
Neural-Kernel Conditional Mean Embeddings

Eiki Shimizu 1 2 Kenji Fukumizu 2 1 Dino Sejdinovic 3

Abstract
Kernel conditional mean embeddings (CMEs) of-
fer a powerful framework for representing con-
ditional distribution, but they often face scalabil-
ity and expressiveness challenges. In this work,
we propose a new method that effectively com-
bines the strengths of deep learning with CMEs
in order to address these challenges. Specifi-
cally, our approach leverages the end-to-end neu-
ral network (NN) optimization framework using a
kernel-based objective. This design circumvents
the computationally expensive Gram matrix inver-
sion required by current CME methods. To fur-
ther enhance performance, we provide efficient
strategies to optimize the remaining kernel hy-
perparameters. In conditional density estimation
tasks, our NN-CME hybrid achieves competitive
performance and often surpasses existing deep
learning-based methods. Lastly, we showcase its
remarkable versatility by seamlessly integrating it
into reinforcement learning (RL) contexts. Build-
ing on Q-learning, our approach naturally leads to
a new variant of distributional RL methods, which
demonstrates consistent effectiveness across dif-
ferent environments.

1. Introduction
When conditional distributions present complexities such as
multimodality, skewness, or heteroscedastic noise, simply
capturing the conditional mean no longer suffices. Kernel
conditional mean embeddings (CMEs) (Song et al., 2009;
Muandet et al., 2017) represent conditional distributions as
elements within a reproducing kernel Hilbert space (RKHS),
a space associated to a positive definite kernel. Given both
input and output variables, CMEs map these variables into a
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high-dimensional (often infinite) feature space using kernels,
enabling a nonparametric and flexible characterization of
conditional distributions. Indeed, CMEs have been success-
fully employed in settings such as probabilistic inference
tasks (Fukumizu et al., 2013; Song et al., 2013) and causal
inference tasks (Singh et al., 2019; Muandet et al., 2021;
Chau et al., 2021; Park et al., 2021).

However, CMEs possess several limitations. First, Gram ma-
trix inversion, needed for standard CME estimation, can be-
come prohibitively expensive when the dataset grows large.
Second, the pre-specified nature of RKHS features can lead
to poor performance when dealing with high-dimensional
variables exhibiting highly nonlinear structures. Regarding
these scalability and expressiveness challenges, we provide
a detailed explanation and references in Appendix A. Lastly,
standard hyperparameter tuning procedures such as cross-
validation are not applicable to selecting hyperparameters
of the kernel on output variables. This last limitation arises
because the objective function (explained in Section 2.2) is
defined in terms of the RKHS norm associated to this kernel,
and any change in kernel parameters fundamentally alters
the objective function itself.

To address these challenges, we propose a method that ef-
fectively blends deep learning with CMEs. The central
concept involves replacing computationally demanding ma-
trix inversion with a neural network (NN) model, while
simultaneously leveraging the feature learning capabilities
of deep learning. Our method integrates seamlessly with
standard NN training procedures, differing only in its use
of an RKHS-based loss function. Additionally, we propose
using a specific type of kernel on the output variable and
introduce supplementary objective functions tailored to op-
timize the kernel parameters. Notably, we offer two flexible
options for the hyperparameter optimization: iterative or
joint optimization with the NN training process.

The true potential of CMEs lies in their applicability beyond
standard density estimation tasks. Namely, CME represen-
tations can be employed to define metrics over the space of
conditional probability distributions (Gretton et al., 2012).
This powerful property, coupled with the efficient incor-
poration of NNs within our approach, paves the way for
effortless adoption within deep reinforcement learning (RL)
contexts. By modeling the discounted sum of rewards using
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our NN-based CME representation, we naturally arrive at
a new variant of distributional RL (Bellemare et al., 2017;
2023) methods. Our approach shares traits with two exist-
ing methods, CDQN (Bellemare et al., 2017) and MMDQN
(Nguyen-Tang et al., 2021), while demonstrating consistent
efficacy across three benchmark environments.

We summarize our main contributions:

• We propose Neural Network-based CMEs (Section 3.1)
to address scalability and expressiveness limitations of
traditional CMEs.

• We also address another core challenge: hyperparam-
eter selection of the kernel on output variables. Our
method, which leverages what we call the Gaussian
density kernel (Section 3.2), enables optimization of
this hyperparameter, through supplemental objective
function (Section 3.2.1). We further prove that the up-
per bound coincides with the main objective loss, and
propose an efficient strategy to jointly optimize NN
and the hyperparameter (Section 3.2.2).

• We propose a new variant of Distributional RL based
on our NN-based CME method (Section 5.2).

The paper is organized as follows: Section 2 introduces
kernel mean embeddings and CMEs, including a NN-
parameterized deep feature approach. Section 3 presents our
NN-CME hybrid approach and two hyperparameter opti-
mization strategies. Section 4 demonstrates the performance
of our method on both synthetic and real-world datasets.
Section 5 delves into RL, introducing our new distributional
RL method and assessing its performance in three classic
control environments.

2. Background and Preliminaries
Notations: We consider random variables X and Y , re-
siding in domains X ⊆ Rdx and Y ⊆ Rdy , respectively,
with realizations x and y, joint distribution P , and den-
sity function p(x, y). Measurable positive definite kernels
kX : X × X → R and kY : Y × Y → R, associated with
RKHSs HX and HY , induce features ψ(x) = kX (x, ·) and
ϕ(y) = kY(y, ·). The inner product is denoted by ⟨·, ·⟩H
and the RKHS norm by ∥ · ∥H.

2.1. Kernel Mean Embeddings

For a given marginal distribution P (X), the kernel mean
embedding (KME) µP (X) is defined as the expectation of
the feature ψ(X):

µP (X) = EX [ψ(X)] ∈ HX ,

and always exists for bounded kernels. The reproducing
property of RKHSs equips KMEs with the useful abil-

ity to estimate function expectations:
〈
f, µP (X)

〉
HX

=

EX [f(X)] for any f ∈ HX . Furthermore, for charac-
teristic kernels, these embeddings are injective, uniquely
defining the probability distribution (Fukumizu et al., 2008;
Sriperumbudur et al., 2010). For instance, popular kernels
such as Gaussian and Laplace kernels possess this property.

The second order mean embeddings, also known as co-
variance operators (Fukumizu et al., 2004), are defined as
the expectation of tensor products between features, for
instance:

CXY =EXY [ψ(X)⊗ϕ(Y )] ,

where ⊗ is the tensor product, and always exist for bounded
kernels. Covariance operators generalize the familiar notion
of covariance matrices to accommodate infinite-dimensional
feature spaces.

2.2. Kernel Conditional Mean Embeddings

With the aforementioned building blocks in place, we now
extend KMEs to the case of conditional distributions, defin-
ing kernel conditional mean embeddings (CMEs) (Song
et al., 2009; Muandet et al., 2017) as follows:

µP (Y |X)(x) = EY |x [ϕ(Y )|X = x] ∈ HY ,

requiring an operator CY |X : HX → HY that
satisfies: (a) µP (Y |X)(x) = CY |Xψ(x) and (b)〈
g, µP (Y |X)(x)

〉
HY

= EY |x [g(Y )|X = x] for g ∈ HY .
Assuming EY |x [g(Y )|X = ·] ∈ HX , the following opera-
tor satisfies the requirements:

CY |X = (CXX)−1CXY .

