Under review as submission to TMLR

Comparative Generalization Bounds for Deep Neural Net-
works

Anonymous authors
Paper under double-blind review

Abstract

In this work, we investigate the generalization capabilities of deep neural networks. We
introduce a measure of the effective depth of neural networks, defined as the first layer at
which sample embeddings are separable using the nearest-class center classifier. Our em-
pirical results demonstrate that, in standard classification settings, neural networks trained
using Stochastic Gradient Descent tend to have small effective depths. We also explore the
relationship between effective depth, the complexity of the training dataset, and generaliza-
tion. For instance, we find that the effective depth of a trained neural network increases as
the number of random labels in the data increases. Additionally, we derive a generalization
bound by comparing the effective depth of a network with the minimal depth required to fit
the same dataset with partially corrupted labels. This bound provides non-vacuous predic-
tions of test performance and is found to be independent of the actual depth of the network
in our experiments.

1 Introduction

Deep learning systems have steadily advanced the state of the art in a wide range of benchmarks, demon-
strating impressive performance in tasks ranging from image classification (Taigman et al., |2014; Zhai et al.,
2021)), language processing (Devlin et al., |2019; Brown et al., [2020)), open-ended environments (Silver et al.,
2016; |Arulkumaran et al., [2019)), to coding (Chen et al., 2021)).

Recent research suggests that deep neural networks are able to generalize well to new data because they have
a large number of parameters relative to the number of training samples (Belkin et al.l 2018; Belkinl |2021;
Advani & Saxe), 2017} |Belkin et all [2019). However, it has been shown that in these cases deep learning
models can also precisely interpolate arbitrary training labels (Zhang et all |2017)), a phenomenon known
as the “interpolation regime.” Understanding how deep learning models learn through interpolation is an
important step towards a more comprehensive theoretical understanding of their successes.

Traditional generalization bounds (Vapnik, [1998; |Shalev-Shwartz & Ben-David, 2014 Mohri et al., 2012}
Bartlett & Mendelson) |2003) are based on uniform convergence and are used to control the worst-case gener-
alization gap (the difference between train and test errors) over a set of predictors that includes the outputs
of a learning algorithm. However, the applicability of these bounds to certain interpolation learning regimes
has been called into question by [Nagarajan & Kolter| (2019)), who described theoretical scenarios where an
interpolation learning algorithm generalizes well but a uniform convergence bound cannot detect this. Sub-
sequent research by Bartlett & Long| (2021); Zhou et al.| (2020)); Negrea et al.| (2020)); Yang et al.| (2021)) has
also demonstrated the limitations of uniform convergence in various interpolation learning situations.

Contributions. In this paper, we present a novel approach for measuring generalization in deep learning
that does not rely on uniform convergence bounds. Instead, our bound suggests that a model will perform
well at test time if its complexity is small compared to the complexity of a network required to fit the same
dataset with partially random labels. In other words, even if a trained network has a complexity greater
than the number of training samples, it may still be less complex than a model that fits partially random
labels. As a result, in such cases, our bound may provide a non-trivial estimate of the test error.

Under review as submission to TMLR

Dataset MNIST Fashion MNIST CIFARI10 CIFARI10
Architecture CONV-L-50 CONV-L-100 CONV-L-100 CONVRES-L-50
Depth (L) 10 12 15 10 12 5 16 18 20 10 12 5
Test error 0.0075 0.0074 0.0074 0.0996 0.0996 0.0996 0.2659 0.2653 0.2648 | 0.2903 0.2862 0.2804
» 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4
Our bound 0.1 0.1 0.1 0.2 0.2 0.2 0.66 0.66 0.53 0.4 0.4 0.4
L1 (Bartlett & Mendelson|[2003] | 8.91Te+14 174e+17 2.13e+22 | 3.613e+17 9.145e+18 4.088e+22 | 10766423 6.6820+28 2.758¢+35
Lyis (Neyshabur et al.|[2015] | 5.462¢405 1.6e+06 1.308¢+06 | 7.523¢+07 6.997c+07 2.636e+08 | 4.633c+08 2275409 5.061e+09
Frobenius (Neyshabur et al 1848e+06 8.194c4+06 2.216e-+07 | 2.486e+08 2.335e+08 1.585e+09 | 1.967e+09 1442e+10 3.038e+11
Spec Ly { 2861e+05 64120405 9.566e4+05 | 47060406 3.516e+06 3.176e+06 | 1.19e+07 1.449e+08 1.272e+10
Spec Frob (Neyshabur et al.||2019} | 3.948e403 1.1199e+04 1.538e404 | 4.0229¢e+04 2.884e+04 2.543e4+04 | 9.4833e+04 1.011e+06 1.033e+08

Table 1: Comparing our bound with baseline bounds in the literature for networks of varying
depths. Our error bound is reported in the fourth row, and the baseline bounds are reported in the bottom
rectangle. While the test error is universally bounded by 1, the baseline bounds are much larger than 1, and
therefore, are meaningless. In contrast, our bound achieves relatively tight estimations of the test
error and unlike the baseline bounds, our bound is fairly unaffected by the network’s depth.

To formally describe our notion of complexity, we use the concept of nearest class-center (NCC) separability.
This property states that the feature embeddings associated with training samples belonging to the same
class can be separated using the nearest class-center decision rule. While earlier research (Papyan et al.,|2020)
found that NCC separability occurs at the penultimate layer of trained networks, more recent research (Ben-
[Shaul & Dekel, [2022)) has discovered NCC separability in intermediate layers as well. In this work, we
introduce the concept of “effective depth” in neural networks, which refers to the lowest layer at which the
features are NCC separable (see Sec. .

We have made several key observations about effective depths. First, we have found that the effective depth
of trained networks increases as the amount of random labels in the data increases. Second, when training
deep networks, we have observed that they tend to converge to an effective depth Lg, regardless of their actual
depth L. This means that the feature embeddings of layers above Lg tend to be NCC separable. In addition,
we have shown in Tab. [] that our bound on generalization is empirical, non-vacuous, and independent of
depth, unlike traditional bounds. In Section [3.3] we further discuss the limitations of modern norm-based
generalization bounds (e.g., Neyshabur et al|(2015); Bartlett et al.| (2017);|Golowich et al.| (2017)); Neyshabur|
), along with the key distinctions between these bounds and the proposed bound.

1.1 Additional Related Work

There has been significant research on the geometrical properties of intermediate layers in deep neural
networks, such as clustering and separability (Papyan| 2020; [Tirer & Brunal 2022; |Galanti et all, 2022
Ben-Shaul & Dekell, 2022}, [Cohen et all 2018; [Alain & Bengiol, [2017; [Montavon et all, [2011}; [Papyan et al.
2017; Ben-Shaul & Dekel, 2021; Shwartz-Ziv & Tishby, 2017). While previous studies have analyzed these
properties theoretically (Zhu et al.,2021; Rangamani et al., 2022; Lu & Steinerberger} 2020; Fang et al., [2021}
[Ergen & Pilanci [2021)), their specific role in deep learning and potential relationship with generalization
are not yet fully understood. We focus on the question of whether these properties are good indicator
of generalization. In contrast, previous research (Zhu et all 2021) has shown that such properties may
occur even when training a network with random labels, suggesting that they may not directly indicate
generalization. In this paper, we argue that effective depth can be used to measure the complexity of fitting
a dataset, and show how this idea can help us predict test performance.

2 Problem Setup

In this section, we explain the learning setting used in our theory and experiments. We focus on the task of
training a model for standard multi-class classification. Specifically, we consider a distribution P over samples
(z,y) where = belongs to the instance space X, and y belongs to the label space V¢ with a cardinality of C.
To simplify, we use one-hot encoding for the label space, where labels are represented by unit vectors in R,
and Yo = {e. | c=1,...,C} and e, is the cth standard unit vector in R“. We also use the notation y = ¢
instead of y = e.. The class conditional distribution of x given y = ¢ is denoted as P.(-) :=Plz € - | y = ¢].

Under review as submission to TMLR

A classifier hyy : X — R assigns a soft label to an input point € X, and its performance on the distribution
P is measured by the expected risk

LP(hW) = E(z,y(r))wP[é(hW(x)v y(x))L
where £ : R® x Yo — [0,00) is a non-negative loss function (e.g., Lo or cross-entropy losses).

We typically do not have direct access to the full population distribution P. Therefore, we generally aim to
learn a classifier, h, using some balanced training data S := {(z;,v:)}7, = U1 Se = UL {Zei, Yei 10 ~
Pp(m) of m = C - mg samples consisting mg independent and identically distributed (i.i.d.) samples drawn
from P, for each ¢ € [C]. Specifically, we intend to find W that minimizes the regularized empirical risk

m

L) = 3 Uk (),) + XW3 1)
i=1

where the regularization controls the complexity of the function hy, and typically helps reducing over-
fitting. Finally, the performance of the trained model is evaluated using the train and test error rates;
errg(hw) = L 3" Tlargmax, hw (z;)c # yi] and errp(hw) = E(, y)~p[llarg max, hw (z). # y]], where
I: {True, False} — {0, 1} the indicator function.

Neural networks. In this work, the classifier hyy is a neural network composed of a set of parametric
layers. It is written as hy := ew, o fVLVf i= ew, ° iy, © - © giy,, where giy, are parametric functions that
map from RP: to RPi+1, and ey, is a linear function that maps from RPZ+! to RC. These layers can be
standard linear or convolutional layers (with ReLU activations) or a residual block. To simplify notation,
we denote f; :=g?o---0g' and h := hyy. The specific architectures used in the experiments are described

Appendix

Optimization. We optimize our models by minimizing the regularized empirical risk Lg(h) using Stochas-
tic Gradient Descent (SGD) for a certain number of iterations T' with a regularization coefficient A > 0. To
do this, we initialize the weights Wy = 7 of h with a standard initialization procedure and at each iteration,
update Wiy < Wy — s Vw Lg(he), where py > 0 is the learning rate at the t-th iteration, and S cSis
a subset of size B selected uniformly at random. Throughout the paper, we denote by hY, the output of
the learning algorithm starting from initialization W, = 7. When + is not relevant or is obvious from the
context, we will simply write hl = hg = eg o fs.

3 Neural Collapse and Generalization

In this section, we examine the theoretical connection between neural collapse and generalization. We begin
by defining neural collapse, NCC separability, and effective depth of neural networks. We then explore how
these concepts relate to the test-time performance of neural networks.

3.1 Nearest Class-Center Separability

Neural collapse (Papyan et al. |2020)) identifies training dynamics of deep networks for standard classification
tasks, in which the features of the penultimate layer associated with training samples belonging to the same
class tend to concentrate around their class-means. This includes (NC1) class-features variability collapse,
(NC2) the class means of the embeddings collapse to the vertices of a simplex equiangular tight frame, (NC3)
the last-layer classifiers collapse to the class means up to scaling and (NC4) the classifier’s decision collapses
to simply choosing whichever class has the closest train class mean, while maintaining a zero classification
error.

In this paper we focus on a weak form of NC4 we call “nearest class-center separability” (NCC separability).
Formally, suppose we have a dataset S = US| S, of samples and a mapping f : R? — RP, the features of f
are NCC separable (w.r.t. S) if for all i € [m], we have h(z;) = y;, where

(z) := argmin|[f(z) — pr(Sc)l|- (2)
ce[C]

>

Under review as submission to TMLR

To measure the degree of NCC separability of a feature map f, we use the train and test classification error

A~ ~

rates of the NCC classifier on top of the given layer, errs(h) and errp(h).

Essentially, NC4 asserts that during training, the feature embeddings in the penultimate layer become
separable and the classifier h itself converges to the ‘nearest class-center classifier’ h.

3.2 Effective Depths and Generalization

In this section we study the effective depths of neural networks and their connection with generalization.
To formally define this notion, we focus on neural networks whose L top-most layers are of the same size.
We observe that neural networks trained for standard classification exhibit an implicit bias towards depth
minimization.

