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Abstract

AlphaFold3 has set the new state-of-the-art in predicting protein-protein complex1

structures. However, the complete picture of biomolecular interactions cannot be2

fully captured by static structures alone. In the field of protein engineering and3

antibody discovery, the connection from structure to function is often mediated by4

binding energy. This work benchmarks AlphaFold3 against SKEMPI, a commonly5

used binding energy dataset. We demonstrate that AlphaFold3 learns unique6

information and synergizes with force field, profile-based, and other deep learning7

methods in predicting the mutational effects on protein-protein interactions. We8

hypothesize that AlphaFold3 captures a more global effect of mutations by learning9

a smoother energy landscape, but it lacks the modeling of full atomic details that10

are better addressed by force field methods, which possess a more rugged energy11

landscape. Integrating both approaches could be an interesting future direction.12

1 Introduction13

The development of AlphaFold and other deep learning methods has revolutionized the study of14

the protein complex structures [1–7], advancing beyond traditional physics-based docking methods15

[8–10]. With the advent of AlphaFold3, the success rate of predicting general protein complex16

structures has reached almost 80%, and that for protein-antibody pairs has exceeded 60%, significantly17

outperforming its predecessor, AF2-Multimer, previously considered the state-of-the-art [1, 2].18

However, as Derek Lowe points out [11], "Structure is not everything." The complete picture of19

biomolecular interactions cannot be fully captured by static structures alone; it also involves the20

dynamic association and dissociation of one protein with another protein partner. In an equilibrium21

state, this interaction property is commonly measured as the binding affinity, Kd, or described as22

the change in binding free energy, ∆G. In addition, nature is constantly evolving, with mutations23

regularly introduced that modulate the magnitude of binding affinity, among many other properties,24

such as the stability of the proteins themselves. A key therapeutic goal is to design molecules that25

bind strongly enough to either prevent or promote a specific state of its binding partner, such as26

the inactive or active state of GPCRs. In the field of antibody discovery, the process of mutating a27

candidate antibody to improve its binding affinity with the target antigen protein is termed antibody28

maturation. Most antibody drugs in clinical use have picomolar affinity for the target protein [12],29

while antibodies found through immunization commonly exhibit affinities in the nanomolar or even30

micromolar range [13]. This means that, during the maturation step, we need to improve the affinity31

by more than a thousand times, or, if measured in ∆∆G, by about 4 kcal/mol.32
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A variety of methods have been developed to estimate the effects of mutations, ranging from force33

field-based methods [14–16], which derive forces from physical interactions such as van der Waals34

and electrostatic, or from statistical energy, to profile-based methods [17], which query sequence35

and structure databases. Additionally, there are hybrid methods [18] that combine force field and36

profile-based information. More recently, deep learning methods [19–22] have emerged, where the37

underlying energy landscapes are learned through unsupervised pre-training involving perturbations38

of crystallized protein structures.39

In this work, we demonstrate that AlphaFold, although trained as a structure prediction model,40

learns critical information that is complementary to all types of current methods studying mutational41

effects on protein-protein interactions. This observation aligns with findings from previous studies of42

protein-small molecule and protein-peptide interactions [23–26], suggesting that models also trained43

to predict complex structures demonstrate enhanced capabilities in predicting binding affinity.44

2 Related Work45

Many works have demonstrated that AlphaFold2 already learns important features useful for other46

tasks. For example, in the protein design field, RFdiffusion [27] showed that fine-tuning from the47

pre-trained structure prediction model, RoseTTAFold [4], significantly enhances performance in48

protein design compared to starting without pre-training. Additionally, Roney [28] demonstrated that49

AlphaFold2 discerns the underlying physics capable of differentiating decoy structures from native50

structures, thereby effectively ranking candidate complex structures.51

Other works utilize AF2 outputs directly as inputs for their models. Akdel [29] demonstrated that52

the AF2-predicted structure could serve as the input for many popular structure-based predictors of53

protein thermostability, such as FoldX and DynaMut2 [15, 30], achieving results comparable to those54

obtained with crystal structures. Additionally, Lyu [31] showed that AlphaFold2 structures could be55

used as inputs for docking programs in small molecule drug discovery. Although Buel [32] showed56

that AlphaFold2 cannot predict key mutational effects in many cases, McBride [33] demonstrated that57