Given i.i.d samples {(xi, yi)}ni=1 ∼ P , an empirical esti-
mate of the operator can be obtained as follows:

ĈY |X = (ĈXX + λI)−1ĈXY

= Φ(KX + λI)−1Ψ⊤,

where λ > 0 is a regularization parameter, KX is the Gram
matrix (KX)ij = kX (xi, xj), and Ψ and Φ are the feature
matrices stacked by columns: Ψ = [ψ(x1), . . . , ψ(xn)]
and Φ = [ϕ(y1), . . . , ϕ(yn)]. Alternatively, this empirical
estimate can be obtained by solving the following function-
valued regression problem (Grünewälder et al., 2012):

argmin
C:HX→HY

1

n

n∑
i=1

∥ϕ(yi)− Cψ(xi)∥2HY
+ λ ∥C∥2HS , (1)

where ∥C∥HS is the Hilbert-Schmidt norm. Putting together
these elements, we arrive at the empirical estimator:

µ̂P (Y |X)(x) = Ĉψ(x) =

n∑
i=1

βi(x)ϕ(yi) = Φβ(x), (2)
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where:

β(x) = (KX + λI)−1kX ,

with kX = [kX (x1, x), . . . , kX (xn, x)]
⊤. Intuitively, βi(x)

corresponds to “weights” on the particles represented by
ϕ(yi). In contrast to KMEs for marginal distributions,
CMEs employ non-uniform weights βi(x), which are not
constrained to be positive or sum up to one. In Appendix B,
we provide in-depth explanations regarding different formu-
lations of CMEs.

2.3. Deep Feature Approach

Instead of relying on pre-specified RKHS feature maps, the
Deep Feature approach (DF) (Xu et al., 2021) harnesses
the adaptive capabilities of deep learning to learn tailored
feature representations. This approach has demonstrated
its efficacy in settings such as causal inference (Xu et al.,
2021) and kernelized Bayes’ rule (Xu et al., 2022), often
outperforming classical CME methods.

By replacing ψ with a d-dimensional NN-parameterized
feature map ψθ : X → Rd (where θ denotes the NN’s
parameters) in (1), we can jointly optimize both the fea-
ture representation and the conditional operator C. This is
achieved by optimizing θ with the following loss function:

L̂(θ) = tr
(
KY (I −Ψ⊤

θ (ΨθΨ
⊤
θ + λI)−1Ψθ)

)
,

where KY is the Gram matrix with elements (KY )ij =
kY(yi, yj), and gradient-based optimization methods can be
applied. Given the learned parameter θ̂ = argminθ L̂(θ),
we can express β(x) in (2) as follows:

β(x) = Ψ⊤
θ̂

(
Ψθ̂Ψ

⊤
θ̂
+ λI

)−1

ψθ̂(x).

This DF approach offers a partial solution to scalability chal-
lenges as well. Its computational complexity ofO(nd2+d3)
is typically smaller than the O(n3) complexity of classi-
cal approaches. During the training, mini-batch optimiza-
tion can be applied for further acceleration. However, the
regularization parameter λ plays a vital role in both per-
formance and numerical stability, and its selection often
necessitates computationally expensive cross-validation pro-
cedures involving multiple NN optimizations. Additionally,
this approach on its own does not address the remaining
hyperparameter selection issue for kY .

3. Neural Network-Based CMEs
3.1. Model and Objective Function

While DF approach of Xu et al. (2021) partially addresses
computational challenges of CME, it still restricts β(x) to
a specific functional form involving matrix inversion. The

core idea of our approach is to replace β(x) in (2) with
f(x; θ) : X → RM , a NN parameterized by θ. We propose
the CME estimator of the following form:

µ̂P (Y |X)(x) =

M∑
a=1

ϕ(ηa)fa(x; θ),

where ηa ∈ Y areM location parameters. These parameters
can be optimized together with the NN parameter θ, or
can be fixed to reduce the number of parameters. In this
paper, we opt for fixing them throughout for easiness of
optimization. Analogous to (1) but without ∥C∥2HS , θ is
optimized through:

min
θ

1

n

n∑
i=1

∥∥∥∥∥ϕ(yi)−
M∑
a=1

ϕ(ηa)fa(xi; θ)

∥∥∥∥∥
2

HY

.

We denote this as minθ
1
n

∑n
i=1 ℓ̂(θ), where ℓ̂(θ) can be

further expressed as:

ℓ̂(θ) ∝ −2
∑
a

kY(yi, ηa)wa +
∑
a,b

kY(ηa, ηb)wawb, (3)

with wa = fa(xi; θ) and wb = fb(xi; θ). The term∑n
i=1 kY(yi, yi) is omitted, assuming fixed hyperparam-

eters for kY , for now. In contrast to DF, the whole process
of calculating β(x) with explicit features is effectively amor-
tized with f(x; θ). This eliminates the need for both Gram
matrix inversion and regularization parameter selection.

However, selecting hyperparameters for kY remains a chal-
lenge due to the dependence of the objective values on the
RKHS norm ∥ · ∥H; they are not comparable for different
hyperparameters. Thus we emphasize again that kY hyper-
parameters cannot be selected by standard procedures such
as cross-validation using RKHS-based loss function. While
downstream tasks can sometimes guide the tuning (e.g., in
IV regression: Xu et al. (2021)), one typically resorts to
heuristic methods like the median heuristic (Gretton et al.,
2005). Our aim in the following sections is to construct a cri-
terion that can serve as a supplementary objective function
for optimizing the kY parameter, offering a more effective
approach to its selection.

3.2. Choice of Kernel kY

Our initial step is to employ a positive definite kernel k that
satisfies: k(·, ·) ≥ 0 and

∫
k(y, ·)dy = 1. Thus, the kernels

we consider are both reproducing kernels and smoothing
kernels for densities, two often confused, but distinct notions
of kernel functions. In the following, we adopt what we call
the Gaussian density kernel for kY :

kσ(y, y
′) =

(
1√
2πσ2

)dy

exp

(
−∥y − y′∥2

2σ2

)
.
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We will denote the associated RKHS by Hσ. This type of
kernel has seen previous use in Kim & Scott (2012); Hsu &
Ramos (2019), and variants corresponding to other kernels,
such as Laplace and Student kernels, are also available.
Because the Gaussian density kernel is also a smoothing
kernel, the CME estimator also gives an estimator p̂(y|x)
of the conditional probability density, obtained through the
inner product

〈
kσ(y, ·), µ̂P (Y |X)(x)

〉
Hσ

as

ÊY |x[kσ(y, Y )|X = x] =

M∑
a=1

kσ(y, ηa)fa(x; θ). (4)

This form of density estimate has been theoretically dis-
cussed in Kanagawa & Fukumizu (2014). It is also worth
noting that with a similar probability estimate, Hsu & Ramos
(2019) constructed a marginal likelihood-like objective for
the hyperparameter selection of CMEs, within the context
of likelihood-free inference. While they prove that this
objective provides an asymptotically correct likelihood sur-
rogate, it is not guaranteed to be positive or normalized for
finite data. Consequently, we treat it solely as a proxy for
conditional probability, limiting its use to hyperparameter
selection criteria.

We emphasize that our focus is on CMEs, i.e. on repre-
senting conditional distributions as mean elements within
the RKHS. This enables two key advantages: first, we can
represent distributions even without constraining the NN
output, and second, it opens up applications beyond stan-
dard density estimation tasks, as showcased by the unique
properties of KMEs explored in Section 5.

3.2.1. APPROACH 1: ITERATIVE OPTIMIZATION

Based on the conditional probability estimate (4), we pro-
pose optimizing the bandwidth parameter σ to minimize
an objective function based on L2 norm. Accordingly, we
adopt the following squared (SQ) error loss:

LSQ =
1

2

∫∫
(p̂(y|x)− p(y|x))2 p(x)dxdy.

This objective function has been used in the density-ratio-
based conditional density estimation method (Sugiyama
et al., 2010). In our case, by plugging in p̂(y|x) =∑M

a=1 kσ(y, ηa)fa(x; θ), we obtain the following empiri-
cal loss 1

n

∑n
i=1 ℓ̂SQ(σ), where:

ℓ̂SQ(σ) = −2
∑
a

kσ(yi, ηa)wa +
∑
a,b

k√2σ(ηa, ηb)wawb.

The derivation is given in Appendix C. In practice, we it-
eratively optimize θ and σ, through minθ

1
n

∑n
i=1 ℓ̂(θ) and

minσ
1
n

∑n
i=1 ℓ̂SQ(σ), every step. Since ηa within kσ(·, ηa)

are model parameters, and not randomly sampled during
optimization, σ can be optimized stably using minibatch

optimization, with minimal gradient variance. Comple-
mented with regularization techniques such as weight decay
(Loshchilov & Hutter, 2019), we observe that the optimiza-
tion can generally be carried out without encountering se-
vere overfitting.

