
Quantile-Conditioned Fairness:
Extending Binary Fairness Evaluation to Continuous Outcomes

Arushi Jain1, Praveen Thoranathula2,
1Independent
2Independent

arushijain1154@gmail.com, praveen.thorana@gmail.com

Abstract

Bias and fairness remain persistent challenges in the respon-
sible deployment of machine learning systems. While most
existing metrics are designed for binary classification, fair-
ness evaluation for regression models, widely used in do-
mains such as risk scoring, pricing, and demand forecast-
ing, remains comparatively underexplored. We introduce a
quantile-conditioned fairness framework for regression that
extends conditional fairness assessment from binary to con-
tinuous outcomes. The proposed method partitions target val-
ues into quantiles, computes group-to-complement predic-
tion ratios within each segment, and then aggregates these
ratios to produce interpretable fairness scores. Through a se-
ries of controlled ablation studies on synthetic data, we ana-
lyze the effects of bias strength, protected group imbalance,
and model performance. We also benchmark our solution
against the open-source Dalex fairness toolkit. We further
show that the same conditioning principle naturally extends to
multiclass classification, treating each class as a conditioning
bucket. Real-world case studies on regression and classifica-
tion datasets demonstrate the practical utility of our approach.
Our implementation is lightweight and easily integrable into
existing model development workflows, providing a deploy-
able framework for fairness evaluation for all domains.

Introduction
Machine learning models are increasingly deployed in high-
stakes domains such as lending, healthcare, and customer
retention. As a result, ensuring that such models do not in-
troduce or amplify bias across demographic groups has be-
come a central requirement for responsible AI deployment
(Tolan 2019; Liu and Yilin Ning 2025). Existing fairness re-
search and tooling largely centers on binary classification,
with metrics such as demographic parity, equalized odds,
and calibration. Yet, many deployed systems rely on regres-
sion or multiclass models (e.g., risk score, pricing, or de-
mand forecasting), where fairness evaluation remains under-
explored and difficult to interpret (Caton and Haas 2024).

While developing fairness evaluation tools for deployed
models, we began with a fairness package for binary classi-
fication that relied on conditioning on the true outcome and
comparing predicted probabilities across protected groups.
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This approach proved simple, interpretable, and effective in
practice. When regression use cases emerged, however, no
comparable fairness solution existed in the literature or in
open-source libraries. Existing toolkits such as AIF360 (Bel-
lamy et al. 2019) and Fairlearn (Bird et al. 2020) offer only
limited regression functionality, and alternative approaches
such as Dalex (Baniecki et al. 2021) approach regression
fairness indirectly by testing whether predictions add infor-
mation about group membership beyond targets, which is
less interpretable and actionable for practitioners.

We address this gap with a quantile-conditioned fairness
framework for regression. The method divides the continu-
ous target into quantiles and, within each, computes the ratio
of mean predictions for a protected group versus all others.
Aggregating these ratios across quantiles yields an intuitive
measure of disparity. The same conditioning principle ex-
tends seamlessly to multiclass classification by treating each
class as a conditioning bucket.

We validated this framework through extensive synthetic
simulations that vary injected bias, group proportions, and
model accuracy, and compare its behavior with Dalex. the
only prior tool for regression use cases, under identical se-
tups. We further evaluate it on real-world regression and
classification datasets, including insurance and adult income
tasks (Choi 2018; Becker and Kohavi 1996), showing that it
provides actionable insights for practitioners.

Our contributions are:
• A quantile-based fairness framework that extends bi-

nary conditional fairness testing to regression.
• A unified treatment of regression, binary, and multiclass

prediction settings.
• Synthetic stress tests analyzing sensitivity to bias,

class imbalance, and model quality, benchmarked against
Dalex, the only existing regression fairness toolkit.

• Real-world validation, demonstrating interpretability
and practical implementation, enabling seamless adop-
tion in production workflows.