Observation 1 (Minimal depth hypothesis). Suppose we have a dataset S. There exists an integer Lo > 1,
such that, if we train a neural network of any depth L > Lq for cross-entropy minimization on S using SGD
with weight decay, the learned features f' become (approzimately) NCC separable for alll € {Lo,...,L}.

We note that if the Lg’th layer of fr exhibits NCC separability, we could correctly classify the samples
already in the Lg’th layer of fr using a linear classifier (i.e., the nearest class-center classifier). Therefore,
intuitively its depth is effectively upper bounded by Lg. The notion of effective depth of a neural network is
formally defined as follows.

Definition 1 (e-effective depth). Suppose we have a dataset S and a neural network h = eog’o---og' with
gt : R" — RP2 gi : RPi — RPi+1 gnd linear classifier e : RPL+1 — R, Let h;(x) := arg min,cicq || fi(z) —

wr, (S| The e-effective depth d§(h) of the network h is the minimal value i € [L], such that, errg(h;) < e
(and d5(h) = L if such i € [L] is non-ezistent).

To avoid confusion, we note that the e-effective depth is a property of a neural network and not of the
function it implements. That is, a function can be implemented by two different architectures of different
effective depths. While our empirical observations in Sec. [f]suggest that the optimizer learns neural networks
of low-depths, it is not necessarily the lowest depth that allows NCC separability. As a next step, we define
the e-minimal NCC depth. Intuitively, the NCC depth of a given architecture is the minimal value L € N,
for which there exists a neural network of depth L whose features are NCC separable. As we will show, the
relationship between the e-effective depth of a neural network and the e-minimal NCC depth is connected
with generalization.

Definition 2 (e-Minimal NCC depth). Suppose we have a dataset S = US_,S. and a neural network
architecture fl' = gt o...o0g! with g : R* - R™ and g' € G C {g' | ¢ : R™ — R} foralli=2,...,L.
The e-minimal NCC depth of G is the minimal depth L for which there exist parameters W = {W,;}£_,, such
that, ' := fi, = gy, oo gy, satisfies errg(h) < €, where h(z) := arg mingeicq | f/(@) — pp(Se)ll. We
denote the e-minimal NCC' depth by 45, (G, S).

To study the performance of a given model, we consider the following setup. Let S; = {(z},y})}™, and
Sy = {(22,y?)} be two balanced datasets. We think of them as two splits of the training dataset S. We
assume that the classifier hgl is trained on S; and we use S to evaluate its performance. We denote by
X; = {zl}m, and Y; = {y}7, the instances and labels in S;.

To formally state our bound, we make two technical assumptions. The first is that the misclassified labels

that 7% produces over the samples X, = U, {2} are distributed uniformly.

Definition 3 (J,,-uniform mistakes). We say that the mistakes of a learning algorithm A : (Si,v) = h{,
are Op,-uniform, if with probability > 1 — 0, over the selection of S1,S2 ~ Pg(m), the values and indices of
the mistaken labels of hgl over Xo are uniformly distributed (as a function of 7).

The above definition provides two conditions regarding the learning algorithm. It assumes that with a
high probability (over the selection of Si,.55), hgl makes the same number of mistakes on Sy across all
initializations «. In addition, it assumes that the mistakes are distributed uniformly across the samples in
Sy and their (incorrect) values are also distributed uniformly. While these assumptions may be violated in

Under review as submission to TMLR

practice, the train error typically has a small variance and the mistakes are almost distributed uniformly
when the classes are non-hierarchical (e.g., CIFAR10, MNIST).

For the second assumption, we consider the following term. Let p € (0,1/2),« € (0,1), we denote
02 pa = Py sygats |02 (140) D dia(G, 51U 52) > By [d60,(G, 51U 5)]) (3)

where Y5 = {7}, and Y, = {yl ", are uniformly selected to be sets of labels that disagree with Y2 on
pm and gm values (resp.) and Sy and Sy are datasets obtained by replacing the labels of S, with Y5 and Vs
(resp.). We assume that 672, , , is small. Meaning, with a high probability, the minimal depth to fit (2 —p)m
correct labels and pm random labels is upper bounded by the expected minimal depth to fit (2 — ¢)m correct
labels and gm random labels for any ¢ > (1 + a)p. To understand this assumption, we note that in both
cases, the model has to fit at least m correct labels and pm (or gm) random labels. However, we typically
need to increase the capacity of the model in order to fit extended amounts of random labels (see Figs. [3)).

Following the setting above, we are prepared to formulate our generalization bound.

Proposition 1. Let m € N, p € (0,1/2), a € (0,1) and € € (0,1). Assume that the error of the learning
algorithm is 6}, -uniform. Assume that Sy, Sy ~ Pg(m). Let th be the output of the learning algorithm given
access to a dataset S1 and initialization ~y. Then,

Es,Blerrp(h)] < Py g, v, [Eod5, (h2)] > d5ialG.51 U 52)]

4
+ (1 +a)p+ 6, + 62,)

m,p,a
where Yy = {7}, is uniformly selected to be a set of labels that disagrees with Y2 on pm values.

The above proposition provides an upper bound on the expected test error of the classifier hgl which is
the term that we would like to bound. The proposition assumes that the mistakes hgl generates on X, are
distributed uniformly (with probability > 1 — 4}). To account the likelihood that this assumption fails, our
bound includes the term §},, which is assumed to be small.

Informally, the bound suggests the following idea to evaluate the performance of hgl. We start with an
initial guess p,, = p € (0,1/2) of the test error of hgl. Using this guess, we compare its e-effective depth
with the e-minimal NCC depth ¢<; (G, S; U S) required to NCC separate the samples in S; U Sy, where
Sy is the result of randomly relabeling p,,m of So’s labels. Intuitively, if the mistakes of hgl are uniformly
distributed and its e-effective depth is smaller than ¢<,;, (G, S; U Sy), then, we expect h%, to make at most
pm mistakes on Ss. Therefore, in a sense, the choice of p,, serves as a ‘guess’ whether the effective depth
of a model trained with S is likely to be smaller than the e-minimal NCC depth required to NCC separate
the samples in S; U Ss.

Next, we interpret each term separately. The term E, [¢5 (b)] depends on the complexity of the classifica-
tion problem and the implicit bias of SGD to favor networks of small e-effective depths. In the worst case, if
SGD does not minimize the e-effective depth or the labels in S; are random (and m is sufficiently large), we
expect B, [¢5 (hg)] = L. On the other hand, 5, (G, S1 US,) measures the complexity of a task that involves
fitting a dataset of size 2m samples, where (2 Pm)m > m of the labels are correct and p,,m are random
labels. By decreasing p,,, we expect ¢<; (G, S1 U Ss) to decrease, making the first term in the bound larger.
In addition, if h = eo f¥ is a neural network of a fixed width, it is impossible to fit an increasing amount of

random labels without increasing the depth. Therefore, when p,,mm —> o0, the dataset S; U Sy becomes
m— 00

increasingly harder to fit, and we expect d5; (G, S; U Ss) to tend to infinity. If E 415, (hg,)] is bounded as
a function of L and m and if p,,m — oo, we obtain that P[E, [d5, (hg,)] > 5, (G, 51 U Sy)] — 0 and
m—r oo m—r 00

min

together with p,, — 0, we have Eg, [errp(hg,)] < 65, + 62, , o + 0m(1).

m—r o0

As a side note, computing the expectation over S1,.S in the bound is impossible, due to the limited access
of the training data. However, instead, we empirically estimate this term using a set of k pairs (S%,.5%) of
m samples, yielding an additional term that scales as O(1/v/k) to the bound (see Prop. [2|in the appendix).

Under review as submission to TMLR

3.3 Comparing Prop. [1] with Standard Generalization Bounds

Classic bounds (e.g., (Vapnik, [1998)) are based on bounding the test error with the sum between the train
error together with a term O(,/C(H)/m), where C(H) measures the complexity (e.g., VC dimension) of the
class H (e.g., neural networks) and m is the number of training samples. However, as discussed in Sec.
these bounds are vacuous in overparameterized learning regimes (e.g., training ResNet-50 on CIFARI0
classification). For instance, for VC-dimension based bounds (Vapnik) 1998), C(H) equals the VC-dimension
of the class H which scales with the number of trainable parameters for ReLU networks (Bartlett et al.,
2019). For example, even though the ResNet-50 architecture generalizes well when trained on CIFARI10, it
has over 23 million parameters compared to the m = 50000 training samples in the dataset.

More recently, |[Neyshabur et al.| (2015); Bartlett et al.| (2017)); |Golowich et al.| (2017)); Neyshabur et al.| (2018])
suggested generalization bounds for neural networks that weakly depend on uniform convergence. In these
bounds, the class-complexity C(H) is replaced with the individual complexity C(hy) of the function we learn.
For example, |Golowich et al.| (2017)) proposed bounds that scale with C(hy) = p?L, where L is the depth of
hw and p measures the product of the norms of its weight matrices. However, |[Nagarajan & Kolter| (2019))
showed that in certain cases unregularized least squares can generalize well even when its norm p scales as
©(y/m) and the bound becomes O,,(1). Furthermore, these bounds tend to be very large in practice (see
Tab. 8 in (Neyshabur et al., 2019)) and Tab. 1)) and are negatively correlated with the test performance (Jiang
et all [2020). In addition, if the network’s weight matrices’ norms are larger than 1, quantities like p grow
exponentially when L is varied. As shown in Tab. [I] this is empirically the case.

Our Prop. [I] offers a different way to measure generalization. Since this bound is not based on uniform
convergence, it does not require that the network’s complexity would be small in comparison to m; rather,
the bound guarantees generalization if the network’s effective size is smaller than that of a network that
fits partially random labels. For instance, when the optimizer has a strong bias towards minimizing the
effective depth, E, [¢5 (h§)] =~ ¢5,n(G, S1) which is by definition upper bounded by ¢;,(G, S1 U Sy). We
note that d< . (G, Sy USs) grows to infinity as m — oo (since the network needs to memorize m — oo random
labels). On the other hand, d¢;, (G, S1) is bounded by the depth of a network that approximates the target
function y up to an approximation error e (which typically exists due to universal approximation arguments).
Therefore, for sufficiently large m, we expect to have d<,;,(G,S1 U S2) > d,:.(G,S1). As we empirically see
in Sec. [d] the effective depths of SGD-trained networks are usually small.

Unlike previous bounds, our bound has the advantage of being fairly independent of L. Namely, when the

minimal depth hypothesis (Obs. [1) holds, we expect E,[dg, (hg,)] to be unaffected by the depth L of h
(as long as L > Lyg). Since d5,;,(G,S1 U Ss) is by definition independent of L, we expect P[E, [dg, (h,)] >

min

95, (G, 81 U S5)] to be independent of L (when L > Lg). In Tab. [1] we empirically validate that our bound
does not grow when increasing L.

4 Experiments

In this section, we experimentally analyze the emergence of neural collapse in the intermediate layers of
neural networks. First, we validate the “Minimal Depth Hypothesis” (Obs. . Following that, we look at
how corrupted labels affect the extent of intermediate layer NCC separability and the e-effective depth. We
show that as the number of corrupted labels in the data increases, so does the e-effective depth. Finally, using
the bound in Prop. [I} we provide non-trivial estimates of the test error. In Tab. [I] we empirically compare
our bound with relevant baselines and show that, unlike other bounds, it achieves non-vacuous estimations
of the test error. Throughout the experiments, we used Tesla-k80 GPUs for several hundred runs. Each run
took between 5-20 hours. For additional experiments, see Appendix [A] The plots are high-definition pictures
and are best viewed when zoomed in.