3.2.2. APPROACH 2: JOINT OPTIMIZATION

Interestingly, the only distinction between (3) and ℓ̂SQ(σ)
lies in their second terms, representing the squared func-
tional norms on Hσ and H√

2σ, respectively. This close
resemblance hints at the potential for joint optimization of
θ and σ using the objective function given in (3), expressed
as minθ,σ

1
n

∑n
i=1 ℓ̂(θ, σ). The following theorem provides

a key justification for this approach by establishing an in-
equality that connects these two norms:

Theorem 3.1. Let f =
∑M

a=1 k
√
2σ(·, ηa)wa ∈ H√

2σ and
g =

∑M
a=1 kσ(·, ηa)wa ∈ Hσ. Then the following inequal-

ity holds:

∥f∥H√
2σ

≤ ∥g∥Hσ
.

The proof, provided in Appendix D, leverages the Fourier
transform expression of RKHS for translation invariant ker-
nels. By replacing the second term of ℓ̂SQ(σ) with this
upper bound, we observe a coincidence with the original
objective function (3). This result validates our proposal
for joint optimization of θ and σ using (3), since it simulta-
neously optimizes an upper bound of ℓ̂SQ(σ) for σ, while
optimizing the original loss function for θ. Joint optimiza-
tion not only simplifies the procedure but also, as a valuable
byproduct, mitigates overfitting in hyperparameter optimiza-
tion due to the utilization of an upper bound. Indeed, we
observe that joint optimization, with its combined advan-
tages, yields stable performance across various datasets.

3.3. Discussions

We note that when using the Gaussian density kernel and
also optimizing σ, the omitted term in (3),

∑n
i=1 kY(yi, yi),

is not constant anymore. Therefore, our joint optimization
approach is not merely about replacing the Gaussian kernel
with the Gaussian density kernel and then optimizing σ
with the original RKHS loss objective. The supplementary
loss function based on the squared error ℓ̂SQ(σ) is crucial
for the hyperparamter optimization. An interesting aspect
of the joint optimization approach is that the upper bound
of this ℓ̂SQ(σ) (for optimizing σ) and the original RKHS
objective (3) (for optimizing θ and thus

∑n
i=1 kY(yi, yi)

omitted) coincide.

We also note that our supplementary squared error loss
ℓ̂SQ(σ) can be calculated in closed-form due to a conve-
nient property of the Gaussian density kernel. This property
relates to the kernel’s close connection to the Gaussian dis-
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tribution (See Appendix C for derivation). This closed-form
expression directly contributes to Theorem 3.1, justifying
the efficient joint optimization strategy. With other kernel
choices, while it is still possible to approximate ℓ̂SQ, we
may lose the computational efficiency that this Gaussian
density kernel brings. On the other hand, it is also true that
the best choice of kernel can depend on the task and desired
properties. For instance, due to its heavy tail property in the
frequency domain, the Laplace-type kernel could be useful
when capturing high-frequency information in the data is
crucial.

3.4. Related Work

Mixture Density Networks (MDNs) (Bishop, 1994) model
conditional probability distributions as a mixture of (typi-
cally) Gaussian components, where the NN directly predicts
means, variances, and mixing weights. Due to their simplic-
ity, MDNs have been used in diverse tasks (Papamakarios
& Murray, 2016; Makansi et al., 2019).

Normalizing Flows (NFs) (Rezende & Mohamed, 2015; Pa-
pamakarios et al., 2021) transform a simple base distribution
using invertible mappings parameterized by NNs, ultimately
yielding the desired distribution. Particularly, conditional
version of NFs that utilize monotonic rational-quadratic
splines for the transformation (Durkan et al., 2019), have
found extensive use in simulation-based inference settings
(Lueckmann et al., 2021).

Also, Han et al. (2022) recently proposed CARD, a condi-
tional density estimator (and classifier) based on diffusion
models. CARD combines a denoising diffusion-based con-
ditional generative model with a pre-trained conditional
mean estimator, achieving strong performance in diverse
practical settings.

We will compare these methods with our proposed ap-
proaches in the following experimental sections.

4. Experiments on Density Estimation
To investigate the effectiveness of our approach, we conduct
experiments on both toy and real-world datasets. We focus
on conditional density estimation tasks where the dimension
of the output variable is one (dy = 1). Note that the input
variable can be multi-dimensional, and we conduct exper-
iments on such settings using UCI datasets (Dua & Graff,
2017), where dx can be up to 90.

We denote our approach proposed in Subsections 3.2.1 and
3.2.2 as Proposal-Iterative and Proposal-Joint, respectively.
We compare with DF, MDN, NF, and CARD. For DF, we
tested two models: DF used with the median heuristic for
bandwidth selection (DF-med) and DF with bandwidth fixed
to 0.1 (DF-0.1). For NF, we use the conditional version of

autoregressive Neural Spline Flow (Durkan et al., 2019).

Both evaluation metrics employed in these settings require
samples from the learned model. To sample points from
CME-based approaches, we employ kernel herding (Chen
et al., 2010), a deterministic sampling method that yields
super-samples.

4.1. Toy Data

Set Up:

We conduct experiments on three distinct toy datasets: Bi-
modal, Skewed, and Ring. Each dataset features a one-
dimensional input variable and comprises 5000 data points
for training.

These datasets are designed to challenge models with di-
verse distributional characteristics: Bimodal dataset com-
prised of two Gaussian distributions, but the degree of bi-
modality and noise levels vary depending on the value of x.
Skewed dataset are sampled from a skew-normal distribu-
tion, but distribution parameters, such as skewness, change
as a function of x. Ring dataset features a ring-shaped dis-
tribution with an embedded box-shaped distribution. The
detailed generation process as well as a figure for each
dataset is provided in Appendix E.

Evaluation Metric:

We evaluate models using a metric based on the Wasserstein-
1 distance (WAS1), defined by

W1(µ, ν) = inf
π∈Γ(µ,ν)

∫
R×R

|x− y|dπ(x, y),

where Γ(µ, ν) is the set of probability distributions whose
marginals are µ and ν. In the one-dimensional case, this
metric can be readily calculated using packages like SciPy
(Virtanen et al., 2020).

The evaluation process involves the following steps: we
first draw 50 samples from the learned models for each 200
equally spaced evaluation points xtest. We then, compute the
WAS1s between these samples and 50 points sampled from
the true generating process (for each xtest). We average the
WAS1 values for all evaluation points and report the mean
and standard deviation across 10 independent runs.

Results:

The overall results are presented in Table 1, demonstrating
that our proposed approaches outperform competitors in-
cluding NF and CARD. Crucially for DF, the median heuris-
tic fails to achieve optimal performance. It only becomes
competitive with our approaches when the parameter is set
to 0.1, which was identified through empirical trials. This
highlights the general challenge of hyperparameter selec-
tion for the output variable kernel in CME-based methods,
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Table 1. WAS1 for toy datasets. Values are multiplied by 100.

Dataset WAS1 ↓
Proposal-Iterative Proposal-Joint DF-med DF-0.1 MDN NF CARD

Bimodal 5.88± 0.28 5.67± 0.28 10.87± 0.23 5.93± 0.23 6.23± 0.27 6.83± 0.50 6.59± 0.46
Skewed 4.86± 0.23 4.68± 0.22 6.07± 0.19 5.26± 0.19 5.76± 0.18 6.56± 0.29 5.93± 0.26
Ring 21.13± 0.99 21.10± 1.14 26.17± 1.16 22.16± 1.25 26.66± 0.80 27.99± 1.74 29.91± 0.97

Table 2. QICE (in %) for UCI datasets.

