

000 MODALITY MATTERS: UNIVERSAL TIME SERIES 001 002 MODELING VIA CHANNEL DEPENDENCY SEARCH 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 The expanding development of wireless and mobile devices results in a proliferation
011 of multivariate time series data, enabling various analytical tasks, e.g.,
012 forecasting, classification, and anomaly detection. Most existing time series modeling
013 methods are dedicated to developing task-specific models due to the heterogeneous
014 dimensionalities, resulting in inefficient resource utilization and limited
015 cross-domain transferability. To address this issue, this study achieves a unified
016 paradigm transcending task boundaries and proposes a universal modality-aware
017 Time series modeling framework leveraging Channel Dependency Search
018 named TimeCDS. Specifically, TimeCDS innovatively identifies a certain number
019 of representative features by projecting the heterogeneous time series features
020 into the hierarchical spaces and dynamically modeling their inter-channel
021 relationships to alleviate the heterogeneity issue. A novel time series imaging
022 method is then proposed to automatically introduce the image modality from
023 sequences, facilitating the comprehensive temporal-spatial pattern extraction. Further,
024 a dual-branch architecture is designed to process the sequential data and the
025 visual representations simultaneously, exploiting the complementary cross-modal
026 features through the proposed Cross-Modal Attention and Dynamic Weighted-
027 Averaging. Extensive experiments across different analytical tasks demonstrate
028 the consistently superior performance of TimeCDS, outperforming existing state-
029 of-the-art baselines by up to 15.9%. The code of TimeCDS is publicly available
030 at <https://anonymous.4open.science/r/TimeCDS/>.

031 1 INTRODUCTION

032 The widespread deployment of edge devices generates massive volumes of time series data, enabling
033 various analytical tasks (Hettige et al., 2024; Jiang et al., 2025), e.g., forecasting (Qiu et al., 2024),
034 classification (Campos et al., 2023), and anomaly detection (Liu et al., 2024b). Effective time series
035 analytics facilitates a range of real-world applications (Liu et al., 2024g; Shao et al., 2025), such as
036 traffic prediction (Li et al., 2023; Yi et al., 2024) and fraud detection (Bolton & Hand, 2002). Despite
037 these remarkable advances, most contemporary time series methodologies face some fundamental
038 limitations when confronted with the heterogeneous nature of real-world applications (Liu et al.,
039 2024c;d). Current approaches predominantly operate under the assumption of homogeneous data
040 structures and consistent dimensionalities (Liu et al., 2024g), which severely constrains their applicability
041 in cross-task scenarios where temporal sequences exhibit vastly different variable counts,
042 sampling frequencies, and semantic meanings. This dimensional heterogeneity creates a critical
043 bottleneck that prevents the development of truly universal time series models capable of leveraging
044 knowledge across diverse domains (Xu et al., 2022).

045 Recent efforts have attempted to address these issues (Liu et al., 2025b; 2024b). For example, large
046 language model-based approaches (Liu et al., 2025b; 2024d) have explored the transformation of
047 time series data into textual representations, enabling the utilization of pre-trained language models
048 for temporal reasoning. Concurrently, image-based methodologies have investigated the conversion
049 of time series into visual representations, treating temporal sequences as two-dimensional structures
050 amenable to computer vision techniques (Liu et al., 2024b). Especially, VisionTS demonstrates
051 that appropriate visual representation exhibits typical time series features, e.g., trend, seasonality,
052 and stationarity, facilitating temporal dependency capturing (Mouxiang Chen, 2025). While these
053 approaches demonstrate promising results in specific contexts, they have the following limitations.

054 Purely relying on textual representations may lose crucial temporal granularity and numerical precision,
 055 while image-based methods often struggle to preserve the sequential nature and inter-variable
 056 relationships that are fundamentally important to time series understanding (Campos et al., 2023).
 057

058 In this paper, we consider to explicitly combine temporal sequence modeling with spatial image-
 059 based representations through multimodal fusion mechanisms. The explicit multimodal integration
 060 is expected to help capture more comprehensive temporal-spatial information for more effective
 061 time series analysis. To this end, we need to address the following challenges.

