2f(x)∥2 = ∥a∥2 exp(a⊤x) = ∥a∥ · ∥∇f(x)∥

that is equivalent to (0, ∥a∥)-smoothness (Chen et al., 2023, Theorem 1). When a ̸= 0 function f has
unbounded Hessian, i.e., f is not L-smooth for any L ⩾ 0 in this case.

Example B.3 (Logistic Function). Consider logistic function: f(x) = log
(
1 + exp(−a⊤x)

)
, where

a ∈ Rd is some vector. Function f is (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥.

Proof. The gradient and the Hessian of f(x) equal

∇f(x) = − a

1 + exp(a⊤x)
, ∇2f(x) =

aa⊤(
exp

(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 .

18

Published as a conference paper at ICLR 2025

Moreover,

∥∇f(x)∥ =
∥a∥

1 + exp(a⊤x)
, ∥∇2f(x)∥2 =

∥a∥2(
exp

(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 .

This leads to

∥∇2f(x)∥
∥∇f(x)∥

=
1 + exp(a⊤x)(

exp
(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 ∥a∥

=
1 + exp(a⊤x)

exp (−a⊤x) (1 + exp (a⊤x))
2 ∥a∥

=
1

1 + exp(−a⊤x)
∥a∥ ⩽ ∥a∥,

implying that ∥∇2f(x)∥ ⩽ ∥a∥ · ∥∇f(x)∥ for all x ∈ Rd. This condition is equivalent to (0, ∥a∥)-
smoothness (Chen et al., 2023, Theorem 1).

19

Published as a conference paper at ICLR 2025

C PROOF OF LEMMA 2.2

Lemma C.1 (Lemma 2.2). Let Assumption 3 hold and ν satisfy8 ν = e−ν . Then, the following
statements hold.

1. For f∗ := infx∈Rd f(x), arbitrary x ∈ Rd, and ν such that ν exp(ν) = 1, we have

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
⩽ f(x)− f∗. (31)

2. If additionally Assumption 1 with µ = 0 holds, then for any x, y ∈ Rd such that

L1∥x− y∥ exp (L1∥x− y∥) ⩽ 1, (32)

we have
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, (33)

and

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
+
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(x)∥)
⩽ ⟨∇f(x)−∇f(y), x− y⟩. (34)

Proof. To prove (31), we apply (7) with y = x− ν
L0+L1∥∇f(x)∥∇f(x) for given x ∈ Rd and ν such

that ν exp(ν) = 1:

f∗ ⩽ f(y)
(7)
⩽ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥

2
exp(L1∥x− y∥)∥x− y∥2

= f(x)− ν∥∇f(x)∥2

L0 + L1∥∇f(x)∥

+
L0 + L1∥∇f(x)∥

2
· exp

(
L1ν∥∇f(x)∥

L0 + L1∥∇f(x)∥

)
· ν2∥∇f(x)∥2

(L0 + L1∥∇f(x)∥)2

⩽ f(x)− ν∥∇f(x)∥2

L0 + L1∥∇f(x)∥
+

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
· ν exp(ν)

ν=e−ν

⩽ f(x)− ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
.

Rearranging the terms, we get (31).

Next, we will prove (33) and (34) under Assumptions 1 and 3. The proof follows similar steps to the
one that holds for standard L-smoothness (i.e., cocoercivity of the gradient) (Nesterov, 2018):

∥∇f(x)−∇f(y)∥2 ⩽ L⟨∇f(x)−∇f(y), x− y⟩.

That is, for given x we consider function φx(y) := f(y)−⟨∇f(x), y⟩. This function is differentiable
and ∇φx(y) = ∇f(y)−∇f(x). Moreover, for any u, y ∈ Rd we have

∥∇φx(u)−∇φx(y)∥ = ∥∇f(u)−∇f(y)∥
(6)
⩽ (L0 + L1∥∇f(u)∥) ∥u−y∥ exp(L1∥u− y∥), (35)

Next, for given x and for any y, u ∈ Rd we define function ψx,y,u(t) : R → R as ψx,y,u(t) :=
φx(u + t(y − u)). Then, by definition of ψx,y,u, we have φx(u) = ψx,y,u(0), φx(y) = ψx,y,u(1),

8One can check numerically that 0.56 < ν < 0.57.

20

Published as a conference paper at ICLR 2025

and ψ′
x,y,u(t) = ⟨∇φx(u+ t(y − u)), y − u⟩. Therefore, using Newton-Leibniz formula, we derive

φx(y)− φx(u) = ψx,y,u(1)− ψx,y,u(0) =

1∫
0

ψ′
x,y,u(t)dt

=

∫ 1

0

⟨∇φx(u+ t(y − u)), y − u⟩dt

= ⟨∇φx(u), y − u⟩+
∫ 1

0

⟨∇φx(u+ t(y − u))−∇φx(u), y − u⟩dt

⩽ ⟨∇φx(u), y − u⟩+
∫ 1

0

∥∇φx(u+ t(y − u))−∇φx(u)∥ · ∥u− y∥dt

(35)
⩽ ⟨∇φx(u), y − u⟩+

∫ 1

0

(L0 + L1∥∇f(u)∥) exp(tL1∥u− y∥)∥u− y∥2tdt

⩽ ⟨∇φx(u), y − u⟩+ L0 + L1∥∇f(u)∥
2

exp(L1∥u− y∥)∥u− y∥2

that implies ∀u, y ∈ Rd

φx(y) ⩽ φx(u) + ⟨∇φx(u), y − u⟩+ L0 + L1∥∇f(u)∥
2

exp(L1∥u− y∥)∥u− y∥2. (36)

To proceed, we will need the following inequality:

ν exp

(
ν

L1∥∇φx(u)∥
L0 + L1∥∇f(u)∥

)
= ν exp

(
ν
L1∥∇f(u)−∇f(x)∥
L0 + L1∥∇f(u)∥

)
(6)
⩽ ν exp

(
ν
L1∥x− u∥ exp(L1∥x− u∥)(L0 + L1∥∇f(u)∥)

L0 + L1∥∇f(u)∥

)
= ν exp(νL1∥x− u∥ exp(L1∥x− u∥))

(32)
⩽ ν exp(ν)

ν=e−ν

= 1. (37)

Using the above bound and (36) with y = u− ν
L0+L1∥∇f(u)∥∇φx(u), we derive

φx

(
u− ν

L0 + L1∥∇f(u)∥
∇φx(u)

)
(36)
⩽ φx(u)− ν

∥∇φx(u)∥2

L0 + L1∥∇f(u)∥
+

ν2∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)
exp

(
ν

L1∥∇φx(u)∥
L0 + L1∥∇f(u)∥

)
(37)
⩽ φx(u)− ν

∥∇φx(u)∥2

L0 + L1∥∇f(u)∥
+

ν∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)

⩽ φx(u)− ν
∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)
,

Taking into account that x is an optimum for φx(u) (∇φx(x) = 0) and the definition of φx(u), we
get the following inequality from the above one:

f(x)− ⟨∇f(x), x⟩ ⩽ f(u)− ⟨∇f(x), u⟩ − ν∥∇f(x)−∇f(u)∥2

2(L0 + L1∥∇f(u)∥)
, ∀x, u ∈ Rd,

which is equivalent to

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, ∀x, y ∈ Rd.

Therefore, we established (33). Moreover, by swapping x and y in the above inequality, we also get

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(x)− f(y)− ⟨∇f(y), x− y⟩, ∀x, y ∈ Rd.

To get (34), it remains to sum the above two inequalities.

21

Published as a conference paper at ICLR 2025

D MISSING PROOFS FOR (L0, L1)-GD

Lemma D.1 (Lemma 3.1: monotonicity of function value). Let Assumption 3 hold. Then, for all
k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

f(xk+1) ⩽ f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk). (38)

Proof. Applying (7) with y = xk+1 and x = xk and using

exp(L1∥xk+1 − xk∥) = exp

(
η

L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
⩽ exp(η) (39)

we get

f(xk+1) ⩽ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥
2

∥xk+1 − xk∥2 exp(η)

= f(xk)− η∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
+
η2 exp(η)∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)

= f(xk)− η

(
1− η exp(η)

2

)
∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
η⩽ν

⩽ f(xk)− η

(
1− ν exp(ν)

2

)
∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
ν=e−ν

= f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk),

which finishes the proof.

Lemma D.2 (Lemma 3.2: monotonicity of gradient norm). Let Assumptions 1 with µ = 0 and 3
hold. Then, for all k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

∥∇f(xk+1)∥ ⩽ ∥∇f(xk)∥. (40)

Proof. For convenience, we introduce the following notation: ωk := L0 + L1∥∇f(xk)∥ for all
k ⩾ 0. Since

L1∥xk+1 − xk∥ exp
(
L1∥xk+1 − xk∥

)
=

ηL1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

exp

(
ηL1∥∇f(xk)∥

L0 + L1∥∇f(xk)∥

)
⩽ η exp(η)

η⩽ν

⩽ ν exp(ν)
ν=e−ν

= 1,

the assumptions for the second part of Lemma 2.2 are satisfied for x = xk+1 and y = xk, and
inequality (11) implies(

ν

2ωk
+

ν

2ωk+1

)
∥∇f(xk+1)−∇f(xk)∥2 ⩽ ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩

= − η

ωk
⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩,

where in the second line we use xk+1 = xk − η
ωk

∇f(xk). Multiplying both sides by 2ωk/ν and
rearranging the terms, we get(

1 +
ωk

ωk+1

)(
∥∇f(xk+1)∥2 + ∥∇f(xk)∥2 − 2⟨∇f(xk+1),∇f(xk)⟩

)
⩽ −2η

ν
· ⟨∇f(xk+1),∇f(xk)⟩+ 2η

ν
· ∥∇f(xk)∥2,

22

Published as a conference paper at ICLR 2025

which is equivalent to(
1 +

ωk

ωk+1

)
∥∇f(xk+1)∥2 ⩽

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2

+2

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1),∇f(xk)⟩

−2

(
1 +

ωk

ωk+1
− η

ν

)
∥∇f(xk)∥2

=

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2

+2

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩

=

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2 (41)

−2ωk

η

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩.

