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ABSTRACT

The expanding development of wireless and mobile devices results in a prolif-
eration of multivariate time series data, enabling various analytical tasks, e.g.,
forecasting, classification, and anomaly detection. Most existing time series mod-
eling methods are dedicated to developing task-specific models due to the het-
erogeneous dimensionalities, resulting in inefficient resource utilization and lim-
ited cross-domain transferability. To address this issue, this study achieves a uni-
fied paradigm transcending task boundaries and proposes a universal modality-
aware Time series modeling framework leveraging Channel Dependency Search
named TimeCDS. Specifically, TimeCDS innovatively identifies a certain num-
ber of representative features by projecting the heterogeneous time series fea-
tures into the hierarchical spaces and dynamically modeling their inter-channel
relationships to alleviate the heterogeneity issue. A novel time series imaging
method is then proposed to automatically introduce the image modality from se-
quences, facilitating the comprehensive temporal-spatial pattern extraction. Fur-
ther, a dual-branch architecture is designed to process the sequential data and the
visual representations simultaneously, exploiting the complementary cross-modal
features through the proposed Cross-Modal Attention and Dynamic Weighted-
Averaging. Extensive experiments across different analytical tasks demonstrate
the consistently superior performance of TimeCDS, outperforming existing state-
of-the-art baselines by up to 15.9%. The code of TimeCDS is publicly available
athttps://anonymous.4open.science/r/TimeCDS/l

1 INTRODUCTION

The widespread deployment of edge devices generates massive volumes of time series data, enabling
various analytical tasks (Hettige et al., 2024} |Jiang et al., [20235)), e.g., forecasting (Qiu et al., |[2024),
classification (Campos et al.,|2023)), and anomaly detection (Liu et al., 2024b). Effective time series
analytics facilitates a range of real-world applications (Liu et al., 2024 g; |Shao et al.| 2025), such as
traffic prediction (Li et al., 2023} |Y1 et al.,2024) and fraud detection (Bolton & Hand, 2002)) Despite
these remarkable advances, most contemporary time series methodologies face some fundamental
limitations when confronted with the heterogeneous nature of real-world applications (Liu et al.,
2024cyd). Current approaches predominantly operate under the assumption of homogeneous data
structures and consistent dimensionalities (Liu et al.,[2024g)), which severely constrains their appli-
cability in cross-task scenarios where temporal sequences exhibit vastly different variable counts,
sampling frequencies, and semantic meanings. This dimensional heterogeneity creates a critical
bottleneck that prevents the development of truly universal time series models capable of leveraging
knowledge across diverse domains (Xu et al., [ 2022).

Recent efforts have attempted to address these issues (Liu et al., 2025b; [2024b). For example, large
language model-based approaches (Liu et al.| [2025b} 2024d) have explored the transformation of
time series data into textual representations, enabling the utilization of pre-trained language models
for temporal reasoning. Concurrently, image-based methodologies have investigated the conversion
of time series into visual representations, treating temporal sequences as two-dimensional structures
amenable to computer vision techniques (Liu et al., 2024b). Especially, VisionTS demonstrates
that appropriate visual representation exhibits typical time series features, e.g., trend, seasonality,
and stationarity, facilitating temporal dependency capturing (Mouxiang Chen, [2025]).While these
approaches demonstrate promising results in specific contexts, they have the following limitations.
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Purely relying on textual representations may lose crucial temporal granularity and numerical preci-
sion, while image-based methods often struggle to preserve the sequential nature and inter-variable
relationships that are fundamentally important to time series understanding (Campos et al., [2023).

In this paper, we consider to explicitly combine temporal sequence modeling with spatial image-
based representations through multimodal fusion mechanisms. The explicit multimodal integration
is expected to help capture more comprehensive temporal-spatial information for more effective
time series analysis. To this end, we need to address the following challenges.

Cl. How to effectively align the multi-dimensional time series across heterogeneous tasks? Cur-
rent approaches either concentrate solely on fixed-dimensional time series data or rely on domain-
specific preprocessing pipelines through rigid architectural constraints (Rui et al., [2024). Such in-
flexible designs prevent them from processing time series with vastly different variable counts and
semantic meanings that could provide significant cross-domain knowledge transfer. Further, the di-
mensional constraints embedded in existing architectures are particularly limiting for cross-domain
deployment scenarios (Liang & Wang, 2024). Effectively aligning multi-dimensional time series
from heterogeneous domains while preserving their intrinsic characteristics and enabling knowl-
edge transfer are the cornerstones to solving the cross-domain time series modeling problem.

C2. How to capture both the temporal dynamics and spatial correlations of time series? Existing
approaches face difficulties in simultaneously capturing the sequential temporal evolution and the
inter-variable spatial relationships due to the architectural limitations (Liu et al., 2025a). Thus they
cannot fully exploit the rich temporal-spatial information inherent in time series data. Naive integra-
tion of the temporal and spatial modalities may lead to conflicting optimization objectives, blurring
the distinction between sequential dynamics and instantaneous correlations (Mouatadid et al.,{2024)).
Therefore, it is challenging to effectively decompose and model both temporal periodicity patterns
and spatial relational structures, ensuring comprehensive representation learning.

C3. How to effectively fuse complementary cross-modal representations? Current fusion strate-
gies struggle with balancing the contributions from different modalities due to the static weight-
ing schemes and insufficient cross-modal interaction mechanisms (Cheng et al.l [2024). This limits
the model’s ability to adaptively leverage the strengths of each representation modality. Excessive
reliance on one modality may lead to suboptimal performance, while improper fusion may intro-
duce noise and conflicting signals that degrade the overall model effectiveness (Ekambaram et al.,
2023)). Therefore, developing adaptive fusion mechanisms that can dynamically integrate temporal
sequence features with spatial image-based representations based on input characteristics and task
requirements remains a critical challenge.

To address these challenges, we propose a novel modality-aware framework that synergistically
combines temporal sequence encoding with spatial image-based representations through sophisti-
cated cross-modal attention mechanisms. Our approach tackles the dimensional alignment prob-
lem through an independent similarity search strategy that enables effective processing of multi-
variable time series regardless of their original dimensionality. Rather than forcing all inputs into a
fixed architectural template, we develop adaptive mechanisms that preserve the intrinsic character-
istics of each domain while enabling knowledge transfer across heterogeneous data sources through
dimensionality-agnostic feature extraction and alignment procedures. For effective temporal-spatial
modeling, we introduce a dual-branch encoding architecture, where the time series encoding branch
captures sequential dynamics through patch-based Transformer encoding, while the spatial branch
models inter-variable relationships through image-like convolutions that treat reshaped time series
as spatial structures. The time image encoding branch decomposes time series modeling into com-
plementary perspectives: periodicity extraction, relational matrix modeling, and phase-amplitude
analysis, based on time series imaging. This decomposition reflects the fundamental mathematical
properties of time series data—periodicity captures the cyclical patterns inherent in temporal phe-
nomena, relational matrices encode the correlation structures among variables, and phase-amplitude
analysis preserves the frequency domain characteristics crucial for understanding temporal dynam-
ics. The cross-modal fusion challenge is addressed through the proposed Cross-Modal Attention
Mechanism (CMAM) combined with Dynamic Weighted-Averaging Mechanism (DWAM), which
adaptively determines the optimal integration strategy based on the specific characteristics of each
input sequence. Rather than static weight fusion or simple concatenation, these mechanisms enable
dynamic interaction between temporal and spatial representations, ensuring that the final fused rep-
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resentation optimally balances the contributions from each modality based on their relevance to the
specific task and input characteristics while reducing redundancy and conflicting signals.

The major contributions are summarized as follows:

* We introduce a unified cross-modal architecture that effectively addresses the dimensional het-
erogeneity problem in universal time series modeling through independent similarity search and
adaptive dimensionality alignment mechanisms.

* We propose a novel dual-branch encoding strategy combined with sophisticated cross-modal at-
tention mechanisms that optimally integrate temporal sequence dynamics with spatial structural
representations, enabling superior modeling of complex time series patterns.

» Extensive experiments are conducted on real-world datasets, proving the effectiveness of the
proposed TimeCDS for universal time series analytics, including prediction, classification, and
anomaly detection, achieving a comprehensive surpass over the SOTA.