4.1 Setup

Training process. We consider k-class classification problems (e.g., CIFAR10) and train multilayered
neural networks h = eo fl' = eoglo---0g' : R” — R on the corresponding training dataset S. The models

Under review as submission to TMLR

1.0 T 1.0 —
Q A t -
Q s
@ 0.8 H /—/—’—’—“‘“" 0.8

o - —

S > e > - 1
< L06q / 9 0 0.6
=R e | ¢ ——

=1 =1 =1

80l ! |3 S oal i S S

@) K047 4 2 041 | — layer3
N —+ layer 1 f — layera.

O 1.00 — layer2 1.00 — layer 5

Z 024 1 P adatd — fayer1 —+ layer3 024 | —+ layer 6

H r - layer2 — layer 4 1 4 layer 7
i 0.98 —— layer3 —— layers 1 0.987. —— layer8
-k trainacc - trainacc -k train acc
0.0 X 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 T 1.0 — |
o —— r
Q
< 08 0.8 0.8
, , —
o —+ layer 1 ~

= > i layer2 > >
< 3 0.6 o layer3 ® 0.6 ® 0.6 |~ layer1 b layer12
j:_; 5 —+ layer 4 5 5 4 layer2 -} layer13

e layers . | — layerl b layer 10 e~ layer3 b layerld
59 0.4 —+ layer 6 S 0.4 N i layerz b fayer1l [O 0.4 b layerd - layer1s

[@R-a i layer7 | < ——layer3 b layer12 | L O ——layer5 e layer 16

O ~+- layer 8 —4— layer4a -} layer13 —+ layer 6 layer 17

layer 9 —+= layer5 b+ layer14 4 1.00 layer7 b+ layer18

Z 0.2 - layer 10 0.2 — layers b layer1s 0.2 PO 4 layers layer 19

b+ layer11 i~ layer7 -} layer16 layer9 ~k layer20
b layer 12 —— layer8 =} trainacc 0.98 b layer10 =} trainacc
0.0 —F train acc 0.0 layer 9 00 f’\A\\ JWA -+ tayern

0 100 200 300 400 500 0 100 200 300 400 500) 100 200 300 400 500

Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 1: Intermediate NCC separability of CONV-L-400 trained on CIFAR10. We plot the NCC
train accuracy rates of neural networks with varying numbers of layers. Each curve stands for a different
layer within the network.

— Depth 8 s — Depth 8 —— Depth 8
~—— Depth 10 —— Depth 10 8 ~— Depth 10
8 —— Depth 12 4 —— Depth 12 —— Depth 12
%_ —— Depth 14 :g —— Depth 14 ‘g 7 —— Depth 14
— —— Depth 16 —— Depth 16
é 7 — EEEEE ig é Sj . — Dezth 18 § R — Dezth 18
.E 6 ; ITTTTT E
g g M g VYR
i s LI < __“QH\T o i ARARRARA R TIN NN
[] |
N TITrT e 3
0.02 0.04 0.06 0.08 01 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
€ € €
CIFAR10,k =1 Fashion MNIST, k =1 Fashion MNIST, k =1
CONV-L-400 MLP-L-100 CONV-L-100
8 —— Depth 8 - —— Depth 8 8 —— Depth 8
—— Depth 10 4 —— Depth 10 —— Depth 10
—— Depth 12 —— Depth 12 7 —— Depth 12
S —— Depth 14 s s —— Depth 14 E=] —— Depth 14
ol —— Depth 16 g —— Depth 16 S —— Depth 16
[a) —— Depth 18 [a) 5 —— Depth 18 (a3 —— Depth 18
v —— Depth 20 v v
g ?) 25 g s |
s & 2 5. T PR
. 15 3
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
€ € €
CIFAR10,k =20 Fashion MNIST, k = 20 Fashion MNIST, k£ = 20
CONV-L-400 MLP-L-100 CONV-L-100

Figure 2: Averaged e-effective depths over the last few epochs. We plot the e-effective depth (y-axis)
as a function of € (x-axis). Each line specifies the e-effective depth of a neural network of a certain depth L.
We show the averaged e-effective depth over the last k = 1,20 epochs across 5 initializations. The network’s
architecture, dataset and k are specified below each plot.

are trained with SGD for cross-entropy loss minimization between its logits and the one-hot encodings of the
labels. We consistently use batch size 128, learning rate schedule with an initial learning rate 0.1, decayed
three times by a factor of 0.1 at epochs 60, 120, and 160, momentum 0.9 and weight decay 5e—4. Each
model is trained for 500 epochs.

Under review as submission to TMLR

1.0

1.0

e ?__,__.w_-q
s /
. 081 / S —— 0.8 0.8 [/
g 2 !
> > >
£ Qo6 i + 006 faver Q'0.61 - layer
¢ 0 i o Ia ° / ayer 2
< 32 i - —+ 2 fayer 3 P/ —— layer 3
-+ C) -+ 4
9 Goai = Goay oot | Soay / male
Z f_/v‘ -+ layer 7 —— layer 6
1.00 |, mmmmmman| layer 00 layer 7
024 | rﬂ —+ 0.2 1oy 0.2 — - —— 4 layer8
! = [layer9
i 0.98 "V b taver > 0.98 e b Siiim
- —F train acc 2 =k train acc
0.0 0.0 0.0
0 100 200 300 400 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
1.0 1.0 1.0
0.8 0.8 0.8
E N T L LT e N e
> > >
s o069 5'0.6 e | Q06
° 5 5 layer 2 5
— layer3
0 Y] S] —— layer4]
5 o4 Qo4 - ee | Roa
layer s
z toyer7
02 0.2 — toyers 0.2
layer
er - layer 10
acc =k testacc
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
0% noise 25% noise 75% noise

Figure 3: Intermediate NCC separability of CONV-10-400 trained on CIFAR10 with partially
corrupted labels. We plot the NCC train/test accuracy rates of the various layers of a network trained
with a certain amount of corrupted labels (see titles).

Datasct MNIST Fashion MNIST CIFARIO CIFARIO
Architecture CONV-10-50 CONV-10-100 CONV-16-100 CONVRES-10-50
Es, olerrp(h},)] 0.0075 0.0996 0.2676 0.29
p 0.05 0.075 0.1 | 0.05 0.15 02| 04 0.45 05 0.1 04 05
Bound 1.05 0475 0.1 | 1.05 0.75 0.2 | 0.66 0.72 07 0.4 0.4 0.5

Table 2: Estimating the bound in Prop. |I} We used e = 0.005 to measure the effective depths.

Architectures. We focused on three types of architectures: (a) MLP-L-H with L fully-connected layers of
width H, (b) CONV-L-H with L 3 x 3 convolutional layers with padding 1, stride 1 and H output channels
and (c) a residual convolutional network CONVRES-L-H with L residual blocks with two 3 x 3 convolutional
layers. In each network the layers are interlaced with batch normalization layers and ReLU activations. For
more details see Appendix [A7]]

Datasets. We consider various datasets: MNIST, Fashion MNIST, and CIFAR10. For CIFAR10 we used
random cropping, random horizontal flips, and random rotations (by 15k degrees for & uniformly sampled
from [24]). All datasets were standardized.

4.2 Results

Intermediate neural collapse. To investigate the bias towards depth minimization, we trained several
CONV-L-400 networks with varying depths on CIFAR10. Each plot in Fig. [I] illustrates the train NCC
classification accuracy rates for every intermediate layer of a network of a specific depth. We made several
interesting observations: (i) Networks with eight or more hidden layers display NCC train accuracy rates of
about 100% in the eighth and higher layers, indicating that they are effectively of depth 7. (ii) The top layer
embeddings become NCC separable at approximately the same epoch. (iii) The degree of NCC separability
of intermediate layer ¢ converges as a function of L. In other words, the degree of NCC separability for each
layer is more or less the same across all neural networks with a depth of at least 8, regardless of whether the
layer is at the beginning or the end of the network.

For additional experiments and repeat results with various architectures and datasets, refer to Figs. [4H13]in
Appendix[A] In these experiments, we also report NCC train and test accuracy rates, along with additional

Under review as submission to TMLR

measures of neural collapse when varying the depth. For instance, in Figs. 4 and [5] we present the outcomes
with CONVRES-L-500.

The effect of the depth on the c-effective depth. In Obs. [l| we claimed that the e-effective depth
is insensitive to the actual depth of the network (once it exceeds a certain threshold). To validate this
hypothesis we conducted the following experiments. We trained models on MNIST, Fashion MNIST and
CIFAR10 with varying depth L. In Fig. [2] we plotted the averaged e-effective depths of each network’s last
k = 1,20 epochs as a function of e. We also average the results across 5 different weight initializations and
plot them along with error bar standard deviations. As can be seen, the e-effective depth is almost unaffected
by the choice of L for a given e. Remarkably, for each €, the averaged effective depth varies very little across
the various networks. Differently said, the e-effective depths of two trained deep networks of different depths
are more or less the same, validating our Minimal Depth Hypothesis.

NCC separability with partially corrupted labels. Simply put, Prop.[[] compares the depths required
to fit correct labels and partially corrupt labels. To better understand the effect of corrupted labels on the
complexity of the task, we compare the e-effective depths of models trained with varying amounts of corrupted
labels. Namely, we study the degree of NCC separability in the intermediate layers of neural networks that
are trained with varying amounts of corrupted labels.

For this experiment, we trained instances of CONV-10-400 for CIFARI10 classification with 0%, 10% and
75% corrupted labels (e.g., uniformly distributed random labels). We plot the degrees of NCC separation on

the train and test sets, 1 — errg(h;) and 1 — errp(h;), across the intermediate layers of the neural networks
during the optimization procedure.

As can be seen in Fig. 3] when increasing the number of random labels, the degree of NCC separability
across the intermediate layers tends to decrease. For example, when training with > 25% corrupted labels,
the sixth layer’s NCC accuracy rate drops lower than 98%, in comparison with training without corrupted
labels that gives us > 98% accuracy. In particular, the e-effective depth of the former network is 6 while the
latter’s is 5 when € = 0.02 (see Def. . This experiment is extended and repeated in a variety of settings in

Figs. [[4HI8]

Estimating the bound in equation We estimate the bound in equation {4] for multiple architectures
and datasets. In each case we used e = 0.005 by default and employed different ‘guesses’ p (see Tab.
depending on the complexity of the learning task. We report an estimation of the expected test error of
the models, Eg, [errp(hy)] and an estimation of the bound for each selection of p. For concrete technical
details, see Appendix [A]

As can be seen, for appropriate choices of p, we obtained non-trivial estimates of the test performance of the
models, which is uncommon for standard bounds for deep neural networks. As expected, if the value of p is
too optimistic (e.g., close to Eg, ,[errp (R)]), then, the first term in the bound tends to be large compared
to Eg, H[errp(hg,)]. As predicted, when p is increased, the first term in the bound tends to decrease.

Comparing our bound with standard generalization bounds. We expect the bound in equation
to be insensitive to depth because the e-effective depth of deep neural networks is insensitive to depth, as
shown in Fig. 2l We estimated the bound for various models and datasets, including CONV-L-50 trained
on MNIST and CONV-L-100 trained on Fashion MNIST and CIFAR10, and CONVRES-L-50 trained on
CIFAR10 with different values of L. The results, shown in Tab. [I] indicate that our bound gives similar
values for each value of L. We also compared our bound to several norm-based generalization bounds for
deep networks that can be found in (Bartlett & Mendelson) 2003} |[Neyshabur et al., |2015; Bartlett et al.
2017; [Neyshabur et al.,|2019)) (we used the implementation of Neyshabur et al.| (2019) to compute them). We
found that our bound outperforms traditional bounds, as it is empirically non-vacuous and fairly independent
of depth, while traditional bounds are extremely vacuous and rapidly increase with depth. These results
support our prediction of the superiority of our bound over traditional boundsﬂ

1The norm-based generalization bounds could not be calculated for the CONVRES-L-50 architecture, as these bounds are
not applicable for neural networks incorporating residual connections.