062 *C1. How to effectively align the multi-dimensional time series across heterogeneous tasks?* Current
 063 approaches either concentrate solely on fixed-dimensional time series data or rely on domain-
 064 specific preprocessing pipelines through rigid architectural constraints (Rui et al., 2024). Such in-
 065 flexible designs prevent them from processing time series with vastly different variable counts and
 066 semantic meanings that could provide significant cross-domain knowledge transfer. Further, the di-
 067 mensional constraints embedded in existing architectures are particularly limiting for cross-domain
 068 deployment scenarios (Liang & Wang, 2024). Effectively aligning multi-dimensional time series
 069 from heterogeneous domains while preserving their intrinsic characteristics and enabling knowl-
 070 edge transfer are the cornerstones to solving the cross-domain time series modeling problem.

071 *C2. How to capture both the temporal dynamics and spatial correlations of time series?* Existing
 072 approaches face difficulties in simultaneously capturing the sequential temporal evolution and the
 073 inter-variable spatial relationships due to the architectural limitations (Liu et al., 2025a). Thus they
 074 cannot fully exploit the rich temporal-spatial information inherent in time series data. Naive integra-
 075 tion of the temporal and spatial modalities may lead to conflicting optimization objectives, blurring
 076 the distinction between sequential dynamics and instantaneous correlations (Mouatadid et al., 2024).
 077 Therefore, it is challenging to effectively decompose and model both temporal periodicity patterns
 078 and spatial relational structures, ensuring comprehensive representation learning.

079 *C3. How to effectively fuse complementary cross-modal representations?* Current fusion strate-
 080 gies struggle with balancing the contributions from different modalities due to the static weight-
 081 ing schemes and insufficient cross-modal interaction mechanisms (Cheng et al., 2024). This limits
 082 the model’s ability to adaptively leverage the strengths of each representation modality. Excessive
 083 reliance on one modality may lead to suboptimal performance, while improper fusion may intro-
 084 duce noise and conflicting signals that degrade the overall model effectiveness (Ekambaram et al.,
 085 2023). Therefore, developing adaptive fusion mechanisms that can dynamically integrate temporal
 086 sequence features with spatial image-based representations based on input characteristics and task
 087 requirements remains a critical challenge.

088 To address these challenges, we propose a novel modality-aware framework that synergistically
 089 combines temporal sequence encoding with spatial image-based representations through sophisti-
 090 cated cross-modal attention mechanisms. Our approach tackles the dimensional alignment prob-
 091 lem through an independent similarity search strategy that enables effective processing of multi-
 092 variable time series regardless of their original dimensionality. Rather than forcing all inputs into a
 093 fixed architectural template, we develop adaptive mechanisms that preserve the intrinsic character-
 094 istics of each domain while enabling knowledge transfer across heterogeneous data sources through
 095 dimensionality-agnostic feature extraction and alignment procedures. For effective temporal-spatial
 096 modeling, we introduce a dual-branch encoding architecture, where the time series encoding branch
 097 captures sequential dynamics through patch-based Transformer encoding, while the spatial branch
 098 models inter-variable relationships through image-like convolutions that treat reshaped time series
 099 as spatial structures. The time image encoding branch decomposes time series modeling into com-
 100 plementary perspectives: periodicity extraction, relational matrix modeling, and phase-amplitude
 101 analysis, based on time series imaging. This decomposition reflects the fundamental mathematical
 102 properties of time series data—periodicity captures the cyclical patterns inherent in temporal phe-
 103 nomena, relational matrices encode the correlation structures among variables, and phase-amplitude
 104 analysis preserves the frequency domain characteristics crucial for understanding temporal dynam-
 105 ics. The cross-modal fusion challenge is addressed through the proposed Cross-Modal Attention
 106 Mechanism (CMAM) combined with Dynamic Weighted-Averaging Mechanism (DWAM), which
 107 adaptively determines the optimal integration strategy based on the specific characteristics of each
 108 input sequence. Rather than static weight fusion or simple concatenation, these mechanisms enable
 109 dynamic interaction between temporal and spatial representations, ensuring that the final fused rep-
 110

108 representation optimally balances the contributions from each modality based on their relevance to the
 109 specific task and input characteristics while reducing redundancy and conflicting signals.
 110

111 The major contributions are summarized as follows:

- 112 • We introduce a unified cross-modal architecture that effectively addresses the dimensional heterogeneity problem in universal time series modeling through independent similarity search and adaptive dimensionality alignment mechanisms.
- 113 • We propose a novel dual-branch encoding strategy combined with sophisticated cross-modal attention mechanisms that optimally integrate temporal sequence dynamics with spatial structural representations, enabling superior modeling of complex time series patterns.
- 114 • Extensive experiments are conducted on real-world datasets, proving the effectiveness of the proposed TimeCDS for universal time series analytics, including prediction, classification, and anomaly detection, achieving a comprehensive surpass over the SOTA.