2 RELATED WORK

Task-specific Time Series Modeling. With the growing availability of time series data and the
resulting rich downstream applications, time series modeling has attracted increasing interest in
both academia and industry (Qiu et al., 2024} [Liu et al. 2024b; (Campos et al.l 2023} |Rui et al.|
2024)). Traditional time series modeling methods are mostly task-specific, which are developed
for specific time series tasks, such as forecasting (Qiu et al. [2024; Han et al., [2024; [Liu et al.,
2025al), classification (Campos et al., 2023} Liang & Wang, 2024)), and anomaly detection (Liu
et al.,[2024b; (Chen et al., |2023; Schmidl et al., 2025). In the early stage, statistics-based time series
modeling methods became mainstream, such as ARIMA (Shekhar & Williams| |2007). Numerous
neural architectures have been developed for effective task-specific time series modeling, including
Temporal Convolutional Networks (Cheng et al.| [2024), Recurrent Neural Networks (Liu et al.,
2021)), Multilayer Perceptrons (Ekambaram et al.,[2023)), and Transformers (Liu et al.,|[20241;/2025a;
Chen et al., 2023). However, these methods are mainly invented for specific tasks, falling short in
handling different tasks simultaneously.

Universal Time Series Modeling. Universal time series modeling methods often develop a uni-
versal modeling paradigm that handles different tasks (Liu et al.| 2024c:d), aiming to overcome the
limitations of traditional task-specific models by means of large-scale pretraining (Manuso et al.,
2021)) and adaptive fine-tuning (Nguyen et al 2024). These models often adopt a unified archi-
tecture that supports a range of time series related tasks, including forecasting (Nie et al., [2023)),
anomaly detection (Gao et al., [2024), and classification (Nguyen et al., 2024). The core idea is to
project time series from different tasks into a general feature space to understand their common
temporal semantics. Recent studies have sought to develop novel architectures to model diverse
time series (Wu et al., [2023} |Gao et al.| [2024). However, LLM-based methods require significant
computational resources, resulting in high training costs. To be specific, these methods process each
channel of the time series individually. However, the correlations across channels are ignored, which
may result in significant model performance deterioration.

3 METHODOLOGY

We proceed to detail the proposed universal time series modeling framework, TimeCDS. As shown
in the figure[I] TimeCDS consists of three major components: (1) Input projection, (2) Dual-branch
Encoding, and (3) Cross-Modal Alignment. We then provide specifics on each module in the frame-
work.

3.1 INPUT PROJECTION

In this paper, we defined the cross-task datasets as D = {Dy, D, ..., Dy}, where each domain
D; contains multiple time series D; = {7}, T3,...,T;; }. Most existing studies [Liu et al.| (2024d)
employ channel-independence mechanisms to accommodate cross-task time series with different
dimensionalities, which, however, may ignore the correlations across channels. In contrast, we adopt
channel mixing to capture cross-variable interactions, which may facilitate comprehensive temporal
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Figure 1: TimeCDS Framework Overview

pattern extraction. In the dimensionality reduction and fusion process of multivariate time series,
we propose a distance-weighted representative feature selection mechanism via channel dependency
search (see Figure[2). Initially, the original N-dimensional multivariate time series is decomposed
into N one-dimensional time series via channel-wise independent processing. To achieve the target
of fixed-dimensionality reduction, a subset of X' < N most representative time series channels is
selected as core features. This selection aims to retain the subset with the maximal information
content and expressive power among the multivariate data. The selection criterion can be based on
centrality measures derived from the Hierarchical Navigable Small World (HNSW) graph (Malkov
& Yashunin, 2018)), which can be formalized as:

S = arg max > R(i), (1)

SC{1,...,N},|S|=K
{1, N} ISI=K £

where R (i) denotes the representativeness score of channel s.

Channel Dependency Search. For the remaining (N — K) discarded channels, their information
is integrated via a distance-weighted fusion mechanism. Specifically, each discarded channel’s time
series is mapped onto the closest representative channels weighted inversely by their distance:

—d(x:,%;
X = ijz‘xu wji = exp(=d(x;, x.)) )
ies

Yies exp(—d(x;, %))’

where x; is the time series of the discarded channel j,
d(-,-) is a distance metric between time series, and x/;
is the fused representation obtained by weighted aggre-
gation. This weighted fusion ensures that the discarded
features’ information is not completely lost, but softly
integrated into the low-dimensional feature space via

@ The searched node <= The adjacent nodes their nearest representative channels.
&> Nodes on the path € The current nearest node

Through the above procedure, a fixed dimension K rep-
resentation of the multivariate time series is obtained,

Figure 2: Channel Dependency Search ~ Preserving the majority of the original variables’ infor-
mafion and structural characteristics. Leveraging this HNSW structure for nearest neighbor search
on this reduced space further ensures efficient and effective similarity queries.

— Searchpath oot Projection path

3.2 DUAL-BRANCH ENCODING

Based on the multi-variate time series dimensionality reduction and fusion achieved by HNSW,
a fixed-dimension K-dimensional reconstructed multi-variable time series representation X &
REXKXT i5 obtained, where B denotes the batch size and T denotes the sequence length. To
further enhance the representational power and discriminative capability of this fused representa-
tion, a multimodal encoding module is designed to deeply extract features from the reconstructed
K -dimensional time series. This module consists of two parallel branches, focusing respectively on
the temporal dynamics of the sequence itself and the spatial structural features from its image-like
representation.

Time Series Encoding Branch. The time series encoding branch takes the fused and reconstructed
K -dimensional time series X € REXKXT a5 input. To effectively capture local temporal dynamics,
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the sequence is first divided along the time axis into M equal-length patches, each of length L,
satisfying T' = M x L:

P, = X[:,:,(m—l)L+1:mL] € RBXKXL, m = 1, e ,M 3)

AV A Each patch represents a localized temporal segment of the

pi / multi-variable sequence, facilitating the modeling of fine-

g ;{ - }Mamx }se.;mpme grained temporal variations. Subsequently, each patch

— J‘ l is encoded by a Transformer encoder based on the self-

B pO N attention mechanism. The Transformer encoder, utilizing

. multi-head self-attention and feedforward networks, effec-

~. | — tively models both local and global temporal dependencies.
Einear The encoding process is formally expressed as:

[ Convolution and Projection ] Zm = TransformerEncoder(Pm) (4)

Figure 3: Time Series Imagin By aggregating the encoded representations of all patches

via méthods such as concatenation or weighted fusion, the comprehensive deep temporal represen-
tation is obtained:

Zrs = Aggregation({Z,, }M_,) ¢ RB*Kxd (3)
This branch thoroughly extracts the dynamic temporal features inherent in the HNSW-fused recon-
structed time series, thereby enhancing the model’s ability to capture complex sequential patterns.

Time Image Encoding Branch. To complement the temporal encoding with spatial structural un-
derstanding among variables, the input sequence X is reshaped into a four-dimensional tensor ap-
propriate for image-like feature extraction via a novel time series imaging method, as shown in
Figure[3f X — I € RBXLXEXC where I denotes the number of temporal patches, K is the vari-
able dimension, and C' stands for the number of feature channels. The imaging process involves
three steps as follows:

1. Temporal patch division:

T
Py =X q-nr/n)+taryey) € RPFXT 1=1,... L (6)
2. Multi-path feature extraction via three parallel streams:

* Periodicity Encoder: Extracts periodic patterns within the sequence based on temporal convolu-
tional networks, outputting a tensor of shape REZ*LxKx2,

* Relation Matrix Computation: Computes dependency graphs among variables and temporal
patches, generating a single-channel spatial relation map RZ*LxEX1 according to (Hssayni et al.)
2022).

* Phase-Amplitude Encoder: We decompose phase-amplitude information based on (NiJ & Al
2025), outputting a tensor with the same dimensions as the periodicity encoder REXLXKX2 1y
linear projection.

3. Feature fusion and projection: Zgoncqt = Concat(P, R, F) € REXLxKx5

Subsequently, convolutional and projection layers perform spatial abstraction and compression,
yielding the final encoded spatial features:

Zrr = ConvProj(Zeoncat) € REX? (7)

This branch strengthens the expressiveness regarding inter-variable spatial dependencies within the
multi-variable time series, complementing the limitations of solely temporal encoding.

3.3 CROSS-MODAL ALIGNMENT

Cross-Modal Attention Mechanism. Following the extraction of features from the time series en-
coding and time image encoding branches, the projected modality-specific features are fed into the
Cross-Modal Attention Mechanism (CMAM). This mechanism leverages self-attention to dynami-
cally model the interactions between different modalities, effectively emphasizing complementary
information and suppressing redundancy. Formally, given query @, key K, and value V/, the atten-
tion is computed as:

.
Attention(Q, K, V') = softmax (Qj(a) V, (8)
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where @) is derived from one modality’s projected features (e.g., Frg) and K,V from the other
modality’s features (e.g., Frr). This cross-attention facilitates complementary feature integration,
resulting in modality-specific attention-weighted representations F47{™ and F4/™.