We notice that 2ωk

η > 0 and 1 + ωk

ωk+1
− η

ν ⩾ ωk

ωk+1
⩾ 0 since 0 < η

ν ⩽ 1. Moreover, due to the
convexity of f we also have ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ ⩾ 0. Therefore, we have

−2ωk

η

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ ⩽ 0.

Together with (41), the above inequality implies(
1 +

ωk

ωk+1

)
∥∇f(xk+1)∥2 ⩽

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2, ∀k ⩾ 0,

which is equivalent to (40).

Theorem D.1 (Theorem 3.1). Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated
by (L0, L1)-GD with 0 < η ⩽ ν

2 , ν = e−ν satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ k ⩽

8L2
1∥x0 − x∗∥2

νη
− 1 and ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − νη

8L2
1

. (42)

Moreover, the output after N >
8L2

1∥x
0−x∗∥2

νη − 1 iterations satisfies

f(xN)− f(x∗) ⩽
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
, (43)

where T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}. In addition, if µ > 0

and N >
8L2

1∥x
0−x∗∥2

η − 1, then

∥xN − x∗∥2 ⩽

(
1− µη

4L0

)N−T (
∥x0 − x∗∥2 − νηT

8L2
1

)
⩽

(
1− µη

4L0

)N−T

∥x0 − x∗∥2. (44)

Remark D.1. In the strongly convex case, our convergence bound implies that (L0, L1)-
GD with η = ν/2 satisfies ∥xN − x∗∥2 ⩽ ε after N = O

(
max

{
L0 log(R2

0/ε)/µ, L2
1R

2
0

})
iterations, while the complexity of Clip-GD derived by Koloskova et al. (2023) is
O
(
max

{
L0 log(R2

0/ε)/µ, L0R0 min
{√

L/µ, LR0

}})
, which again can be arbitrarily worse than

our bound due to the dependence on L.

23

Published as a conference paper at ICLR 2025

Proof of Theorem D.1. We start by expanding the squared distance to the solution:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − η

L0 + L1∥∇f(xk)∥
∇f(xk)

∥∥∥∥2
= ∥xk − x∗∥2 − 2η

L0 + L1∥∇f(xk)∥
⟨xk − x∗,∇f(xk)⟩

+
η2∥∇f(xk)∥2

(L0 + L1∥∇f(xk)∥)2
(2)
⩽ ∥xk − x∗∥2 − 2η

L0 + L1∥∇f(xk)∥
(
f(xk)− f(x∗)

)
+

η2∥∇f(xk)∥2

(L0 + L1∥∇f(xk)∥)2
(8)
⩽ ∥xk − x∗∥2 − 2η

(
1− η

ν

) f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
η⩽ ν

2

⩽ ∥xk − x∗∥2 − η
f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
. (45)

To continue the derivation, we consider two possible cases: ∥∇f(xk)∥ ⩾ L0

L1
or ∥∇f(xk)∥ < L0

L1
.

Case 1: ∥∇f(xk)∥ ⩾ L0

L1
. In this case, we have

L0 + L1∥∇f(xk)∥ ⩽ 2L1∥∇f(xk)∥, (46)

ν∥∇f(xk)∥
4L1

(46)
⩽

ν∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
(8)
⩽ f(xk)− f(x∗). (47)

Plugging the above inequalities in (45), we continue the derivation as follows:

∥xk+1 − x∗∥2
(45),(46)
⩽ ∥xk − x∗∥2 − η

f(xk)− f(x∗)

2L1∥∇f(xk)∥
(47)
⩽ ∥xk − x∗∥2 − νη

8L2
1

. (48)

We notice that if ∥∇f(xk)∥ ⩾ L0

L1
, then, in view of Lemma 3.2, we also have ∥∇f(xt)∥ ⩾ L0

L1
for all

t = 0, 1, . . . , k. Therefore, (48) implies

∥xk+1 − x∗∥2 ⩽ ∥x0 − x∗∥2 − νη

8L2
1

(k + 1). (49)

Since ∥xk+1 − x∗∥2 ⩾ 0, k should be bounded as k ⩽ 8L2
1∥x

0−x∗∥2

νη − 1, which gives (14). We
denote T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}. Therefore, in view of

(49) and non-negativity of the squared distance, T is bounded as T ⩽ 8L2∥x0−x∗∥2

νη .

Case 2: ∥∇f(xk)∥ < L0

L1
. In this case, we have

L0 + L1∥∇f(xk)∥ ⩽ 2L0, (50)

implying that

∥xk+1 − x∗∥2
(45),(50)
⩽ ∥xk − x∗∥2 − η

2L0

(
f(xk)− f(x∗)

)
. (51)

Moreover, since the norm of the gradient is non-increasing along the trajectory of (L0, L1)-GD
(Lemma 3.2), ∥∇f(xk)∥ < L0

L1
implies that k > T . Therefore, we can sum up inequalities (51) for

24

Published as a conference paper at ICLR 2025

k = T, T + 1, . . . , N , rearrange the terms, and get

1

N + 1− T

N∑
k=T

(
f(xk)− f(x∗)

)
⩽

2L0

η(N + 1− T)

N∑
k=T

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
=

2L0

(
∥xT − x∗∥2 − ∥xN+1 − x∗∥2

)
η(N + 1− T)

⩽
2L0∥xT − x∗∥2

η(N − T)
.

Finally, we take into account that for k = 0, 1, . . . , T − 1, we have ∥∇f(xk)∥ ⩾ L0

L1
:

1

N + 1− T

N∑
k=T

(
f(xk)− f(x∗)

) (49)
⩽

2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

. (52)

It remains to notice that Lemma 3.1 implies f(xN) − f(x∗) ⩽ 1
N−T

∑N
k=T+1

(
f(xk)− f(x∗)

)
.

Together with the above inequality, it implies the first part (15). To derive the second part of (15), it
remains to notice that for N >

8L2
1∥x

0−x∗∥2

νη − 1 the right-hand side of (52) as a function of T attains
its maximum at T = 0. Indeed, the derivative of function

φ(T) :=
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

=
2L0∥x0 − x∗∥2

η(N + 1− T)
+
νL0

4L2
1

− νL0(N + 1)

4L2
1(N − T + 1)

equals

φ′(T) =
2L0∥x0 − x∗∥2

η(N − T + 1)2
− νL0(N + 1)

4L2
1(N − T + 1)2

.

Since N >
8L2

1∥x
0−x∗∥2

νη − 1, we have φ′(T) < 0, i.e., φ(T) is a decreasing function of T , meaning
that

2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
,

which gives (43).

To prove (44), we notice that for µ > 0 we have f(xk)− f(x∗) ⩾ µ
2 ∥x

k − x∗∥2 implying

∥xk+1 − x∗∥2
(51)
⩽

(
1− µη

4L0

)
∥xk − x∗∥2, (53)

when ∥∇f(xk)∥ < L0

L1
. Therefore, for N > T we have

∥xN − x∗∥2
(53)
⩽

(
1− µη

4L0

)N−T

∥xT − x∗∥2

(49)
⩽

(
1− µη

4L0

)N−T (
∥x0 − x∗∥2 − νηT

8L2
1

)
⩽

(
1− µη

4L0

)N−T

∥x0 − x∗∥2,

which gives (44) and concludes the proof.

D.1 COMPARISON WITH THE PROOFS FROM (KOLOSKOVA ET AL., 2023; TAKEZAWA ET AL.,
2024; CHEN ET AL., 2023)

Comparison with (Koloskova et al., 2023; Takezawa et al., 2024). In this paragraph, we further
elaborate on the difference between our proof and the ones given by (Koloskova et al., 2023; Takezawa

25

Published as a conference paper at ICLR 2025

et al., 2024). As we explain in the main text, our proof follows the one from (Koloskova et al., 2023;
Takezawa et al., 2024), which follows the analysis of standard GD. Then, similarly to (Koloskova et al.,
2023), we consider two possible situations: either ∥∇f(xk)∥ ⩾ L0/L1 or ∥∇f(xk)∥ < L0/L1. In the
second case, the gradient is small, and L1-term in (L0, L1)-smoothness is dominated by L0-term, i.e.,
in inequality (8), the denominator of the left-hand side is O(L0). In this case, the method behaves
as standard GD for L-smooth problems with L = O(L0). However, when ∥∇f(xk)∥ ⩾ L0/L1, the
L1-term in (L0, L1)-smoothness is the leading one and this is the crucial difference between our
proof and the one obtained by Koloskova et al. (2023): to handle this case, we use (8) and show that
such situations lead to the decrease of ∥xk+1 − x∗∥2 by some positive constant νη/(8L2

1). In contrast,
Koloskova et al. (2023) use traditional smoothness, which leads to worse complexity, as we explained
in our first response. Moreover, Lemma 3.2 shows that the gradient norm is non-increasing along
the trajectory of the method – similar to standard GD (e.g., see Lemma C.3 from (Gorbunov et al.,
2022)).