with appropriately chosen metrics, such as effective strain in their study, AlphaFold2 can accurately58

predict the effects of mutations on the intrinsic properties of single proteins, using three experimental59

datasets: fluorescence, folding, and catalysis.60

These works have explored the utility of AlphaFold in many research areas, but none of them have61

studied the usefulness of AlphaFold in predicting the binding energy and the mutational effects of62

mutations on protein-protein interactions.63

3 Benchmark setups64

A commonly used dataset for evaluating methods that predict mutation effects is SKEMPI [34],65

which manually curates a list of crystallized protein complexes and their mutants with experimentally66

measured changes in binding affinity, denoted as ∆∆G values, gathered through literature searches.67

These values are measured using biochemical methods that, while relatively accurate, require con-68

siderable effort for each mutant’s data. As a result, despite the intensive labor involved, this dataset69

contains binding data for only 7085 mutations, which is significantly fewer than the total number of70

crystallized structures, and even less than the number of sequences in the database that enabled the71

development of AlphaFold. This scarcity of data underscores the value of leveraging information72

learned from tasks beyond direct protein-protein binding data.73

3.1 Dataset definition74

In order to benchmark against a wide range of methods, we utilized the common subset of Test Set 175

from SKEMPI as defined in SSIPe [18] and the SKEMPI dataset as employed in DSMBind [20]. The76

cases where the ranking score predicted by AlphaFold3 is below 0.8 are removed. As a result, our77

benchmark comprises 475 mutants across 42 unique protein complexes.78
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3.2 Baselines79

We include a comprehensive set of 17 baseline methods for benchmarking. These can be categorized80

by their types of approaches.81

Protein Language-based Models ESM2, ESM1v, and ProGen2 [35–37] are prominent protein82

language models known for their robust zero-shot performance across multiple tasks, including83

secondary structure prediction, and the classification of benign and pathogenic mutations. Given84

that these models typically accept only a single sequence as input, we concatenated the sequences of85

interacting proteins for our analysis.86

Force Field and Profile-based Models Included in our baselines are three popular pure force87

field-based models: FoldX, FlexddG, and EvoEF [15, 16, 38]; a structure-based profiling baseline,88

BindProfX [17]; and one hybrid model that combines sequence and structure profiling with force89

field methods, SSIPe [18]. These models are specifically designed to predict the mutational effects on90

protein-protein interactions, with SSIPe considered the state-of-the-art model that utilizes the most91

information available.92

Structure-based Deep Learning Models ProteinMPNN [39] is a model that learns to design93

sequences corresponding to a given input backbone structure, while DSMBind [20] predicts muta-94

tional effects by learning to restore a perturbed crystal structure. Both models develop a scoring95

function that can be used to estimate mutational effects for a given input structure and corresponding96

sequences.97

AlphaFold3, AlphaFold2, and Strain Protein sequences are submitted directly to the AlphaFold398

server in JSON format with the seed set to a fixed arbitrary number, 42, to ensure reproducibility. Five99

results are downloaded, and the top one is used. For each mutant, the predicted score is calculated by100

subtracting the ranking score of the wild type from its ranking score. AF2-Multimer v2.3.0 [2] is run101

locally with default settings, and the ranking score for the top predicted model for each entry is used.102

As a simple statistical baseline, effective strain, as defined in [33], is computed for each mutant.103

4 Results104

4.1 Comparison of binding energy estimation across all baselines105

The results for each baseline are summarized in Table 1. Pearson and Spearman correlation coeffi-106

cients are two commonly used metrics for assessing continuous variables. The Area under the ROC107

Curve (AUC) is a statistic used in binary classification, computed by treating all ∆∆G values below108

zero as positive and those above zero as negative. The results are sorted according to their Pearson109

correlation coefficients within each category.110

Table 1 indicates that protein language models are less effective at predicting the mutational effects111

on protein-protein interactions. Similarly, AlphaFold2 and Strain show weak correlations with112

experimentally measured binding affinities. In contrast, the ranking score produced by AlphaFold3113

exhibits a significant correlation and is comparable to that of the widely-used FoldX method.114

4.2 AlphaFold3 complements other baselines115

As demonstrated by SSIPe [18], profile-based and force field-based methods complement each other,116

producing the most accurate estimators. Similarly, if AlphaFold3 learns a different type of information,117

it could also complement other models. As shown in Fig 1, a simple ensemble of AlphaFold3’s118

ranking scores boosts performance across all baselines. The ensemble score is computed by adding119

the equally weighted ranked scores of two models. Notably, the previous state-of-the-art, SSIPe,120

which is already a combination of models, also experiences a performance boost. AlphaFold3 learns121
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Table 1: Comparison of ∆∆G estimation results on our SKEMPI test set using three different metrics.