Related Work
Fairness evaluation has been most thoroughly developed
for classification, grounded in three statistical criteria: inde-
pendence, separation, and sufficiency (Barocas, Hardt, and
Narayanan 2023; Steinberg, Reid, and O’Callaghan 2020).



Independence corresponds to demographic parity, requiring
predictions to be independent of group membership. Separa-
tion underlies equalized odds and equal opportunity, requir-
ing equal error rates across groups conditional on the true
outcome. Sufficiency motivates predictive parity and group
calibration, requiring outcomes to be independent of group
given the model’s prediction (McKinnon 2023). Most fair-
ness toolkits provide extensive support for classification fair-
ness evaluation using these metrics.

For regression, definitions and tools are far less mature
and standardized. Prior work has proposed mean prediction
parity (Calders et al. 2013), distributional comparisons via
the Mann–Whitney U or Kolmogorov–Smirnov statistical
tests (Zhao and Chen 2019; Agarwal, Dudı́k, and Wu 2019),
and dependence-based measures such as mutual information
(Steinberg et al. 2020; Steinberg, Reid, and O’Callaghan
2020). Other works introduce pairwise fairness formula-
tions that assess disparities through instance-wise compar-
isons rather than group-level aggregates (Narasimhan et al.
2020). Efforts to mitigate bias during model training have
also been explored, including correlation-based regulariza-
tion and ridge-penalty approaches (Komiyama et al. 2018;
Marco Scutari 2022). While these methods are theoreti-
cally rigorous, they primarily focus on in-training fairness
enforcement rather than post-hoc fairness evaluation. Con-
sequently, there is still no consensus on standard post-
modeling regression fairness metrics, and thresholds for
what constitutes “acceptable” fairness remain ambiguous.

Popular toolkits reflect this imbalance. IBM’s AIF360
(Bellamy et al. 2019) implements dozens of classification
metrics and mitigation algorithms, but has little direct sup-
port for regression. Microsoft’s Fairlearn (Bird et al. 2020)
provides a flexible framework to evaluate disparities by sub-
group, but regression users must define their own fairness
metrics or constraints. Other tools such as Aequitas (Saleiro
et al. 2019) and Google’s Fairness Indicators (Greer et al.
2019) are similarly classification-focused. Dalex (Baniecki
et al. 2021) is a notable exception, offering experimental re-
gression fairness via auxiliary prediction-of-group tests, but
its indirect formulation limits interpretability.

Our framework directly addresses this gap by using con-
ditional comparisons within outcome quantiles, avoiding ar-
bitrary binarization of continuous outputs and yielding intu-
itive group-to-rest disparity ratios. This same principle uni-
fies fairness evaluation across regression, binary, and multi-
class prediction settings.

Methodology
Proposed Approach
Our approach generalizes a simple and intuitive fairness idea
originally used in binary classification: condition on the
true outcome, then compare predicted scores for a group
against the rest.

Binary Classification: Let Y ∈ {0, 1} be the true out-
come, p̂ = P (Y = 1|X) the predicted probability, and A
the protected attribute. For each target y ∈ {0, 1}, compute:

ry(g) =
E[p̂ | Y = y,A = g]

E[p̂ | Y = y,A ̸= g]
(1)

A ratio of 1 indicates parity: group g receives the same
predicted probability as others, conditional on the true la-
bel. Ratios outside a threshold of [0.8, 1.25] (Feldman et al.
2015) suggest bias.

To ensure boundedness and prevent opposite-direction
disparities from canceling out, use a direction-free version
of this ratio:

Fairnessy(g) = min (ry(g), 1/ry(g)) ∈ (0, 1] (2)

Connection to Fairness Theory: Our formulation is
grounded in well-established fairness principles. In binary
classification, the quantity

E[p̂ | Y = y,A = g] (3)

is a direct empirical estimate of the conditional expectation
term that appears in separation-based fairness criteria, which
require predictions to be independent of group membership
conditional on the true label (Barocas, Hardt, and Narayanan
2023). A perfectly fair model under separation satisfies

Ŷ ⊥ A | Y (4)

Our ratio ry(g) is therefore a finite-sample diagnostic for vi-
olations of separation, and the direction-free transformation
Fairnessy(g), produces a bounded, symmetric deviation-
from-parity measure.

