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1 INTRODUCTION

Recent advances in language models have been applied to protein sequences because of their critical
functions in biological processes and the availability of large datasets. Protein engineering has
already proven to be impactful in areas such as therapeutics, agriculture, the environment, and bio-
manufacturing (Brange et al., 1991; Vojcic et al., 2015). Motivated by the challenge of protein
design, this paper investigates the following question: How can we efficiently identify residues to
edit in the engineering of proteins with specific target functions?

In this paper, we propose a novel embedding-based masking approach to edit a given protein to
achieve a new target function. More formally, let F = {f1, f2, . . . , fn} denote the set of possible
protein functions. Given a protein sequence s = s1s2 . . . sN composed of amino acids {si}Ni=1 with
function f ∈ F and a target function f ′ ∈ F , our goal is to return a new protein sequence s′ with
functionality f ′.

Existing masking approaches for protein design rely on the user to select masking sites or are specific
to the use case. Vincoff et al. (2024) design fusion oncoproteins by masking residues with high
probability of participating in protein-protein interactions as predicted by SaLT&PepPr (Brixi et al.,
2023). Various masking strategies have been developed for interpretability and feature attribution in
human language models (Ross et al., 2020; Barkan et al., 2024) and, to a lesser extent, biological
sequence models (Linder et al., 2022). To our knowledge, our framework MUTAGENIC presents the
first use of vector embeddings to determine masking sites in protein language models, and the only
masking model with capabilities for generalized function-guided design.

2 METHODOLOGY AND RESULTS

We present MUTAGENIC1, a framework for generalized protein function modification. In this
pipeline, we utilize ESM3 (Hayes et al., 2024), a foundation model that represents proteins us-
ing 6 tracks, including sequence, structure, and function. By providing a sequence with masked
tokens, ESM3 is able to unmask each token along any of these “tracks” to fully generate the protein.
In MUTAGENIC, we start with a protein sequence of N amino acid residues: {r1, ..., rN}. We iden-
tify the optimal residues to mutate conditioned upon the protein’s original function f and our target
function f ′ (with the functions specified as labels from the InterPro database (Hunter et al., 2009)).

Specifically, we use the ESM3 encoder to create a vector embedding of each amino acid in the
protein sequence {vr1 , ..., vrN }, as well as embeddings of the original and target functions, vf and
vf ′ . The vectors {vr1 , ..., vrN , vf , vf ′} are all generated using ESM3’s function “track”, so we call
them functional embeddings. Next, we calculate sif , the similarity between residue i’s functional
embedding and the original function f ’s embedding through cosine similarity: sif ∝ vri · vf ,∀i.
The value sif ′ is defined analogously to capture the per-residue similarity with f ′. Now, we com-
bine these similarities into scores: scorei = g(sif , sif ′), where g is a general aggregation function
tailored to each protein engineering task. We then select the k residues with the highest score, where
n is a user-specified number of mutation sites. These k sites are masked in the original protein
sequence to yield a masked sequence. ESM3 then fills in these masked sites with new residues con-
ditioned upon the target function f ′. This yields an edited protein sequence more closely aligned
with f ′. Figure 1 shows the full pipeline.

∗These authors contributed equally to this work.
1https://github.com/vihan-lakshman/mutagenic-experiments
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Figure 1: The MUTAGENIC pipeline combines ESM3 with embedding-based masking to mutate
residues that will align the protein sequence more closely with a target function f ′.

Figure 2: MUTAGENIC performs better than the baseline in mask site selection (left) and sequence
similarity of reconstructed sequence (right).

To evaluate MUTAGENIC, we first verify that ESM3’s functional embeddings capture meaningful
biological relationships, a core assumption in our pipeline. We performed a UMAP (McInnes et al.,
2018) on the ESM3 functional embeddings for all InterPro labels associated with four general bi-
ological functions: “ribosome”, “DNA binding”, “hormone activity”, and “extracellular region”.
The UMAP results (Figure A in Appendix) showed strong separation between the embeddings for
distinct functions spatially separated in the cell (ribosome, DNA binding, and extracellular region).
However, there was heavy overlap between embeddings for hormone activity and extracellular re-
gion, which aligns with the fact that many hormones travel extracellularly in the body. This suggests
ESM3 functional embeddings are good representations of protein function.

Next, we demonstrate that MUTAGENIC can reverse massive substitutions and restore wildtype pro-
tein function better than a random masking baseline. We generated an in silico dataset of 200 func-
tional proteins with large contiguous regions of random substitution mutations, rendering proteins
non-functional. The number of residues altered for a given protein P varied from 0 to > 70% of the
sequence length. Using MMseqs2 sequence clustering (Steinegger & Söding, 2017), we ensured the
dataset contains enormous functional diversity. To apply MUTAGENIC to this problem, we define
f ′ as the InterPro labels for the wildtype function, while f is not defined since the mutated proteins
are assumed to be non-functional. Then, the score is scorei = −sif ′ for each residue i, as we select
residues most dissimilar to the target function f ′ for mutation. For each protein P , the nP residues
with the highest scores were masked. We compare against a random masking baseline, where nP

residues are randomly selected throughout the protein sequence for mutation. We choose random
masking due to a lack of other masking models that can identify optimal mutation sites across a
general range of functions—a core strength of our pipeline. Finally, we use reconstruction of the
wildtype sequence as a proxy for the degree to which MUTAGENIC and the baseline method recover
wildtype function. To do this, we use BLOSUM80 substitution matrices (Henikoff & Henikoff,
1992) to capture the similarity between the wildtype sequence and output sequence.

In Figure 2, we show that the embedding-based masking in MUTAGENIC (blue) masks a higher
percentage of mutated residues in our test set compared to random masking. Moreover, the dif-
ference in accuracy increases with the percent of the wildtype protein sequence mutated (x-axis),
implying that MUTAGENIC is able to identify mutated residues dissimilar to the wildtype function
better (compared to baseline) as the proportion of mutated residues increases. Using a 2-sample
t-test, we find that this rate of increase in performance of MUTAGENIC (slope) is significantly dif-
ferent than the rate of increase for the baseline (p < 0.01), implying that MUTAGENIC’s advantage
over baseline increases as the proportion of wildtype protein mutated increases. We also show in
Fig. 2 that the wildtype sequence recovery (as measured by BLOSUM80) of the final ESM3-edited
protein sequence is higher when using MUTAGENIC’s embedding-based masked sites compared to
randomly masked sites. Once again, the difference in slope is statistically significant, implying that
MUTAGENIC’s ability to recover wildtype function increases with the percent of protein mutated.
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MEANINGFULNESS STATEMENT

Protein language models are based on the concept that underlying patterns of protein evolution can
be captured through their sequences alone. Our masking model, in particular, leverages functional
embeddings—numerical representations of protein function across a continuous space. We demon-
strate that these embeddings can effectively differentiate functions within this space, and can be used
to identify key residues for redesign. By leveraging these representations of life, our goal is to not
just to understand, but to actively engineer the powerhouses of life.
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A APPENDIX

Figure 3: A UMAP of selected Gene Ontology function terms demonstrate that ESM3 functional
embeddings can successfully distinguish between and relate different biological functions
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