Comparison with (Chen et al., 2023). Although Chen et al. (2023) analyze β-Normalized GD
without assuming convexity, their results can be used to derive convergence bounds in the convex
case as well. In particular, from convexity, we have

f(xk)− f(x∗) ⩽ ⟨∇f(xk), xk − x∗⟩ ⩽ ∥∇f(xk)∥ · ∥xk − x∗∥.

Although the proof from Chen et al. (2023) does not give a bound for ∥xk − x∗∥, one can assume for
simplicity that it is bounded byD > 0 (e.g., we derive the boundedness of ∥xk−x∗∥ for (L0, L1)-GD
in (45)). Then, using the bound for 1

N

∑N−1
k=0 ∥∇f(xk)∥ from (Chen et al., 2023, Theorem 2), we get

1

N

N−1∑
k=0

(f(xk)− f(x∗)) ⩽
2L0D(f(x0)− f(x∗))

Nε
+
Dε

2
,

where ε > 0. In the original paper, ε is the target accuracy. However, one can optimize it in the above

bound and get εopt = 2
√

L0(f(x0)−f(x∗))
N and

1

N

N−1∑
k=0

(f(xk)− f(x∗)) ⩽
4D
√
L0(f(x0)− f(x∗)))√

N
.

The above rate is
√
N -worse than the leading term in the results we obtained for (L0, L1)-GD. This

fact illustrate non-triviality of the extension of the known results from non-convex case to the convex
case with the right dependence on N .

26

Published as a conference paper at ICLR 2025

E MISSING PROOFS FOR GRADIENT DESCENT WITH POLYAK STEPSIZES

Theorem E.1 (Theorem 4.1). Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated
by GD-PS satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − ν2

16L2
1

. (54)

Moreover, the output after N steps the iterates satisfy

4L0

ν
∥xN+1 − x∗∥2 +

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0

ν
∥x0 − x∗∥2 − νL0T

4L2
1

, (55)

where T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
}, T := |T |, and if N > T − 1, it holds that

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

(56)

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). In particular, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed and

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N + 1)
. (57)

In addition, if µ > 0 and N >
16L2

1∥x
0−x∗∥2

ν2 − 1, then

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T (
∥x0 − x∗∥2 − ν2T

16L2
1

)
⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2. (58)

Proof. As for (L0, L1)-GD, we start by expanding the squared distance to the solution:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − f(xk)− f(x∗)

∥∇f(xk)∥2
∇f(xk)

∥∥∥∥2
= ∥xk − x∗∥2 −

2
(
f(xk)− f(x∗)

)
∥∇f(xk)∥2

⟨xk − x∗,∇f(xk)⟩+
(
f(xk)− f(x∗)

)2
∥∇f(xk)∥2

(2)
⩽ ∥xk − x∗∥2 −

(
f(xk)− f(x∗)

)2
∥∇f(xk)∥2

(8)
⩽ ∥xk − x∗∥2 − ν

2
· f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
. (59)

To continue the derivation, we consider two possible cases: ∥∇f(xk)∥ ⩾ L0

L1
or ∥∇f(xk)∥ < L0

L1
.

Case 1: ∥∇f(xk)∥ ⩾ L0

L1
. In this case, inequalities (46) and (47) hold and the derivation from (59)

can be continued as follows:

∥xk+1 − x∗∥2
(59),(46)
⩽ ∥xk − x∗∥2 − ν

2
· f(x

k)− f(x∗)

2L1∥∇f(xk)∥
(47)
⩽ ∥xk − x∗∥2 − ν2

16L2
1

, (60)

which gives (54).

Case 2: ∥∇f(xk)∥ < L0

L1
. In this case, inequality (50) holds and we have

∥xk+1 − x∗∥2
(59),(50)
⩽ ∥xk − x∗∥2 − ν

2
· f(x

k)− f(x∗)

2L0
. (61)

27

Published as a conference paper at ICLR 2025

Next, we introduce the set of indices T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
} of size T := |T |.

In view of the above derivations, if k ∈ T , inequality (60) holds, and if k ∈ {0, 1, . . . , N} \ T ,
inequality (61) is satisfied. Therefore, unrolling the pair of inequalities (60) and (61), we get

∥xN+1 − x∗∥2 ⩽ ∥x0 − x∗∥2 − ν2T

16L2
1

− ν

4L0

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
,

which is equivalent to (55). Therefore, if N > T − 1, set {0, 1, . . . , N} \ T is non-empty and the
above inequality implies

f(x̂N)− f(x∗) ⩽
1

N − T + 1

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

,

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). Moreover,

since the left-hand side of (55) is non-negative, we have T ⩽ 16L2
1∥x

0−x∗∥2

ν2 . Therefore, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed as well as (56). Finally, to derive (57),
we consider the right-hand side of (56) as a function of T :

φ(T) :=
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

=
4L0∥x0 − x∗∥2

ν(N − T + 1)
+
νL0

4L2
1

− νL0(N + 1)

4L2
1(N − T + 1)

.

The derivative of this function equals

φ′(T) =
4L0∥x0 − x∗∥2

ν(N − T + 1)2
− νL0(N + 1)

4L2
1(N − T + 1)2

.

SinceN >
16L2

1∥x
0−x∗∥2

ν2 −1, we have φ′(T) < 0, i.e., φ(T) is a decreasing function of T . Therefore,
since T ⩾ 0, we have that

φ(T) ⩽ φ(0) ⇐⇒ 4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

⩽
4L0∥x0 − x∗∥2

ν(N + 1)
.

Combining the above inequality with (56), we obtain (57).

To prove (58), we notice that for µ > 0 we have f(xk)− f(x∗) ⩾ µ
2 ∥x

k − x∗∥2 implying

∥xk+1 − x∗∥2
(61)
⩽

(
1− µν

8L0

)
∥xk − x∗∥2, (62)

when ∥∇f(xk)∥ < L0

L1
. Unrolling the pair of inequalities (60) and (62), we get for N > T

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2 − ν2

16L2
1

∑
k∈T

(
1− µν

8L0

)tk

,

where tk is the cardinality of {k + 1, . . . , N} \ T . Since |T | = T we have that tk ⩽ N − T for all
k ∈ T . Therefore, we can continue the derivation as follows:

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T (
∥x0 − x∗∥2 − ν2T

16L2
1

)
⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2,

which gives (58) and concludes the proof.

28

Published as a conference paper at ICLR 2025

F MISSING PROOFS FOR (L0, L1)-SIMILAR TRIANGLES METHOD

Lemma F.1 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {αk}k⩾0 and {Ak}k⩾0 be
defined as follows:

α0 = A0 = 0, αk+1 =
η(k + 2)

2
, Ak+1 = Ak + αk+1, ∀k ⩾ 0.

Then, for all k ⩾ 0

Ak+1 ⩾
η(k + 1)(k + 4)

4
, (63)

Ak+1 ⩾
α2
k+1

η
. (64)

Lemma F.2 (Lemma 5.1). Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated
by (L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν satisfy for all N ⩾ 0

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k (65)

−
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2, (66)

where Rk := ∥zk − x∗∥ for all k ⩾ 0.

Proof. The proof follows the one of Lemma F.4 from (Gorbunov et al., 2020). From the update rule,
we have zk+1 = zk − αk+1

Gk+1
∇f(xk+1) and

αk+1⟨∇f(xk+1), zk − x∗⟩ = αk+1⟨∇f(xk+1), zk − zk+1⟩+ αk+1⟨∇f(xk+1), zk+1 − x∗⟩
= αk+1⟨∇f(xk+1), zk − zk+1⟩+Gk+1⟨zk+1 − zk, x∗ − zk+1⟩

= αk+1⟨∇f(xk+1), zk − zk+1⟩ − Gk+1

2
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2.