Generalization to Regression: For continuous outcomes
Y ∈ R, conditioning on exact values is not feasible. Instead,
partition Y into quantiles. For each quantile q, compute:

rq(g) =
E[ŷ | Y ∈ q, A = g]

E[ŷ | Y ∈ q, A ̸= g]
(5)

Here ŷ is the regression prediction. A fairness score for
group g is obtained as a weighted average over quantiles:

Fairness(g) =
∑
q

wq ∗ Fairnessq(g) (6)

where Fairnessq(g) comes from equation (2) and wq re-
flects the sample proportion in quantile q.

Rationale for Quantile Conditioning: Partitioning the
support of Y into quantiles provides a measurable ap-
proximation to conditioning on Y , analogous to forming
a Riemann partition of the outcome space. As the num-
ber of quantile buckets increases, the aggregated quantity
Fairnessq(g) converges to a discretized estimate of the
separation condition in equation 4.

Quantiles are preferred over fixed-width bins because they
guarantee comparable sample sizes, reduce variance, and
avoid pathological partitions in skewed or heavy-tailed dis-
tributions. Thus, the proposed method is a generalization of
separation-style fairness to continuous outcomes using sta-
tistically stable conditional partitions.

Extension to Multiclass Classification: Multiclass is a
natural extension of regression in our framework. Instead of
quantiles, each class label serves as a conditioning bucket.
For class c, compute:

rc(g) =
E[p̂c | Y = c, A = g]

E[p̂c | Y = c, A ̸= g]
(7)



followed by the transformation in equation (2) and aggrega-
tion as explained in equation (6). Because we aggregate a
direction-free score, the final score does not indicate over-
or under-prediction. However, bias direction can be identi-
fied from bucket-level diagnostics of group vs other ratios.

Target Fairness Diagnostics
In addition to measuring fairness in model predictions, our
framework also provides diagnostics of unfairness in the tar-
get variable itself. This distinction helps practitioners sepa-
rate disparities originating from biased outcomes from those
introduced by the predictive model.

Regression Targets: For continuous outcomes, we com-
pute the point-biserial correlation rpb between group mem-
bership (A = g vs. others) and the target Y . The intuition
is to test whether the average target differs systematically by
group. A fairness score is then defined as:

Fairnesstarget(g) = 1− |rpb(Y,A = g)| (8)

Classification Targets: For discrete outcomes, we con-
struct a 2× C contingency table contrasting group g vs. the
rest against the C target classes. We compute Cramér’s V,
a normalized measure of association in [0, 1]. The fairness
score is defined as:

Fairnesstarget(g) = 1− Vg (9)

For both metrics, a value near 1 indicates little or no associ-
ation between the group and the target; lower values reveal
stronger associations (potentially biased targets).

Synthetic Data Generation
We generate synthetic regression datasets (Algorithm 1)
with a continuous target variable, continuous model predic-
tions and categorical protected attributes. The data generator
allows explicit control over both the distributional structure
of protected groups and the injection of bias into either the
targets or the model predictions.

Bias injection. To simulate bias, we modify either the tar-
get variable or the predicted scores by applying a multiplica-
tive shift factor to one or more protected groups. Formally,
for a group A = g with base target Y 0

g , we define the biased
target as:

Yg = Y 0
g ∗ (1 + δg) (10)

where δg controls the direction and magnitude of bias (δg >
0 indicates overestimation and δg < 0 underestimation). The
same is followed for biasing predictions.