Dynamic Weighted-Averaging Mechanism. The attentive modality features generated by CMAM
are subsequently fused via the Dynamic Weighted-Averaging Mechanism (DWAM). This module
adaptively assigns fusion weights based on the input features, enabling flexible integration tailored
to each example:

Ffusion = - FY + (1 — a) - 3™, ©
where the fusion coefficient a € [0, 1] is dynamically computed as
a= fo(Frs,Frr). (10)

Here, fy is a lightweight multilayer perceptron (MLP) that dynamically estimates the fusion weight
a by jointly considering the concatenated features Frg and Fr;. Formally,

o = O'(WQ ReLU(W1 COHC&t(FTs, FT]) + bl) + bg), (11)

where o denotes the sigmoid function, ensuring o € [0,1]. This mechanism allows adaptive,
sample-wise weighting of modalities, enhancing fusion flexibility and expressiveness.

Multivariate Transformer Decoder. The fused embedding Ff,s;0n is subsequently fed into a
multivariate Transformer decoder specialized for task-specific output generation. Leveraging the
decoder’s powerful self-attention mechanism, it models complex temporal and inter-variable de-
pendencies embedded in the fused features, enabling unified multi-task inference across diverse
cross-domain time series datasets with enhanced accuracy and robustness.

3.4 OPTIMIZATION

This work proposes a unified multimodal framework designed to support multiple heterogeneous
time series tasks, including prediction, classification, and anomaly detection. Although the frame-
work enables a shared representation and fusion mechanism across tasks and domains, each task’s
model parameters 6, are optimized independently to accommodate their distinct objectives and data
distributions.

Formally, for each task ¢ € {pred,cls,anom}, given its corresponding dataset D; =

{(Xz(-t), ygt))}fif'l, the training objective is to minimize the task-specific loss:

Ny
* 3 1
0 = arg rré}n ﬁt ; £® (fgt (Xl(f)), ygt)), (12)

where fy, (-) denotes the model inference for task ¢. In cross-domain time-series analysis, a cross-
domain dataset is defined as D = {D;, Ds,..., Dy}, where each domain D; contains multiple
time series D; = {T},T%,..., T }

n;J*

The goal of the pre-trained model Mg is to learn general cross-domain feature representations. For
this purpose, we design the objective function as follows:

N N
LO)==> > logpe(T})+ A > [2(T};0) — 24s(D; 0)|3 (13)

i=1TieD; i=1T’eD;

where z(-; ©) represents the feature vector representation of a time series, zay, is the average of all
domain features, and )\ is a weighting coefficient that balances the generation probability and fea-
ture consistency. By independently optimizing 6; for each task, the framework maintains special-
ization and high performance tailored to each task’s data characteristics and objectives. Meanwhile,
the shared multimodal architecture fosters parameter and representation reuse, enabling effective
transfer and robustness in cross-domain, multi-task time series applications. Existing time series
foundation models (Liu et al., 2024h; (Gao et al., 2024) show that pre-training enhances the model
performance since more training data is involved, introducing more useful knowledge. Motivated
by this, we pre-train TimeCDS with the UTSD-4G dataset (Liu et al.,[2024h) and then finetune it for
new datasets.
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4 EXPERIMENTS

In this section, we systematically evaluate the efficacy of TimeCDS across various tasks within the
time series domain, complemented by ablation experiments that elucidate the individual contribu-
tions of its components to the overall performance (refer to Section [{.5). To rigorously assess the
generalizability of the TimeCDS approach, we conducted extensive empirical analyses across three
critical time series tasks: Time Series Forecasting (see Table , Anomaly Detection (see Table ,
and Classification (see Figure ).

4.1 DATASETS AND EXPERIMENT SETUP

Datasets. The experiments are carried out on certain real-world time series datasets. In terms
of forecasting, we employ 8 datasets, including ETTh1, ETTh2, ETTml1, ETTm2, ECL, Trafffc,
Weather (Wu et al., 2021), and Solar (Liu et al.| [2024f). For anomaly detection, we adopt 5
datasets,including SMD, PSM, SWaT, MSL, and SMAP (Liu et al., 2024a)). For time series classifi-
cation, we employ UEA (Bagnall et al., 2018). Dataset details can be found in Appendix

Baselines. We compare TimeCDS with the following existing baselines, including 13 time se-
ries forecasting baselines, i.e., ARIMA(Stellwagen & Tashman, 2013), DLinear (A Zeng, 2021)
TimesNet (Wu et al.l 2023), PatchTST (Nie et al., 2023), N-HiTS (Cristian Challu, 2023)),
iTransformer (Liu et al. 2024e), TimeVLM (Siru Zhong| 2025), TimeLLLM (?), AutoTimes (Liu
et al) |2024g), UniTime (Liu et all 2024d), UniTS (Gao et al| 2024), Timer (Liu et al.,
2024h), and TimerXL (Liu et al.| [2025c). For anomaly detection, we compare TimeCDS with
ARIMA(Stellwagen & Tashman, 2013), FEDformer (Tian Zhou, 2022), Informer (Haoyi Zhou,
2021)), DCdetector (Yiyuan Yang| 2023), Autoformer (Wu et al., [2021), DLinear (A Zeng, [2021),
TimesNet (Wu et al.}[2023), Series2graph (Ser2graph) (Paul Bonioll 2020), TranAD (Shreshth Tuli,
2022), IMDIFFUSION (Chen et al., [2023) and Timer (Liu et al., [2024h). For time series clas-
sification, 13 baselines are selected, i.e., LSTM (Shi et al.l 2015), LSTNET (G Lail, 2018)), In-
former (Haoy1 Zhou, |2021)), FEDformer (Tian Zhou, 2022), Full Attention (Attn) (Haoqing Wang,
2023)), Rocket (Dempster et al.,|2020), InceptionTime (Ismail Fawaz et al.,|2020), TCN (Bai et al.,
2018), LIGHTTS (Campos et al., 2023), DLinear (A Zeng} [2021), TimesNet(Wu et al. [2023),
UniTS (Gao et al.l [2024), and Timer (Liu et al., |2024h). Please note that TimeLLLM is a large
language mode based time series analytics method, while Timer, TimerXL, and UniTS are time se-
ries foundation models. We follow the default hyperparameter setting in the original paper or the
associated code of baselines, enabling fair comparison. The implementation details are given in

Appendix

Evaluation Metrics. We adopt mean squared error (MSE) and mean absolute error (MAE) as
evaluation metrics for time series forecasting (Qiu et al.l 2024). The Fl-score (F1), AUC-ROC,
and PATE (Ghorbani et al., 2024)) are adopted as main evaluation metrics for time series anomaly
detection. Additionally, F1 and accuracy are used to evaluate time series classification. More results
on more evaluation metrics and model efficiency analysis can be seen in Appendix

4.2 TIME SERIES FORECASTING
Table 1: Overall Performance Comparison of Time Series Forecasting (Average)

Models ETTml ETTm2 ETThl I ETTh2 ECL Weather Traffic Solar
i MSE MAE | MSE MAE | MSE MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ARIMA(2013) 1.172 0813 | 2425 1.208 | 1.228 0.851 | 3.126 1.382 | 0.589 0.579 | 0.474 0.484 | 1.041 0.572 | 1.293 1.375
N-HiTS(2023) 0.452 0461 | 0.305 0.370 | 0.493 0.514 | 0.436 0.470 | 0.210 0.313 | 0.279 0317 | 0.457 0.344 | 0.285 0.307