The update rules for yk+1 and xk+1 imply

Ak+1(y
k+1 − xk+1) = αk+1(z

k+1 − zk). (67)

Moreover, to proceed, we will need the following upper-bound:

exp
(
L1∥xk+1 − yk+1∥

) (67)
= exp

(
L1αk+1∥zk+1 − zk∥

Ak+1

)
= exp

(
α2
k+1L1∥∇f(xk+1)∥

Ak+1(L0 + L1∥∇f(xk+1)∥)

)
⩽ exp

(
α2
k+1

Ak+1

)
(64)
⩽ exp(η)

η⩽ν

⩽ exp(ν)
ν=e−ν

= ν. (68)

29

Published as a conference paper at ICLR 2025

Using these formulas, we continue the derivation as follows:

αk+1⟨∇f(xk+1), zk − x∗⟩ = Ak+1⟨∇f(xk+1), xk+1 − yk+1⟩ − Gk+1

2
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(7)
⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Ak+1Gk+1 exp

(
L1∥xk+1 − yk+1∥

)
2

∥xk+1 − yk+1∥2

−Gk+1

2
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2

(67),(68)
⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Gk+1

2
·
να2

k+1

Ak+1
∥zk − zk+1∥2

−Gk+1

2
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2

= Ak+1

(
f(xk+1)− f(yk+1)

)
+
Gk+1

2

(
να2

k+1

Ak+1
− 1

)
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(64),η⩽ ν
2

⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
− Gk+1

4
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2. (69)

Next, using the definition of xk+1 and Ak+1 = Ak + αk+1, we get

αk+1(x
k+1 − zk) = Ak(y

k − xk+1). (70)

Combining the established inequalities, we obtain

αk+1⟨∇f(xk+1), xk+1 − x∗⟩ = αk+1⟨∇f(xk+1), xk+1 − zk⟩
+αk+1⟨∇f(xk+1), zk − x∗⟩

(69),(70)
⩽ Ak⟨∇f(xk+1), yk − xk+1⟩

+Ak+1

(
f(xk+1)− f(yk+1)

)
− Gk+1

4
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(2)
⩽ Ak

(
f(yk)− f(xk+1)

)
+Ak+1

(
f(xk+1)− f(yk+1)

)
−Gk+1

4
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2,

30

Published as a conference paper at ICLR 2025

which can be rewritten as

Ak+1f(y
k+1)−Akf(y

k) ⩽ αk+1

(
f(xk+1) + ⟨∇f(xk+1), x∗ − xk+1⟩

)
+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2 −

α2
k+1

4Gk+1
∥∇f(xk+1)∥2

(2)
⩽ αk+1f(x

∗)

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2 −

α2
k+1

4Gk+1
∥∇f(xk+1)∥2.

Summing up the above inequality for k = 0, 1, . . . , N − 1 and using A0 = α0 = 0,
∑N−1

k=0 αk+1 =
AN , and new notation Rk := ∥zk − x∗∥, we derive

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k −
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2,

which finishes the proof.

Theorem F.1 (Theorem 5.1). Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates
generated by (L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν , G1 = L0 + L1∥∇f(x0)∥, and

Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥}, k ⩾ 0, (71)

satisfy

f(yN)− f(x∗) ⩽
2L0(1 + L1∥x0 − x∗∥ exp(L1∥x0 − x∗∥))∥x0 − x∗∥2

ηN(N + 3)
. (72)

Proof. Let us prove by induction that Rk ⩽ R0 for all k ⩾ 0. For k = 0, the statement is trivial.
Next, we assume that the statement holds for k = N and derive that it also holds for k = N + 1.
Indeed, from Lemma 5.1 we have

GN+1

2
R2

N+1 ⩽ AN+1

(
f(yN+1)− f(x∗)

)
+
GN+1

2
R2

N+1

(21)
⩽

G1

2
R2

0 +

N∑
k=1

Gk+1 −Gk

2
R2

k

⩽
G1

2
R2

0 +

N∑
k=1

Gk+1 −Gk

2
R2

0 =
GN+1

2
R2

0, (73)

implying that RN+1 ⩽ R0. That is, we proved that Rk ⩽ R0 for all k ⩾ 0, i.e., the sequence
{zk}k⩾0 stays in BR0

(x∗) := {x ∈ Rd | ∥x− x∗∥ ⩽ R0}. Since x0 = y0 = z0, xk+1 is a convex
combination of yk and zk, yk+1 is a convex combination of yk and zk+1, we also have that sequences
{xk}k⩾0 and {yk}k⩾0 stay in BR0(x

∗), which can be formally shown using an induction argument.
Therefore, we can upper-bound Gk for all k ⩾ 0 as follows

Gk = L0 + L1 max
t=0,...,k

∥∇f(xt)∥
(6)
⩽ L0 + L1L0 max

t=0,...,k
exp(L1∥xt − x∗∥)∥xt − x∗∥

⩽ L0 (1 + L1R0 exp(L1R0)) . (74)

Moreover, from (73) we also have

f(yN)− f(x∗) ⩽
GNR

2
0

2AN

(74),(63)
⩽

2L0(1 + L1R0 exp(L1R0))R
2
0

ηN(N + 3)
,

which finishes the proof.

31

Published as a conference paper at ICLR 2025

G MISSING PROOFS FOR ADAPTIVE GRADIENT DESCENT

G.1 DERIVATION OF (25)

The key lemma about the convergence of AdGD holds for any convex function regardless of the
smoothness properties.
Lemma G.1 (Lemma 1 from Malitsky & Mishchenko (2020)). Let Assumption 1 with µ = 0 hold,
and x∗ be any minimizer of f . Then, the iterates generated by Algorithm 4 with γ = 1

2 satisfy

∥xk+1 − x∗∥2 + 1

2
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗))

⩽ ∥xk − x∗∥2 + 1

2
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)). (75)

In particular, the above lemma implies boundedness of ∥xk − x∗∥ and ∥xk − xk−1∥, which allows us
to get the upper bound on the gradient norm (24) and a lower bound for λk as stated in the paragraph
before (25). For completeness, we provide a detailed statement of the result and its proof below.
Theorem G.1. Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we define point x̂N :=
1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1+ θk)−λk+1θk+1, SN := λ1θ1+
∑N

k=1 λk,

and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/2. Then, x̂N satisfies

f(x̂N)− f(x∗) ⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

N
, (76)

where D > 0 and D2 := ∥x1 − x∗∥2 + 1
2∥x

1 − x0∥2 + 2λ1θ1(f(x
0)− f(x∗)).

Proof. The proof follows almost the same lines as the proof from (Malitsky & Mishchenko, 2020).
Telescoping inequality (75), we get

∥xk+1 − x∗∥2 + 1

2
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗))

+2

k−1∑
i=1

[λi(1 + θi)− λi+1θi+1] (f(x
i)− f(x∗))

⩽ ∥x1 − x∗∥2 + 1

2
∥x1 − x0∥2 + 2λ1θ1(f(x

0)− f(x∗)). (77)

Since λi(1 + θi)− λi+1θi+1 ⩾ 0 by definition of λi, we conclude that the term in the second line of
the above inequality is non-negative. Therefore, for any k ⩾ 1 we have

∥xk − x∗∥2 ⩽ D2, (78)

∥xk − xk−1∥2 ⩽ 2D2. (79)

Using Jensen’s inequality in (77), we derive

Sk(f(x̂
k)− f(x∗)) ⩽

D2

2
,

where

x̂k =
λk(1 + θk)x

k +
∑k−1

i=1 wix
i

Sk
, (80)

wk = λi(1 + θi)− λi+1θi+1, (81)

Sk = λ1θ1 +

k∑
i=1

λi. (82)

Thus, we have

f(x̂k)− f∗ ⩽
D2

2Sk
. (83)

32

Published as a conference paper at ICLR 2025

Next, we notice that for any k ⩾ 1

∥xk − xk−1∥
∥∇f(xk)−∇f(xk−1)∥

(6)
⩾

1

(L0 + L1∥∇f(xk)∥) exp(L1∥xk − xk−1∥)
(24)
⩾

1

L0(1 + L1D exp(L1D)) exp(
√
2L1D)

.

Since θ0 = +∞, we have λ1 = ∥x1−x0∥
2∥∇f(x1)−∇f(x0)∥ . Moreover, for k > 1 we have either λk ⩾ λk−1

or λk = ∥xk−xk−1∥
2∥∇f(xk)−∇f(xk−1)∥ . Therefore, by induction we can prove that

λk ⩾
1

2L0(1 + L1D exp(L1D)) exp(
√
2L1D)

(84)

that implies

Sk = λ1θ1 +

k∑
i=1

λi ⩾
k

2L0(1 + L1D exp(L1D)) exp(
√
2L1D)

.

Therefore, we have

f(x̂k)− f(x∗) ⩽
D2

2Sk
⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

k
,

which is equivalent to (76) when k = N .

G.2 PROOF OF THEOREM 6.1

To show an improved result, we consider Algorithm 4 with γ = 1
4 and refine Lemma G.1 as follows.

Lemma G.2. Let Assumption 1 with µ = 0 hold, and x∗ be any minimizer of f . Then, the iterates
generated by Algorithm 4 with γ = 1

4 satisfy for all k ⩾ 1

∥xk+1 − x∗∥2 + 1

4
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗)) +
1

2

k∑
i=0

∥xi+1 − xi∥2

⩽ ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) +
1

2

k−1∑
i=0

∥xi+1 − xi∥2. (85)

Proof. The proof is almost identical to the one from (Malitsky & Mishchenko, 2020) and starts as
the standard proof for GD:

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 + 2⟨xk+1 − xk, xk − x∗⟩+ ∥xk+1 − xk∥2

= ∥xk − x∗∥2 + 2λk⟨∇f(xk), x∗ − xk⟩+ ∥xk+1 − xk∥2.
(2)
⩽ ∥xk − x∗∥2 + 2λk(f(x

∗)− f(xk)) + ∥xk+1 − xk∥2.