Experimental factors. We vary four key aspects of the
data-generating process:
• Bias magnitude: Low vs. high values of δg .
• Group prevalence: Protected categories with equal, im-

balanced, or rare group proportions. Bias can appear in
either the prevalent or rare category.

• Number and alignment of biased categories: One or
two groups may be biased, and their biases may be
aligned (overindexed in both) or opposed (overindexed
in one, underindexed in another). These settings test
whether fairness metrics can detect and attribute multi-
ple simultaneous biases.

Algorithm 1: Synthetic Data Generator for Regression
Input: Configuration parameters (bias factors, group pro-
portions, biased groups, noise level)
Output: Synthetic dataset with target, prediction, and pro-
tected groups

1: Initialize N samples and protected groups
{UTUP,UTBP,BTUP,BTBP}

2: For each scenario s, sample protected groups As ∼
Categorical(π1, π2, ...πn)

3: Generate base targets Y (0) ∼ N (µ, σ)

4: Generate base predictions Ŷ (0) = αY (0) +N (0, σnoise)
5: for each scenario s in {UTUP, UTBP, BTUP, BTBP}

do
6: if s == UTUP then
7: No bias applied
8: else if s == UTBP then
9: Apply prediction bias for group g:

10: Ŷg ← Ŷ
(0)
g × pred bias factor

11: else if s == BTUP then
12: Apply target bias for group g:
13: Yg ← Y

(0)
g × target bias factor

14: Prediction follows target:

15: Ŷg ← Ŷg
(0)
× target bias factor

16: else if s == BTBP then
17: Apply target and prediction bias for group g:
18: Yg ← Y

(0)
g × both target factor,

19: Ŷg ← Ŷ
(0)
g × both pred factor

20: end if
21: end for
22: return Dataset (Y, Ŷ , As) and bias metadata

• Model performance: High vs. low signal-to-noise ra-
tios, which influence prediction reliability.

Target–Prediction scenarios. For each configuration, we
construct four base cases that represent how bias may appear
in the real world:
• UTUP (Unbiased Targets, Unbiased Predictions):

Neither targets nor predictions contain bias; fairness met-
rics should indicate parity.

• UTBP (Unbiased Targets, Biased Predictions): Targets
are unbiased but predictions exhibit systematic bias.

• BTUP (Biased Targets, Unbiased Predictions): Both
targets and model predictions are biased but the model
does not amplify the target bias. Fairness frameworks
should correctly treat the model as fair since model just
reflects the bias in real-world data.

• BTBP (Biased Targets, Biased Predictions): Both tar-
gets and predictions are biased but the model is actually
accentuating the bias further, representing the most com-
mon real-world scenario.

Classification Extension. We also generate synthetic
multiclass classification datasets (Algorithm 2) with discrete
class labels, class-probability predictions, and categorical
protected attributes. The generator follows the same design



Algorithm 2: Synthetic Data Generator for Classification
Input: Configuration parameters (bias factors, group pro-
portions, biased groups, noise level)
Output: Synthetic dataset with target, prediction, and pro-
tected groups

1: Initialize N samples and protected groups
{UTUP,UTBP,BTUP,BTBP}

2: For each scenario s, sample protected groups As ∼
Categorical(π1, π2, ...πn)

3: Generate base targets Y ∼ Categorical(p)
4: For each class k, generate base predictions:

if Y = k, Sk ← Beta(αcorrect, βcorrect)
else Sk ← Beta(αincorrect, βincorrect)

5: Normalize base predictions (so
∑

k p̂k = 1)
6: for each scenario s in {UTUP, UTBP, BTUP, BTBP}

do
7: if s == UTUP then
8: No bias applied
9: else if s == UTBP then

10: Apply prediction bias for group g:
11: p̂g ← p̂g ⊙ pred bias; renormalize to sum to 1
12: else if s == BTUP then
13: Apply target bias for group g:
14: Resample Yg ∼ Categorical