Under review as submission to TMLR

5 Conclusions

Understanding the ability of SGD to generalize well when training overparameterized neural network is
attributed as one of the major open problems in deep learning theory (Zhang et al.,|2017)). In this paper we
offer a new angle to study the role of depth in deep learning and the connection between neural collapse and
generalization.

Our approach involves introducing the concept of effective depth, which identifies the lowest layer that
exhibits NCC separability. We propose a novel generalization bound that estimates the likelihood that the
effective depth of a trained neural network is strictly smaller than the minimal depth required to achieve NCC
separability with partially corrupted labels. As demonstrated empirically, this criterion is a useful predictor
of generalization. Furthermore, we characterize and empirically demonstrate that when sufficiently deep
networks are trained, they converge to the same effective depth, implying that our bound is fairly constant
when the depth is varied.

10

Under review as submission to TMLR

References

Madhu S. Advani and Andrew M. Saxe. High-dimensional dynamics of generalization error in neural net-
works, 2017. URL https://arxiv.org/abs/1710.03667.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. ArXiv,
abs/1610.01644, 2017.

Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary computation perspective,
2019. URL http://arxiv.org/abs/1902.01724. cite arxiv:1902.01724.

Peter L. Bartlett and Philip M. Long. Failures of model-dependent generalization bounds for least-norm in-
terpolation. Journal of Machine Learning Research, 22(204):1-15, 2021. URL http://jmlr.org/papers/
v22/20-1164.html.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. J. Mach. Learn. Res., 3(null):463-482, mar 2003. ISSN 1532-4435.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 6241-6250, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20
(63):1-17, 2019. URL http://jmlr.org/papers/v20/17-612.htmll

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the prism
of interpolation. Acta Numerica, 30:203 — 248, 2021.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel
learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 541-549. PMLR, 10-15
Jul 2018. URL https://proceedings.mlr.press/v80/belkinl8a.html.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning prac-
tice and the classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849-15854, 2019. doi: 10.1073/pnas.1903070116. URL https://www.pnas.org/doi/abs/10.1073/
pnas.1903070116.

Ido Ben-Shaul and Shai Dekel. Sparsity-probe: Analysis tool for deep learning models. ArXiuv,
abs/2105.06849, 2021.

Ido Ben-Shaul and Shai Dekel. Nearest class-center simplification through intermediate layers. PMLR, 196:
37-47, 2022. URL https://proceedings.mlr.press/v196/ben-shaul22a.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877-1901.
Curran Associates, Inc., 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir

11

https://arxiv.org/abs/1710.03667
http://arxiv.org/abs/1902.01724
http://jmlr.org/papers/v22/20-1164.html
http://jmlr.org/papers/v22/20-1164.html
http://jmlr.org/papers/v20/17-612.html
https://proceedings.mlr.press/v80/belkin18a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://proceedings.mlr.press/v196/ben-shaul22a.html

Under review as submission to TMLR

Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Dnn or k-nn: That is the generalize vs. memorize question,
2018. URL https://arxiv.org/abs/1805.06822.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers). Association for Computational Linguistics, jun 2019.

Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 3004-3014. PMLR, 18-24 Jul 2021.

Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Exploring deep neural networks via layer-peeled model:
Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences, 118(43), 2021.

Tomer Galanti, Andrds Gyorgy, and Marcus Hutter. On the role of neural collapse in transfer learning. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
SwIp410B6aq

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural net-
works. Information and Inference: A Journal of the IMA, 9, 12 2017. doi: 10.1093/imaiai/iaz007.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic general-
ization measures and where to find them. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJgIPJBFvH.

Jianfeng Lu and Stefan Steinerberger. Neural collapse with cross-entropy loss. CoRR, abs/2012.08465, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. The MIT
Press, 2012. ISBN 026201825X.

Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Miiller. Kernel analysis of deep networks. J. Mach.
Learn. Res., 12:2563-2581, 2011.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain gen-
eralization in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
05e97c207235d63ceb1db43c60db7bbb-Paper . pdf.

Jeffrey Negrea, Gintare Karolina Dziugaite, and Daniel M. Roy. In defense of uniform convergence: Gener-
alization via derandomization with an application to interpolating predictors. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks.
In Peter Griinwald, Elad Hazan, and Satyen Kale (eds.), Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pp. 1376-1401, Paris, France, 03—06 Jul
2015. PMLR. URL https://proceedings.mlr.press/v40/Neyshaburl5.html|

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to spectrally-
normalized margin bounds for neural networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

12

https://arxiv.org/abs/1805.06822
https://openreview.net/forum?id=SwIp410B6aQ
https://openreview.net/forum?id=SwIp410B6aQ
https://openreview.net/forum?id=SJgIPJBFvH
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.mlr.press/v40/Neyshabur15.html
https://openreview.net/forum?id=Skz_WfbCZ

Under review as submission to TMLR

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards under-
standing the role of over-parametrization in generalization of neural networks. ArXiv, abs/1805.12076,
2019.

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. Journal of Machine
Learning Research, 21(252):1-64, 2020. URL http://jmlr.org/papers/v21/20-933.html.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via convolutional
sparse coding. J. Mach. Learn. Res., 18:83:1-83:52, 2017.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal phase
of deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652-24663, 2020.

Akshay Rangamani, Mengjia Xu, Andrzej Banburski, Qianli Liao, Tomer Galanti, and Tomaso Poggio.
Dynamics and neural collapse in deep classifiers trained with the square loss. Technical report, Center for
Brains, Minds and Machines (CBMM), 2022.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms.
Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
ArXiv, abs/1703.00810, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Toannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484-489, 2016. ISSN 0028-0836. doi: 10.1038 /nature16961.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level
performance in face verification. In Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural collapse, 2022.
URL https://arxiv.org/abs/2202.08087.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Zitong Yang, Yu Bai, and Song Mei. Exact gap between generalization error and uniform convergence in
random feature models. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11704—
11715. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/v139/yang21a.htmll

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Lijia Zhou, Danica J. Sutherland, and Nati Srebro. On uniform convergence and low-norm interpolation
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 6867—6877. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/4cc5400e63624c44fadeda99f57588a6-Paper . pdf.

Zhihui Zhu, Tianyu DING, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A geometric
analysis of neural collapse with unconstrained features. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=KRODJAa6pzE.

13

http://jmlr.org/papers/v21/20-933.html
https://arxiv.org/abs/2202.08087
https://proceedings.mlr.press/v139/yang21a.html
https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper/2020/file/4cc5400e63624c44fadeda99f57588a6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4cc5400e63624c44fadeda99f57588a6-Paper.pdf
https://openreview.net/forum?id=KRODJAa6pzE
https://openreview.net/forum?id=KRODJAa6pzE

Under review as submission to TMLR

A Additional Experiments and Details

A.1 Architectures

In this section, we describe the architectures used in our experiments.

The first architecture is a convolutional network, denoted CONV-L-H, which consists of a stack of two
2 x 2 convolutional layers with stride 2, batch normalization, and ReLLU activation. This is followed by L
stacks of blocks ¢*(x) = o(B;(Ci(x))), where C; is a 3 x 3 convolutional layer with H channels, stride 1, and
padding 1, B; is a batch normalization layer, and o is the ReLU activation. The final layer is linear. The
ith intermediate layer refers to the output of the ith block of ¢°.

The second architecture is an MLP, denoted MLP-L-H, which consists of L hidden layers, where each layer
9" (z) = o(B;(T;(x))) contains a linear layer T; with output width H, followed by a batch normalization layer
B; and a ReLU activation function o. The final layer is linear.

The third architecture is a convolutional residual network, denoted CONVRES-L-H. It consists of a stack of
two 2 x 2 convolutional layers with stride 2, batch normalization, and ReLU activation, followed by L residual
blocks. Each block computes g'(z) = o(z + BZ(C?(o (B} (C}(x)))))), where CY is a 3 x 3 convolutional layer
with H channels, stride 1, and padding 1, Bf is a batch normalization layer, and ¢ is the ReLLU activation.
The final layer is linear.

A.2 Estimating the Generalization Bound

In this section we describe how we empirically estimate the bound in Prop.

Estimating the bound. We would like to estimate the first term in the bound,
]P)Sl,SQ,YQ [E’Y["agl (hgl)] > ‘ﬂfmn(g7 Sl U S’Q)] . (5)

According to Prop. [2]in order to estimate this term we need to generate i.i.d. triplets (S%, S4,Yy). Since we
have limited access to training data, we use a variation of cross-validation and generate k1 = 5 i.i.d. disjoint
splits (S%,S%) of the training data S. For each one of these pairs, we generate k2 = 3 corrupted labelings
V7. We denote by S% the set obtained by replacing the labels of Si with Y37 and S& := §¢ U 5%

As a first step, we would like to estimate E. [¢5; (h"’)] for each i € [k;]. For this purpose, we randomly select

T, = 5 different initializations v1, . .., yr, and for each one, we train the model h”i using the training protocol

described in Sec. 4.1. Once trained, we compute &Sl(hgi) for each t € [T7] (see Def. 1) and approximate
€ i — T € t
IEA/[A’S% (hgi)] using d; := T% >k JSL(hg{).

As a next step, we would like to evaluate I[d; > &;m(g,ggj)]. We notice that d; > df

fin(G, 51 U S3) if
and only if there is a d;-layered neural network f = g% o --- o g' for which errgis (h) < €, where fl(a:) =
argmin.c(o) [|f(z) — ps(Se)||l. In general, computing this Boolean value is computationally hard. Therefore,
to estimate this Boolean value, we simply train a (d; + 1)-layered network h = e o f and check whether
its penultimate layer is e-NCC separable, i.e., errgéj(ﬁ) < ¢, where h(z) := argmin g oy || f () — py(Se)ll-
If SGD implicitly optimizes neural networks to maximize NCC separability as observed in (Papyan et al.|
2020) (and also in this paper), we should expect to obtain e-NCC separability in the penultimate layer if that
is possible with a d;-layered network. Since training might be non-optimal, to obtain a robust estimation,
we train 75 = 5 models h; = ¢; o f; of depth d; + 1 and pick the one with the best NCC separability in its
penultimate layer. Namely, we replace 45, (G, S5) with min,e(r) Jgéj (ht) and estimate I[d; > d5,;.(G, SY)]

min

using I[d; > minye g, &Séj (hy)].

Our final estimation is the following

kl Z ko 4 Z |:d > min JSU (ht) ~ PSI,SQ,YQ [E’Y[‘ggl (hgl)] 2 ‘Qrenm(gvsl U 52)} . (6)

te[To]

14

Under review as submission to TMLR

In order to estimate the bound we assume that 6}, and 5,2%17’0(are negligible constants and that a = 1. The
estimation of the bound is given by the sum of the left hand side in equation [6] and p.

Estimating the mean test error. To estimate the mean test error, Eg, ,[errp(hy,)], as typically done
in machine learning, we replace the population distribution P with the test set Si.s; and we replace the
expectation over S; and v with averages across the k; = 5 random selections of {Si}f;l and T = 5 random

selections of {y;}.,. Namely, we compute the following 1711 Zf;l T% 2311 errs,,,, (hl:) =~ Es, ,[errp(hg)]
1

A.3 Neural Collapse

To obtain a comprehensive analysis of collapse across layers, we also estimate the degree of NC1.

To evaluate NC1, we follow the process suggested by |Galanti et al.[(2022), which is a simplified version of
the original approach of Papyan et al. (2020). For a feature map f : RY — RP and two (class-conditional)
distributionﬁ Q1,Q2 over X C R?, we define their class-distance normalized variance (CDNV) to be

. Vary(Q1) + Vary(Q2)
Vi(Q1,Q2) = 2)pp(Q1) — pp(Q2) 1>

where 11, (Q) == E,g[u(z)] and by Var,(Q) := E,o[||u(z) — 1.(Q)||?] the mean and variance of u(x) for
x ~ Q. Essentially, this quantity measures to what extent the feature vectors of samples from @; and Q2
are separated and clustered in space.