Introducing Σk+1 = 1
2

∑k
i=0 ∥xi+1 − xi∥2, we rewrite the above inequality as

∥xk+1 − x∗∥2 +Σk+1 ≤ ∥xk − x∗∥2 − 2λk(f(x
k)− f(x∗)) + ∥xk+1 − xk∥2

+Σk +
1

2
∥xk+1 − xk∥2. (86)

Next, we transform ∥xk+1 − xk∥2 similarly to the original proof:

∥xk+1 − xk∥2 = 2∥xk+1 − xk∥2 − ∥xk+1 − xk∥2

= −2λk⟨∇f(xk), xk+1 − xk⟩ − ∥xk+1 − xk∥2

= 2λk⟨∇f(xk)−∇f(xk−1), xk − xk+1⟩
+2λk⟨∇f(xk−1), xk − xk+1⟩ − ∥xk+1 − xk∥2. (87)

33

Published as a conference paper at ICLR 2025

Next, we apply Cauchy-Schwarz inequality, the definition of λk with γ = 1
4 , and Young’s inequality

to estimate the first inner-product in the right-hand side:

2λk⟨∇f(xk)−∇f(xk−1), xk − xk+1⟩ ⩽ 2λk∥∇f(xk)−∇f(xk−1)∥∥xk − xk+1∥

⩽
1

2
∥xk − xk−1∥∥xk − xk+1∥

⩽
1

4
∥xk − xk−1∥2 + 1

4
∥xk+1 − xk∥2. (88)

Then, using the convexity of f , we handle the second inner product from the right-hand side of (87):

2λk⟨∇f(xk−1), xk − xk+1⟩ = 2λk
λk−1

⟨xk−1 − xk, xk − xk+1⟩

= 2λkθk⟨xk−1 − xk,∇f(xk)⟩
⩽ 2λkθk(f(x

k−1)− f(xk)). (89)

Plugging (88) and (89) in (87), we get

∥xk+1 − xk∥2 ⩽
1

4
∥xk − xk−1∥2 − 3

4
∥xk+1 − xk∥2 + 2λkθk(f(x

k−1)− f(xk)).

Finally, using the above upper bound for ∥xk+1 − xk∥2 in (86), we obtain

∥xk+1 − x∗∥2 +Σk+1 ≤ ∥xk − x∗∥2 − 2λk(f(x
k)− f(x∗))

+
1

4
∥xk − xk−1∥2 − 3

4
∥xk+1 − xk∥2 + 2λkθk(f(x

k−1)− f(xk))

+Σk +
1

2
∥xk+1 − xk∥2

= ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) + Σk

−1

4
∥xk+1 − xk∥2 − 2λk(1 + θk)(f(x

k)− f(x∗)).

Rearranging the terms, we derive (85).

The above lemma implies not only the boundedness of the iterates but also the boundedness of∑k−1
i=0 ∥xi+1 − xi∥2 for k ⩾ 1.

Corollary 1. Let Assumption 1 with µ = 0 hold, and x∗ be any minimizer of f . Then, the iterates
generated by Algorithm 4 with γ = 1

4 satisfy for all k ⩾ 1

∥xk+1 − x∗∥2 ⩽ D2, (90)

∥xk+1 − xk∥2 ⩽ 4D2, (91)

k−1∑
i=0

∥xi+1 − xi∥2 ⩽ 2D2, (92)

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0)− f(x∗)).

Using the above results, we derive the following theorem.

Theorem G.2 (Theorem 6.1). Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we
define point x̂N := 1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1 + θk) − λk+1θk+1,

SN := λ1θ1 +
∑N

k=1 λk, and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/4. Then, for

N > mK −
√
2N(m+1)L1D

ν iterate x̂N satisfies

f(x̂N)− f(x∗) ⩽
2L0D

2

ν(N −mK)−
√
2N(m+ 1)L1D

, (93)

34

Published as a conference paper at ICLR 2025

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0) − f(x∗)), m :=

1 + log√2

⌈
(1+L1D exp (2L1D))

2

⌉
, K :=

2L2
1D

2

ν2 , and ν = e−ν . In particular, for N ⩾(
2mK + 4(m+1)L1D

ν

)2
, we have

f(x̂N)− f(x∗) ⩽
4L0D

2

νN
. (94)

Proof. Using Lemma 2.1, we obtain∥∥∇f(xk)−∇f(xk−1)
∥∥ ⩽ ∥xk − xk−1∥

(
L0 + L1

∥∥∇f(xk)∥∥) exp (L1∥xk − xk−1∥
)
. (95)

Moreover, since9 θ0 = +∞, we have λ1 = ∥x1−x0∥
4∥∇f(x1)−∇f(x0)∥ .

Next, for k > 1 we have either λk =
√

1 + θk−1λk−1 or λk = ∥xk−xk−1∥
4∥∇f(xk)−∇f(xk−1)∥ . For con-

venience of the analysis of these two options, we let K be the set of indices k > 1 such that
λk =

√
1 + θk−1λk−1 and λk−1 = ∥xk−1−xk−2∥

4∥∇f(xk−1)−∇f(xk−2)∥ .

Option 1: λk =
√
1 + θk−1λk−1. Then, by definition of K, there exists τ ⩾ 1 and index t such that

t ∈ K, λl =
√
1 + θl−1λl−1 for all l ∈ {t, t+ 1, . . . , t+ τ − 1}, k ∈ {t, t+ 1, . . . , t+ τ − 1}, and

λt+τ = ∥xt+τ−xt+τ−1∥
4∥∇f(xt+τ)−∇f(xt+τ−1)∥ , i.e., k belongs to some sub-sequence of indices such that Option 1

holds. Following exactly the same steps as in the derivation of (84), we conclude that

λk ⩾
1

2L0 exp (L1D)(1 +DL1 exp (L1D))
=: λmin

for any k ⩾ 1. Since θl ⩾ 1 for all l ∈ {t, t+1, . . . , t+τ−1}, we get that λl ⩾
√
2λl−1 ⩾ 2

l−t
2 λt ⩾

2
l−t
2 λt−1 for l ∈ {t+ 1, . . . , t+ τ − 1}, meaning that for l − t larger than 1 + log√2

⌈
ν

4L0λmin

⌉
⩽

1 + log√2

⌈
ν exp (L1D)(1+DL1 exp (L1D))

2

⌉
=: m we have λl ⩾ ν

4L0
, where ν = e−ν . Putting all

together, we conclude that

λl ⩾

{
λt−1, for l ∈ {t, t+ 1, . . . , t+m},
ν

4L0
, for l ∈ {t+m+ 1, t+m+ 2, . . . , t+ τ − 1}. (96)

Option 2: λk = ∥xk−xk−1∥
4∥∇f(xk)−∇f(xk−1)∥ . Then, using (95), we get

λk =
∥xk − xk−1∥

4∥∇f(xk)−∇f(xk−1)∥
⩾

exp (−L1∥xk − xk−1∥)
L0 + L1∥∇f(xk)∥

=
λk exp (−L1∥xk − xk−1∥)
4(λkL0 + L1∥xk+1 − xk∥)

,

implying that

λk ⩾
exp (−L1∥xk − xk−1∥)

4L0
− L1

4L0
∥xk+1 − xk∥. (97)

To continue the proof, we split the set of indices {1, 2, . . . , N} into three disjoint
sets T1, T2, T3 defined as follows: T2 :=

{
k ∈ {1, 2, . . . , N} | λk = ∥xk−xk−1∥

4∥∇f(xk)−∇f(xk−1)∥

}
,

T1 :=
{
k ∈ {1, 2, . . . , N} | λk =

√
1 + θk−1λk−1 and ∃t ∈ K such that t ⩽ k ⩽ t+m

}
, T3 :=

{1, 2, . . . , N} \ (T1 ∪ T2). Then, taking into account the lower bounds (96) and (97), we have
∀k ∈ {1, 2, . . . , N}

λk ⩾


λt−1, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,
exp (−L1∥xk−xk−1∥)

4L0
− L1

4L0
∥xk+1 − xk∥, if k ∈ T2,

ν
4L0

, if k ∈ T3,

t−1∈T2,(97)
⩾


exp (−L1∥xt−1−xt−2∥)

4L0
− L1

4L0
∥xt − xt−1∥, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,

exp (−L1∥xk−xk−1∥)
4L0

− L1

4L0
∥xk+1 − xk∥, if k ∈ T2,

ν
4L0

, if k ∈ T3.

9In practice θ0 it is sufficient to take θ0 ⩾ ∥x1−x0∥2

16λ2
0∥∇f(x1)−∇f(x0)∥2 − 1.