122 2 RELATED WORK

124 **Task-specific Time Series Modeling.** With the growing availability of time series data and the
 125 resulting rich downstream applications, time series modeling has attracted increasing interest in
 126 both academia and industry (Qiu et al., 2024; Liu et al., 2024b; Campos et al., 2023; Rui et al.,
 127 2024). Traditional time series modeling methods are mostly task-specific, which are developed
 128 for specific time series tasks, such as forecasting (Qiu et al., 2024; Han et al., 2024; Liu et al.,
 129 2025a), classification (Campos et al., 2023; Liang & Wang, 2024), and anomaly detection (Liu
 130 et al., 2024b; Chen et al., 2023; Schmidl et al., 2025). In the early stage, statistics-based time series
 131 modeling methods became mainstream, such as ARIMA (Shekhar & Williams, 2007). Numerous
 132 neural architectures have been developed for effective task-specific time series modeling, including
 133 Temporal Convolutional Networks (Cheng et al., 2024), Recurrent Neural Networks (Liu et al.,
 134 2021), Multilayer Perceptrons (Ekambaram et al., 2023), and Transformers (Liu et al., 2024f; 2025a;
 135 Chen et al., 2023). However, these methods are mainly invented for specific tasks, falling short in
 136 handling different tasks simultaneously.

137 **Universal Time Series Modeling.** Universal time series modeling methods often develop a uni-
 138 versal modeling paradigm that handles different tasks (Liu et al., 2024c;d), aiming to overcome the
 139 limitations of traditional task-specific models by means of large-scale pretraining (Manuso et al.,
 140 2021) and adaptive fine-tuning (Nguyen et al., 2024). These models often adopt a unified archi-
 141 tecture that supports a range of time series related tasks, including forecasting (Nie et al., 2023),
 142 anomaly detection (Gao et al., 2024), and classification (Nguyen et al., 2024). The core idea is to
 143 project time series from different tasks into a general feature space to understand their common
 144 temporal semantics. Recent studies have sought to develop novel architectures to model diverse
 145 time series (Wu et al., 2023; Gao et al., 2024). However, LLM-based methods require significant
 146 computational resources, resulting in high training costs. To be specific, these methods process each
 147 channel of the time series individually. However, the correlations across channels are ignored, which
 148 may result in significant model performance deterioration.

149 3 METHODOLOGY

151 We proceed to detail the proposed universal time series modeling framework, TimeCDS. As shown
 152 in the figure 1, TimeCDS consists of three major components: (1) Input projection, (2) Dual-branch
 153 Encoding, and (3) Cross-Modal Alignment. We then provide specifics on each module in the frame-
 154 work.

156 3.1 INPUT PROJECTION

158 In this paper, we defined the cross-task datasets as $\mathcal{D} = \{D_1, D_2, \dots, D_N\}$, where each domain
 159 D_i contains multiple time series $D_i = \{T_1^i, T_2^i, \dots, T_{n_i}^i\}$. Most existing studies Liu et al. (2024d)
 160 employ channel-independence mechanisms to accommodate cross-task time series with different
 161 dimensionalities, which, however, may ignore the correlations across channels. In contrast, we adopt
 channel mixing to capture cross-variable interactions, which may facilitate comprehensive temporal