(
τg

(target bias)
)

15: Prediction follows target:
16: Redraw base prediction scores and renormalize
17: else if s == BTBP then
18: Apply target and prediction bias for group g:
19: Resample Yg ∼ Categorical

(
τg

(target bias)
)
;

Redraw base prediction scores and renormalize
20: p̂g ← p̂g ⊙ pred biasg; renormalize to sum to 1
21: end if
22: end for
23: return Dataset (Y, Ŷ , As) and bias metadata

principles as the regression setup, enabling explicit control
over both the distribution of protected groups, model quality
and the controlled injection of bias into either the true labels
or the predicted probabilities.

For each protected group, base class prediction probabili-
ties are drawn from Beta distributions with different parame-
ters for correct vs incorrect class. To introduce bias in targets
for a biased group, we manipulate the true class distribu-
tion in the group by resampling targets from a skewed class
prior τ g . To introduce bias in predictions, we scale predicted
probabilities elementwise with a multiplicative bias pattern
pred biasg followed by renormalization.

Controlled synthetic datasets allow us to precisely manip-
ulate bias magnitude, direction, and prevalence—conditions
that are rarely isolatable in real data. Evaluating fairness
frameworks under these controlled settings provides inter-
pretability and diagnostic clarity: if a method cannot de-
tect bias in well-defined synthetic scenarios, it is unlikely to
perform reliably in real-world applications. To complement
these controlled tests, we further evaluate the framework on
real-world datasets.

Comparison with Dalex Approach
The Dalex library (and its R counterpart fairmodels) eval-
uates fairness in regression using independence, separation,
and sufficiency diagnostics. By default, Dalex requires users
to specify a privileged group. It then computes fairness
scores for all other groups relative to this reference. How-
ever, in practice the privileged group is often not obvious
and identifying one is part of the fairness question. To re-
move this complication, we adapt Dalex’s procedure:
• For each group g, temporarily treat it as privileged.
• Compute Dalex’s fairness scores for all other groups rel-

ative to g.
• Aggregate to obtain a single score for g

This modification ensures that each group’s score is com-
puted without prespecifying a “true” privileged group, yield-
ing fairer and more symmetric comparisons across groups.
Dalex outputs are magnitude-only (>= 1, anchored at 1 =
parity), so aggregating across privileged rotations does not
discard directional information, only reduces granularity.

Experiments and Results
Proposed Approach vs Dalex on Regression
We first perform a sanity check on the 4 target-prediction
scenarios on regression for both the proposed approach and
Dalex. We make a parity plot using the target fairness scores
calculated using the point-biserial correlation as discussed
and prediction fairness scores from our approach and Dalex.
The simulation dataset (generated using µ = 50, σ =
10, α = 1, σnoise = 5, ncategories = 3) assumes low bias in
a single category (we bias category 1 whenever bias exists,
bias details described below), good model performance, and
equal category distribution. We observe:
• UTUP (target and prediction bias multiplier are both 1):

Both target and prediction fairness scores are almost on
the 45◦ line and hence, fair.

• UTBP (target bias multiplier is 1.2): Target scores are
close to 1 (x = 1 line) for all classes but prediction scores
vary. Dalex is quite sensitive to the bias and shows cate-
gory 1 outside the bias thresholds.

• BTUP (target and prediction bias multiplier are both 1.2):
Prediction scores are close to 1 (y = 1 line) for all classes
but target scores vary.

• BTBP (target bias multiplier is 0.85 and prediction bias
multiplier is 0.75): Both target and prediction fairness
scores are away from the 45◦ line and hence, show bias.
Dalex is quite sensitive to the bias and shows category 1
outside the bias thresholds.

We next try different experimental factors such as bias
strength, category distribution, number of biased categories
and model performance to compare our approach and Dalex.
We compare across 3 synthetic setups (detailed in appendix)
and discuss results for the BTBP case since this is the most
common real-world scenario (All configs generate targets
from ∼ N (50, 10)).