35

Published as a conference paper at ICLR 2025

Also the number of steps when L1∥xk − xk−1∥ ⩾ ν holds is bounded by

K :=
2L2

1D
2

ν2
,

since
N∑

k=0

∥xk+1 − xk∥2 ⩽ 2D2. For convenience, we introduce a new set of indices M :={
k ∈ {1, 2, . . . , N} | L1∥xk − xk−1∥ ⩽ ν

}
. Then, for k ∈ M we have

exp (−L1∥xk − xk−1∥) ⩾ exp(−ν) = ν. (98)

Therefore, we can lower bound the sum of stepsizes as follows:

N∑
k=1

λk ⩾
∑

k∈T1,t∈K,0⩽k−t⩽m

exp (−L1∥xt − xt−1∥)
4L0

+
∑
k∈T2

exp (−L1∥xk − xk−1∥)
4L0

+
∑
k∈T3

ν

4L0
− L1

4L0

∑
k∈T2

∥xk+1 − xk∥ − mL1

4L0

∑
t∈T2:t+1∈K

∥xt+1 − xt∥

⩾
∑

k∈T1∩M,t∈K,0⩽k−t⩽m

exp (−L1∥xt − xt−1∥)
4L0

+
∑

k∈T2∩M

exp (−L1∥xk − xk−1∥)
4L0

+
∑
k∈T3

ν

4L0
− (m+ 1)L1

4L0

∑
k∈T2

∥xk+1 − xk∥

(98)
⩾

ν(N −mK)

4L0
− (m+ 1)L1

4L0

N∑
k=0

∥xk+1 − xk∥

⩾
ν(N −mK)

4L0
− (m+ 1)L1

4L0

√√√√N

N∑
k=0

∥xk+1 − xk∥2

(92)
⩾

ν(N −mK)

4L0
−

√
2N(m+ 1)L1D

4L0
. (99)

Since SN ⩾
∑N

k=1 λk (see the definition in (82)) we have from (83) and the above lower bound on∑N
k=1 λk that

f(x̂N)− f(x∗) ⩽
D2

2SN

(99)
⩽

2L0D
2

ν(N −mK)−
√
2N(m+ 1)L1D

. (100)

In particular, we derived (93) under Assumption 3 holds, and when N ⩾
(
2mK + 4(m+1)L1D

ν

)2
,

we have ν(N −mK)−
√
2N(m+ 1)L1D ⩾ νN

2 , which in combination with (100) implies (94).

G.3 CONVERGENCE IN THE STRONGLY CONVEX CASE

To show an improved result in the strongly convex case (µ > 0 in Assumptions 1), we consider
Algorithm 4 with more a more conservative stepsize selection rule:

λk = min

{√
1 +

3θk−1

4
λk−1,

∥xk − xk−1∥
4∥∇f(xk)−∇f(xk−1)∥

}
. (101)

For these stepsizes, Lemma G.2 holds as well. However, in contrast to the convex case, we will use
Assumption 2 instead of Assumption 3. The key reason for this is that we need to use (10) for x = xk

and y = x∗ that not necessarily satisfy (9). In contrast, inequality (10) holds for any x, y ∈ Rd under
the Assumption 2 and convexity.

36

Published as a conference paper at ICLR 2025

Theorem G.3. Let Assumptions 1 with µ > 0 and 2 hold. For all N ⩾ 1 we define the Lyapunov
function

Ψk =

(
1− λkµ

4

)∥∥xk − x∗
∥∥2 + 1

4

(
1 + (1− α∗)

8µ

L0

)∥∥xk − xk−1
∥∥2

+2λkθk(f(x
k−1)− f∗),

where {xk}k⩾0 are the iterates produced by AdGD with λk defined in (101), and α∗ = 73−
√
3281

16 ≈
0.98. Then, for N >

√
2N(m+ 1)L1D Lyapunov function ΨN+1 satisfies

ΨN+1 ≤
(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

Ψ1, (102)

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0) − f(x∗)), and m :=

1 + log√ 7
4

⌈
1+L1D

2

⌉
. In particular, for N ⩾ 8(m+ 1)2L2

1D
2, we have

ΨN+1 ≤
(
1− α∗µ

16L0

)N

Ψ1. (103)

Proof. The proof follows the one from (Malitsky & Mishchenko, 2020). First of all, we note that the

stricter inequality λk ⩽
√
1 + 3θk−1

4 λk−1 is not used in the derivation of Lemma G.2. Therefore,
Lemma G.2 holds as well as Corollary 1. Next, we make certain steps in the analysis tighter to use
the fact that µ > 0. Strong convexity implies

λk⟨∇f(xk), x∗ − xk⟩ ⩽ λk(f(x
∗)− f(xk))− λk

µ
2 ∥x

∗ − xk∥2, (104)

and
∥∥∇f(xk)−∇f(xk−1)

∥∥ ⩾ µ
∥∥xk − xk−1

∥∥. The latter implies that λk ⩽ 1
4µ for k ⩾ 1. Since

Lemma 2.2 holds under Assumption 2 with ν = 1 and without condition (9), and bound λk ≤ 1
4µ

holds, we have

λk⟨∇f(xk), x∗ − xk⟩
(10)
⩽ λk(f(x

∗)− f(xk))− λk
2(L0 + L1∥∇f(x∗)∥)

∥∇f(xk)∥2

= λk(f∗ − f(xk))− 1

2L0λk
∥xk+1 − xk∥2

λk≤ 1
4µ

≤ λk(f∗ − f(xk))− 2µ

L0
∥xk+1 − xk∥2. (105)

Convex combination of (104) and (105) with α ∈ (0, 1), which will be specified latter, gives

λk⟨∇f(xk), x∗ − xk⟩ ⩽ λk(f∗ − f(xk))− α
λkµ

2
∥xk − x∗∥2 − (1− α)

2µ

L0
∥xk+1 − xk∥2.

Using the above inequality instead of convexity and keeping the rest of the proof of Lemma G.2 as is
with omitted Σi terms, we get an analog of (75):∥∥xk+1 − x∗

∥∥2 + 1

4

(
1 + (1− α)

8µ

L0

)∥∥xk+1 − xk
∥∥2 + 1 + θk

1 + 3θk/4
· 2λk+1θk+1(f(x

k)− f∗)

⩽
∥∥xk+1 − x∗

∥∥2 + 1

4

(
1 + (1− α)

8µ

L0

)∥∥xk+1 − xk
∥∥2 + 2λk(1 + θk)(f(x

k)− f∗)

⩽

(
1− α

λkµ

2

)∥∥xk − x∗
∥∥2 + 1

4

∥∥xk − xk−1
∥∥2 + 2λkθk(f(x

k−1)− f∗),

where the first inequality follows from 1+θk
1+3θk/4

λk+1θk+1 ⩽ λk(1 + θk) provided by the new

condition on λk. Thus, we have contraction in every term: 1 − αλkµ
2 in the first, 1

1+(1−α) 8µ
L0

=

1−
(1−α) 8µ

L0

1+(1−α) 8µ
L0

in the second and 1+3θk/4
1+θk

= 1− θk
4(1+θk)

in the last one. We bound the third term

37

Published as a conference paper at ICLR 2025

as θk
4(1+θk)

= 1
4 · λk

(λk+λk−1)
⩾ µλk

2 using λk ⩽ 1
4µ for both terms in the denominator. Taking

α = α∗ := 73−
√
3281

16 ≈ 0.98, which is the root of α∗ = 64(1−α∗)
1+8(1−α∗) , we bound the second term

as
(1−α) 8µ

L0(
1+(1−α) 8µ

L0

) ⩾ µ
4L0

· 32(1−α)
1+8(1−α)

α=α∗

= α∗ µ
8L0

. Therefore, for Ψk =
(
1− λkµ

4

)∥∥xk − x∗
∥∥2 +

1
4

(
1 + (1− α∗) 8µL0

)∥∥xk − xk−1
∥∥2 + 2λkθk(f(x

k−1)− f∗) we have

Ψk+1 ≤
(
1− α∗µ

2
min

{
λk,

1

4L0

})
Ψk. (106)

The final step of the proof is unrolling the recursion for Lyapunov function Ψk. Following the proof
of Theorem G.2, we have that

min

{
λk,

1

4L0

}
⩾


1

4L0
− L1

4L0
∥xt − xt−1∥, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,

1
4L0

− L1

4L0
∥xk+1 − xk∥, if k ∈ T2,

1
4L0

, if k ∈ T3.
(107)

with m := 1 + log√ 7
4

⌈
(1+DL1)

2

⌉
, which differs from m defined in the convex case due to the new

condition on λk. Therefore, by repeating all the steps from the proof of (99), we obtain

N∑
k=1

min

{
λk,

1

4L0

}
⩾

N

4L0
−

√
2N(m+ 1)L1D

4L0
. (108)

Next, we bound the product that arises during recursion unrolling by using the relation between the
geometric mean and the arithmetic mean:

N∏
k=1

(
1− α∗µ

2
min

{
λk,

1

4L0

})
⩽

(
1− α∗µ

2

1

N

N∑
k=1

min

{
λk,

1

4L0

})N

(108)
⩽

(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

. (109)

Finally, we combine (106) and (109) and get

ΨN+1

(106)
≤

N∏
k=1

(
1− α∗µ

2
min

{
λk,

1

4L0

})
Ψ1

(109)
≤

(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

Ψ1.

Moreover, when N ⩾ 8(m+ 1)2L2
1D

2, we have α∗µ(m+1)L1D

4
√
2NL0

⩽ α∗µ
16L0

, which in combination with
the above inequality implies (103).