TimesNet(2023} 0.525 0.521 | 0.411 0453 | 0.578 0.570 | 0.527 0.547 | 0.231 0.333 | 0.294 0.323 | 0.632 0.352 | 0.243 0.325
PatchTST(2023} 0.439 0460 | 0.361 0.411 | 0480 0.502 | 0.393 0.405 | 0.199 0.298 | 0.257 0.298 | 0.421 0.305 | 0.232 0.299
DLinear (2021} 0.453 0467 | 0.461 0477 | 0473 0479 | 0.376 0432 | 0.195 0.295 | 0.270 0.321 | 0453 0.328 | 0.252 0.313
UniTime(2024d) 0419 0.626 | 0470 0.494 | 0.634 0.623 | 0.555 0.563 | 0.189 0.429 | 0.265 0.489 | 0.404 0.397 | 0.227 0.492
TimeVLM(2025) 0.371 0.410 | 0.289 0.355 | 0.440 0.451 | 0.364 0.410 | 0.190 0.294 | 0.257 0.296 | 0.463 0.341 | 0.247 0.297
iTransformer(2024e) | 0.428 0.436 | 0.316 0.358 | 0.466 0.487 | 0.412 0.445 | 0.197 0.286 | 0.289 0.306 | 0.460 0.305 | 0.269  0.290
UniTS (2024) 0.459 0469 | 0478 0494 | 0474 0426 | 0.384 0.379 | 0.214 0.312 | 0.258 0.298 | 0491 0.356 | 0.266 0.333
AutoTimes (2024g) | 0.438 0.452 | 0453 0511 | 0.617 0.640 | 0.538 0.580 | 0.355 0.283 | 0.491 0.303 | 0.614 0.369 | 0422 0.272
TimeLLM (2024) 0442 0467 | 0493 0.526 | 0.657 0.655 | 0.578 0.595 | 0.211 0.318 | 0.255 0.295 | 0.440 0.333 | 0.293 0.365

Timer(2024h) 0.384 0418 | 0.295 0.354 | 0420 0.448 | 0.370 0.417 | 0.199 0.295 | 0.263 0.301 | 0.361 0.268 | 0.352 0.422
TimerXL (2025c) 0.366 0.407 | 0.288 0.350 | 0.441 0.464 | 0.363 0.417 | 0.199 0.295 | 0.264 0.300 | 0.393 0.296 | 0.223  0.295
TimeCDS 0.356 0.393 | 0.258 0.320 | 0.395 0.419 | 0.340 0.390 | 0.182 0.262 | 0.242 0.284 | 0.431 0.337 | 0.192 0.203

Time series forecasting is a central task in time series analysis. To evaluate the performance of
TimeCDS in time series forecasting, we compared it with 13 baseline models on standard bench-
marks, including ETTh, ECL, Weather, Traffic, and Solar. We train and test the time series founda-
tions models, i.e., TimeCDS, Timer, TimeXL, and UniTS, on all datasets simultaneously. As shown
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in Table[T] we report the average performance of forecasting, he complete results can be found in Ta-
ble[d TimeCDS achieves the best performance in most cases across various prediction lengths from
96 to 720. TimeCDS performs better than the best among the baselines by up to 15.9%. We see that
ARIMA has the worst performance. This is because the traditional statistics-based method is often
shallow, failing to capture the complex temporal correlations. In addition, time series foundation
models perform better than transformer-based methods, e.g., PatchTST, and MLP-based methods,
e.g., TimesNet, in most cases, showing their superior generalization capabilities, enhancing model
performance.

4.3 ANOMALY DETECTION
Table 2: Overall Performance Comparison of Time Series Anomaly Detection (x 100%)

Models SMD PSM SWaT MSL SMAP Average
FI AUC PATE | FI AUC PATE | FI AUC PATE | FI AUC PATE | FI AUC PATE | FI AUC  PATE
ARIMA(2013) 3174 2695 13.59 | 36.21 31.25 4213 | 3299 3498 11.59 | 2695 29.99 1639 | 24.69 27.10 1698 | 30.52 30.05 20.14
FEDformer(2022] 75.63 6832 57.90 | 70.31 7845 5534 | 5236 59.48 43.63 | 48.69 50.98 6532 | 5146 69.47 48.01 | 59.69 65.34 54.04
Informer(2021} 69.35 8248 6749 | 6520 7432 57.64 | 33.65 5431 2331 | 66.54 7831 77.31 | 76.86 63.73 64.85 | 62.32 70.63 58.12
DCdetector(2023} 6548 80.36 68.93 | 60.38 6832 51.36 | 68.36 6231 67.41 | 56.70 66.54 56.30 | 23.88 60.07 40.80 | 5496 67.52 56.96
Autoformer(2021} 5790 5869 6247 | 59.58 68.75 65.30 | 67.54 56.63 6525 | 44.68 59.62 66.75 | 4040 5746 46.73 | 54.02 60.23 61.30
DLinear(2021} 68.49 7475 5546 | 70.65 76.49 4359 | 60.70 70.53 56.78 | 6531 69.49 58.61 | 66.75 6884 55.16 | 66.38 72.02 53.92
TimesNet (2023} 69.74 7385 64.90 | 73.21 75.65 72.60 | 65.19 6893 5836 | 7536 77.69 8536 | 67.15 69.98 73.83 | 70.13 7322 71.01
Ser2graph(2020) 63.51 71.65 5532 | 6498 69.46 66.79 | 56.84 6632 59.64 | 59.64 6849 5530 | 66.70 68.31 59.67 | 62.33 68.85 59.34
TranAD(2022] 66.31 75.65 6298 | 6539 7185 67.59 | 6425 7136 6239 | 63.59 69.75 6298 | 59.62 6531 60.81 | 63.83 70.78 63.35
IMDIFFUSION (2023} | 69.75 73.86 64.91 | 73.32 7576 72.71 | 6520 75.65 75.36 | 75.37 77.70 8537 | 67.16 69.99 73.84 | 70.16 74.59 74.44
Timer(2024h] 79.65 8236 61.87 | 80.02 83.54 62.39 | 77.06 79.65 58.67 | 75.09 75.63 57.31 | 77.63 77.17 60.81 | 77.89 79. 67 60.21
TimeCDS 82.61 8596 77.31 | 83.26 85.64 76.59 | 79.67 85.95 72.69 | 74.62 8545 79.56 | 80.06 83.55 72.50 | 80.52 8531 75.73

Since the anomalies are usually hidden in the large-scale data, making the data labeling hard,
we focus on unsupervised time series anomaly detection, which is to detect the abnormal time
points. We evaluate unsupervised point-wise anomaly detection on five benchmarks (SMD, MSL,
SMAP, SWaT, PSM) spanning service monitoring, space telemetry, and industrial control. Fol-
lowing Anomaly Transformer, we use fixed-length sliding windows and train via reconstruction.
We report F1, AUC, and PATE as our primary metrics as prior works (Ghorbani et al. 2024} [Liu
et al.,[2024a). As shown in Table |2} TimeCDS attains the highest average performance across five
benchmarks on F1/AUC/PATE (80.20/85.31/75.73). It ranks first on SMD and PSM across all three
metrics; on SMD, TimeCDS reaches 12.4% absolute gain in terms of PATE over the second-best
IMDIFFICTION. These results demonstrate that TimeCDS provides stable cross-domain general-
ization and effective range handling in unsupervised anomaly detection.

4.4  CLASSIFICATION
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Figure 4: Performance Comparison of classification.

We conduct experiments on time series classifications on 10 subsets of the UEA time series archive.
Accuracy and Fl-score (F1) are adopted as evaluation metrics. The overall average performance
results are provided in Figure ] TimeCDS performs better than the best among the baselines.
Overall, TimeCDS achieves the best results on 10 time series datasets in UEA, which shows that
TimeCDS is effective in time series classification. We can see that the time series foundation model
Timer achieves the best performance among baselines, showing the promising potential of founda-
tion models. TimeCDS performs better than Timer due to the dual-branch encoding module, which
learn an effective representation across two complementary modalities.

4.5 ABLATION STUDY

To gain insight into the effects of the different components of TimeCDS, we evaluate three com-
ponents including 1). w/o_TS: TimeCDS without time series encoding branch; 2). w/o_Image:
TimeCDS without time image encoding branch; 3) w/o_CMA: TimeCDS without cross-modal atten-
tion mechanism. Figure[5|shows results for forecasting (Figures[5(a) and (b)) and anomaly detection
(Figures [5(c) and (d)). Regardless of the datasets, TimeCDS outperforms its counterparts, showing
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that these three components are all useful for effective universal time series modeling. TimeCDS
obtains MSE and MAE reductions by up to 38.6% and 22.5%, respectively. Further, on all datasets,
w/o_TS performs worst among all variants. TimeCDS performs better than w/o_TS by at least 8%,
which indicates the importance of time series encoding branch.
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Figure 5: TimeCDS and Its Variants on Four Datasets
4.6 CASE STUDY

To intuitively show the effectiveness of the proposed TimeCDS, we provide case studies on ECL
and SMD in terms of forecasting and anomaly detection, respectively, as shown in Figure [6] In
Figure [6[a), we see that the predictions are highly consistent with the ground truth, demonstrating
the effectiveness of TimeCDS. Figure [6{b) shows that TimeCDS successfully identifies the out-
liers on SMD, demonstrating its superior performance for anomaly detection. These two figures
jointly demonstrate that the TimeCDS model can accurately predict future trends and promptly de-
tect anomalies when handling different time series analysis tasks, reflecting its superior capability
in universal time series modeling.
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Figure 6: Case Study on Forecasting (ECL) and Figure 7: The Effect of K.