Dataset QICE ↓
Proposal-Iterative Proposal-Joint DF-med DF-0.1 MDN NF CARD

Boston 3.15± 0.92 3.09± 0.53 5.74± 1.17 3.88± 0.82 4.85± 1.19 4.09± 0.95 3.45± 0.83
Concrete 3.06± 0.82 3.21± 0.72 4.05± 0.95 4.11± 0.66 3.21± 0.79 2.90± 0.79 2.30± 0.66
Energy 2.89± 0.69 3.29± 0.73 7.14± 0.88 3.23± 0.90 3.54± 0.85 3.62± 1.23 4.91± 0.94
Kin8nm 0.98± 0.29 0.91± 0.19 4.70± 0.32 2.60± 0.41 2.42± 0.32 1.75± 0.87 0.92± 0.25
Naval 10.88± 1.09 6.81± 1.07 7.09± 1.04 8.71± 0.37 8.34± 3.41 4.41± 1.54 0.80± 0.21
Power 0.88± 0.24 0.84± 0.18 4.81± 0.33 2.91± 0.18 1.34± 0.35 1.35± 0.59 0.92± 0.21
Protein 0.48± 0.05 0.55± 0.17 1.83± 0.19 0.80± 0.07 1.09± 0.35 0.80± 0.38 0.71± 0.11
Year 0.71± NA 0.53± NA 1.80± NA 0.56± NA 0.74± NA 1.02± NA 0.53± NA

where both our iterative and joint approaches demonstrably
lead to more effective parameter selection.

4.2. UCI Datasets

Set Up:

To further investigate our approaches, we conduct experi-
ments on 8 real-world regression benchmark datasets from
the UCI repository. Details of the datasets are provided in
Appendix F.

We follow experimental protocols of Han et al. (2022): (a)
we employ the same train-test splits with a 90%/10% ratio,
and use 20 folds for all datasets except Protein (5 folds) and
Year (1 fold), (b) we standardize both input and output vari-
ables for training and remove standardization for evaluation,
and (c) for each test data point xtest, we sample 1000 points
from learned models, conditioned on xtest, and calculate the
metric described below.

Evaluation Metric:

Since UCI datasets do not have “true generating process”,
we adopt the Quantile Interval Coverage Error (QICE) met-
ric proposed also by Han et al. (2022). To compute QICE,
we first generate a sufficient number of samples for each
conditional values xi. We then divide the generated samples
into equally spaced L bins, resulting in L quantile intervals
with boundaries denoted as ŷlowj

i and ŷ
highj
i . Then compute

the following quantity:

QICE :=
1

L

L∑
j=1

∣∣∣∣rj − 1

L

∣∣∣∣, where

rj =
1

n

n∑
i=1

1
yi≥ŷ

lowj
i

· 1
yi≤ŷ

highj
i

.

When the learned conditional distribution perfectly matches
the true distribution, we expect approximately 1/L of the
true data to fall within each of the L quantile intervals,
resulting in a QICE value of 0. In this experiment, we
follow Han et al. (2022) and set L = 10. We report the
mean and standard deviation of the QICE metric across all
splits.

Results:

The overall results are presented in Table 2. It can be seen
that our proposed approaches frequently outperform existing
methods such as DF, MDN, and NF, and often prove com-
petitive with CARD in terms of the QICE metric. This is
particularly impressive considering that CARD requires two
separate NN optimization procedures: 1. Conditional mean
estimator optimization, and 2. Denoising diffusion model
optimization, guided by the optimized conditional mean
estimator. In contrast, our approaches achieve a comparable
level of high-quality density estimation as diffusion-based
CARD, while only using a single NN. The Proposal-Joint
approach stands out with its exceptional efficiency, requiring
only a standard NN training procedure.

It is also worth noting that in the UCI experiments, DF-0.1
clearly underperforms compared to our approaches, cru-
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cially demonstrating the importance of tailoring bandwidth
σ to each dataset for optimal performance. This suggests
that a fixed σ value, as used in DF-0.1, is typically insuffi-
cient for achieving good results across diverse datasets.

5. Applications to Reinforcement Learning
5.1. Backgrounds

We consider a classical setting in RL, where the framework
of a Markov Decision Process (MDP) (Puterman, 2014)
governs the agent-environment interactions. MDP is de-
fined by the tuple (S,A, R, P, γ), where S denotes the state
space, A the action space, P (·|s, a) the transition probabili-
ties, R(s, a) the reward dependent on the state and action,
and γ ∈ (0, 1] the discount factor. We represent the dis-
counted sum of rewards received by an agent under a policy
π as a random variable Zπ(s, a) =

∑∞
t=0 γ

tR(st, at) on
space Z , where s0 = s, a0 = a, st+1 ∼ P (·|st, at), and
at ∼ π(·|st).

The state-action value, also known as Q-value, is defined as
Qπ(s, a) = E [Zπ(s, a)]. In Q-learning (Watkins & Dayan,
1992), the goal is to learn the optimal Q-value, Q⋆(s, a) =
maxπ Q

π(s, a), which is the fixed point of the Bellman
optimality operator T :

(T Q)(s, a) ≡ E [R(s, a)] + γEP

[
max
a′

Q(s′, a′)
]
,

with s′ ∼ P (·|s, a). Deep Q-Network (DQN) (Mnih et al.,
2015) represents Q-values with NNs, parameterized by θ,
and optimizes them based on the following loss function:

ℓ̂(θ) =
(
r + γmax

a′
Qθ−(s′, a′)−Qθ(s, a)

)2
,

where θ− corresponds to the fixed target network, periodi-
cally copied from and synchronized with Qθ. A large replay
buffer stores experienced transitions (s, a, r, s′), and batches
are sampled for mini-batch optimization, consistent with
standard NN training practice.

Instead of only learning the expectation of Z(s, a), distri-
butional RL (DRL) (Bellemare et al., 2017; 2023) aims to
approximate its entire distribution. Accordingly, distribu-
tional Bellman optimality operator can be defined:

(T Z)(s, a) D≡ R(s, a) + γZ

(
s′, argmax

a′
EP [Z (s′, a′)]

)
where, X

D≡ Y indicates that random variables X and Y
follow the same distribution.

Several DRL approaches have significantly advanced the
field of RL, achieving performance gains beyond stan-
dard DQN. One such approach, Categorical DQN (CDQN)
(Bellemare et al., 2017), models distributions as categorical

distribution represented by
∑M

a=1 θaδa, where θa are learn-
able parameters and δa represent fixed discrete atoms on
a pre-defined grid. Alternatively, some approaches utilize
quantile regression for distribution modeling (Dabney et al.,
2018). More recently, Nguyen-Tang et al. (2021) proposed
Moment Matching DQN (MMDQN), which represents dis-
tributions in RKHS. While Nguyen-Tang et al. (2021) did
not explicitly formulate their approach based on CMEs, their
formulation can be interpreted as a CME variant with uni-
form weights. We compare and contrast these approaches
with our proposed method in Section 5.4.

5.2. Proposed Model for DRL

We propose modeling the (conditional) distribution of
Z(s, a) using our NN-CME hybrid approach. This approach
leverages a kernel kZ(·, z) ∈ HZ and represents distribu-
tions as:

µP (Z|S,A)(x) =

M∑
a=1

kZ(·, ηa)fa(x; θ),

where x is a tuple of state and action. Here, ηa are chosen
analogously to atoms δa in CDQN, effectively covering
anticipated support of the distribution. Importantly, our
CME parameterization excels by bypassing the need for
matrix inversion, enabling efficient action selection. In
contrast, applying existing CME approaches (such as DF)
in this setting would necessitate evaluating β(x) in (2) by
accessing the entire replay buffer and performing matrix
inversion on this data. This can be prohibitively expensive,
especially when performed repeatedly.

To construct a loss function in the context of deep Q-
learning, we define a metric between the distribution of
R(s, a) + γZ (s′, a′) and that of Z(s, a). Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) provides a prin-
cipled way to measure the discrepancy between these distri-
butions in the RKHS:

d̂kZ =

∥∥∥∥∥
M∑
a=1

kZ(·, τa)va −
M∑
a=1

kZ(·, ηa)wa

∥∥∥∥∥
HZ

,

where τa = r + γηa and va = fa(x; θ
−). Squaring this

MMD leads to our DRL-specific loss function d̂2kZ
(θ):

d̂2kZ
(θ) =

∑
a,b

kZ(τa, τb)vavb − 2
∑
a,b

kZ(τa, ηb)vawb

+
∑
a,b

kZ(ηa, ηb)wawb.