38

Published as a conference paper at ICLR 2025

H STOCHASTIC EXTENSIONS: MISSING PROOFS AND DETAILS

H.1 (L0, L1)-STOCHASTIC GRADIENT DESCENT

Algorithm 5 (L0, L1)-Stochastic Gradient Descent ((L0, L1)-SGD)

Input: starting point x0, number of iterations N , stepsize parameter η > 0, L0 > 0, L1 ⩾ 0
1: for k = 0, 1, . . . , N − 1 do
2: Sample ξk ∼ {1, . . . , n} uniformly at random
3: xk+1 = xk − η

L0+L1∥∇f
ξk

(xk)∥∇fξk(x
k)

4: end for
Output: xN

Theorem H.1 (Theorem 7.1). Let Assumption 4 hold. Then, the iterates generated by (L0, L1)-SGD
with 0 < η ⩽ ν

2 , ν = e−ν after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

2L0∥x0 − x∗∥2

η(N + 1)
. (110)

Proof. Similarly to the deterministic case, we start by expanding the squared distance x∗, which is a
common minimizer for all {fi}ni=1:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − η

L0 + L1∥∇fξk(xk)∥
∇fξk(xk)

∥∥∥∥2
= ∥xk − x∗∥2 − 2η

L0 + L1∥∇fξk(xk)∥
⟨xk − x∗,∇fξk(xk)⟩

+
η2∥∇fξk(xk)∥2

(L0 + L1∥∇fξk(xk)∥)2
(2)
⩽ ∥xk − x∗∥2 − 2η

L0 + L1∥∇fξk(xk)∥
(
fξk(x

k)− fξk(x
∗)
)

+
η2∥∇fξk(xk)∥2

(L0 + L1∥∇fξk(xk)∥)2

(8)
⩽ ∥xk − x∗∥2 − 2η

(
1− η

ν

) fξk(x
k)− fξk(x

∗)

L0 + L1∥∇fξk(xk)∥
η⩽ ν

2

⩽ ∥xk − x∗∥2 − η
fξk(x

k)− fξk(x
∗)

L0 + L1∥∇fξk(xk)∥
. (111)

As before, we consider two possible cases: ∥∇fξk(xk)∥ ⩾ L0

L1
or ∥∇fξk(xk)∥ < L0

L1
.

Case 1: ∥∇fξk(xk)∥ ⩾ L0

L1
. In this case, we have

L0 + L1∥∇fξk(xk)∥ ⩽ 2L1∥∇fξk(xk)∥, (112)

ν∥∇fξk(xk)∥
4L1

(112)
⩽

ν∥∇fξk(xk)∥2

2(L0 + L1∥∇fξk(xk)∥)
(8)
⩽ fξk(x

k)− fξk(x
∗). (113)

Plugging the above inequalities in (111), we continue the derivation as follows:

∥xk+1 − x∗∥2
(111),(112)

⩽ ∥xk − x∗∥2 − η
fξk(x

k)− fξk(x
∗)

2L1∥∇fξk(xk)∥
(113)
⩽ ∥xk − x∗∥2 − νη

8L2
1

. (114)

Case 2: ∥∇fξk(xk)∥ < L0

L1
. In this case, we have

L0 + L1∥∇fξk(xk)∥ ⩽ 2L0, (115)

39

Published as a conference paper at ICLR 2025

implying that

∥xk+1 − x∗∥2
(45),(115)

⩽ ∥xk − x∗∥2 − η

2L0

(
fξk(x

k)− fξk(x
∗)
)
. (116)

To combine (114) and (116), we introduce event E(xk) :=
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
for given xk

and indicator of event E(xk) as 1E(xk), i.e., for given xk, we have 1E(xk) = 1 if ∥∇fξk(xk)∥ ⩾ L0

L1
,

and 1E(xk) = 0 if ∥∇fξk(xk)∥ < L0

L1
. Then, inequalities (114) and (116) can be unified as follows:

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − 1E(xk) ·
νη

8L2
1

− (1− 1E(xk)) ·
η

2L0

(
fξk(x

k)− fξk(x
∗)
)
.

Let us denote the expectation conditioned on xk as Ek[·] := E[· | xk]. Taking Ek[·] from the both
sides of the above inequality, we derive

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − pk · νη

8L2
1

−Ek

[
(1− 1E(xk)) ·

η

2L0

(
fξk(x

k)− fξk(x
∗)
)]
,

where pk := P
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
= P{E(xk)} = Ek[1E(xk)]. Note that pk is a random

variable itself. Nevertheless, if pk > 0, it means that for at least one ξk ∈ {1, . . . , n} we have
∥∇fξk(xk)∥ ⩾ L0

L1
for given xk. Therefore, either pk ⩾ 1

n or pk = 0. Moreover, when pk = 0, we
have 1− 1E(xk) := 1 for given xk. Putting all together, we continue as follows:

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − 1{pk>0} · pk · νη

8L2
1

−1{pk=0} · Ek

[
(1− 1E(xk)) ·

η

2L0

(
fξk(x

k)− fξk(x
∗)
)]
,

= ∥xk − x∗∥2 − 1{pk>0} · pk · νη
8L2

1

− 1{pk=0} ·
η

2L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 − 1{pk>0} ·

νη

8nL2
1

− 1{pk=0} ·
η

2L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 −min

{
νη

8nL2
1

,
η

2L0

(
f(xk)− f(x∗)

)}
.

Taking full expectation from the above inequality and telescoping the result, we get

N∑
k=0

E
[
min

{
νη

8nL2
1

,
η

2L0

(
f(xk)− f(x∗)

)}]
⩽

N+1∑
k=0

(E[∥xk+1 − x∗∥2]− E[∥xk − x∗∥2])

⩽ ∥x0 − x∗∥2.

Since η(N+1)
2L0

min
k=0,...,N

E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
is not greater than

N∑
k=0

E
[
min

{
νη

8nL2
1
, η
2L0

(
f(xk)− f(x∗)

)}]
, we also have

η(N + 1)

2L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽ ∥x0 − x∗∥2.

Dividing both sides by η(N+1)
2L0

, we obtain (110).

40

Published as a conference paper at ICLR 2025

H.2 STOCHASTIC GRADIENT DESCENT WITH POLYAK STEPSIZES

Algorithm 6 Stochastic Gradient Descent with Polyak Stepsizes (SGD-PS)

Input: starting point x0, number of iterations N , minimal values fi(x∗) := minx∈Rd fi(x) for all
i ∈ {1, . . . , n}

1: for k = 0, 1, . . . , N − 1 do
2: Sample ξk ∼ {1, . . . , n} uniformly at random

3: xk+1 = xk − f
ξk

(xk)−f
ξk

(x∗)

∥∇f
ξk

(xk)∥2 ∇fξk(xk)
4: end for

Output: xN

Theorem H.2 (Theorem 7.2). Let Assumption 4 hold. Then, the iterates generated by SGD-PS after
N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

4L0∥x0 − x∗∥2

ν(N + 1)
. (117)

Proof. Similarly to the deterministic case, we start by expanding the squared distance x∗, which is a
common minimizer for all {fi}ni=1:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ −
fξk(x

k)− fξk(x
∗)

∥∇fξk(xk)∥2
∇fξk(xk)

∥∥∥∥2
= ∥xk − x∗∥2 −

2
(
fξk(x

k)− fξk(x
∗)
)

∥∇fξk(xk)∥2
⟨xk − x∗,∇fξk(xk)⟩

+

(
fξk(x

k)− fξk(x
∗)
)2

∥∇fξk(xk)∥2

(2)
⩽ ∥xk − x∗∥2 −

(
fξk(x

k)− fξk(x
∗)
)2

∥∇fξk(xk)∥2

(8)
⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

L0 + L1∥∇fξk(xk)∥
. (118)

As before, we consider two possible cases: ∥∇fξk(xk)∥ ⩾ L0

L1
or ∥∇fξk(xk)∥ < L0

L1
.

Case 1: ∥∇fξk(xk)∥ ⩾ L0

L1
. In this case, inequalities (112) and (113) hold and the derivation from

(118) can be continued as follows:

∥xk+1 − x∗∥2
(118),(112)

⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

2L1∥∇fξk(xk)∥
(113)
⩽ ∥xk − x∗∥2 − ν2

16L2
1

, (119)

which gives (54).

Case 2: ∥∇fξk(xk)∥ < L0

L1
. In this case, inequality (115) holds and we have

∥xk+1 − x∗∥2
(118),(115)

⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

2L0
. (120)

To combine (119) and (120), we introduce event E(xk) :=
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
for given xk

and indicator of event E(xk) as 1E(xk), i.e., for given xk, we have 1E(xk) = 1 if ∥∇fξk(xk)∥ ⩾ L0

L1
,

and 1E(xk) = 0 if ∥∇fξk(xk)∥ < L0

L1
. Then, inequalities (119) and (120) can be unified as follows:

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − 1E(xk) ·
ν2

16L2
1

− (1− 1E(xk)) ·
ν

4L0

(
fξk(x

k)− fξk(x
∗)
)
.

41

Published as a conference paper at ICLR 2025

Let us denote the expectation conditioned on xk as Ek[·] := E[· | xk]. Taking Ek[·] from the both
sides of the above inequality, we derive

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − pk · ν2

16L2
1

−Ek

[
(1− 1E(xk)) ·

ν

4L0

(
fξk(x

k)− fξk(x
∗)
)]
,

where pk := P
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
= P{E(xk)} = Ek[1E(xk)]. Note that pk is a random

variable itself. Nevertheless, if pk > 0, it means that for at least one ξk ∈ {1, . . . , n} we have
∥∇fξk(xk)∥ ⩾ L0

L1
for given xk. Therefore, either pk ⩾ 1

n or pk = 0. Moreover, when pk = 0, we
have 1− 1E(xk) := 1 for given xk. Putting all together, we continue as follows:

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − 1{pk>0} · pk · ν2

16L2
1

−1{pk=0} · Ek

[
(1− 1E(xk)) ·

ν

4L0

(
fξk(x

k)− fξk(x
∗)
)]
,

= ∥xk − x∗∥2 − 1{pk>0} · pk · ν2

16L2
1

− 1{pk=0} ·
ν

4L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 − 1{pk>0} ·

ν2

16nL2
1

− 1{pk=0} ·
ν

4L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 −min

{
ν2

16nL2
1

,
ν

4L0

(
f(xk)− f(x∗)

)}
.