Category Method Pearson Spearman AUC

Force Field and Profile-based SSIPe 0.68 0.62 0.78
FlexddG 0.62 0.58 0.77
BindProfX 0.56 0.58 0.74
EvoEF 0.55 0.51 0.72
FoldX 0.49 0.54 0.74

Structure-based Deep Learning DSMBind 0.62 0.53 0.73
ProteinMPNN 0.51 0.45 0.65

AlphaFold AF3 ranking_score 0.49 0.51 0.71
AF3 iptm 0.49 0.50 0.72
AF3 ptm 0.36 0.33 0.63
AF3 mean_pae 0.32 0.37 0.64
AF2 ranking_score 0.21 0.23 0.57
Effective Strain 0.18 0.31 0.61
AF2 mean_pae 0.05 0.22 0.54

Protein Language-based ESM2 0.27 0.35 0.68
ESM1v -0.02 0.06 0.52
ProGen2 -0.09 0.01 0.47

Figure 1: Ensemble with AlphaFold3 boosts performance across all baselines, as evaluated by
Spearman correlation, Left, and AUC, Right, blue is the baseline score, orange is the boost in
performance after ensemble with AlphaFold3 score. The dashed line indicates the AlphaFold3
performance.

complementary information that is orthogonal to current methods, thereby enhancing the estimation122

of mutation effects on protein-protein interactions.123

4.3 AlphaFold3 offers unique information124

To investigate whether the predictions made by AlphaFold3 are correlated with those of other methods,125

we computed the pairwise correlation among all methods, as shown on the left of Fig. 2. AlphaFold3126

exhibits very weak correlations with other models, only showing slight correlation with DSMBind.127

In contrast, other models, such as FlexddG and SSIPe, correlate with many other methods, indicating128

that AlphaFold3 learns unique features that are orthogonal to those of other methods. As shown on129

the right side of Fig. 2, protein language models, AlphaFold2, and strain do not provide additional130

information beyond what AlphaFold3 provides. Conversely, structure-based deep learning, as well as131

force field and profile-based methods, enhance the predictions made by AlphaFold3.132
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Figure 2: Left, correlation between model predictions, sorted by their correlation against AlphaFold3.
Right, when AlphaFold3 is combined with other models, all methods except protein language models
and AlphaFold2 get a significant boost. y axis measures the ratio of improvement relative to the
AlphaFold3 baseline, (rm+AF3 − rAF3)/rAF3

5 Discussion133

Our results indicate that the performance of protein language models in predicting the mutational134

effects on binding affinity is relatively weak. This finding aligns with a recent study [40], which135

demonstrates that language models do not scale effectively with model size in prediction tasks that136

are less dependent on coevolutionary patterns.137

An interesting distinction between AlphaFold3 and traditional all-atom force field methods lies in138

their sensitivity to protein complex conformations. Traditional force fields are highly sensitive to the139

exact conformation of the protein complex, whereas AlphaFold3 tends to predict similar scores for140

identical input sequences. This sensitivity to conformation and the difficulty in thoroughly sampling141

conformations make force field methods prone to inaccurate estimations of the entropy component of142

the total Gibbs free energy. In contrast, AlphaFold3, as a generative structure prediction model, is143

capable of learning a smoother energy landscape that more effectively captures the subtle influences144

of entropy. Fig 3 illustrates how the integration of AlphaFold3 scores can more accurately determine145

the global relative free energy, ∆G, compared to relying solely on force field methods, which exhibit146

a more rugged energy landscape.147

6 Conclusion148

In this study, we have demonstrated that AlphaFold3 learns unique features beneficial for estimating149

binding free energy and complements existing models. Looking ahead, a more integrated approach150

combining folding methods that predict complex structures with inverse-folding models that identify151

masked residues, along with traditional force field and profile-based models, could significantly152

revolutionize the field of predicting mutational effects on protein-protein interactions.153
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