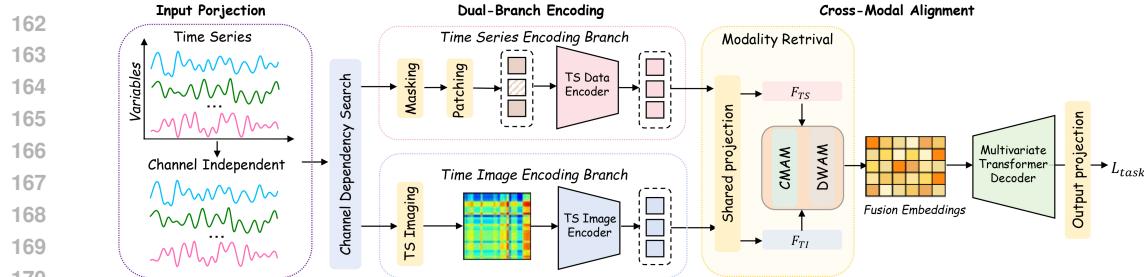


Figure 1: TimeCDS Framework Overview

pattern extraction. In the dimensionality reduction and fusion process of multivariate time series, we propose a distance-weighted representative feature selection mechanism via channel dependency search (see Figure 2). Initially, the original N -dimensional multivariate time series is decomposed into N one-dimensional time series via channel-wise independent processing. To achieve the target of fixed-dimensionality reduction, a subset of $K < N$ most representative time series channels is selected as core features. This selection aims to retain the subset with the maximal information content and expressive power among the multivariate data. The selection criterion can be based on centrality measures derived from the Hierarchical Navigable Small World (HNSW) graph (Malkov & Yashunin, 2018), which can be formalized as:

$$\mathcal{S} = \arg \max_{\mathcal{S} \subseteq \{1, \dots, N\}, |\mathcal{S}|=K} \sum_{i \in \mathcal{S}} \mathcal{R}(i), \quad (1)$$

where $\mathcal{R}(i)$ denotes the representativeness score of channel i .

Channel Dependency Search. For the remaining $(N - K)$ discarded channels, their information is integrated via a distance-weighted fusion mechanism. Specifically, each discarded channel's time series is mapped onto the closest representative channels weighted inversely by their distance:

$$\mathbf{x}'_j = \sum_{i \in \mathcal{S}} w_{ji} \mathbf{x}_i, \quad w_{ji} = \frac{\exp(-d(\mathbf{x}_j, \mathbf{x}_i))}{\sum_{i' \in \mathcal{S}} \exp(-d(\mathbf{x}_j, \mathbf{x}_{i'}))}, \quad (2)$$

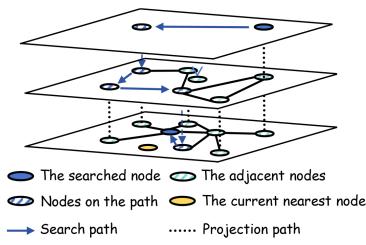


Figure 2: Channel Dependency Search. The diagram illustrates the search process in a HNSW graph. A 'The searched node' (blue dot) is located in a cluster of 'The adjacent nodes' (green dots). A 'Search path' (blue arrow) leads to 'Nodes on the path' (green dots), which eventually leads to the 'The current nearest node' (yellow dot). A 'Projection path' (dotted line) also connects the searched node to the nearest node. A legend at the bottom defines the symbols: a blue dot for 'The searched node', a green dot for 'The adjacent nodes', a yellow dot for 'The current nearest node', a blue arrow for 'Search path', and a dotted line for 'Projection path'.

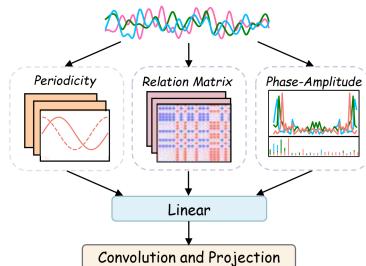
3.2 DUAL-BRANCH ENCODING

Based on the multi-variate time series dimensionality reduction and fusion achieved by HNSW, a fixed-dimension K -dimensional reconstructed multi-variable time series representation $\mathbf{X} \in \mathbb{R}^{B \times K \times T}$ is obtained, where B denotes the batch size and T denotes the sequence length. To further enhance the representational power and discriminative capability of this fused representation, a multimodal encoding module is designed to deeply extract features from the reconstructed K -dimensional time series. This module consists of two parallel branches, focusing respectively on the temporal dynamics of the sequence itself and the spatial structural features from its image-like representation.