Thus, we have retained the CME parametrization from Sec-
tion 3, but crucially adopted an MMD-based loss function
to suit RL tasks. This flexible adaptation is enabled by both
representing distributions as mean elements in the RKHS
and exploiting the unique property of KMEs.
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Figure 1. Performance comparison on three environments. We report the mean of cumulative rewards across 10 independent runs.

5.3. Fusing Kernels

Selecting the hyperparameters for kZ is an important issue,
also in RL settings. Corollary 4.1 of Killingberg & Langseth
(2023) implies that careful selection of the bandwidth pa-
rameter is crucial for ensuring theoretical convergence in
moment matching-based DRL, when used with the Gaus-
sian kernel. Inspired by MMD-FUSE (Biggs et al., 2023),
an MMD-based two-sample testing approach, we propose
using a distribution over kernels, k ∈ K. Our approach
employs the following log-sum-exp type loss function:

FUSE = log
(
Ek∼ω

[
exp(d̂2kZ

(θ))
])

where ω is an element of M(K), the set of distribu-
tions over the kernels. For instance, we can define ω as
a uniform distribution over collections of Gaussian ker-
nels with various bandwidths σ > 0, where σ are cho-
sen from a uniformly discretized interval. The Donsker-
Varadhan equality (Donsker & Varadhan, 1975), as stated
in Biggs et al. (2023), offers the following interpretation:
FUSE = supρ Ek∼ρ

[
d̂k(θ)

]
− KL[ρ∥ω], where KL de-

notes the Kullback-Leibler divergence, ρ ∈ M(K) can be
loosely interpreted as the “posterior” over kernels, and ω as
a “prior”.

The intuitive mechanism of this fusing strategy is as fol-
lows: Corollary 4.1 of Killingberg & Langseth (2023) sug-
gests that choosing a large enough bandwidth is necessary
to guarantee theoretical contraction. However, making it
too large reduces the kernel’s power to distinguish close
samples. Intuitively, the fusion strategy calculates a soft
maximum of MMD values with different bandwidths, en-
suring MMD’s test power by giving more weight to smaller
bandwidths while also mixing in larger bandwidths. While a
theoretical analysis of this approach within the DRL context
remains important for future work, empirical results suggest
its performance advantages compared to using a single fixed
kernel.

5.4. Discussions

Both our approach and MMDQN utilize CMEs to model
the distributions of Z(s, a). However, they differ in
what their NNs parameterize. MMDQN directly learns
atoms through its network and assigns them uniform
weights, resulting in the representation: µP (Z|S,A)(x) =
1
M

∑M
a=1 kZ(ga(x; θ), ·). While this eliminates the need for

manual atom specification, its reliance on uniform weights
might hinder its ability to accurately model complex distri-
butions exhibiting multimodality or skewness.

When the predefined atoms ηa in our approach coincide
with the fixed atoms δa in CDQN, the parameterizations
closely resemble each other. However, a key difference
arises in the loss functions: CDQN employs cross-entropy
loss, treating the distribution as categorical, whereas we
leverage an MMD-based loss function. In essence, while our
CME-based representation and MMD-based loss share sim-
ilarities with MMDQN, our approach aligns more closely
with CDQN in its atom structure and NN parameterization,
but employs a distinct loss function.

5.5. Experimental Results

Set Up:

To investigate the unique aspects of our method and gain
insights into DRL design choices, we tested it on three clas-
sic control environments from Gymnasium (Towers et al.,
2023): CartPole, Acrobot, and MountainCar. While our
approach does not inherently constrain the output of f(x; θ)
to be positive or sum to one, we applied a softmax func-
tion in the last layer, analogous to CDQN, making the NN
architecture identical to that of CDQN.

We note that while DRL algorithms are often evaluated on
complex Atari2600 games, such experiments require exten-
sive computational resources. For instance, the work by
Obando-Ceron & Castro (2021) required approximately 5
days to run each agent on each Atari environment using
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a GPU. As Obando-Ceron & Castro (2021) demonstrated
through comprehensive benchmark evaluations, valuable
scientific insights can still be drawn from smaller-scale
environments. Therefore, our focus in this experiment is
on understanding how different parameterizations and loss
functions impact various aspects of learning and control
effectiveness.

Results:

Figure 1 presents the overall results, demonstrating the con-
sistent effectiveness of our approach across three environ-
ments. In CartPole, all methods achieve near-optimal per-
formance, attaining approximately 500 cumulative reward.
However, our method demonstrates faster and more stable
convergence. In Acrobot, while all methods exhibit stability,
ours achieves the highest cumulative reward. On Mountain-
Car, our approach clearly outperforms the others.

Importantly, despite identical distribution parameterization
to CDQN, our approach consistently achieves superior per-
formance. This suggests that the MMD-based loss function
combined with our fusion strategy contributes to the im-
proved performance. Investigating theoretical justification
for this improvement may present a potentially fruitful re-
search direction.

Despite the improved performance reported by Nguyen-
Tang et al. (2021) on Atari tasks, MMDQN displayed insta-
bility in classic control environments. We hypothesize that
this disparity arises from the inherent differences in reward
structures. Sparse rewards in Atari environments potentially
favor MMDQN’s direct particle placement learning, while
predetermined atom structure might be more effective in
classic control environments with denser rewards. This sug-
gests that the choice of distribution parameterization may
depend on the reward structure of environments, highlight-
ing the influence of inductive bias.

6. Conclusion and Future work
This paper introduced a new NN-CME hybrid that effec-
tively addresses the key challenges of existing CME meth-
ods in terms of scalability, expressiveness, and hyperparam-
eter selection. We proposed to replace the Gram matrix
inversion needed for CME estimation with an expressive
NN, and presented strategies for optimizing the hyperparam-
eter of ky by leveraging the Gaussian density kernel. We
demonstrated its effectiveness in representing conditional
distributions: in density estimation tasks, it achieves compet-
itive results, and in RL applications, the proposed method
outperforms competing approaches in terms of cumulative
reward.

Our approach seamlessly lends itself to diverse other set-
tings, including causal inference tasks where using CMEs

offers distinct advantages (Singh et al., 2019; Muandet et al.,
2021; Chau et al., 2021; Park et al., 2021). These works
utilize CMEs as the core foundation for tasks such as esti-
mating counterfactual distributions and distributional treat-
ment effects. Our method can be readily integrated into
these settings by replacing classical CMEs. Importantly,
our novel technique for optimizing hyperparameters on ky
would benefit any CME application.

While our approach effectively handled one-dimensional
outputs, verifying the effectiveness with more challenging
multidimensional settings presents an important area for
future investigation. We believe that the biggest challenge
in multidimensional settings is the choice of location points.
A straightforward way may be to use the k-means clustering
method on training data and use the obtained clusters as
location points. More sophisticated approaches may be to
optimize these points, similar to inducing point methods in
Gaussian Process literature (Hensman et al., 2013). How-
ever, it is well known in the GP community that choosing the
number of inducing points, their initialization, and optimiz-
ing them with gradient-based methods present significant
challenges. We believe that recent developments on this
topic (Burt et al., 2020) may be helpful in our future work.
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Makansi, O., Ilg, E., Çiçek, Ö., and Brox, T. Overcoming
limitations of mixture density networks: A sampling and
fitting framework for multimodal future prediction. In
IEEE International Conference on Computer Vision and
Pattern Recognition, 2019.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf,
B., and Gretton, A. Kernel mean embedding of distribu-
tions: A review and beyond. Foundations and Trends®
in Machine Learning, 10(1-2):1–141, 2017.

Muandet, K., Kanagawa, M., Saengkyongam, S., and
Marukatat, S. Counterfactual mean embeddings. Journal
of Machine Learning Research, 22(162):1–71, 2021.

Nguyen-Tang, T., Gupta, S., and Venkatesh, S. Distri-
butional reinforcement learning via moment matching.

Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(10):9144–9152, 2021.

Obando-Ceron, J. S. and Castro, P. S. Revisiting rainbow:
Promoting more insightful and inclusive deep reinforce-
ment learning research. In Proceedings of the 38th Inter-
national Conference on Machine Learning, Proceedings
of Machine Learning Research. PMLR, 2021.