To demonstrate the gradual evolution of collapse across the layers, for each sub-architecture f* = gio- - -og*(x)
we consider the train and test class features variations Avg, .. [Vyi(Se, Ser)] and Avg, .. [Vyi(Pe, Per)]. The
population distribution of each class, P,, is replaced with the test samples of that class.

As shown by |Galanti et al.| (2022)), this definition is essentially the same as that of Papyan et al.| (2020)).
Furthermore, they showed that the NCC classification error rate can be upper bounded in terms of the
CDNYV. However, the NCC error can be zero in cases where the CDNYV is larger than zero. For example, if
the two classes are uniformly distributed over the 1-radius circles around the points (—1,0) and (1,0) in R?,
then they are perfectly NCC separable while the CDNV between the two distributions is 0.25.

Auxiliary experiments on the effective depth. In Figs. we plot the NCC and the CDNV rates
of neural networks with varying numbers of layers evaluated on the train and test data. Each curve stands
for a different layer within the network. As can be seen, in all cases, for networks deeper than a threshold
we obtain (near-perfect) NCC separability in all of the top layers. Furthermore, the degree of class-features
variability collapse increases with the network’s depth as depicted by decreasing CDNVs.

Auxiliary experiments with noisy labels. In Figs. [14{{18| we repeat the experiment in Fig. [3| and plot
the results of the same experiment, with different networks and datasets (see captions). As can be seen, the
effective NCC depth of a neural network tends to increase as we train with increasing amounts of corrupted
labels.

2The definition can be extended to finite sets S1,S2 C X by defining V(S1, S2) = V¢ (U[S1], U[S2]).

15

Under review as submission to TMLR

1.0 1.0 T 1.0
/_,—’—‘-’_'—/‘N |, ———
., 08 0.8 0.8
9
& |\ ,
2 3o T o6 Tos6
s © © © R ——
23 E 5 =T
e} v} o] aver
0 go4 go4 Z04 e
o ~ layer 1 —+= layer 4
Z . ~+ layer 2 1.00 —+ layer 5
024 | s — layer1 0.2 —+ layer 3 024 | —+ layer 6
1 I ~+— layer2 4 layer 4 1 4+~ layer 7
! 0.98 —+ layer 3 ~+ layer 5 1 0.98 ~+— layer 8
=k train acc =k train acc =k train acc
0.0 0.0 0.0
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
e = =
, ,
]
] | ayer1 -~
5> — layer2 > >
- ~— layer 3 —— layer 1 layer 12
G ——— < ez et
pe) a —+ layers a —+ layerl -} layer 10 3 —— layer3 layer 14
oI —+ layer6 O = layer2 * layer11 O — layer 4 layer 15
O < —+ layer 7 < —= layer3 layer 12 < —+ layer 5 « layer 16
Z, ~+— layer8 —— layer4 layer13 —— layer 6 layer 17
layer 9 —t layer5 b+ layer 14 = layer 7 b+ layer18
- layer 10 —— layer6 --}- layer15 —4— layer 8 layer 19
b et (NN T e yers k- loer20
layer 12 [‘VV‘”‘V\ —— layer8 =k train acc b+ layer10 =k train acc
A =k train acc ad layer 9 b layer11
0.0 0.0
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
1.0 1.0 1.0
0.8 0.8
Q
E]
< 3 3 0.6 T 0.6
o @ e e
3 3 3 — layer1
09 9]] —+ layer2
O g 2 04 - i 0.4 I layer3
layer 1 layer 4
& i] I orer2 I s
0.2 " —— layer 1 0.2 |' ~4— layer 3 0.2 |' —— layer 6
: i ~— layer 2 : i 4 layer 4 : 1 4 layer 7
! ~4= layer 3 ! —+ layer s ' —+ layer 8
=k testacc =k testacc =k testacc
0.0 0.0 0.0
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 1.0
0.8 0.8
o
E]
> > >
Y 006 006 el 0 ez
o = o o i layer2 b+ layer13
* 3 =1 layer10 | 3 —— tayer3 layer 14
[ON] g 0.41 ayer11 | O 0.4 — layera layer 15
O < << 7 layer12 | <L —= layer5 -} layer16
I 13 -+ 6 LR 17
& ¥ o1 T b s
024 1 - tayer 10 024 1 layer 15 0.24 4 layers layer 19
1 =:b- layer 11 1 ~— layer7 -:}- layer 16 layer 9 =k layer 20
! b layer12 1 — layer8 =} testacc b layer10 =k testacc
=k testacc layer 9 -ob- layer11
0.0 0.0 0.0
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 4: Intermediate NCC separability of CONVRES-L-500 trained on CIFAR10. We plot the
NCC train and test accuracy rates of neural networks with varying numbers of layers. Each curve stands for
a different layer within the network.

16

Under review as submission to TMLR

5 —= layer 1 5 —— layer 1 5 —+ layer1
2”4 ~+— layer 2 2 - layer 2 2 —— layer2
~— layer 3 —4— layer 3 —+— layer 3
— layera — layera
A 234 23 - layer s 23 = layers
il —+ layer 6
he} ~+— layer 7
\ ; o1 ; 21 ; 21 — layer8
>0 [=) (=)
z O (9] (8]
o 274 271 271
O
2-3 2-3 2-3
2-° 27 2-°
0 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
—4= layer 1 5 3 —— layerl |- layer9 —= layerl -:}- layer1l
—— layer2 2°4 —— layer2 |- layer 10 —— layer2 layer 12
—= layer 3 —= layer3 -} layer11 —= layer 3 - layer13
— layera —+ layera |- layer12 —+ layera layer 14
A = layer 5 234 —+— layer5 |- layer13 —— layers layer 15
< —t layer 6 —+ layer 6 layer 14 —+— layer 6 =} layer 16
= —+ layer7 ~+— layer7 |- layer1s ~— layer 7 I layer17
\ = levers | > o1 | —+ layers |- layer16 — layer8 |- layer18
4+~ layer9 =2 ~— layer9 I layer19
; I+ layer 10 8 ‘- layer10 | layer 20
<l layer11
[a) I+ layer12 2714
O j—
-3
2 M
27 27 27
0 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
— layer 1 —= layer 1 — layer 1
254 — layer2 254 —— layer2 254 — layer2
~4= layer 3 — layer 3 — layer 3
— layera — layer4
- 234 23 —+ layer5 234 —+ layer5
3 — layer 6
£ —+— layer 7
>w ; o1 ; o1 E o1 — layer8
[a) [a) [=)
Z 0 o]
8 2-1 2-1 2-14
2-3 2-3 2-3
25 25 2-°
0 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
— layer 1 — layer1 - layer9 — layer1 |- layer11
254 — layer2 254 —— layer2 |- layer10 254 — layer2 |- layer12
— layer 3 — layer3 | layer11 — layer3 |- layer13
— layera — layer4 |- layer12 —+ layera |- layer1a
- 234 — layer 5 234 —+ layer s layer 13 234 ~— layers -} layer1s
3 — layer 6 —+ layer 6 layer 14 —+ tayer6 |+ layer 16
- —+ layer7 ~ layer7 layer 15 ~ layer 7 I layer17
"> o1 —— layer 8 > o1 —— layer8 -}~ layer16 | > o1 —— layer 8 ‘|- layer18
> = ~4~ layer9 = = 4 layer9 I layer19
. 8 I+ layer 10 8 8 |+ layer10 -k layer 20
<l layer11
8 271 I layer12 271 271 -
2-3 2-3 2-3
2-5 2-5 2-5
0 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 5: Intermediate class-features variability collapse separability of CONVRES-L-500
trained on CIFAR10. We plot the CDNV on the training and test data of neural networks with varying

numbers of layers. Each curve stands for a different layer within the network.

17

Under review as submission to TMLR

1.0 ; 1.0 T 1.0 == .}
ST —
_,
-~
0.8 i /—/—’—’w"_" 0.8 0.8
Q 1
9 ! e | ——————
P> . > z ‘
£ Qo064 [006 0 0.6
] © K © o ——————
el a ! a a —— layer 1
0 Qo4 | | Qo4 Qoaq 4 e
o ~ layer 1 —+= layer 4
Z 1.00 — layer2 1.00 — layers
0.2 i P ddadard —+ layer1 0.2 —— layer 3 024 | —— layer 6
l' '1 ~+— layer2 4 layer 4 : 4+~ layer 7
i 0.98 —+ layer3 4 layers 0.98 —+ layer8
| -k train acc -k trainacc [//w\,\'\. -k trainacc
0.0 0.0 0.0
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 1.0 T
r -
o 0.8 0.8 0.8 ,
@ —+ layer1 Y,
> = 2 > >
£ 006 L o | C06q © 0.6 L e loyer 12
s O — layera I I — layer2 - layer13
pe) a —+ layers a —+ layer1 -} layer 10 3 —— layer3 layer 14
U Y044 ~4— layer 6 O 0.4 ~+— layer 2 “ layer 11 9 0.4 —— layerd layer 15
O < = layer 7 < —— layer3 layer 12 < —= layer5 -} layer 16
~+— layer8 —— layer4 layer13 —— layer 6 b layer17
Z 1.00 ayer 9 — layer5 b layer 14 4 1.00 i layer7 b layer 18
0.2 - I+ layer 10 0.2 — layer6 b layer 15 0.2 —+ layers layer 19
i +- layer 11 ~4— layer7 -:}- layer 16 layer 9 =k layer 20
0.98 [12 —+= 8 =k 0.98 b layer10 =p t
b vamace s TN B
0.0 0.0 0.0
100 200 300 400 500 100 400 500 100 200 300 400 500
Epoch Epoch
12 layers 20 layers
1.0 1.0 1.0
0.84 0.8
Q
E]
< 3 3 0.6 T 0.6
o @ e e
+* 3 =1 3 — layer 1
] v] Y 4 layer2
O g g 04 i 0.4 —— layer 3
4 — layer 1 —— layerd
T —+= layer 2 ~+ layer 5
0.2 " —— layer 1 024 ! ~4— layer 3 0.2 ,' —— layer 6
: i ~— layer 2 : l' 4 layer 4 : 1 4 layer 7
' ~4— layer 3 1 ~+= layer 5 ! ~+= layer 8
=k testacc =k testacc =k testacc
0.0 0.0 0.0
100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 1.0
0.8 0.8
o
Q
@ > > >
% 0 g 0.6 3 0.6 —— layer1 layer 12
[N~ — = —4— layer 2. - layer13
* 3 =1 layer10 | 3 — layer3 layer 14
[ON] g 0.41 ayer11 | O 0.4 — layera layer 15
U< < 7 layer12 | <L " — layers + layer 16
Z layer 13 4 layer 6 } layer17
layer 14 —— loyer7 b layer18
0.24 - tayer 10 0.24 layer 15 021 1 4 layers layer 19
<} layer11 ~~ layer7 -} layer16 I layer9 ~} layer 20
b layer12 —— layer8 =} testacc ! }- layer10 =} testacc
=k testacc layer 9 -ob- layer11
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 6: Intermediate NCC separability of CONV-L-400 trained on CIFAR10. We plot the NCC
train and test accuracy rates of neural networks with varying numbers of layers. Each curve stands for a
different layer within the network.