Based on Figures 2, 3, and 4, our framework produces di-
rect group-to-rest ratios that are immediately interpretable



Figure 1: Parity check of regression fairness under four synthetic bias scenarios (UTUP, UTBP, BTUP, BTBP). Each point
represents a protected group; circles = our method, triangles = Dalex. The white region denotes the acceptable fairness band
[0.8,1.25]. Our method tracks prediction bias without inflating disparities, whereas Dalex shows much larger deviations. Dalex
values exceeding the axis range (e.g., 6.65 in UTBP Category 1) are truncated for readability.

Figure 2: Low Bias, Equal Category, Single Class Biased
Simulation. Points outside the fairness band [0.8,1.25] (in
red zone) indicate bias. Despite only small injected bias,
Dalex flags UTBP and BTBP as unfair; in UTBP, its predic-
tion fairness reaches 6.65 (truncated here for readability).

and map cleanly onto quantitative fairness deviations. In
contrast, Dalex relies on inference-based adjustments whose
practical meaning is less transparent. This difference be-
comes especially apparent in low-bias settings, where Dalex
often reports extremely large fairness scores even when
only minimal bias is injected. Our method also provides
clearer attribution of bias to the correct protected category,
whereas Dalex can misidentify unbiased categories as bi-
ased. In multi-category settings with poor model perfor-
mance, our approach continues to detect bias when it exists,
while Dalex—being tightly coupled to the model’s raw pre-
diction scores—can fail to do so reliably.

Overall, these experiments show that our metric pro-
duces stable, interpretable fairness ratios that scale with bias
strength, remain robust under imbalance and model quality,
and accurately attribute disparities to specific groups. In con-
trast, Dalex often detects only aggregate effects and lacks the
resolution to identify which groups and outcome regions are
driving the bias.

Ablation Study on Regression
Because regression is the main focus of our contribution, we
perform ablation studies on the synthetic regression datasets.

Figure 3: Results on High Bias, Unequal Category, Sin-
gle Class Biased Simulation. While both our approach and
Dalex detect bias when it exists (red dots go in red zones),
Dalex produces extremely large fairness scores (e.g., 51.38
in UTBP-Category 1 and 1.82 in BTBP-Category 1, trun-
cated in graph for readability) which may not directly reflect
the amount of bias, making interpretation difficult. It also
flags UTBP-Category 2 as unfair despite no injected bias.

All ablations generate targets from ∼ N (50, 10), use a
three-category setting with one biased group (category 1)
and repeat evaluation across 30 random seeds, reporting the
mean fairness score and 95% confidence intervals. We ob-
serve the following from Figure 5:

• Varying Bias magnitude: Here, we assume equal cate-
gory distribution and σnoise = 5. As prediction bias
strengthens relative to target bias, fairness for the biased
group falls below the 0.8 threshold. The trend is gener-
ally monotonic within confidence intervals, confirming
that our metric is sensitive to bias strength.

• Group distribution: Here, we assume target bias =
0.75, prediction bias = 0.6 and σnoise = 5. Under
equal distributions, fairness scores for the biased group
diverge cleanly from those of unbiased groups. With
skewed distributions, the biased group still registers as
less fair, but the error bars widen, particularly for smaller
categories.

• Model performance: Here, we assume equal category



Figure 4: Results on High Bias, Unequal Category, Multiple
Class Biased, Poor Model Simulation. Our approach detects
bias in most cases (red circles in red biased region) whereas
Dalex fails to detect bias for a lot of biased categories (red
triangle in white regions).

distribution, target bias = 0.75 and prediction bias =
0.6. With stronger predictive models, fairness scores
display clearer separation between biased and unbiased
groups. As model quality degrades, the fairness scores
become noisier. Nonetheless, in most cases the biased
group still deviates from parity, showing that the metric
is informative even when predictions are weak, though
error bars widen slightly.