Papamakarios, G. and Murray, I. Fast ϵ-free inference of
simulation models with bayesian conditional density esti-
mation. In Advances in Neural Information Processing
Systems, volume 29, pp. 1028–1036, 2016.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
modeling and inference. Journal of Machine Learning
Research, 22(57):1–64, 2021.

Park, J. and Muandet, K. A measure-theoretic approach
to kernel conditional mean embeddings. In Advances in
Neural Information Processing Systems, volume 33, pp.
21247–21259, 2020.

Park, J., Shalit, U., Schölkopf, B., and Muandet, K. Con-
ditional distributional treatment effect with kernel con-
ditional mean embeddings and u-statistic regression. In
Proceedings of 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8401–8412. PMLR, 2021.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, volume 20, 2007.

Rezende, D. J. and Mohamed, S. Variational inference with
normalizing flows. In Proceedings of The 32nd Interna-
tional Conference on Machine Learning, volume 37, pp.
1530–1538. PMLR, 2015.

Saitoh, S. Integral transforms, reproducing kernels and
their applications. Pitman research notes in mathematics
series ; 369. Chapman and Hall/CRC, 1997.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. In International Conference on
Learning Representations, 2016.

Singh, R., Sahani, M., and Gretton, A. Kernel instrumental
variable regression. In Advances in Neural Information
Processing Systems, volume 32, pp. 4595–4607, 2019.

Song, L., Huang, J., Smola, A., and Fukumizu, K. Hilbert
space embeddings of conditional distributions with appli-
cations to dynamical systems. In International Confer-
ence on Machine Learning, pp. 961–968, 2009.

11

https://openreview.net/forum?id=KwwBBSzQgRX
https://openreview.net/forum?id=KwwBBSzQgRX


Neural-Kernel Conditional Mean Embeddings

Song, L., Fukumizu, K., and Gretton, A. Kernel embeddings
of conditional distributions: A unified kernel framework
for nonparametric inference in graphical models. IEEE
Signal Processing Magazine, 30(4):98–111, 2013.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K.,
Schölkopf, B., and Lanckriet, G. R. Hilbert space embed-
dings and metrics on probability measures. Journal of
Machine Learning Research, 11:1517–1561, 2010.

Stimper, V., Liu, D., Campbell, A., Berenz, V., Ryll, L.,
Schölkopf, B., and Hernández-Lobato, J. M. normflows:
A pytorch package for normalizing flows. Journal of
Open Source Software, 8(86):5361, 2023.

Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T.,
Hachiya, H., and Okanohara, D. Conditional density
estimation via least-squares density ratio estimation. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pp. 781–788.
PMLR, 2010.

Suzuki, T. Adaptivity of deep relu network for learning in
besov and mixed smooth besov spaces: optimal rate and
curse of dimensionality. In 7th International Conference
on Learning Representations, ICLR 2019, 2019.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff,
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A. Scalability and Expressiveness of Kernel Based Methods
Scalability

The computational cost of inverting the Gram matrix is O(N3), where N is the number of training points. It is well-
established that this calculation becomes expensive (in terms of computational time and memory) and unstable as N grows
beyond a few hundred thousand. This is the main reason why many research efforts have been conducted on cost-reduction
techniques, based on methods such as Random Fourier Features (Rahimi & Recht, 2007) and Nyström approximations
(Drineas & Mahoney, 2005) for kernel methods, and similarly inducing point approaches (Hensman et al., 2013) in the
Gaussian Process community. We also note that kernel based approaches typically require hyperparamter cross validations
to achieve good performance, which also suffers from scalability issues with large datasets.

Expressiveness

From theoretical perspective, it is well-studied that NNs can outperform kernel methods in terms of convergence rates,
particularly when target functions exhibit properties like piece-wise smoothness (Imaizumi & Fukumizu, 2019), non-uniform
smoothness (Suzuki, 2019), etc. In these settings, kernel methods are limited to sub-optimal rates, while NNs can achieve
the minimax optimal rate. Intuitively, this advantage stems from the ability of NNs to learn adaptive and expressive features
directly from the data, unlike kernel methods which rely on pre-defined RKHS features.

B. On Formulations of CMEs
In Section 2.2, we formulated CMEs based on the operator CY |X : HX → HY . This formulation requires the assumption
EY |x [g(Y )|X = ·] ∈ HX , which encodes a smoothness assumption on the operator. It intuitively means that for any
function g(Y ), its expected value E[g(Y )] remains a smooth function of X within the Hx. Since this condition may not
always hold true in practice, a regularization parameter λ is introduced in the empirical estimate to circumvent this issue.

This assumption can be removed by the recently established measure theoretic approach to CMEs (Park & Muandet, 2020).
The function-valued regression problem (1) can be reformulated in the following way:

argmin
F∈GXY

1

n

n∑
i=1

∥ϕ(yi)− F (xi)∥2HY
+ λ ∥F∥2GXY

,

where GXY is a vector-valued RKHS of functions X → HY . More formally, CME is defined based on the expression of
Bochner conditional expectation. This formulation is also used to analyze the statistical learning rate of CMEs (Li et al.,
2022). In the case of our NN-based CMEs, we are using NNs for F ∈ GXY , and with this formulation it may possible to
prove the rate of convergence and the theoretical advantage of using NNs over kernels similarly to works such as Imaizumi
& Fukumizu (2019) and Suzuki (2019).

C. Derivation of the Empirical SQ Loss
The SQ loss can be further expanded as follows:

LSQ =
1

2

∫∫
(p̂(y|x)− p(y|x))2 p(x)dxdy.

=
1

2

∫∫
(p̂(y|x))2p(x)dxdy −

∫∫
p̂(y|x)p(x, y)dxdy + C,

where C is the constant term. By plugging in p̂(y|x) =
∑M

a=1 kσ(y, ηa)fa(x; θ), the empirical estimate can be written as:

L̂SQ =
1

2

∑
i

∑
a,b

(∫
kσ(ηa, y)kσ(y, ηb)dy

)
fa(xi; θ)fb(xi; θ)−

∑
i

∑
a

kσ(yi, ηa)fa(xi; θ).
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The second term corresponds to the first term in ℓ̂SQ(σ). For the first term, we have an integral
∫
kσ(ηa, y)kσ(y, ηb)dy.

With kσ having the form of Gaussian density, this can be calculated analytically:∫
k(ηa, y)k(y, ηb)dy =

(
1

2πσ2

)dy
∫

exp

(
− 1

2σ2
(|ηa − y|2 + |y − ηb|2)

)
dy

=

(
1

2πσ2

)dy
∫

exp

(
− 1

4σ2

(
4

∣∣∣∣y − ηa + ηb
2

∣∣∣∣2 + |ηa − ηb|2
))

dy

=

(
1

2πσ2

)dy
∫

exp

(
− 1

σ2

∣∣∣∣y − ηa + ηb
2

∣∣∣∣2
)
dy exp

(
− 1

4σ2
|ηa − ηb|2

)

=

(
1

2π(
√
2σ)2

)dy

exp

(
−|ηa − ηb|2

2(
√
2σ)2

)
= k√2σ(ηa, ηb).

combining these elements, we obtain:

L̂SQ =

n∑
i=1

−2
∑
a

kσ(yi, ηa)fa(xi; θ) +
∑
a,b

k√2σ(ηa, ηb)fa(xi; θ)fb(xi; θ)

 .

D. Proof of Theorem 3.1
We first introduce the Fourier expression of RKHS given by a shift invariant integrable kernel k(x− y) on IRd. Let k̂ denote
the Fourier transform of k(z):

k̂(ω) =
1

(2π)d/2

∫
k(z)e−

√
−1ωT zdz.

It is known (e.g. Girosi et al., 1995; Saitoh, 1997) that a function g on IRd is in the corresponding RKHS Hk if and only if∫
|ĝ(ω)|2

k̂(ω)
dω <∞

and its squared RKHS norm is given by

∥g∥2Hk
=

∫
|ĝ(ω)|2

k̂(ω)
dω.

Note that by Bochner’s theorem, the Fourier transform k̂(ω) takes non-negative values.