18

Under review as submission to TMLR

—— layer 1 — layer 1 — layer 1
25 = |:§::2 25 ver 25 —+ g::z
— layer 3 —+ layer 3
— layera
A 23 23 23 — layers
il —+ layer 6
he} = layer 7
\ ; 21 ; 21 ; 91 —+ layer 8
>0 a [a]
z O (9] (8]
[a) 271 27! 27!
O
2734 273 273
25 275 275
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
—— layer1 —— layerl - layerd F] —— layerl -l layer11
254 — layer2 —— layer2 |- layer10 254 i — layer2 layer 12
— layer 3 —— layer3 -} layer11 —— layer 3 - layer13
— layera — layera |- layer12 —+ layer 4 layer 14
A 234 —— layer 5 234 —— layer5 -} layer13 234 —— layers layer 15
il —+ layer 6 —+ layer 6 layer 14 —+ layers |- layer16
= —+ layer7 ~ layer 7 - layer1s ~— layer 7 I layer17
L2 o1 - layers | > 51 | —— layer8 |- layer1s | > 4 layer8 |- layer18
=z 2 4 layer9 Z 2 E— = 2'9 —— layer 9 I layer19
; 8 I layer10 8 8 e layer10 ~k layer 20
a2 ez | 271 2714
O
2-3 2-3 2-3
27 27 27
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
— layer 1 —= layer 1 — layer 1
254 — layer2 254 —— layer2 254 — layer2
—4= layer 3 —- layer 3 — layer 3
+— layer 4 —— layer4
- 23 23 —+— layer 5 234 —+ layers
3 — layer 6
£ ~+— layer 7
. ; 1] ; 1] E 1] — layer8
za a a
Z 0 o]
8 2-1 2-1 2-14
2-3 2-3 2-3
2-5 2-5 2-5
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
— layer 1 5 — layer1 - layer9 5 ’, — layer1 |- layer11
—— layer2 2°4 —— layer2 |- layer10 2°1 3 —— layer2 |- layer12
—+ layer 3 —— layer3 |- layer11] —— layer3 |- layer13
— layera —— layerd |- layer12 —— layera -} layer1a
- —— layer 5 234 —+— layer5 |- layer13 234 — layer5 -l layer1s
3 — layer 6 —+ layer6 layer 14 —— layer6 -:l- layer16
- —+ layer7 ~ layer7 layer 15 ~ layer 7 I layer17
' — layers | > 21| —— layer8 |- layeris | > 21 — layers |- layer18
> ~4~ layer9 = = 4 layer9 I layer19
z I+ fayer 10 8 8 I+ layer10 | layer20
A ez | 21 271
O =g o
2-3 2-3 2-3
2-5 2-5 2-5
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 7: Intermediate class-features variability collapse separability of CONV-L-400 trained
on CIFAR10. We plot the CDNV on the training and test data of neural networks with varying numbers
of layers. Each curve stands for a different layer within the network.

19

Under review as submission to TMLR

1.0 - 1.0 T 1.0 y
K———’—— ,
., 08 0.8 0.8
9
@
> > >
2306 006 006
& S loyer1
v v o
— layer2
8 & 0.4 & 0.4 g 0.4 -+ \::::3
—— layer 1 —+ layer 4
Z 1.00 —— layer2 1.00 —+ layers
0.2 — layer1 024 | —+ layer 3 024 | —+ layer 6
~+— layer2 1 4 layer 4 1 4+~ layer 7
—+ layer3 i 0.98 —+ layers i 0.98 —+ layers
=k train acc =k train acc =k train acc
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 400 500
Epoch Epoch
3 layers 5 layers
1.0 T
B /——“’_———' /—A_—\——./
o 0.8 , —
@ —+ layer1
> = 2 > >
£ Qos S | 9 g et e
s O —— layera o o — layer2 - layer13
pe) a —— layer5 a —+ layerl -} layer 10 3 —— layer 3 layer 14
U Y044 ~4— layer 6 O ~+— layer2 “ layer 11 O —— layer 4 layer 15
o< 4= layer 7 << —t layer 3 layer 12 << —— layer 5. « layer 16
~+— layer8 —— layer4 - layer13 ~4= layer 6 b layer17
Z 1.00 ayer 9 — layer5 b layer 14 el layer7 b layer1s
024 1 - tayer 10 — layers b layer1s 4 rayers layer 19
1 =:b+ layer 11 ~4— layer7 --}- layer 16 layer 9 =k layer 20
1 0.98 layer 12 —— layer8 =} trainacc b layer10 =k trainacc
-F trainacc layers
0.0
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
1.0 1.0 1.0
0.84 0.84 0.8
Q
E]
> > >
£ 0 0.6 0 0.6 006 o
o @ o= e °
+* 3 =1 3 —— layer 1
0y 1 9] 8 — layer2
J Qoa go4 04 — layer 3
4 — layer 1 —— layerd
’ —— layer2 —+ layers
0.24 ! —— layer 1 0.24 |' ~4— layer 3 0.2 " —— layer 6
! ! — layer2 ! 1 — layer4 ! i 4= layer 7
1 —— layer 3 U ~+= layer 5 ' ~+ layer 8
=k testacc =k testacc =k testacc
0.0 0.0 0.0
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 1.0
0.8 0.8 0.8
o
M — layer1
> = 2 > >
2 Tos s | S04 0.6 eyt ez
TR = —— layer 4 = s —— layer2 -}~ layer13
>3 — layers 3 layer10 | 3 o —— layer3 b layer14
08 0.41 — layer 6 S 0.44 ayernn | O 0.44 — layera layer 15
O <™ 4 layer 7 < layer12 | <L " —— layer5 b layer16
-t I 8 I 13 -+ 6 LR 17
& loyers o1 T b s
021 1 - tayer 10 0.24 layer 15 0.24 4 layers layer 19
1 =:b- layer 11 ~— layer7 -:}- layer 16 layer 9 =k layer 20
! b layer12 1 — layer8 =} testacc U b layer10 =k testacc
=k testacc layer 9 -ob- layer11
0.0 0.0 0.0
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 8: Intermediate neural collapse of MLP-L-300 trained on CIFAR10. We plot the NCC train
and test accuracy rates of neural networks with varying numbers of layers. Each curve stands for a different
layer within the network.

20

Under review as submission to TMLR

210 210 210
— layer 1 — layer 1 —+ layer1
~+ layer2 ~+ layer 2 —+ layer 2
27 — layer 3 27 —+ layer3 27 — layer3
— layera — layer4
| — layers — layers
el 24 24 24 —+ layer 6
i i layer 7
. ; 2 ; —+= layer8
1 1 1
>0 ? a2 a2
z O O]
a5 2-2 2-2
O
27 27 27
278 278 278
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
210 210
— layer 1 — layer 1 3 — layer1 |- layer1l
~+ layer2 —+ layer2 3 ~~ layer2 layer 12
27 — layer 3 — layer 3 274 3 —+ layer3 - layer13
- — layera —+ layera H —+ layer 4 layer 14
A — layer 5 —+ layers —— layer s layer 15
il 24 —+ layer 6 — layer 6 24 —+ layer6 - layer16
hs] ~+— layer 7 ~+— layer 7 ~— layer 7 layer 17
\ ; — layer 8 ; — layers ; —+ layer8 |- layer18
1 layer 9 1| layer 9 1] layer 9 layer 19
; 8 2 layer 10 8 2 I+ layer 10 8 2 ‘- layer10 | layer 20
layer 11 <l layer11
[a] -2 layer 12 -2 I layer12 -2
o 2 2 I layer13 2
layer 14
- - - layer 15 -
272 272 layer 16 27
278 278 278
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
210 210 210
— layer 1 —= layer 1 — layer 1
~+ layer2 ~+ layer2 ~+ layer2
274 —+ layer3 274 —+ layer 3 27 —+ layer3
— layera — layer 4
7 — layers 2 layers
3 24 24 24 —+ layer 6
£ \2 ~+~ layer 7
' ; ; E —— layer 8
>58 21 o 21 3 2
Z O o o
8 2774 2724 2-2
2-5 2-54 2-5
2-8 2-8 2-8
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
210 210 - 210 —
— layer 1 H — layer 1 3 — layerl -l layer11
—+ layer2 H —+ layer2 3 ~ layer2 I layer12
274 — layer 3 274 : — layer 3 274 3 —— layer3 |- layer13
—+ layerd H — layer4 3 —+ layera |- layer14
- — layer 5 H —+ layers E ~— layers -} layer1s
3 24 — layer 6 2] i — layer & 2] & = layers |- layer1s
- —+ layer7 ¢ —+ layer7 ~— layer 7 I layer17
' ; —+ layer 8 ; 4 layer 8 ; —— layer8 -} layer18
1 layer 9 1| layer 9 1] layer 9 layer 19
; 8 2 = layer 10 8 2 |+ layer 10 8 2 I+ layer10 ~F layer20
layer 11 <} layer11 -
A
2] I layer12 2] I layer12 2
o 2 2 i layer13 2
1+ layer14
- - I layer1s -
273 273 - layer 16 2754
278 278 278
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 9: Intermediate class-features variability collapse separability of MLP-L-300 trained on
CIFAR10. We plot the CDNV on the training and test data of neural networks with varying numbers of
layers. Each curve stands for a different layer within the network.

21

Under review as submission to TMLR

" e i N]
] | | 1
£ Zo06q | So6q | To6q |
s 0 | e [e '
it a E 3 | a ' ::_— :ayer;
O Q044 | S04q | 0044 1 aver
< < 1 << 1 — layer 3
(ZJ :' 1.00 ' 1.00 s 1 1.00 + ‘a:w
! 1 ! = layer 2 1 - — ~t+= layers
1 H 1 [
— layer1 —+ layer 3 —+ layer 6
027 | oo |02 | Tom | o2 — = o
0.98 —+ layer3 0.98 —+ layers i 0.98 —+ layer8
=k train acc =k train acc =k train acc
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1-0'§ 1-0'$
o 089 0.84 0.84
g 1 —+ layer1
> = 2 > >
£ Qosd | s | 0.6 © 0.6 e
s O 1 — layera I I - layer13
pe) a i —— layer 5 a —+ layer1 -} layer 10 3 layer 14
O Y044 , — layer6 S 0.4 — layer2 Savernn |9 g4 layer 15
o<] —— layer7 < — layer3 layer12 | <L b+ layer16
~+— layer8 —— layer4 - layer13 b layer17
Z | 1.00 ayer 9 1.00 — layer5 b layer 14 4 layer 18
024 | L b layer 10 0.2 - layer6 b layer1s 0.2 layer 19
1 —— =:b+ layer 11 ~t— layer7 --}- layer 16 =k layer 20
i 0.98 +——"| layer 12 0.98 — layer8 =k trainacc 0.98 b layer10 =k trainacc
-F trainacc layers
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
10 Fx(o0 ? 1o
084 i 084 i
9 1
£ > -: > > '
2 0061 ! 9 0061 i
25 5 S|
1 1 —— layer 1
[OIS] 11] o ' — layer2
o] g 0.4 : g i 0.44 1 — loyer3
Z 1 — layer1 H — layerd
! 1.00 1.00 — layer2 i —— layer 5
0.2 1 —— layer 1 —— layer 3 0.2 ! —— layer 6
H ~— layer 2 | — 4 layer 4 i :: layer 7
0.98 = layer3 0.98 ~4— layers layer 8
Tk eace Tk eece ke
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 LO?E 1.0
1
— —
081 [t 0.84 0.84
o
M s — layer1
> = 2 > >
% J06q | s | 5061 g 06 et e
o O 1 —tayers | O e — loyer2 b layer13
¥ 3 1 —— layer s 3 — layer1 layer10 | 3 — layer3 layer 14
[ON] 044 1 —— layer6 S 0.41 —— layer2 ayernn | O 0.41 —— layera layer 15
o< 1 4~ layer 7 < 7 —— layer 3 layer12 | < " —— layer5 -+ layer16
Z 1 —— layer8 4 layer4 layer 13 —— layer6 b layer17
1 1.00 layer 9 1.00 —+ layers layer 14 —— layer 7 b layer 18
0.2 } - layer 10 0.2 —— layer 6 layer 15 0.2 ~ —— layers layer 19
“b+ layer 11 ~4= layer7 -} layer 16 layer 9 =k layer 20
i 0.98 == e 0.98 e ok e e -k
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 10: Intermediate neural collapse of CONV-L-50 trained on MINIST. We plot the NCC train
and test accuracy rates of neural networks with varying numbers of layers. Each curve stands for a different

layer within the network.