Taking full expectation from the above inequality and telescoping the result, we get

N∑
k=0

E
[
min

{
ν2

16nL2
1

,
ν

4L0

(
f(xk)− f(x∗)

)}]
⩽

N+1∑
k=0

(E[∥xk+1 − x∗∥2]− E[∥xk − x∗∥2])

⩽ ∥x0 − x∗∥2.

Since ν(N+1)
4L0

min
k=0,...,N

E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
is not greater than

N∑
k=0

E
[
min

{
ν2

16nL2
1
, ν
4L0

(
f(xk)− f(x∗)

)}]
, we also have

ν(N + 1)

4L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽ ∥x0 − x∗∥2.

Dividing both sides by ν(N+1)
4L0

, we obtain (117).

Remark H.1. Note that the LHS of equation (29) can be lower bounded as follows:

ν(N + 1)

4L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩾ νL0

4nL2
1

+min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩽ νL0

4nL2
1

]
⩾ min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩾ νL0

4nL2
1

]
= min

k=0,··· ,N

ηL0

4nL2
1

P

(
f(xk)− f(x∗) ⩾

νL0

4nL2

)
Therefore, from equation equation (29) we have that mink=0,··· ,N P

(
f(xk)− f(x∗) ⩾ νL0

4nL2

)
⩽

8nL2
1∥x

k−x∗∥2

ην(L+1) .

42

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Iteration

10 20
10 17
10 14
10 11
10 8
10 5
10 2
101

f(x
)

f(x
*)

x0 x * = 1

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 20

10 16

10 12

10 8

10 4

100

104

f(x
)

f(x
*)

x0 x * = 10
(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 20
10 16
10 12
10 8
10 4
100
104
108

f(x
)

f(x
*)

x0 x * = 100

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

Figure 1: The last iterate discrepancy of algorithms on the one-variable polynomial function f(x) =
x4.

I NUMERICAL EXPERIMENTS

Synthetic experiment. The existing numerical studies already illustrate the benefits of many
methods considered in this paper in solving (L0, L1)-smooth problems. In particular, the results
of numerical experiments with Clip-GD, which is closely related to (L0, L1)-GD, GD-PS, and
AdGD on training LSTM (Merity et al., 2018) and/or ResNet (He et al., 2016) models are provided
in (Zhang et al., 2020b; Loizou et al., 2021; Malitsky & Mishchenko, 2020). Therefore, in our
numerical experiments, we focus on a simple 1-dimensional problem that is convex, (L0, L1)-
smooth, and provides additional insights to the ones presented in the literature. In particular, we
consider function f(x) = x4, which is convex, (4, 3)-smooth, but not L-smooth as illustrated in
Example 1.1. We run (i) GD with stepsize 1/L, L = 12|x0|2 (which corresponds to the worst-case
smoothness constant on the interval |x| ⩽ |x0|), (ii) (L0, L1)-GD with L0 = 4, L1 = 3, η = ν/2,
(iii) (L0, L1)-STM with Gk+1 = L0 + L1∥∇f(xk+1)∥ (not supported by our theory) and (iv) with
Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥} (called (L0, L1)-STM-max on the plots), (v) GD-PS,
and (vi) AdGD for starting points x0 ∈ {1, 10, 100}. The results are reported in Figure 1. In all
tests, GD-PS and AdGD show the best results among other methods (which is expected since these
methods are the only parameter-free methods). Next, standard GD is the slowest among other methods
and slow-downs once we move the starting point further from the optimum, which is also expected
since L increases and we have to use smaller stepsizes for GD. Finally, let us discuss the behavior
of (L0, L1)-GD, (L0, L1)-STM-max, and (L0, L1)-STM. Clearly, it depends on the distance from
the starting point to the solution. In particular, when x0 = 1 we have ∥∇f(x0)∥ = 4, meaning that
L = 16. In this case, GD and (L0, L1)-GD behave similarly to each other, and (L0, L1)-STM-max
significantly outperforms both of them, which is well-aligned with the derived bounds. However, for
x0 = 10 and x0 = 100 we have ∥∇f(x0)∥ = 4 ·103 and ∥∇f(x0)∥ = 4 ·106 leading to a significant
slow down in the convergence of GD and (L0, L1)-STM-max. In particular, (L0, L1)-GD achieves a
similar optimization error to (L0, L1)-STM-max for x0 = 10 and much better optimization error for
x0 = 100. This is also aligned with our theoretical results: when R0 is large and number of iterations
is not too large, bound (15) derived for (L0, L1)-GD can be better than bound (23) derived for
(L0, L1)-STM-max. Moreover, for x0 = 100, Figure 1 illustrates well the two-stages convergence
behavior of (L0, L1)-GD described in Theorem 3.1. Finally, although our theory does not provide
any guarantees for (L0, L1)-STM with Gk+1 = L0 + L1∥∇f(xk+1)∥, this method converges faster
than (L0, L1)-GD for the considered problem but exhibits highly non-monotone behavior.

Logistic regression. We also study the behavior of the algorithms on the Logistic Regression
problem of the form

f(x) =
1

n

n∑
i=1

fi(x), where fi(x) = log
(
1 + exp(−yia⊤i x)

)
, ai ∈ Rd, yi ∈ {−1, 1}.

As Example 1.3 shows, each individual function fi is (L0, L1)-smooth. Moreover, function f is
also L-smooth. This implies that f(x) is (L0, L1)-smooth, but the derivation of the exact constants
L0 and L1 for f is problematic and highly depends on the relation between {ai}ni=1. Nevertheless,
one can still compare the methods considered above on this problem and numerically estimate the
dependency of the Hessian norm on the norm of the gradient. In particular, we observe linear-like
gradient norm dependency on the hessian norm in the toy scenario, where all vectors ai are close
to each other, i.e., we generated ai ∈ R50 as ai = (1, 2, . . . , 50)⊤ + ξ⊤i , where ξi ∼ N (0, I) are

43

Published as a conference paper at ICLR 2025

30 40 50 60 70 80 90 100

Gradient Norm

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

He
ss

ia
n

No
rm

LogReg Smoothness

40

50

60

70

80

90

Figure 2: Smoothness dependency on the gradient norm, toy scenario logistic regression.

0 200 400 600 800 1000
Iteration

10 15

10 12

10 9

10 6

10 3

100

f(x
)

f(x
*)

LogReg, a9a
 x0 x * = 16

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 15
10 12
10 9
10 6
10 3
100
103
106

f(x
)

f(x
*)

LogReg, a9a
 x0 x * = 11000

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 50 100 150 200 250 300 350 400
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

f(x
)

f(x
*)

LogReg, mushroom
 x0 x * = 5

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 15
10 12
10 9
10 6
10 3
100
103
106

f(x
)

f(x
*)

LogReg, mushroom
 x0 x * = 28000

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

Figure 3: The last iterate discrepancy of algorithms on the logistic regression problem.

i.i.d. standard Gaussian vectors, and all yi = 1 except of one yj = −1 for randomly selected j from
{1, . . . , 50} (Figure 1).

44

Published as a conference paper at ICLR 2025

We also run the considered methods for real datasets from LIBSVM (Chang & Lin, 2011) – a9a
and mushrooms – for different starting points. The results are presented in Figure 3. Despite the
fact that for these datasets, f does not have a clear linear dependence of the norm of the Hessian
w.r.t. the norm of the gradient, the methods that are better suited for (L0, L1)-smooth problems (like
(L0, L1)-GD, GD-PS, and AdGD) converge significantly faster than other methods. Moreover, we
also emphasize that accelerated variants – (L0, L1)-STM and (L0, L1)-STM-max – work not better
than standard GD in this case.

45

	Introduction
	Problem Setup
	Related Works
	Our Contribution

	Technical Lemmas
	Smoothed Gradient Clipping
	Gradient Descent with Polyak Stepsizes
	Acceleration: (L0,L1)-Similar Triangles Method
	Adaptive Gradient Descent
	Stochastic Extensions
	Conclusion and Future Work
	Extra Related Work
	Examples of (L0,L1)-Smooth Functions
	Proof of Lemma 2.2
	Missing Proofs for (L0,L1)-GD
	Comparison with the Proofs from koloskova2023revisiting, takezawa2024polyak, chen2023generalized

	Missing Proofs for Gradient Descent with Polyak Stepsizes
	Missing Proofs for (L0,L1)-Similar Triangles Method
	Missing Proofs for Adaptive Gradient Descent
	Derivation of (25)
	Proof of Theorem 6.1
	Convergence in the Strongly Convex Case

	Stochastic Extensions: Missing Proofs and Details
	(L0,L1)-Stochastic Gradient Descent
	Stochastic Gradient Descent with Polyak Stepsizes

	Numerical Experiments

