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Abstract

How much explicit guidance is necessary for conditional diffusion? We con-1

sider the problem of conditional sampling using an unconditional diffusion model2

and limited explicit guidance (e.g., a noised classifier, or a conditional diffusion3

model) that is restricted to a small number of time steps. We explore a model4

predictive control (MPC)-like approach to approximate guidance by simulating5

unconditional diffusion forward, and backpropagating explicit guidance feedback.6

MPC-approximated guides have high cosine similarity to real guides, even over7

large simulation distances. Adding MPC steps improves generative quality when8

explicit guidance is limited to five time steps.9

1 Introduction10

Diffusion models are a class of generative models that have achieved remarkable sample quality,11

particularly for text-to-image generation (1), where diffusion has been guided using classifier guidance12

or classifier-free guidance to sample images x ∼ p(x|c) for a conditioning variable c (e.g., text)13

(2; 3). Controlling generative models is important for applications such as text generation and drug14

discovery, where multiple distinct conditional variables c1, c2, ...cn can be important: e.g., drug15

activity and permeability (4).16

For each new conditioning information source c of interest, classifier guidance and classifier-free17

guidance require training a new explicit guidance model over all diffusion time steps t ∈ [0, ..., T ]18

(often, T =100 to 1,000), and sample using the explicit guide at each generative time step (often,19

25-100) (2; 3). Here, we explore whether conditional sampling is achievable without explicit guidance20

at every generative step, and if it is achievable with very few steps. This line of inquiry may make it21

easier to condition on new variables by reducing the training burden of new explicit guidance models.22

Rejection sampling and Langevin "churning" have been explored for image editing, inpainting, and23

conditional sampling on new variables without training a new model over diffusion time steps, but lack24

general applicability (5; 1; 6; 7; 8; 9; 10): churning appears limited to "local" edits, while rejection25

sampling is inefficient for rare events. Separately, scheduler advances have reduced sampling steps26

from 100-1000 to 25-50 while retaining high sample quality (11; 12). This work aims to be generally27

applicable and synergistic with scheduler improvements.28
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Diffusion models. Diffusion models are trained on noise-corrupted data, and learn an iterative29

denoising process to generate samples. We give a non-precise introduction following (13), and refer30

interested readers to (11) for a precise description. A diffusion model x̂θ is trained to optimize:31

E
x,c,ϵ,t

[wt∥x̂θ(αtx+ σtϵ, c)− x∥22] (1)

32
where (x, c) are data-conditioning pairs, t ∼ U([0, 1]), ϵ ∼ N (0, I), and αt, σt, and wt are time-33

varying weights that influence sample quality. In the ϵ-prediction parameterization, x̂θ(zt, c) =34

(zt − σtϵθ(zt, c))/αt where ϵθ is the learned function. Notably, this training procedure has an35

expectation over t, which can be hundreds to thousands of time steps.36

To sample, a simple scheduler starts at zT ∼ N (0, I) and iteratively generates zt−1 = (zt−σϵ̃θ)/αt37

where the choice of ϵ̃θ distinguishes sampling strategies. In general, schedulers can jump to zt−∆ as38

a function of starting time t, jump size ∆, latent zt, and predicted noise ϵ̃θ.39

Diffusion guidance. Classifier guidance (2) requires training a noised classifier pt(c|zt) over T40

time steps, and uses ϵ̃θ = ϵ(zt, c) − ∇zt
log pt(c|zt). Notably, pre-trained clean-data classifiers41

cannot be directly used for guidance. Classifier-free guidance (3) learns both a conditional and42

unconditional diffusion model by setting c = 0 with 10% probability during training; ϵ̃θ = ϵθ(zt) :=43

ϵθ(zt, c = 0) achieves unconditional sampling. Classifier-free guidance with weight w uses44

ϵ̃θ = (1 + w)ϵ(zt, c)− wϵθ(zt). (2)

Model predictive control (MPC). Model predictive control aims at controlling a time-evolving45

system in an optimized manner, by using a predictive dynamics model of the system and solving an46

optimization problem online to obtain a sequence of control actions. Typically, the first control action47

is applied at the current time, then the optimization problem is solved again to act at the next time48

step (14). The general formalized MPC problem is:49

argmin
s1:T ,a1:T

T∑
t=1

ℓt(st,at) subject to st+1 = f(st,at); s1 = sinit (3)

50
where st,at are the state and control action at time t, ℓt is a cost function, f is a dynamics model,51

and sinit is the initial state of the system. MPC can be solved with gradient methods (15; 16).52