22

Under review as submission to TMLR

23] — layer 1 53 — layer 1 53 — layer 1
~+ layer2 ~+ layer 2 —+ layer 2
~— layer 3 —= layer 3 —4+ layer 3
21 21 — layera 21 — layera
| 4+ layers —— layers
g —+ layer 6
-1 -1 -1 —— layer 7
=52 >2 >2 —+ layers
> g 3 E 3 E 3
2734 2 2
z O (9] (8]
o]
o 2754 2-5 2-5
2-7 2-7 2-7
270 270 270
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
—= layer 1 —= layer 1 —= layerl |- layer11
—— layer2 2%+ E —+— layer 2 2%+ —— layer2 layer 12
—4= layer 3 I —- layer 3 k —= layer 3 - layer13
— layera 21 — layera o1 —+ layera layer 14
A — layer 5 —— layer 5 L— —— layer 5 layer 15
il — layer 6 — layer 6 S layer6 | layer16
5 1 —+— layer7 2-1 —+— layer 7 el T e —] I+ layer17
> — layer8 | > - iayers | > T layer8 | layer18
2 i~ layer9 4 — layer9 2 S~ T layer9 I+ layer19
; 8 2-3 |- layer 10 8 2-3 layer 10 8 23 Kk lyer1o - layer2o
“l layer11 - layer 11 st —
[a] I+ layer12 layer 12
O 2754 2-5 layer 13 275
layer 14
- layer15
2774 274 r16 2774
27° 27° 27° _
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers
23 — layer 1 23] —+ layer 1 23] — layer 1
~+ layer2 ~+ layer2 ~+ layer2
—4= layer 3 —- layer 3 —+ layer 3
21 21 — layera 21 — layer 4
+ —+ layer 5 — layers
3 —+ layer 6
- -1 -1 -1 —+ layer 7
' ; 2 ; 2 E 2 ~4~ layer 8
;82—3_ 82—3_ 82—3_
a
O 254 2-54 2-54
2-7 2-7 2-7
270 270 270
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
3 — layer 1 3] — layer 1 3 — layer1 |- layer11
274 —— layer2 2% E —— layer2 274 E —4— layer2 |- layer12
— layer 3 — layer 3 E — layer3 |- layer13
214 —t layer 4 214 —t layer 4 214 —+— layerd o} layer 14
- —— layer 5 —— layer 5 L— 4 layer5 ‘|- layer 15
3 — layer 6 T - ayer6 —ayer6 b layerls
€ -1 —+ layer7 2-1 —— layer7 D Lt I+ layer17
"> — layers | > - — A ayers | > |~ layer8 |- layer1s
> 2 i~ layer9 2 —i— layer9 2 o~ layer9 I+ layer19
a -3 |- tayerio | O 2-3] fyerto | O 234 g} ayerlo -k layer20
E o b layernn | O b layern | O ﬁﬁg
I+ layer 12 layer 12 S e F—
O 2754 275 layer 13 2754
layer 14
layer 15
2-7 2-74 layer 16 277
27° 27° 27°
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 20 layers

Figure 11: Intermediate class-features variability collapse separability of CONV-L-50 trained
on MNIST. We plot the CDNV on the training and test data of neural networks with varying numbers of
layers. Each curve stands for a different layer within the network.

23

Under review as submission to TMLR

1.0 T 1.0 T 1.0
e —_— = [~ ~ ———
., 08 0.8 0.8
9 S
S | > ! >
£ Qo6 0064 |i 0061 |i
¢ @ | e 1 e i
53 ! 3 i 3 ' —+ layer1
+— layer2
g Goay i Soay ! Soat | S
i | — layer 1 | — layer 4
Z i 1.00 | 1.00 1 +— layer2 | —+ layers
024 1 = layer 1 024 | ’ S —+ layer 3 024 | — layer 6
] 4~ layer 2 i —— layer 4 i 4 layer7
' 0.98 — layer 3 | 0.98 —+ layers | —+ layer 8
=k train acc =k train acc =k train acc
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 = 1.0 1.0
=
S b % - b
o 089 0.8 0.8 v
E] - opert
> > >
2 306 et | Sosd T 0.6
s Q@ —toyers | O o - tayerl - layeril
* 3 i —+ layers 3 —layerl b layverlo |3 i —+ layer2 layer 12
O So4d i —+ layer6 o4l 1 ez howernn |G g 4] —— layer3 layer 13
o< 1 - layer 7 < 1 —+ layer3 layer 12 < ' — layer4 layer 14
z H —+ layer8 [— layera + layer13 —+ layers layer 15
i layer 9 i 1.00 wapepe —H layers b layerls | 1.00 ” — layer6 -+ layer16
024 1 o layer 10 024 1 y — layer6 b layeris 024 | yer7 b layer1
1] b+ layer11 1 4~ layer7 b+ layer 16 1 —— layer 8 b+ layer 18
! layer 12 1 0.98 —— layer8 =} trainacc 1 0.98 layer9 = trainacc
ran =k train acc layer 9 t- layer 10
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 18 layers
1.0 1.0 1.0
0.84 0.84 0.8
]
@ i 1
> > >
© 0064 h Co6q |i g0.64 |i
L e £
- I S0l | T i
9 o4l ! Qoaq ! Soaq ! o yers
Z i | —+ layer1 H —+ layer4
! 1 ~+— layer 2 1 —— layers,
0.24 1 —— layer 1 024 ! —— layer 3 024 | — layer 6
1 ~4= layer 2 1 ~ layer 4 1 +- layer7
H —+ layer 3 ' — layers i — layer8
=k testacc =k testacc =k testacc
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
1.0 1.0 1.0
0.8
o
M — layer1
> —— layer2 > >
4 806 s | Q 9
o O — layer4 o o — layer1 -} layer11
s 3 h — layer s 2 . —— layer 1 lyer1o | 3 i —— layer2 I layer12
O Qo4q 1 —avers |9 gad 1 —+ layer2 meran |G o] i = layer3 b layer13
U< H i layer 7 < 1 -_::layers layer12 | <L " ! I\ayera b layer14
layer 8 layer 4 layer 13 layers layer 15
“ ! i o i s s
021 ! - tayer 10 021 | —+ layer6 layer 15 021 1 i tayer7 - layer17
] b+ layer11 1 i layer7 -} layer16 1 —+— layer 8 b layer18
! b layer12 1 — layer8 =} testacc 1 layer9 = testacc
=k testacc layer 9 b layer 10
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 18 layers

Figure 12:
NCC train

Intermediate neural collapse of MLP-1-100 trained on Fashion MNIST. We plot the
and test accuracy rates of neural networks with varying numbers of layers. Each curve stands for

a different layer within the network.

24

Under review as submission to TMLR

210 210 210
~4= layer 1 —= layer 1 —4= layer 1
~+— layer 2 ~+~ layer 2 ~+~ layer 2
27 — layer 3 27 — layer 3 27 — layer 3
— layer 4 — layer 4
| —— layers — layers
g 24 24 24 —4— layer 6
= layer 7
= 2 2 2 —+ layers
1 1 1
>0 ? a2 a2
z O (9] (8]
a5 K 2-2 2-2
O
27 27 27
278 28 28
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
210 210 prry—
— layer1 H — layer1 H —— layer1 |- layer10
—— layer2 H —— layer2 H —— layer2 |- layer11
27 — layer 3 274 % — layer 3 274 % —+ layer3 |- layer12
— layera H — layer4 N — layera |- layer13
A —— layer 5 3 —— layer 5 i —— layer 5 layer 14
il 24 —+ layer 6 24 3 —+ layer 6 244 i — layer 6 layer 15
hs] 4+~ layer 7 3 4+~ layer 7 3 ~+— layer7 |- layer16
L= — layers | > 3 = layers | > 3 —- layers |- layer17
>3 2 o | B2 o | B2
z O layernn | O <f layer11 | O
A 52 layer 12 2-2] I+ layer12
O I+ layer13
layer 14
- - + layer15
272 272 layer 16
278 278
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 18 layers
210 210 210
— layer 1 —= layer 1 — layer 1
—4— layer2 4+ layer 2 —4— layer2
274 —+ layer3 274 —+ layer 3 27 —+ layer3
— layer 4 — layerd
ﬁ —+— layer 5 —+— layer 5
8 24 24 24 — layer 6
+ —4— layer 7
"> > > ~4— layer 8
>g 2'4 g 2 g 2
LN e E
o 274 2724 2-2
——————
275 275 275
28 28 28
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 8 layers
210 210 210
— layer 1 H — layer 1 —— layer 1 |- layer 10
~— layer2 H ~= layer2 ~t— layer2 -:}- layer11
274 —+ layer3 274 i —+ layer3 274 —+layer3 |- layer12
—= layer4 E —+ layer 4 —t= layerd |- layer13
+ —— layer 5 H — layer 5 —— layer5 |- layer14
3 24 — layer 6 24 3 —— layer 6 24 —+ layer6 | layer1s
+ 4+ layer 7 3 4+~ layer 7 ~+— layer7 |- layer16
> — layers | > 3 — layers | > —+ layers |- layer17
28 2 maro | B 2 & Lo | B 2 s 1 e
Z 0 Ia]]
yer 11 b+ layer 11
A 2-21 |- layer 12 2-2 |- layer12 2-2]
o v o -} layer13
S g gt
- - |- layer 15 =
273 273 - layer 16 2754
278 278 278
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
12 layers 16 layers 18 layers

Figure 13: Intermediate class-features variability collapse separability of MLP-L-100 trained
on Fashion MNIST. We plot the CDNV on the training and test data of neural networks with varying
numbers of layers. Each curve stands for a different layer within the network.

25

Under review as submission to TMLR

= 2 R o 2 2 2 2
o — F
& » » 2 2 2
vz P VE > ? > ? > > ?
3 7 3 » 3 2 3 2 3 2
> 87 g2 82 g2 g2
E » » » » »
o 2 27 22 272
2 2t 2 2 2t
G 10 200 300 400 500 G 10 200 300 400 500 G 10 200 300 400 500 G 10 200 300 400 500 G 10 200 300 400 500
Epoch Epoch Epoch Epoch Epoch
layer 3 layer 4 layer 6 layer 8 layer 10
o b 1 1 1 1
5]
T o 08 08 08 08
o
S Zos Zos Zos Zos Zos
£ ¢ 14 14 14 14
- g g g g
o o Soa Soa Soa Soa
o 0 o = o =
3 G 10 200 300 a0 500 G 10 200 300 a0 500 G 10 200 300 a0 500
Epoch Epoch Epoch
25% noise 50% noise 75% noise
s 2 2 2 2
"
L 2 2 2
e = > > >
> 2, 8 » 8 » g »
Z 87 82 82 82
S E E 2
O 2 22 22
2 2 2 2 2
G 10 200 300 a0 500 6 w0 200 a0 sk 6 w0 200 a0 5% 6 w0 200 a0 st 6 10 200 300 a0 500
Epoch Epoch Epoch Epoch Epoch
layer 3 layer 4 layer 6 layer 8 layer 10
1 1 1 1 1
o
5]
@ 08 08 08 08 08
% > > > > >
2 Zos Zos Zos Zos Zos
N g g g g
O fos Zoa Zoa Zoa Zoa
O
z 0 02 02 02 02
o o
6 10 200 300 460 6 10 200 300 460 6 10 200 300 400
Epoch Epoch Epoch
0% noise 10% noise 25% noise 50% noise 75% noise

Figure 14: Intermediate neural collapse
corrupted labels. In the first (third) row,

of CONV-10-400 trained on CIFAR10 with partially

we plot the CDNV on the train (test) data for intermediate

layers of networks trained with varying amounts of corrupted labels (see legend). In the second (fourth)
row, we plot the NCC accuracy rates of the various layers of a network trained with a certain amount of

corrupted labels (see titles).