Anomaly Detection (SMD)
4.7 THE EFFECT OF THE NUMBER OF K

We next investigate the effect of the number of K on model performance, which denotes the number
of selected representative channels. We vary the value of K=[10, 15, 20, 25, 30, 35]. As shown
in Figure [/, we observe that the F1 and AUC curves first increase, then drop, and finally increase
slightly. We see that TimeCDS achieves the best performance when K is set to 20, which shows that
20 is the ideal setting in this study. More representative channels may introduce noises, degrading
the model performance.

5 CONCLUSION

This work presents TimeCDS, a modality-aware dual-branch framework for universal time series
forecasting. Extensive experiments on real-world datasets show the effectiveness of the proposed
TimeCDS. To accommodate the heterogeneous dimensionalities across domain-varying time series,
we propose a channel dependency search strategy to select a certain number of representative chan-
nels. To achieve the comprehensive feature extraction, we introduce a time series imaging method
and a dual-branch architecture to perform representation learning from sequence and vision simul-
taneously. A cross-modal alignment module is designed to fuse the complementary cross-modal
features. Comprehensive experiments on real datasets offer evidence that TimeCDS achieves the
state-of-the-art accuracy. In the future, an interesting research direction is to further improve the
pre-training process of TimeCDS with more training data.
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A DATASETS AND METRICS

The table below presents a comprehensive summary of the experimental datasets utilized in the
study, categorized into three primary tasks: Forecasting, Anomaly Detection and Classification.
Each task is associated with specific benchmark datasets and corresponding metrics that are em-
ployed to evaluate the performance of models tailored to these tasks.

Table 3: Summary of Experiment Datasets.

Tasks | Benchmarks \ Metrics

ETT (4 subsets), ECL, Traffic,
Weather, Solar

Anomaly Detection \ SMD, MSL, SWaT, PSM, SMAP \ Precision, Recall, F1-Score, AUC, PATE
Classification \ UEA (10 subsets) \ Accuracy, Precision, Recall, F1-Score

Forecasting MSE, MAE

A.1 FORECASTING

In the context of Forecasting, the datasets include ETT, ECL, Traffic, Weather and Solar. These
datasets are typically used for time series forecasting tasks, which involve predicting future values
at specific time points.

* ETT. The ETT dataset includes two hourly-level datasets (ETTh1 and ETTh2) and two 15-minute-
level datasets (ETTm1 and ETTm?2). Each dataset includes 7 oil and load features of electricity
transformers between July 2016 and July 2018.

 Traffic. The Traffic dataset contains hourly road occupancy rates obtained from sensors located
at San Francisco freeways from 2015 to 2016.

* Weather. The Weather dataset contains 21 indicators of weather (e.g., air temperature and humid-
ity), which are collected in Germany. The data is recorded every 10 minutes.

* ECL. The ECL dataset captures hourly electricity consumption data from 321 clients.
* Solar. The Solar dataset records solar power production from 137 PV plants in 2006, sampled
every 10 minutes.

The performance of forecasting models is gauged using the Mean Squared Error (MSE) and the
Mean Absolute Error (MAE), which are deffned as follows.

1 n .
MSE = - Z(yi —0i)°,
. (14)
1 .
MAE = = "|y; — Gil,
=1

where n is the number of observations, y; is the actual value of the ¢-th observation, and g; is
the predicted value of the ¢-th observation. The MSE measures the average of the squares of the
differences between predicted and actual values, with lower values indicating higher accuracy. The
MAE, on the other hand, measures the average magnitude of the errors in a set of predictions,
without considering their direction, also with lower values indicating better performance.
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A.2 ANOMALY DETECTION

The Anomaly Detection task leverages datasets such as SMD , MSL , SWaT , PSM and SMAP.
These datasets are employed to identify anomalous patterns or outliers within the data.

* SMD. Server Machine Dataset (SMD) is a 5-week-long dataset collected from a large Internet
company with 38 feature dimensions.

e MSL. Mars Science Laboratory rover (MSL) dataset contains the telemetry anomaly data derived
from the incident surprise anomaly reports of spacecraft monitoring systems with 55 feature di-
mensions.

e SWaT. Secure Water Treatment (SWaT) dataset is obtained from 51 sensors of the critical infras-
tructure system under continuous operations.

* PSM. Pooled Server Metrics (PSM) dataset is collected from multiple application servers at eBay
with 25 feature dimensions.

* SMAP. Soil Moisture Active Passive (SMAP) dataset is a publicly available real-world expert-
labeled dataset from NASA. This dataset contains data from 25 entities.

The evaluation metrics for anomaly detection include the F1-Score, which is the harmonic mean of
precision and recall, providing a balance between the two especially in cases of class imbalance.
The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve is also
used, with values closer to 1 indicating better model performance. Additionally, We use advanced
evaluation metrics of time series anomaly detection: PATE. All metrics are deffined as follows.

Precisi TP
recision = ———
TP+ FP’
F'1-Score = 2% Pf.ec.iSiOH x recall
precision -+ recall
TP )
Recall = — ~1
eca TN

1
AUC = / ROCyrve dF PR,
0

where TP represents True Positive, FP denotes False Positive, and FN is False Negative. FPR
(False Positive Rate) represents the proportion of negative instances that are incorrectly classified as
positive. AUC represents the Area Under the Receiver Operating Characteristic (ROC) curve.

The Proximity-Aware Time series anomaly Evaluation (PATE) metric assesses model performance
through a proximity-aware weighting mechanism. For predefined pre- and post-anomaly buffer sizes
e € £and d € D, it computes a weighted Area Under the Precision-Recall curve (AUC-PR). The
final score is the average across all buffer combinations:

1
PATE= — Z Z AUC-PR, 4 (16)
E1x 1Pl %2 i

For each combination (e, d) and threshold 6, the weighted Precision and Recall are derived from time
point-level weights wiP (), wiP(t), and wN(¢), which are assigned based on the spatiotemporal
relationship between predictions and ground-truth anomaly segments aj = (i, ng):

. _ >, wh(t)
Precision, 4(6) = S W)+ 5, (D) 17)
TP
Recall, o(0) = 2=t ™ () (18)

o WIP(E) + 32, wiN(2)

Key weight assignments include: w(¢) = 1 for true detections; w'F(¢) = 1 for points outside
any buffer zone; and w™™N(¢) = 1 for totally missed anomalies. Weights for points within buffer
zones decay with increasing temporal distance from the anomaly segment. Detailed definitions of
the weight functions are provided in the original paper (Ghorbani et al., [2024)).
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A.3 CLASSIFICATION

Lastly, the Classification task utilizes the University of East Anglia (UEA) dataset, which consists
of 10 subsets. These datasets are used for classification tasks, where the objective is to assign data
points to different categories. The model performance of classification tasks is evaluated using
Accuracy, Precision, Recall, and F1-Score. Accuracy is the ratio of correctly classified instances to
the total number of instances.

TP+ TN

A - 19
WY = TP Y TN+ FP+ FN (9)

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used in this work solely for auxiliary purposes. Specifically, they assisted in improv-
ing the accuracy of writing by identifying and correcting grammatical issues. All research ideas,
methodological developments, experiments, and the main body of the manuscript are independently
conceived, conducted, and written by the authors.

B IMPLEMENTATION DETAILS

All experiments are implemented in PyTorch. The pre-trained model is based on the high-quality
UTSD-4G dataset and the powerful NVIDIA H200 Tensor Core GPU. The fine-tuned models for
downstream tasks and the models for small-scale cross-domain training are deployed on the NVIDIA
H20 Tensor Core GPU.

B.1 PRE-TRAINING

In the pre-training stage, the optimizer we used was AdamW. The attenuation strategy for the learn-
ing rate adopted the cosine annealing algorithm. The cosine annealing algorithm is very effective in
dynamically adjusting the learning rate. The initial learning rate is set at10~>, and the final learning
rate is 107°. The decay steps are proportional to the number of training steps of 10 epochs. We
set the batch size to 2048, which fully utilized the memory bandwidth without encountering out-
of-memory errors. Gradient accumulation was therefore unnecessary. The model was trained with
mixed precision (FP16/BF16) to accelerate computation while maintaining numerical stability.