2 Approximate conditional guidance via model predictive control53

Explicit conditional
guidance

Unconditional
generation

Backprop

Approximation

Our problem is performing conditional diffusion on a la-54

tent zt with only access to an unconditional diffusion55

model. In particular, we do not have an explicit condi-56

tional guide ϵθ(zt, c) at time t; instead, we can evaluate57

it only at t− δ. Our method, MPC guidance, optimizes an58

approximation ξt ≈ ϵθ(zt, c), which is used in classifier-59

free guidance (eq. 2) to apply one generative step on zt60

to obtain zt−∆. This can be applied repeatedly to reach61

z0. In terms of MPC, we view zt as states, control actions62

as ϵ̃θ, the dynamics model f as the diffusion generative63

process given zt and ϵ̃θ, and define loss ℓ at time t − δ64

using the explicit guide (Fig. 2).65

Noised classifier. With a noised classifier pt−δ(c|zt), the explicit guide ϵθ(zt−δ, c) =66

∇zt−δ
log pt−δ(c|zt−δ). We propose to unconditionally generate zt−δ from zt and evaluate67

log pt−δ(c|zt−δ) which we treat as "inverse loss". Our MPC guide at time t is a first-order, one-step68

optimization of this loss:69

ξt = −∇zt
ℓ(zt−δ) = −∇zt

log pt−δ(c|zt−δ) (4)
Conditional diffusion model. When the explicit guide is a conditional diffusion model ϵθ(zt−δ, c),70

we denoise zt to zt−δ and construct the MPC guide as:71

ξt = −∇zt
ℓ(zt−δ) = −∇zt

∥zt−δ − z∗∥2 (5)

where gradients with respect to zt are blocked for the target z∗ := zt−δ + ϵθ(zt−δ, c).72
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Algorithm 1: Approximate guide with noised classifier
def approx_guide(zt, t, dt, noised_classifier):

z = denoise(zt, t, dt) # differentiable; denoise zt to time t-dt
return autograd(noised_classifier(z), zt) # grad wrt zt

Algorithm 2: Approximate guide with conditional diffusion model
def approx_guide(zt, t, dt, cond_score):

z = denoise(zt, t, dt) # differentiable; denoise zt to time t-dt
with no_grad():

target = z + cond_score(z, t-dt)
loss = (z - target)**2
return autograd(loss, zt) # grad wrt zt

Backpropagation through diffusion. To compute gradients with respect to zt, we must backprop-73

agate through unconditional diffusion. This incurs memory cost linear in the number of denoising74

steps used. In practice, five to ten denoising steps enabled good performance without memory issues.75

3 Experiments76

We perform experiments on Stable Diffusion (1), an open-source text-to-image latent diffusion model77

trained on LAION-5B (17) with a pre-trained text conditional and unconditional model. Latent78

diffusion occurs over 1000 time steps: z0 ⇌ z1000, and an adversarially-trained autoencoder encodes79

and decodes x ⇌ z0. We treat the conditional diffusion model as the explicit guide. We use the80

pseudo linear multi-step (PLMS) scheduler (12) which is deterministic.81

Approximate guides have high accuracy. In figure 1, we compare our approximated guide ξt to82

Stable Diffusion’s conditional guide ϵθ(zt, c) using the cosine similarity between the two gradients83

(see appendix for full details). Approximate guides obtained by denoising zt to zt−δ are very similar84

to Stable Diffusion’s guide, with cosine similarity above 0.99 even as δ increases to 500 time steps85

out of 1000 total diffusion steps. At δ = 900, similarity is maintained above 0.80.86

In contrast, approximate guides formed by denoising and decoding zt to images x, applying CLIP87

(18) spherical loss, and backpropagating back to zt are essentially orthogonal to ϵθ(zt, c), with mean88

similarity around 0.01. This is consistent with observations that the manifold of natural images is89

complex in pixel space, and gradients on images are difficult to use for optimizing latents (19). This90

highlights the challenge of conditional diffusion sampling using only clean-data classifiers.91

Figure 1: MPC guides have high cosine similarity to real guides

Approximate guides improve robustness to sample quality damage with reduced explicit guid-92

ance. We evaluated conditional sampling with explicit guidance restricted to just n = 5 time steps,93

with classifier weight w = 2. We compare to using k = 3 additional MPC-guided generative steps94