26

Under review as submission to TMLR

£ » » » »
[
[:1 25 25 25 25 25
=3 z > z > z > z > z
£ z, E . E
55 8- E g EE
z" » » » »
S L L . .
c
i i, i, i, i,
Epoch Epoch
layer 4 layer 10
o
8 —
EE 0s 0s 0s 0s
2 e Zas Zas Zas Zas —
RS H 5 5 5
(Z] 02 02] | 02 02 02]
' os]
Epoch Epoch Epoch Epoch Epoch
0% noise 10% noise 25% mnoise 50% mnoise 75% mnoise
i; 2 2 2 2 2
g » ,n ,n ,n
S = = N N N N
- £ £ £ £
ZU 2z o 2 o 2 o 2 o 2z
Q 20 20 20 20 20
T o - - - -
Epoch Epoch Epoch Epoch
layer 4 layer 6 layer 8 layer 10
o
o
® 08 0.8 0.8 0.8 0.8
:
% 20s Fos Fos Fos Fos
3 3 3 3 3
& oa o o E o
R R W W R
Epoch Epoch Epoch Epoch Epoch
0% noise 10% noise 25% noise 50% noise 75% mnoise

Figure 15: Intermediate neural collapse of CONVRES-10-500 trained on CIFAR10 with noisy
labels. See Fig[3|in the main text for details.

27

Under review as submission to TMLR

-
I .
g
£ = »
s s s
K H L
>8 8 8
Z 2 22
Q 5 5
8 -
2 2 0 100 200 300 400 500
Epoch
layer 10
o 1 , , .)
o
8 o o o o o
a
5 Zoe Zos Zos Zos Zos
£2 g g g g
© g Boof Zos Zos Zos
b g g g g
O o 02 r 02 02 02
z
Epoch Epoch Epoch Epoch
0% noise 10% noise 50% noise 75% noise
+ x
2 2 2* 2*
'z — —| z H H
2! 2! 2! 2!
8 8 8 == 8
Q 22 22 22 22
U > 2 2 2 2
2 0 100 200 300 400 500 2 o 100 200 300 400 500 > 0 100 200 300 400 500 2 0 100 200 300 400 500 > 0 100 200 300 400 500
Epoch Epoch Epoch Epoch Epoch
layer 3 layer 4 layer 6 layer 8 layer 10
%)
o
a o8 08 08 08 08
c
8o 5 5 5 5
% goe goe = goe goe goe
ge g 2 LA S g g
g - g , x g e g g
& os oo o o o
? =
S i o § 0 02 0 F_. e———
TR T T TR T T T T T TR TR T R T T
Epoch poch poch Epoch Epoch

0% noise 10% noise 25% noise 50% noise 75% noise

Figure 16: Intermediate neural collapse of MLP-10-500 trained on CIFAR10 with noisy labels.
See Fig[3]in the main text for details.

28

Under review as submission to TMLR

a -
< 2 2 -+ 2 27 27
£ ¥
g . = . . .
'z z z z
> 8% - a7 a7 a7
5= e} — e} e}
Z 2 22 - 22 22
278 278 278 278 278
Epoch Epoch

layer 10

T —
o
2] 0s 0s 0s 0s
= |4
= gl Zos Zos] . Zos Zos
see 4 g% E g g
531 ol :
Sdui o Goo | : o o
) |) — | -+
O o 02 02 | + 02 02
Epoch Epoch Epoch Epoch Epoch
0% noise 5% noise 10% noise 20% noise 30% noise

20 2 2 2
. —
5 , s , ,
£ . H . .

N N i N .
I) > > >
SE i E E
pé] _ | _ | —
Q 22 22 — 22 22 —
O 2 2 2 2

2 2 278 2 278

Epoch Epoch Epoch Epoch Epoch

layer 4 layer 6 layer 8 layer 9 layer 10

8 = - S
R ;i——v |
& goel | Gooy . Gooy | Gooy = gos
3 H 3 H H H H i ey H
O fof | Zol | Sof | Sol | : Boa
S 0] | 0] | 0 | £ 02
e R e R e R e T R
Epoch Epoch Epoch Epoch Epoch
0% noise 5% noise 10% noise 20% noise 30% noise

Figure 17: Intermediate neural collapse of CONV-10-100 trained on Fashion MNIST with noisy
labels. See Fig. [J]in the main text for details.

29

Under review as submission to TMLR

q T
2 2 o
g 2 Z T
IS » magefeen
‘2 H
S5 25
s} s}
Z 2
8 -
20 20 20 20 20
G 10 200 300 a0 500 G 10 200 300 a0 500 G 10 200 300 a0 500 G 10 200 300 a0 500 G 10 200 300 a0 500
Epoch Epoch Epoch Epoch Epoch
layer 3 layer 4 layer 6 layer 8 layer 10
o 1 1 1 1 1
5
T os 08 08 08 08
o
3 Zos Zos Zos Zos Zos] |
g8 g g g g i
+3 3 3 3 g H
Sos Sos Sos Sos Soaf |
< < 2 < 204§
O H
O H
5 02 02 02 o2] !
G 10 200 300 a0 500 Wo 200 300 a0 500 W0 200 300 a0 500 G 10 200 300 a0 500 G 10 200 300 a0 500
Epoch Epoch Epoch Epoch Epoch
0% noise 1% noise 2% noise 5% mnoise 10% noise
-
1
¢
=
2
>3
9
O
20 20 20 20 20
6 w0 200 w0 st W 200 w0 sk W 200 w0 st 6 w0 200 w0 st G 10 200 300 a0 500
Epoch Epoch Epoch Epoch Epoch
layer 3 layer 4 layer 6 layer 8 layer 10
1. 1. 1. 1. 1.
<]
g = E
& os 08 08 o08{ ff 08
- : |
2 Zoe Zos Zos Zos{ | Zos] |
©3 g g Sl Sl
U fos Zoa i ZGoa Zoay | Zoay |
O | 100 i 100
7z, 02 " 0.2 i 02 0.2 2 021 |
& 10 i i 098 = i 098
6 10 200 300 a0 50 W 200 300 W0 200 300 460 6 10 200 300 460 6 10 200 300 460
Epoch Epoch Epoch Epoch Epoch
0% noise 1% noise 2% noise 5% noise 10% noise

Figure 18: Intermediate neural collapse of CONV-10-50 trained on MNIST with partially cor-
rupted labels. See Fig. [L4] for details.

30

Under review as submission to TMLR

B Proofs

Proposition 1. Let m € N, p € (0,1/2), a € (0,1) and € € (0,1). Assume that the error of the learning
algorithm is 6}, -uniform. Assume that Sy, So ~ Pg(m). Let h:Y% be the output of the learning algorithm given
access to a dataset S1 and initialization ~y. Then,

Es,E,ferrp(hl,)] < Ps, g, 7, [Bold5,(h)] > 05(G. 51 U S2)]
1 52 (4)
+ (1 +a)p+ 8y, + 65 pa

where Yy = {7}, is uniformly selected to be a set of labels that disagrees with Y2 on pm values.

Proof. Let S1 = {(zj,y;)}i%; and S2 = {(z 2 y2)}™, be two balanced datasets. Let € > 0, p > 0 and
¢ = (1+a)p Let Y, and Y> be a uniformly selected set of labels that disagree with Ys on pm and gm
randomly selected labels (resp.). We denote by S, and S, the relabeling of S3 with the labels in Y3 and in
Yy (resp.). We define four different events,

Ar = {(81,82,Y2) [T g > (1+0a) p: d5u(G, 51 USs) > Ey [45:n(G, 51U S2)]}

Ay = {(S1,52) | the mistakes of h are not uniform over Sy}

Az = {(S1,52,Y2) | (S1,52,Ya) ¢ A1 U Ay and E,[d5, (h))] < d5in(G, 51U Sa)} (7)
Ay = {(S1,82,Y2) | (S1,52,Y2) & A1 U Ay and B, [d5, (h})] > d5(G, 51U S2)}

By = {(51,5,Ya) | E,[d5, (hL)] = d5in(G, 51U 8:)}

By the law of total expectation
Es,Ey[errp(Rg,)] = Esl s. B [errs, (hg))]

= ZP’ ‘Es, 5,7, [Erferrs, (h,)] | Al (8)

< P[Al] +P[A2] + Eg, g, v,[Eylerrs, (hg)] | As] + P[Bi],
where the last inequality follows from errs, (h3) < 1, P[A3] < 1and A4 C By.

We would like to upper bound each one of the above terms. First, we notice that since the mistakes of the
network are 6} -uniform, P[A,] < §1. In addition, by definition IP’[A] <62

m,p,o”

As a next step, we upper bound Eg g, v, [E,[errs, (73)] | As]. Assume that (S1,85,Ys) € As. Hence,
(51,52, }72) ¢ A; U As. Then, the mistakes of hgl over Sy are uniformly distributed (with respect to the
selection of 7). Assume by contradiction that errs,(hg) > (1 + @) p with non-zero probability over the
selection of 7. Then, since the mistakes of Y over Sy are uniformly distributed, errs,(h§) > (14 a) p for
all initializations . Therefore, we have

E [mln(g SlUSQ)] <]E’ng'l(h‘g’l)] < &fnln(gvslu‘gQ)?

where the first inequality follows from the definition of d¢;, (G, S1 USQ) and the second one by the assumption
that (Sl,SQ,YQ) € As. However, this inequality contradicts the fact that (S7,S52,Y2) ¢ A;. Therefore, we
conclude that in this case, E, [errs, (hg)] < (1+) p and Eg, g, 3, [E,[errs, (hg)] | A3] < (1+a) p. O

Proposition 2. Let m € N, p € (0,1/2), a € (0,1) and € € (0,1). Assume that the error of the learning
algorithm is 8}, -uniform. Let Sy, Sy, S, S5 ~ Pg(m) (fori € [k]). Let Yy = {§:}7, be a set of labels that
disagrees with Y3 on uniformly selected pm labels and 52 1s a relabeling of So with the labels in Y2 Let h, s, be
the output of the learning algorithm given access to a dataset Sy and initialization ~v. Then, with probability
at least 1 — & over the selection of {(Si,S%, Y)}YE_,, we have

IE:S1IE [errp = ZH[h’y } > (ﬂfmn(g,SiUgé)}

log(2/6)

1 1 2
+(1+a)p+d, +0m,0+ ok

31

Under review as submission to TMLR

Proof. By Prop. [l we have

Es,Eylerrp(h})] < P, g, 5, [B4ld5, (h)] > d5in(G, 51U 5)]
+ (1 + @) P+ 00y + 02, pa

We define i.i.d. random variables
Vi = 1[B,[d (03] = 25iu(G. ST USH].
Therefore, we can rewrite,

Ps, 5.7, [E4l05, (h3)] > 45 (G, 51U)] = E[VA]

|

By choosing € = 1/log(1/26)/2k, we obtain that with probability at least 1 — §, we have

By Hoeffding’s inequality,

k
) Vi - EW]
i=1

> E] < 2exp(—2ke?).

EWv] <

k
> Vi + \/log(1/20) /2k.

el

When combined with Prop. [T} we obtain the desired bound.

32

(10)

(11)

(12)

	Introduction
	Additional Related Work

	Problem Setup
	Neural Collapse and Generalization
	Nearest Class-Center Separability
	Effective Depths and Generalization
	Comparing Prop. 1 with Standard Generalization Bounds

	Experiments
	Setup
	Results

	Conclusions
	Additional Experiments and Details
	Architectures
	Estimating the Generalization Bound
	Neural Collapse

	Proofs