B.2 DOWNSTREAM TASKS

B.2.1 FORECASTING FINE-TUNING

The pretrained TimeCDS checkpoint () =20) was loaded on a single NVIDIA H20. Input series of
length 672 were normalized and patched into M =7 segments of size 96, yielding a temporal tensor
X € RBX20X7T and an image tensor Xime € REX7X20%5 Training used batch size 64, AdamW
(B1=0.9, B2=0.999, e=10"?) and a cosine scheduler with 3-epoch warm-up:
1+ cos(nt/T)
2 )

where Nmax = 104, Nmin = 1073, T=20 epochs; early stopping (patience 5) monitored validation
MSE. Only LayerNorm, CMAM, DWAM and the decoder were updated.

Nt = TMmin + (nmax - nmin) : (20)

For inference, a single model performs rolling forecasting on each dataset: the same checkpoint
is applied with sliding window (stride 1) to iteratively generate 96-step predictions, which are con-
catenated to produce horizons of {96, 192, 336, 720} without retraining or parameter adjustment.

B.2.2 ANOMALY DETECTION FINE-TUNING

The same K =20 checkpoint was used on H20. Sliding windows of length 672 (stride 1) generated
samples for reconstruction-based training. Batch size was 32 with gradient accumulation 2; opti-
mizer and cosine schedule identical to forecasting. Training ran for 20 epochs with early stopping
on validation AUC (patience 5). Backbone weights remained frozen; only CMAM, DWAM and the
reconstruction decoder were fine-tuned.
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B.2.3 CLASSIFICATION FINE-TUNING

On H20, variable-length series were padded to the dataset-specific maximum and processed with
K = 20 channels, producing Xin, € RBX7X20%5 - After global average pooling, a linear classifier
was appended. Batch size was 128, label-smoothing 0.01 was applied, and the cosine LR schedule
followed the same parameters as above for 20 epochs, with early stopping on macro-F1 (patience
5). Only LayerNorm, CMAM, DWAM and the classification head were trainable.

B.3 SMALL-SCALE CROSS-DOMAIN FORECASTING

A single shared backbone was trained on the concatenated ETTh, ECL, Weather, Traffic and Solar.
All series were domain-wise standardised, zero-padded to 336 steps, and reduced to K=8 represen-
tative channels via the pretrained Channel-Dependency Search. Patch size 48 yields 7 tokens; the
imaging branch produces 7x8x5 tensors.

The converged checkpoint was subsequently rolled on each individual dataset to generate horizons
{96,192,336,720} without further fine-tuning.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TIME SERIES FORECASTING

Table 5: Overall performance comparison in forecasting without pre-training

Models TimeCDS DUET UniTS TimeLLM AutoTimes UniTime DLinear PatchTST TimesNet ARIMA
" [[MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETThl | 0355 0.424 | 0358 0.399 | 0.469 0.471 | 0.471 0.510 | 0.356 0.364 | 0.462 0.393 | 0.393 0.421 | 0.414 0482 | 0.355 0451 | 1.005 0.952
ETTh2 | 0.269 0.301 | 0.307 0.331 | 0.370 0.448 | 0.433 0.463 | 0.430 0.482 | 0.510 0.471 | 0.347 0.464 | 0.215 0376 | 0.457 0.498 | 0.998 0.973
ETTml | 0.381 0.401 | 0.391 0.416 | 0.416 0.415 | 0.488 0.504 | 0.370 0.355 | 0.424 0.397 | 0.456 0.483 | 0.463 0.477 | 0.386 0.391 | 1.035 0.993
ETTm2 | 0.357 0.395 | 0.380 0.390 | 0.433 0.476 | 0436 0.479 | 0.522 0.484 | 0.498 0.483 | 0.548 0.618 | 0.482 0.489 | 0465 0492 | 1.018 1.010
ECL 0365 0422 | 0386 0.423 | 0.530 0.489 | 0.489 0.505 | 0.318 0.356 | 0.557 0.457 | 0.366 0.414 | 0.397 0.510 | 0.471 0.507 | 1.003 0.889
Weather | 0.356  0.420 | 0.414 0.437 | 0.425 0.433 | 0.555 0.571 | 0.369 0.383 | 0.398 0.423 | 0415 0.464 | 0447 0.511 | 0413 0460 | 1.019 1.088
Traffic | 0492 0415 | 0.524 0476 | 0440 0.489 | 0.557 0.533 | 0.505 0.501 | 0.466 0.502 | 0.414 0.454 | 0.390 0.458 | 0.439 0.460 | 1.070 1.038
Solar | 0.207 0.233 | 0.213  0.240 | 0.268 0.258 | 0.234 0.262 | 0.202  0.225 | 0.253 0.188 | 0.200 0.217 | 0.192  0.208 | 0.239  0.243 | 1.061 1.067

In order to test the cross-domain task capability under a small data scale, our experiment specifically
designed a mall-scale cross-domain forecasting experiment. The training of the model was restricted
to the datasets of ETTh, ECL, Weather, Traffic and Solar. The joint datasets are divided in [ 6 : 2
: 2 ] ratio, and the performance of the backbone networks of multiple advanced models used for
time series prediction was compared. They are DUET, UniTS, TimeLLM, AutoTimes, UniTime,
DLinear, PatchTST, Timesnet and ARIMA. From Table El, in the forecasting task of the mall-scale
cross-domain, TimeCDS performed outstandingly, achieving the lowest MSE and MAE values on
multiple datasets, demonstrating its generalization ability and prediction accuracy across different
datasets. Although slightly inferior to UniTS on the Traffic dataset, TimeCDS still demonstrated
good performance. Overall, TimeCDS outperforms or approaches other advanced models on mul-
tiple datasets, demonstrating its effectiveness and superiority in handling small-scale cross-domain
time series data.

C.2 TIME SERIES ANOMALY DETCTION

Table 6: Overall performance comparison for time series anomaly detection without pre-training

Models ] .SMD ] lPSM ] §WaT ] 'MSL ] SMAP ] .AVG
) Precision Recall | Precision Recall | Precision Recall | Precision Recall | Precision Recall | Precision Recall
ARIMA 42.69 31.00 35.63 29.65 29.30 34.65 26.31 31.39 21.95 25.63 31.18 30.46
FEDformer 69.52 56.31 72.36 69.69 58.36 54.63 60.31 58.65 55.05 57.27 63.12 59.31
Informer 78.65 80.23 77.94 72.63 33.64 39.40 75.31 73.65 71.01 76.34 67.31 68.45
DCdetector 70.31 79.65 71.35 57.36 75.21 65.72 58.36 62.34 36.32 47.03 62.31 62.42
Autoformer 55.43 53.32 62.31 63.54 55.31 52.39 52.31 49.75 35.99 44.95 52.27 52.79
DLinear 64.51 72.36 67.21 76.54 60.49 67.54 62.37 65.89 62.02 65.17 63.32 69.50
TimesNet 78.31 72.65 71.36 74.68 63.54 65.74 72.68 82.96 70.66 83.07 71.31 75.82
Ser2graph 75.66 72.39 69.78 73.26 59.76 59.71 62.95 66.92 53.69 62.31 64.37 66.92
TranAD 73.52 71.32 72.31 76.51 63.44 68.54 69.58 72.31 62.31 63.14 68.23 70.36
IMDIFFICTION 78.32 72.66 71.37 74.79 63.65 65.85 72.69 82.97 70.67 83.08 71.34 75.87
Timer 78.65 80.21 82.14 83.65 72.63 76.99 75.65 76.59 72.03 75.46 76.22 78.58
TimeCDS 81.65 84.31 83.56 86.59 82.46 83.62 79.65 83.32 77.78 80.36 81.02 83.64

Table [6] provides supplementary performance metrics for each model in the time series anomaly
detection task, including Precision and Recall. The TimeCDS model proposed in this study demon-
strated outstanding performance on all datasets, with its average precision and recall rates reaching
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Table 4: Overall Performance Comparison of Time Series Forecasting