(with a total of n+k = 8 steps), and a reference with full explicit guidance on n+k steps - if MPC is95

accurate, then samples should look similar to the reference. We also generated gold standard samples96

with 50 explicit guidance steps. We evaluated PLMS baselines with both n and n+k generative steps97
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(see appendix). Each approach was initialized with identical zT ; as each approach is deterministic,98

quality can be judged by similarity to the reference and gold standard.99

On random MS-COCO prompts, adding MPC generative steps significantly improved visual sample100

quality over the baseline (Fig. 2) and improve FID to the reference and gold standard (Table 3). MPC101

samples are more visually similar to the reference than the baseline, and intriguingly, in some cases102

seem to outcompete the reference in visual similarity to the gold standard.103

FID (↓) Reference Gold standard

Baseline (n = 5) 400.0 443.28
+ MPC (k = 3) 282.4 312.84

Figure 2: Comparison of samples (Stable Diffusion, pseudo linear multi-step scheduler, guidance
weight w = 2)

4 Discussion104

We described a method for approximating guidance for conditionally sampling from diffusion models105

with model predictive control, and showed preliminary evidence that approximated guidance improves106

sample quality when access to a conditional guide is severely restricted to just five time steps.107

Looking forward, future work may be interested in addressing instabilities and divergence. In some108

settings, we found that approximate guides tended to cause divergence to reference latent trajectories109

over time. We found this issue to be particularly problematic with larger classifier guidance weights110

w: even if ξt is very similar to ϵ(zt, c) (e.g., 0.9999), and ϵθ(zt) is identical, the adjusted prediction111

ϵ̃(zt, c) = (1 + w)ξt − wϵθ(zt) can have significantly lower similarity (e.g., 0.992). We also112

observed that divergence increased with the number of approximate guidance steps.113

Our results suggest the possibility of conditional diffusion using explicit guidance (e.g., a conditional114

diffusion model) trained on a small number of time steps. Future work can explore this by restricting115

conditional training; here, we only restricted the time steps at which we queried the ground-truth116

guide which was trained on all time steps.117
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A Appendix193

A.1 Experiments194

We used an Nvidia A100 with 80 GB memory for our experiments. Backpropagating through195

diffusion requires backpropagating through Stable Diffusion’s U-Net several times. We found that196

roughly 10 or more denoising steps exceeded the memory of our A100, but that five denoising steps197

was sufficient for performance.198

We used classifier-free guidance weight w = 2, following (3). In practice, we scale our approximate199

guide ξt at time t to match the norm of the unconditional score ϵθ(zt).200

We will release our code in a future version.201

Details on Stable Diffusion. Stable Diffusion was trained with classifier-free guidance, condition-202

ing on CLIP-embedded text prompts (18), with 1000 diffusion time steps. An adversarially-trained203

autoencoder encodes and decodes images , which is an 8× down-sampled latent space. Latents z0204

were very weakly regularized (10−6 weight) towards a unit Gaussian. Despite this, when visualized205

as images, latents z0 appear as fuzzy versions of the decoded image x = decoder(z0) (20).206

Similarity study. At each starting time t, we initialized zt by unconditionally denoising from the207

prior zT . We obtained an approximate guide for various δ, also called dt. Stable diffusion has 1000208

total diffusion timesteps, so we varied t in [200, 400, 600, 800, 1000]. We varied δ in increments209

of 100, and performed 10 replicates for each experimental condition. We used the following text210

prompts, some of which were from the Stable Diffusion paper (1): ’a photo of a cat’, ’a photo of an211

astronaut riding a horse on mars’, ’a street sign that reads latent diffusion’, ’a zombie in the style of212

picasso’, ’a watercolor painting of a chair that looks like an octopus’, ’an illustration of a slightly213

conscious neural network’. We observed similar results for all prompts. The plot depicts data for214

t = 1000, for varying δ on the x-axis, across prompts and replicates: there are 60 datapoints for each215

violin plot, which is smoothed with kernel density estimation using seaborn.216

Restricted explicit guidance experiments. Our approach used an eight-step schedule evenly217

divided from t =1000 to 0: [875, 750, 625, 500, 375, 250, 125, 0], with explicit guidance at times218

[750, 500, 250, 125, 0] and MPC at [875, 625, 375]. We compare to a reference with the same219

eight-step schedule with full explicit guidance. Our PLMS baseline uses the five-step schedule [800,220

600, 400, 200, 0] with explicit guidance. We also tried another baseline using the eight-step schedule,221

explicit guidance at five time steps, and unconditional steps at times [875, 625, 375], but found that222

this baseline ignored prompts.223

Wall-clock time (for one sample). 50 generative steps takes about 12 seconds. 10 generative steps224

takes about 2.5 seconds. We find that with 5 generative steps, adding 3 MPC steps adds negligible225

runtime, with all runs finishing in 1-3 seconds. In a separate unreported experimental setting,226

our method, with 25 total generative denoising steps, guidance at 10 time steps, 10 unconditional227

denoising steps for approximating the guide, and churning, takes about 34 seconds. The same setting,228

without churning, takes about 18 seconds.229
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