Overall, the ablation results show that the proposed met-
ric responds appropriately to injected bias, class imbalance,
and model noise. Fairness estimates are stable across 30 ran-
dom seeds, with tight confidence intervals in Figure 5. While
imbalance and high noise naturally increase uncertainty, the
metric consistently identifies biased categories.

Results on Multiclass Extension
We evaluate the multiclass extension of our framework us-
ing synthetic datasets with 3 outcome classes. We consider
the case of 3 protected categories where exactly one (cat-
egory 1) is biased on the BTBP case. To introduce target
bias, we change class 0 target distribution in biased cate-
gory to τ target bias

g = (0.2, 0.5, 0.3) and to introduce predic-
tion bias, we multiply prediction scores with pred bias =
(0.5, 3, 1.5). We consider three scenarios:

• Equal Distribution: Category distribution is equal and
correct class probabilities are sampled from β(7, 2) and
incorrect class probabilities are sampled from β(1.5, 6).

• Unequal Distribution: Category distribution is (0.4, 0.4,
0.2) and correct class probabilities are sampled from
β(7, 2) and incorrect class probabilities are sampled from
β(1.5, 6).

• Equal Distrbution with poor model: Category distribu-
tion is equal and correct class probabilities are sampled
from β(4, 3) and incorrect class probabilities are sampled
from β(2, 4).

Based on Figure 6, our appraoch is able to detect bias in all 3
cases. We can further see the individual class fairness scores
to decode unfair category-class combinations.

Feature Class Target Prediction

sex female 0.943 0.963
sex male 0.943 0.964
smoker no 0.213 0.115
smoker yes 0.213 0.766
region northeast 0.994 0.924
region northwest 0.960 0.955
region southeast 0.926 0.894
region southwest 0.957 0.958

Table 1: Results on Insurance dataset for Regression Task

Evaluation on Real-world Data
Regression Task on Insurance Charges: We train a sim-
ple linear regression model on the publicly available Medi-
cal Cost Insurance dataset (Choi 2018) to predict insurance
charges. We consider categorical variables region, sex, and
smoker as protected attributes and do not include them in
model inputs. We observe from table 1:
• For demographic variables (sex/ region), targets are rela-

tively balanced and predictions are close to parity.
• For domain variables (smoker), strong disparities appear

in both labels and predictions, with the model accentu-
ating the bias. These differences represent causal effects
(smoking→ higher charges).

Classification Task on Adult Income: We train a sim-
ple logistic regression model on the publicly available Adult
dataset (Becker and Kohavi 1996) to predict high vs low in-
come. We consider categorical variables sex, race and oc-
cupation as protected attributes and do not include them in
model inputs. We observe from table 2:
• For demographic variables (sex, race), the targets show

some disparity but predictions are close to parity.
• For domain variables (occupation), mild disparities ap-

pear in both labels and predictions, with the model
slightly accentuating the bias.

Across both datasets, our framework highlights meaning-
ful contrasts in terms of target and prediction fairness. We
also demonstrate the importance of jointly reporting target
fairness and prediction fairness to properly interpret whether
disparities originate from data labels, model outputs, or do-
main realities.

Practical Considerations
Complexity and deployability. The proposed metric is
computationally lightweight because it requires only group-
wise conditional averages over quantile buckets, making it a
simple post-hoc transformation of model outputs rather than
a retraining step. Its computation scales linearly with dataset
size and number of quantiles, dominated by a single group-
ing operation, and therefore remains efficient even for large
datasets and fine-grained partitions. Since the method de-
pends only on predictions and protected-group labels, it can
be seamlessly integrated into existing pipelines without re-
accessing the underlying model, supporting its deployability
in practical settings.