Models

ETTml

ETTm2

ETThI

ETTh2

ECL

‘Weather

Traffic

Solar

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

ARIMA

96
192
336
720
Avg

0.893
1.143
1.297
1.354
1.172

0.694
0.806
0.862
0.888
0.813

2.071
2279
2.598
2.750
2.425

1.103
1.142
1.268
1.317
1.208

1.074
1.247
1.289
1.301
1.228

0.803
0.862
0.871
0.868
0.851

2.552
3.342
3.321
3.287
3.126

1.308
1.414
1.418
1.387
1.382

0.405
0.472
0.469
1.010
0.589

0.467
0.503
0.503
0.844
0.579

0.399
0.446
0.485
0.565
0.474

0.436
0.465
0.484
0.550
0.484

0.873
0.877
0.883
1.530
1.041

0.483
0.483
0.485
0.835
0.572

1.260
1.279
1.300
1.331
1.293

1.352
1.366
1.381
1.401
1.375

N-HiTS

192
336
720
Avg

0.385
0.417
0.476
0.531
0.452

0.421
0.458
0.461
0.503
0.461

0.211
0.274
0.329
0.405
0.305

0.302
0.349
0.388
0.442
0.370

0.440
0.470
0.499
0.564
0.493

0.452
0.481
0.544
0.577
0.514

0.355
0.423
0.470
0.494
0.436

0.410
0.456
0.502
0.511
0.470

0.171
0.192
0.214
0.263
0.210

0.274
0.296
0.319
0.361
0.313

0.197
0.248
0.300
0.371
0.279

0.247
0.296
0.337
0.387
0.317

0.406
0.424
0.452
0.544
0.457

0.315
0.330
0.346
0.387
0.344

0.255
0.270
0.308
0.306
0.285

0.263
0.284
0.339
0.343
0.307

TimesNet

96
192
336
720
Avg

0.482
0.504
0.523
0.590
0.525

0.493
0.507
0.519
0.564
0.521

0.307
0.369
0.441
0.528
0.411

0.387
0.429
0.471
0.523
0.453

0.504
0.556
0.611
0.641
0.578

0.522
0.549
0.589
0.620
0.570

0.431
0.522
0.572
0.582
0.527

0.494
0.534
0.572
0.588
0.547

0.214
0.222
0.230
0.258
0.231

0.318
0.325
0.333
0.355
0.333

0.199
0.252
0.320
0.406
0.294

0.258
0.299
0.340
0.394
0.323

0.623
0.626
0.630
0.649
0.632

0.345
0.347
0.349
0.365
0.352

0.210
0.229
0.250
0.281
0.243

0.302
0.316
0.331
0.351
0.325

PatchTST

96
192
336
720
Avg

0.404
0.435
0.453
0.464
0.439

0.431
0.452
0.465
0.490
0.460

0.304
0.371
0.359
0.409
0.361

0.367
0.412
0.414
0.452
0411

0.442
0.468
0.493
0.517
0.480

0.466
0.490
0.512
0.540
0.502

0.339
0.342
0.417
0.474
0.393

0.331
0.336
0.449
0.505
0.405

0.162
0.181
0.201
0.252
0.199

0.262
0.280
0.302
0.348
0.298

0.181
0.224
0.274
0.347
0.257

0.232
0.275
0.315
0.368
0.298

0.389
0.407
0.423
0.466
0.421

0.285
0.295
0.306
0.335
0.305

0.198
0.219
0.242
0.270
0.232

0.267
0.287
0.307
0.335
0.299

DLinear

192
336
720
Avg

0.405
0.435
0.469
0.502
0.453

0.429
0.446
0.473
0.520
0.467

0.319
0.413
0.478
0.635
0.461

0.383
0.448
0.495
0.581
0.477

0.413
0.453
0.489
0.536
0.473

0.443
0.465
0.486
0.521
0.479

0.286
0.343
0.394
0.482
0.376

0.360
0.403
0.442
0.521
0.432

0.168
0.182
0.197
0.233
0.195

0.268
0.281
0.298
0.332
0.295

0.199
0.241
0.288
0.350
0.270

0.259
0.298
0.336
0.392
0.321

0.429
0.439
0.452
0.491
0.453

0.315
0.320
0.327
0.349
0.328

0.223
0.244
0.263
0.276
0.252

0.288
0.304
0.321
0.337
0.313

UniTime

192
336
720
Avg

0.390
0.418
0.431
0.436
0.419

0.439
0.607
0.710
0.749
0.626

0.320
0.388
0.516
0.657
0.470

0.386
0.430
0.531
0.630
0.494

0.594
0.571
0.665
0.706
0.634

0.598
0.559
0.637
0.697
0.623

0.433
0.511
0.612
0.662
0.555

0.465
0.514
0.607
0.664
0.563

0.159
0.177
0.192

0.229
0.189

0.296
0.408
0.478
0.532
0.429

0.183
0.231
0.286
0.361
0.265

0.253
0.481
0.600
0.623
0.489

0.373
0.392
0.409
0.443
0.404

0.321
0.383
0419
0.465
0.397

0.201
0.220
0.233
0.252
0.227

0.304
0.461
0.566
0.638
0.492

UniTS

192
336
720
Avg

0.407
0.442
0.470
0.518
0.459

0.434
0.456
0.474
0.513
0.469

0.336
0.430
0.495
0.652
0.478

0.400
0.465
0.512
0.598
0.494

0.416
0.452
0.486
0.542
0.474

0.390
0.412
0.433
0.468

0.426

0.284
0.341
0.398
0.514
0.384

0.307
0.350
0.389
0.468
0.379

0.167
0.188
0.211
0.288
0.214

0.260
0.288
0.315
0.385
0.312

0.184
0.226
0.274
0.348
0.258

0.235
0.279
0.312
0.365
0.298

0.425
0.455
0.493
0.590
0.491

0.313
0.332
0.358
0.422
0.356

0.226
0.249
0.275
0.315
0.266

0.291
0.314
0.341
0.384
0.333

iTransformer

96
192
336
720
Avg

0.364
0.394
0.450
0.502
0.428

0.398
0.434
0.436
0.476
0.436

0.229
0.259
0.327
0.449
0.316

0.297
0.353
0.351
0.430
0.358

0.416
0.444
0.470
0.534
0.466

0.427
0.455
0.517
0.548
0.487

0.336
0.400
0.444
0.468
0.412

0.388
0.432
0.476
0.484
0.445

0.165
0.190
0.188
0.245
0.197

0.261
0.260
0.295
0.329
0.286

0.194
0.268
0.315
0.378
0.289

0.231
0.273
0.342
0.379
0.306

0.428
0.444
0.474
0.493
0.460

0.287
0.281
0.300
0.351
0.305

0.241
0.254
0.291
0.289
0.269

0.247
0.267
0.321
0.325
0.290

TimeVLM

96
192
336
720
Avg

0.316
0.355
0.382
0.431
0.371

0.368
0.400
0.422
0.450
0.410

0.186
0.244
0.306
0.419
0.289

0.286
0.326
0.369
0.441
0.355

0.399
0.428
0.448
0.486
0.440

0.412
0.440
0.457
0.494
0.451

0.287
0.350
0.374
0.445
0.364

0.350
0.402
0.416
0.471
0.410

0.162
0.176
0.192
0.231
0.190

0.272
0.282
0.297
0.326
0.294

0.183
0.228
0.276
0.342
0.257

0.239
0.275
0.311
0.357
0.296

0.419
0.445
0.459
0.530
0.463

0.314
0.333
0.338
0.380
0.341

0.189
0.231
0.276
0.290
0.247

0.251
0.268
0.315
0.352
0.297

AutoTimes

96
192
336
720
Avg

0.416
0.429
0.444
0.461
0.438

0.430
0.449
0.459
0.470
0.452

0.303
0.371
0.499
0.640
0.453

0.403
0.447
0.548
0.647
0.511

0.577
0.554
0.648
0.689
0.617

0.615
0.576
0.654
0.714
0.640

0.416
0.494
0.595
0.645
0.538

0.482
0.531
0.624
0.681
0.580

0.201
0.323
0.409
0.485
0.355

0.255
0.271
0.288
0.318
0.283

0.210
0.480
0.624
0.648
0.491

0.233
0.280
0.323
0.375
0.303

0.468
0.568
0.651
0.767
0.614

0.278
0.387
0.396
0.414
0.369

0.253
0.403
0.475
0.556
0.422

0.251
0.266
0.278
0.292
0.272

TimeLLM

192
336
720
Avg

0.410
0.438
0.455
0.464
0.442

0.442
0.461
0.473
0.493
0.467

0.343
0.411
0.539
0.680
0.493

0.418
0.462
0.563
0.662
0.526

0.617
0.594
0.688
0.729
0.657

0.630
0.591
0.669
0.729
0.655

0.456
0.534
0.635
0.685
0.578

0.497
0.546
0.639
0.696
0.595

0.167
0.188
0.213
0.277
0.211

0.274
0.296
0.322
0.378
0.318

0.179
0.223
0.273
0.345
0.255

0.230
0.273
0.314
0.362
0.295

0.406
0.427
0.450
0.478
0.440

0.310
0.324
0.341
0.356
0.333

0.254
0.278
0.299
0.340
0.293

0.319
0.345
0.368
0.426
0.365

Timer

192
336
720
Avg

0.322
0.367
0.400
0.448
0.384

0.372
0.406
0.431
0.463
0.418

0.208
0.265
0.315
0.390
0.295

0.290
0.334
0.372
0.420
0.354

0.371
0.411
0.435
0.463

0.420

0.411
0.438
0.454
0.488
0.448

0.302
0.359
0.387
0.431
0.370

0.362
0.404
0.429
0.472
0.417

0.164
0.184
0.204
0.245
0.199

0.261
0.281
0.301
0.337
0.295

0.188
0.235
0.284
0.345
0.263

0.236
0.283
0.320
0.366
0.301

0.329
0.347
0.363
0.406
0.361

0.255
0.260
0.267
0.289
0.268

0.183
0.333
0.405
0.486
0.352

0.234
0.391
0.496
0.568
0.422

TimerXL

192
336
720
Avg

0.310
0.351
0.380

0.200
0.259
0.311
0.381
0.288

0.286
0.330

0.378
0.423
0.452
0.511
0.441

0.415
0.448
0.470
0.523
0.464

0.363
0.406
0.432
0.465
0.417

0.162
0.182
0.203
0.248
0.199

0.259
0.280
0.301
0.341
0.295

0.187
0.235
0.283
0.350
0.264

0.235
0.281
0.319
0.366
0.300

0.369
0.379
0.392
0.431
0.393

0.253
0.272

0.184
0.208
0.229
0.270
0.223

0.249
0.275
0.298
0.356
0.295

TimeCDS

96
192
336
720
Avg

0.299
0.335
0.375
0.415
0.356

0.347
0.379
0.412
0.434
0.393

0.178
0.234
0.275
0.343
0.258

0.320

0.342
0.387
0.416
0.433
0.395

0.383
0.409
0.426
0.459
0.419

0.340

0.330
0.373
0.400
0.457