Time Series Encoding Branch. The time series encoding branch takes the fused and reconstructed K -dimensional time series $\mathbf{X} \in \mathbb{R}^{B \times K \times T}$ as input. To effectively capture local temporal dynamics,

216 the sequence is first divided along the time axis into M equal-length patches, each of length L ,
 217 satisfying $T = M \times L$:

$$218 \quad \mathbf{P}_m = \mathbf{X}_{[:, :, (m-1)L+1:mL]} \in \mathbb{R}^{B \times K \times L}, \quad m = 1, \dots, M \quad (3)$$



220 Each patch represents a localized temporal segment of the
 221 multi-variable sequence, facilitating the modeling of fine-
 222 grained temporal variations. Subsequently, each patch
 223 is encoded by a Transformer encoder based on the self-
 224 attention mechanism. The Transformer encoder, utilizing
 225 multi-head self-attention and feedforward networks, effec-
 226 tively models both local and global temporal dependencies.
 227 The encoding process is formally expressed as:

$$228 \quad \mathbf{Z}_m = \text{TransformerEncoder}(\mathbf{P}_m) \quad (4)$$

229 Figure 3: Time Series Imaging By aggregating the encoded representations of all patches
 230 via methods such as concatenation or weighted fusion, the comprehensive deep temporal repres-
 231 entation is obtained:

$$232 \quad \mathbf{Z}_{TS} = \text{Aggregation}(\{\mathbf{Z}_m\}_{m=1}^M) \in \mathbb{R}^{B \times K \times d} \quad (5)$$

233 This branch thoroughly extracts the dynamic temporal features inherent in the HNSW-fused recon-
 234 structed time series, thereby enhancing the model's ability to capture complex sequential patterns.

235 **Time Image Encoding Branch.** To complement the temporal encoding with spatial structural un-
 236 derstanding among variables, the input sequence \mathbf{X} is reshaped into a four-dimensional tensor ap-
 237 propriate for image-like feature extraction via a novel time series imaging method, as shown in
 238 Figure 3: $\mathbf{X} \rightarrow \mathbf{I} \in \mathbb{R}^{B \times L \times K \times C}$, where L denotes the number of temporal patches, K is the vari-
 239 able dimension, and C stands for the number of feature channels. The imaging process involves
 240 three steps as follows:

241 1. Temporal patch division:

$$242 \quad \mathbf{P}_l = \mathbf{X}_{[:, :, (l-1)(T/L)+1:l(T/L)]} \in \mathbb{R}^{B \times K \times \frac{T}{L}}, \quad l = 1, \dots, L \quad (6)$$

244 2. Multi-path feature extraction via three parallel streams:

- 245 • **Periodicity Encoder:** Extracts periodic patterns within the sequence based on temporal convolu-
 246 tional networks, outputting a tensor of shape $\mathbb{R}^{B \times L \times K \times 2}$.
- 247 • **Relation Matrix Computation:** Computes dependency graphs among variables and temporal
 248 patches, generating a single-channel spatial relation map $\mathbb{R}^{B \times L \times K \times 1}$ according to (Hssayni et al.,
 249 2022).
- 250 • **Phase-Amplitude Encoder:** We decompose phase-amplitude information based on (Ni J & A,
 251 2025), outputting a tensor with the same dimensions as the periodicity encoder $\mathbb{R}^{B \times L \times K \times 2}$ by a
 252 linear projection.

253 3. Feature fusion and projection: $\mathbf{Z}_{concat} = \text{Concat}(\mathbf{P}, \mathbf{R}, \mathbf{F}) \in \mathbb{R}^{B \times L \times K \times 5}$

255 Subsequently, convolutional and projection layers perform spatial abstraction and compression,
 256 yielding the final encoded spatial features:

$$257 \quad \mathbf{Z}_{TI} = \text{ConvProj}(\mathbf{Z}_{concat}) \in \mathbb{R}^{B \times d'} \quad (7)$$

259 This branch strengthens the expressiveness regarding inter-variable spatial dependencies within the
 260 multi-variable time series, complementing the limitations of solely temporal encoding.

261 3.3 CROSS-MODAL ALIGNMENT

263 **Cross-Modal Attention Mechanism.** Following the extraction of features from the time series en-
 264 coding and time image encoding branches, the projected modality-specific features are fed into the
 265 Cross-Modal Attention Mechanism (CMAM). This mechanism leverages self-attention to dynami-
 266 cally model the interactions between different modalities, effectively emphasizing complementary
 267 information and suppressing redundancy. Formally, given query Q , key K , and value V , the atten-
 268 tion is computed as:

$$269 \quad \text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^\top}{\sqrt{d}} \right) V, \quad (8)$$