It is well known that, the Fourier transform of Gaussian density kernel kσ(z) = 1
(2πσ2)d/2

exp(−∥z∥2

2σ2 ) is given by

k̂σ(ω) =
1

(2π)d/2
e−

σ2∥ω∥2
2 . (5)

Let

g =

M∑
a=1

kσ(·, ηa)wa ∈ Hσ and f =

M∑
a=1

k√2σ(·, ηa)wa ∈ H√
2σ

be the two functions in Theorem 3.1. It is easy to see from the general Fourier formulas that

ĝ(ω) =
∑
a

wae
−
√
−1ηT

a ωk̂σ(ω)

and thus we obtain from (5)

∥g∥2Hσ
=

1

(2π)d/2

∫ ∣∣∣∑
a

wae
−
√
−1ηT

a ω
∣∣∣2 exp(−σ2∥ω∥2

2

)
dω.
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Similarly, by replacing σ with
√
2σ, we have

∥f∥2H√
2σ

=
1

(2π)d/2

∫ ∣∣∣∑
a

wae
−
√
−1ηT

a ω
∣∣∣2 exp(−σ2∥ω∥2

)
dω.

It follows from exp
(
−σ2∥ω∥2

)
≤ exp

(
−σ2∥ω∥2

2

)
for any ω that

∥f∥2H√
2σ

≤ ∥g∥2Hσ
,

which completes the proof.

E. Details on Experiments in Section 4.1
The implemented code can be found at https://github.com/tokorotenten/Neural-Kernel.

E.1. Data Generating Process

The visualization of the toy datasets used in the experiment is shown in Figure 2. The generating process is provided in the
following:

Figure 2. Visualization of toy datasets

Bimodal:

y = 0.2x+ P + ϵ, where x ∼ U(−5, 5), P ∼ Binomial
(

1
1+exp(−1.5x)

)
, and ϵ ∼ N(0, (0.05x)2).

Skewed:

y ∼ SkewNormal(ξ(x), ω(x), α(x)), where x ∼ U(−5, 5), ξ(x) = 0.1x, ω(x) = 0.1|x| + 0.05, and α(x) = −8 + 8 ·(
1

1+exp(−x)

)
. Here, ξ(x) corresponds to location, ω(x) to scale, and α(x) to skewness.

Ring:

y =


{
U(−1, 1) P1 = 1/2

Ring(x) P1 = 1/2
|x| ≤ 1

Ring(x) |x| > 1

,

and

Ring(x) =

{
2 · sin(arccos(x/2)) + ϵ P2 = 1/2

2 · sin(− arccos(x/2)) + ϵ P2 = 1/2
,

where x ∼ U(−2, 2) and ϵ ∼ N(0, 0.12).
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E.2. Architecture and Hyperparameter Choices

We used NNs with two fully-connected hidden layers, each containing 50 ReLU activation units. For the optimizer, we used
AdamW (Loshchilov & Hutter, 2019). Other architectural and hyperparameter choices for each model are provided below:

Proposals: We set the number of location points M = 100, and ηa were chosen as uniformly spaced grid points within
the closed interval bounded by the minimum and maximum values observed in the training data. The learning rate was set
to 1e-4, the batch size was set to 50, and the number of training epochs was set to 1000, and σ was initialize to 1.0. For
Proposals, we have a final layer that outputs the weights on the location points.

DFs: The regularization parameter λ was set to 0.1, the learning rate was set to 1e-4, the batch size was set to 50, and the
number of training epochs was set to 1000. For the kernel, we used Gaussian kernel. For DFs, the second hidden layer also
corresponds to the final layer that outputs the features.

MDN: The number of mixing component was set to 10, the learning rate was set to 1e-4, the batch size was set to 50, and
the number of training epochs was set to 1000. For MDN, we have three final layers that output means, variances and mixing
weights.

NF: We used the conditional version of the autoregressive Neural Spline Flow (Durkan et al., 2019) implementation by
Stimper et al. (2023). The number of flows were set to 5, the learning rate was set to 1e-3, the batch size was set to 256, and
the number of training epochs was set to 100. For NF, the number of NNs mirrors the number of flows, resulting in 5 NNs in
this case.

CARD: We used the implementation provided by Han et al. (2022), and a GitHub repository https://github.com/
lightning-uq-box/lightning-uq-box. For the conditional mean estimator, we applied the same NN architecture
as other methods, and the learning rate was set to 1e-3, the batch size was set to 256, and the number of training epochs
was set to 100. For denoising diffusion model, we used the same architecture used in the toy data experiments in Han et al.
(2022): NN based on three fully-connected hidden layers with 128 units. The learning rate was set to 1e-3, the batch size
was set to 256, the number of time steps was set to 1000, and the number of training epochs was set to 5000. Note that for
CARD, we first optimize the conditional mean estimator, and then use this to guide the next optimization procedure for the
denoising diffusion model.

E.3. Additional Experiments on Computational Costs

Evaluation time

To compare empirical computational times, we conducted additional experiments on our toy dataset (Bimodal). We begin by
comparing the average time required to evaluate f(x; θ) for our proposal, and β(x) for DF and classic kernel based CME
(Kernel). The experiment was conducted on MacBook Pro with M2 system, using only a CPU.

Table 3. Computational time for evaluation

Proposal DF Kernel

53.7µs± 201ns 82.6µs± 120ns 646ms± 43ms

Even for a moderate data size of N = 5000, our proposal is about 104 faster than Kernel. This efficiency gap will become
increasingly significant asN grows large, and particularly in scenarios requiring repeated evaluations, such as gradient-based
optimization or RL tasks.

Training time

The comparison of training time is generally difficult due to its dependence on factors like the number of iterations, batch
sizes, and number of hyperparameters to cross-validate. We report the training time in our toy data setting for our proposal
(Proposal-Joint) and DF. For classic CME, we leverage the analytical solution of LOOCV to efficiently choose the best
parameters among 10 bandwidths and 10 lambdas (and consider this as “training”).

It can be seen that our proposal is about 7 times faster than Kernel in this setting.
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Table 4. Computational time for training

Proposal DF Kernel

44.2s± 16.6ms 100.6s± 1.6s 305s± 2.44s

F. Details on Experiments in Section 4.2
F.1. UCI Datasets

We report the number of data points and input features for each dataset in Table 5. We excluded the Yacht dataset due to its
limited size of only 308 data points, and the Wine dataset because its output variable consists of only 5 discrete values and
exhibits near-linear relationships.

Table 5. (number of data points , number of input features) for each dataset

Dataset Boston Concrete Energy Kin8nm Naval Power Protein Year

(506, 13) (1030, 8) (768, 8) (8192, 8) (11934, 16) (9568, 4) (45730, 9) (515345, 90)

F.2. Architecture and Hyperparameter Choices

For Boston, Concrete, Energy and Kin8nm, we used NNs with three fully-connected hidden layers, each containing 50 ReLU
activation units. For Naval, Power, Protein and Year, we used NNs with three fully-connected hidden layers, each containing
100 ReLU activation units. For the optimizer, we used AdamW (Loshchilov & Hutter, 2019). We report the learning rate,
the batch size and the number of training epochs in Table 6, Table 7, and Table 8, respectively. Other architectural and
hyperparameter choices for each model are provided below:

Proposals: We used Spectral Normalization (SN) (Miyato et al., 2018) in the second hidden layer and the final output layer.
We set the number of location points M = 100, and ηa were chosen as uniformly spaced grid points within the closed
interval bounded by the minimum and maximum values observed in the training data. The bandwidth σ was initialized to
1.0. For Year dataset, when iteratively optimizing kernel parameter (Proposal-Iterative), we opted to update σ every 4 steps.

DFs: We used SN in the third hidden layer (which also corresponds to the final output layer). The regularization parameter
λ was set to 0.1, and for the kernel we used Gaussian kernel.

MDN: We used SN in the third hidden layer. The number of mixing components was set to 10, except for Protein and Year
where it was set to 5.