0.390

0.151
0.167
0.186
0.224
0.182

0.235
0.268
0.282
0.317
0.262

0.163
0.211
0.264
0.329
0.242

0.228
0.256
0.304
0.347
0.284

0.365
0.395
0.433
0.530
0.431

0.169
0.175
0.194
0.228
0.192

0.184
0.196
0.208
0.222
0.203

81.02% and 83.64%, respectively. This result indicates that TimeCDS outperforms other mod-
els such as Informer and TimesNet in terms of the accuracy and comprehensiveness of anomaly
detection. Their average precision and recall rates are 68.45%, 67.31% and 75.82%, 71.31%, re-
spectively. In addition, the impact of different datasets on model performance is also worthy of
attention. For instance, the overall performance of the model on the SMAP dataset is superior to
that on the SWaT dataset, which may be related to the specific characteristics of the dataset, such
as data size and abnormal distribution. The consistent high-performance performance of TimeCDS
on different datasets further demonstrates its excellent generalization ability. Overall, the perfor-
mance of TimeCDS in time series anomaly detection tasks not only validates its effectiveness but
also provides valuable references for research and practice in related fields.
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Table 7: Overall performance of time series classification without pre-training

Metric Informer FEDformer Full Attn LIGHTTS DLiner LSTM LSTNET TimesNet UniTS Timer TimeCDS
Accuracy 0.678 0.729 0.721 0.702 0.736  0.521 0.663 0.740 0.726  0.752 0.762
Fl 0.662 0.634 0.688 0.674 0.709  0.569 0.658 0.717 0.693 0.718 0.723
Recall 0.632 0.696 0.684 0.711 0.701 0.598 0.685 0.698 0.696  0.703 0.713
AUC 0.659 0.682 0.677 0.666 0.677  0.519 0.649 0.686 0.679  0.696 0.687

C.3 TIME SERIES CLASSIFICATION

Table /| details the performance of each model in the time series classification task, supplementing
the two key indicators of Accuracy and Recall. These indicators are crucial for a comprehensive
assessment of the model’s performance in classification tasks. The TimeCDS model demonstrates
outstanding performance in all four major evaluation metrics. Specifically, TimeCDS achieved an
accuracy rate of 0.762 and a recall rate of 0.713, both significantly outperformed other models. This
indicates that TimeCDS has significant advantages in correctly classifying the proportion of samples
and identifying all positive category samples. In addition, TimeCDS also performed the best in F1
score (0.723) and AUC value (0.687), further demonstrating its excellent balance between precision
and recall, and its strong ability to distinguish between positive and negative class samples. The
Timer and TimesNet models also performed well, achieving results of 0.752 and 0.718 in accuracy
and 0.740 and 0.698 in recall rates, respectively. These results indicate that although slightly inferior
to TimeCDS, these models still have high performance in time series classification tasks. Overall,
the TimeCDS model performs comprehensively and evenly in time series classification tasks. It
significantly outperforms other models in terms of accuracy, recall rate, F1 score, and AUC value.
This result not only verifies the validity of the TimeCDS model, but also provides valuable references
for research and practice in related fields. The outstanding performance of TimeCDS indicates that it
can effectively capture the features of data and make accurate classification decisions when dealing
with time series classification problems, which holds significant value in practical applications.

C.4 COMPARSION WITH SOTA

100 100 100

Timer Timer Timer
TimeCDS TimeCDS TimeCDS
80 80 80
$ 60 $ 60 $ 60
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Z 40 v 40 @ 40
20 20 20
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Figure 8: Anomaly detection comparison: TimeCDS vs Timer

Figure [9] visually shows that TimeCDS outperforms the Timer model in all indicators, which pow-
erfully demonstrates the superiority of TimeCDS.
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C.5 EFFICIENCY

In this study, we conducted an in-depth analysis of the computational efficiency of the model to
optimize resource utilization and enhance performance. By introducing the FlashAttention strategy,
we significantly reduced the computational complexity of the model. Specifically, we conducted a
detailed assessment of each module of the model in terms of FLOPs, parameter count, and memory
usage. In the complexity expression, N represents the total scale of the time series data, T is the

Table 8: Analysis of the computational complexity of each module of the model

Module FLOPs Parameters | Memory Footprint
Channel Dependency Search O(NlogN+K?) O(K?) O(NT+NlogN+K?)
Time Series Encoding Branch | O(BK(T+MLd)) O(K2d+Kd?) | OBK(T+ML+Md))
Time Image Encoding Branch | O(BK(T+LK+LD)) | O(FKLT+K?) | O(FKLT+K?+KD)
Cross-Modal Alignment O(BL(d?+K)) O(Kd) O(BL(d+L))

length of a single time series, K is the number of representative features selected, B is the batch
size, M is the number of blocks the time series is divided into, L is the length of each block, d is
the feature dimension, and F is the size of the convolution kernel. D is related to the parameters
of the projection layer. These symbols jointly describe the computational overhead of the model
at different operation stages. As shown in Table [0} compared with the baseline model, our model

Table 9: Model efficiency performance comparison

Model Training Speed (s/iter) | Inference Speed (s/iter) | Params (M) | Performance (MSE)
TimeCDS 0.2426 0.0454 16.73 0.151
PatchTST 0.0625 0.0079 16.21 0.162
Timer-XL 0.2157 0.0447 15.86 0.164

Timer 0.0458 0.0079 15.86 0.162

achieves higher operational efficiency while maintaining a lower computational cost. For instance,
the TimeCDS model achieved a training speed of 0.2426 seconds per iteration and an inference
speed of 0.0454 seconds per iteration, while maintaining a parameter count of 16.73M and a mean
square error (MSE) performance metric of 0.151. These results demonstrate the effectiveness and
efficiency of our model in processing high-dimensional time series data.

C.6 PARAMETER SENSITIVITY

To further demonstrate the validity of the model, we chose to evaluate the hyperparameter sensi-
tivity of TimeCDS on the widely recognized ERA 5-MS benchmark. The main ones are the patch
size P and the Lookback Length L during the inference process. Our research results show that the
optimal patch size is usually close to the predicted length because it avoids multi-step error accumu-
lation. Meanwhile, the research on Lookback Length L found that the optimal lookback length is
not necessarily the same as the length used during training, indicating that the appropriate selection
of information length is effective, and the reasoning stage can be compatible with different lengths
and dimensions of cross-domain time series data.
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Figure 9: Sensitive analysis of Patch Size and Lookback Length
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