270 where Q is derived from one modality's projected features (e.g., \mathbf{F}_{TS}) and K, V from the other
 271 modality's features (e.g., \mathbf{F}_{TI}). This cross-attention facilitates complementary feature integration,
 272 resulting in modality-specific attention-weighted representations \mathbf{F}_{TS}^{attn} and \mathbf{F}_{TI}^{attn} .
 273

274 **Dynamic Weighted-Averaging Mechanism.** The attentive modality features generated by CMAM
 275 are subsequently fused via the Dynamic Weighted-Averaging Mechanism (DWAM). This module
 276 adaptively assigns fusion weights based on the input features, enabling flexible integration tailored
 277 to each example:

$$\mathbf{F}_{fusion} = \alpha \cdot \mathbf{F}_{TS}^{attn} + (1 - \alpha) \cdot \mathbf{F}_{TI}^{attn}, \quad (9)$$

278 where the fusion coefficient $\alpha \in [0, 1]$ is dynamically computed as
 279

$$\alpha = f_\theta(\mathbf{F}_{TS}, \mathbf{F}_{TI}). \quad (10)$$

280 Here, f_θ is a lightweight multilayer perceptron (MLP) that dynamically estimates the fusion weight
 281 α by jointly considering the concatenated features \mathbf{F}_{TS} and \mathbf{F}_{TI} . Formally,
 282

$$\alpha = \sigma(\mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \text{Concat}(\mathbf{F}_{TS}, \mathbf{F}_{TI}) + \mathbf{b}_1) + \mathbf{b}_2), \quad (11)$$

283 where σ denotes the sigmoid function, ensuring $\alpha \in [0, 1]$. This mechanism allows adaptive,
 284 sample-wise weighting of modalities, enhancing fusion flexibility and expressiveness.
 285

286 **Multivariate Transformer Decoder.** The fused embedding \mathbf{F}_{fusion} is subsequently fed into a
 287 multivariate Transformer decoder specialized for task-specific output generation. Leveraging the
 288 decoder's powerful self-attention mechanism, it models complex temporal and inter-variable de-
 289 pendencies embedded in the fused features, enabling unified multi-task inference across diverse
 290 cross-domain time series datasets with enhanced accuracy and robustness.
 291

293 3.4 OPTIMIZATION

295 This work proposes a unified multimodal framework designed to support multiple heterogeneous
 296 time series tasks, including prediction, classification, and anomaly detection. Although the frame-
 297 work enables a shared representation and fusion mechanism across tasks and domains, each task's
 298 model parameters θ_t are optimized independently to accommodate their distinct objectives and data
 299 distributions.

300 Formally, for each task $t \in \{\text{pred, cls, anom}\}$, given its corresponding dataset $\mathcal{D}_t =$
 301 $\{(\mathbf{X}_i^{(t)}, y_i^{(t)})\}_{i=1}^{N_t}$, the training objective is to minimize the task-specific loss:
 302

$$\theta_t^* = \arg \min_{\theta_t} \frac{1}{N_t} \sum_{i=1}^{N_t} \mathcal{L}^{(t)}(f_{\theta_t}(\mathbf{X}_i^{(t)}), y_i^{(t)}), \quad (12)$$

303 where $f_{\theta_t}(\cdot)$ denotes the model inference for task t . In cross-domain time-series analysis, a cross-
 304 domain dataset is defined as $\mathcal{D} = \{D_1, D_2, \dots, D_N\}$, where each domain D_i contains multiple
 305 time series $D_i = \{T_1^i, T_2^i, \dots, T_{n_i}^i\}$.
 306

307 The goal of the pre-trained model \mathcal{M}_Θ is to learn general cross-domain feature representations. For
 308 this purpose, we design the objective function as follows:
 309

$$\mathcal{L}(\Theta) = - \sum_{i=1}^N \sum_{T_j^i \in D_i} \log p_\Theta(T_j^i) + \lambda \sum_{i=1}^N \sum_{T_j^i \in D_i} \|\mathbf{z}(T_j^i; \Theta) - \mathbf{z}_{\text{avg}}(\mathcal{D}; \Theta)\|_2^2 \quad (13)$$