NF: We used the conditional version of the autoregressive Neural Spline Flow (Durkan et al., 2019) implementation by
Stimper et al. (2023). For NF, we found that the model can easily overfit, and so we used slightly different NN architectures
from the others: For Boston, Concrete, Energy and Kin8nm, we used NNs with two fully-connected hidden layers, each
containing 50 ReLU activation units. For Naval, Power, Protein and Year, we used NNs with three fully-connected hidden
layers, each containing 50 ReLU activation units. The number of flows were set to 5, and the number of training epoch was
set as 10 to mitigate overfitting.

CARD: We directly adopt the results presented in Han et al. (2022).

F.3. Additional Results: RMSE

Table 9 presents the RMSE values for each dataset. RMSE was computed using the same samples employed for QICE
metric evaluation. Results show that CARD outperforms other methods in most cases. This aligns with expectations, as
the initial step of CARD involves training a conditional mean estimator. Notably, other methods do not include explicit
conditional mean estimation during training or within their objective functions. Consequently, we interpret comparable
RMSE values to CARD as evidence that the generated samples avoids any pathological behaviors that may potentially
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Table 6. Learning rates

Proposals DFs MDN NF

Boston 0.0005 0.0005 0.0005 0.001
Concrete 0.0005 0.0005 0.0005 0.001
Energy 0.0005 0.0005 0.0005 0.001
Kin8nm 0.0005 0.0005 0.0005 0.001
Naval 0.001 0.001 0.001 0.001
Power 0.001 0.001 0.001 0.001
Protein 0.001 0.001 0.001 0.001
Year 0.001 0.001 0.001 0.001

Table 7. Batch sizes

Proposals DFs MDN NF

Boston 32 32 32 50
Concrete 32 32 32 50
Energy 32 32 32 50
Kin8nm 100 100 100 100
Naval 256 100 100 256
Power 100 100 100 256
Protein 256 100 256 256
Year 512 256 512 256

exploit the QICE metric.

G. Details on RL Experiments
The implemented code can be found at https://github.com/tokorotenten/Neural-Kernel.

G.1. Environmnets

We briefly describe environments used in our experiments:

CartPole-v1: An agent controls a cart on a frictionless track, aiming to balance a pole. The state space is four-dimensional,
encompassing cart position, velocity, pole angle, and pole tip velocity. The agent can choose to push the cart left or right,
receiving a +1 reward per balanced time step. Episodes terminate when the pole angle exceeds ±12, the cart reaches the
track edge, or the episode exceeds 500 steps.

Acrobot-v1: This environment features a two-linked pendulum with a controllable joint. The agent aims to swing the outer
link’s end to a specific height. The six-dimensional state describes joint angles and velocities, and the agent can apply no
torque, torque left, or torque right. It receives a -1 reward per step before reaching the goal, and episodes end upon reaching
the goal or exceeding 500 steps.

MountainCar-v0: This environment challenges an agent to drive an under-powered car up the mountain to the right. The
agent must gain momentum by moving back and forth to achieve this goal. The state comprises the car’s position and
velocity, and the agent can push left, do nothing, or push right. Each step incurs a -1 reward until reaching the goal position,
and episodes end upon reaching the goal or exceeding 200 steps.

G.2. Architecture and Hyperparameter Choices

We first describe architecture and hyperparameter choices shared across all methods: The NN architecture comprised two
fully-connected hidden layers, each containing 50 ReLU activation units. For the optimizer, we used Adam (Kingma & Ba,
2015), and learning rates were adjusted for each environment: 1e-4 for CartPole and 1e-3 for Acrobot and MountainCar.
A discount factor γ of 0.99 and batch size of 32 were used consistently. The replay buffer held 10,000 experiences, with
parameter updates occurring every 2 steps and target network updates every 100 steps (except where noted). For exploration,
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Table 8. Training epochs

Proposals DFs MDN NF

Boston 500 500 250 10
Concrete 500 500 250 10
Energy 500 500 250 10
Kin8nm 500 500 250 10
Naval 500 500 250 10
Power 500 500 250 10
Protein 500 500 250 10
Year 50 50 50 10

Table 9. RMSE for UCI datasets. For Kin8nm and Naval dataset, values are multiplied by 100.

Dataset RMSE ↓
Proposal-Iterative Proposal-Joint DF-med DF-0.1 MDN NF CARD

Boston 3.56± 1.02 3.45± 1.08 3.40± 0.92 4.01± 1.08 3.36± 1.14 4.14± 1.18 2.61± 0.63
Concrete 6.40± 0.83 5.98± 0.63 5.84± 0.54 7.74± 0.76 5.62± 0.58 7.22± 0.62 4.77± 0.46
Energy 1.19± 0.21 0.99± 0.16 0.69± 0.13 2.67± 0.25 2.24± 0.43 2.88± 0.30 0.52± 0.07
Kin8nm 8.19± 0.23 8.11± 0.29 7.11± 0.21 9.52± 0.27 6.95± 0.22 7.98± 0.32 6.32± 0.18
Naval 0.09± 0.02 0.17± 0.03 0.01± 0.00 0.21± 0.02 0.08± 0.05 0.36± 0.08 0.02± 0.00
Power 3.96± 0.20 3.89± 0.19 4.08± 0.16 4.56± 0.17 3.79± 0.17 4.19± 0.18 3.93± 0.17
Protein 3.97± 0.05 3.93± 0.03 4.77± 0.05 4.83± 0.04 3.79± 0.04 4.38± 0.04 3.73± 0.01
Year 8.82± NA 8.82± NA 8.88± NA 8.92± NA 8.79± NA 8.80± NA 8.70± NA

an ϵ-greedy policy with linear decay was implemented, starting ϵ with 1.0 and decaying to 0.01 over 10,000 steps. Finally,
agents interact with the environment for a total of 500,000 steps, and were evaluated on an independent test episode every 100
steps with ϵ = 0.001. Also note that to isolate the influence of our method’s design choices, we refrained from employing
common RL techniques such as double Q-learning (van Hasselt et al., 2016) and prioritized experience replay (Schaul et al.,
2016). Other architectural and hyperparameter choices for each model are provided below:

Proposal: We set ηa as uniform grid of 51 points, ranging from -100 to 100. Consequently, the final output layer dimension
of NN becomes 51× |A| where |A| represents the action space size. We also apply softmax fuction to normalize these 51
points associate with each action, which we find to result in improved performance. For kernel, we used Gaussian kernel.
Following Biggs et al. (2023), the distribution over kernels ω was defined as a uniform distribution over collections of
Gaussian kernels with 10 different bandwidths σ > 0. These bandwidths were selected from a uniform grid spanning the
interval between half the 5th percentile and half the 95th percentile of the distance values {∥ηa − η′a∥}.

CDQN: We set δa as uniform grid of 51 atoms, ranging from -100 to 100. Consequently, the final output layer dimension of
NN becomes 51× |A|. Softmax fuction is applied to normalize these 51 atoms associate with each action. For CartPole, we
set the target update period to 1000, as this led to improved performance.

MMDQN: We set the number of particles learned by NN to 51. Consequently, the final output layer dimension of NN
becomes 51× |A|. For CartPole and MountainCar, we set the target update period to 1000, and also scale the reward by 0.1
(aiding particle learning by NN), as this led to improved performance. For kernel, we followed Nguyen-Tang et al. (2021)
and used (uniform) mixture of 10 Gaussian kernels, with bandwidths set as uniformly spaced values between 1 and 100.
When the reward was scaled by 0.1, this bandwidth range was adjusted to 1 to 10.

DQN: Final output layer dimension of the NN is |A|.
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G.3. Additional Results on Proposed Model

To investigate the impact of our fusing strategy (Proposal-Fuse), we conducted a comparative analysis with a variant of our
proposal that employs a single bandwidth parameter (Proposal-Single). We used the same architecture and hyperparameter as
CDQN, and we set the bandwidth to 10. The result shown in Figure 3 demonstrates a significant performance improvement
when using the fusing strategy. Without the fusing, Proposal-Single is slightly worse than CDQN on CartPole and
MountainCar. This highlights both the efficacy of the fusing approach and the critical role of kernel hyperparameter selection
in DRL contexts.
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Figure 3. Comparison of our proposed methods using single and fused kernels. We report the mean of cumulative rewards across 10
independent runs.
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