Figure 5: Ablation study of our regression fairness metric under 3 synthetic settings. Each panel shows mean fairness across 30
seeds with 95% confidence intervals; Category 1 is the only biased group, and values near 1 indicate parity. (a) Varying Bias:
Each group corresponds to a different (target bias, prediction bias) scenario. (b) Varying Distribution: Groups correspond to
different category proportions. (c) Varying Model Quality: Groups correspond to models of the form Ŷ = aY +N (0, b).

Figure 6: Results on Multiclass Scenarios. Each row group
represents a scenario, each row within a group represents
protected category with category 1 biased. First 3 columns
indicate class-level fairness and last column indicates overall
fairness. Our approach is able to detect bias in all 3 cases.

Choice of quantiles. In all regression experiments we fix
the number of quantile buckets to a single value (10) for sim-
plicity. The choice of quantile granularity induces a standard
bias-variance trade-off: using fewer buckets yields more sta-
ble but coarser estimates of conditional fairness, whereas us-
ing many buckets increases resolution at the cost of higher
variance, especially for small protected groups. In practice,
we recommend checking that each protected group has a
minimum level of support in the majority of buckets (e.g.,
via simple count diagnostics), and re-running the analysis
with a coarser partition as a robustness check when group
sizes are very small.

Conclusion and Future Work
We presented a unified framework for fairness evaluation
in regression and classification by conditioning on outcome
partitions and comparing group-to-rest prediction ratios, ex-
tending outcome-conditioned fairness testing beyond the bi-

Feature Class Target Prediction

sex female 0.784 0.975
sex male 0.784 0.966
race amer-ind-esk 0.972 0.965
race asian-pac-isl 0.990 0.958
race black 0.911 0.962
race other 0.969 0.940
race white 0.915 0.980
occup. adm-clerical 0.910 0.953
occup. armed-force 0.997 0.895
occup. craft-repair 0.988 0.904
occup. exec-manag 0.785 0.868
occup. farm-fish 0.948 0.968
occup. hand-clean 0.913 0.893
occup. mach-op-inspct 0.931 0.894
occup. other-service 0.844 0.909
occup. priv-house-serv 0.963 0.925
occup. prof-specialty 0.814 0.770
occup. protective-serv 0.972 0.906
occup. sales 0.964 0.992
occup. tech-support 0.975 0.919
occup. transport-moving 0.979 0.926

Table 2: Results on Adult dataset for Classification Task

nary setting. Synthetic experiments show that the metric sen-
sitively tracks injected bias, provides interpretable per-group
diagnostics, and avoids the instability of auxiliary model
inference-based baselines such as Dalex, while remaining
lightweight and easy to integrate as a post-hoc analysis. Re-
sults on real-world datasets further demonstrate its practi-
cal utility in identifying domain-sensitive fairness dispari-
ties. Future work includes a more systematic study of the
multiclass extension, broader benchmarking across diverse
real-world datasets, and a deeper examination of quantile
granularity selection.
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APPENDIX
Configurations for Regression Synthetic
Experiments

Simulation Config
Low bias, equal
category distribu-
tion with single-
biased category

α=1, σnoise=5, 3 categories
with category 1 biased, equal
category distribution, tar-
get bias = 0.85, pred bias =
0.75

High bias, un-
equal category
distribution with
single-biased
category

α=1, σnoise=5, 3 categories
with category 1 biased, category
distribution = (0.4, 0.4, 0.2),
target bias = 0.75, pred bias =
0.60.

High bias, un-
equal category
distribution with
two biased cat-
egories, poor
model perfor-
mance

α=1, σnoise=20, 4 categories
with 2 categories biased (men-
tioned in figure), category dis-
tribution = (0.25, 0.25, 0.45,
0.05), target bias for cat1 = 1.2,
pred bias for cat2 = 1.4, tar-
get bias for cat2 = 1.4 (same) or
0.85 (opp), pred bias for cat2 =
1.1 (same) or 0.65 (opp)

Table 3: Comparison of Our Approach with Dalex: Simula-
tion configs