310 where $\mathbf{z}(\cdot; \Theta)$ represents the feature vector representation of a time series, \mathbf{z}_{avg} is the average of all
 311 domain features, and λ is a weighting coefficient that balances the generation probability and fea-
 312 ture consistency. By independently optimizing θ_t for each task, the framework maintains special-
 313 ization and high performance tailored to each task's data characteristics and objectives. Meanwhile,
 314 the shared multimodal architecture fosters parameter and representation reuse, enabling effective
 315 transfer and robustness in cross-domain, multi-task time series applications. Existing time series
 316 foundation models (Liu et al., 2024h; Gao et al., 2024) show that pre-training enhances the model
 317 performance since more training data is involved, introducing more useful knowledge. Motivated
 318 by this, we pre-train TimeCDS with the UTSD-4G dataset (Liu et al., 2024h) and then finetune it for
 319 new datasets.
 320

324 4 EXPERIMENTS

326 In this section, we systematically evaluate the efficacy of TimeCDS across various tasks within the
 327 time series domain, complemented by ablation experiments that elucidate the individual contribu-
 328 tions of its components to the overall performance (refer to Section 4.5). To rigorously assess the
 329 generalizability of the TimeCDS approach, we conducted extensive empirical analyses across three
 330 critical time series tasks: Time Series Forecasting (see Table 1), Anomaly Detection (see Table 2),
 331 and Classification (see Figure 4).

332 4.1 DATASETS AND EXPERIMENT SETUP

333 **Datasets.** The experiments are carried out on certain real-world time series datasets. In terms
 334 of forecasting, we employ 8 datasets, including ETTh1, ETTh2, ETTm1, ETTm2, ECL, Trafffc,
 335 Weather (Wu et al., 2021), and Solar (Liu et al., 2024f). For anomaly detection, we adopt 5
 336 datasets, including SMD, PSM, SWaT, MSL, and SMAP (Liu et al., 2024a). For time series classifi-
 337 cation, we employ UEA (Bagnall et al., 2018). Dataset details can be found in Appendix A.

338 **Baselines.** We compare TimeCDS with the following existing baselines, including 13 time se-
 339 ries forecasting baselines, i.e., ARIMA (Stellwagen & Tashman, 2013), DLinear (A Zeng, 2021)
 340 TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), [N-HiTS \(Cristian Challu, 2023\)](#),
 341 [iTransformer \(Liu et al., 2024e\)](#), [TimeVLM \(Siru Zhong, 2025\)](#), TimeLLM (?), AutoTimes (Liu
 342 et al., 2024g), UniTime (Liu et al., 2024d), UniTS (Gao et al., 2024), Timer (Liu et al.,
 343 2024h), and TimerXL (Liu et al., 2025c). For anomaly detection, we compare TimeCDS with
 344 ARIMA (Stellwagen & Tashman, 2013), FEDformer (Tian Zhou, 2022), Informer (Haoyi Zhou,
 345 2021), DCdetector (Yiyuan Yang, 2023), Autoformer (Wu et al., 2021), DLinear (A Zeng, 2021),
 346 TimesNet (Wu et al., 2023), Series2graph (Ser2graph) (Paul Boniol, 2020), TranAD (Shreshth Tuli,
 347 2022), IMDIFFUSION (Chen et al., 2023) and Timer (Liu et al., 2024h). For time series clas-
 348 sification, 13 baselines are selected, i.e., LSTM (Shi et al., 2015), LSTNET (G Lai, 2018), In-
 349 former (Haoyi Zhou, 2021), FEDformer (Tian Zhou, 2022), Full Attention (Attn) (Haoqing Wang,
 350 2023), [Rocket \(Dempster et al., 2020\)](#), [InceptionTime \(Ismail Fawaz et al., 2020\)](#), [TCN \(Bai et al.,
 351 2018\)](#), [LIGHTTS \(Campos et al., 2023\)](#), DLinear (A Zeng, 2021), TimesNet (Wu et al., 2023),
 352 UniTS (Gao et al., 2024), and Timer (Liu et al., 2024h). Please note that TimeLLM is a large
 353 language mode based time series analytics method, while Timer, TimerXL, and UniTS are time se-
 354 ries foundation models. We follow the default hyperparameter setting in the original paper or the
 355 associated code of baselines, enabling fair comparison. The implementation details are given in
 356 Appendix B.

357 **Evaluation Metrics.** We adopt mean squared error (MSE) and mean absolute error (MAE) as
 358 evaluation metrics for time series forecasting (Qiu et al., 2024). The F1-score (F1), AUC-ROC,
 359 and PATE (Ghorbani et al., 2024) are adopted as main evaluation metrics for time series anomaly
 360 detection. Additionally, F1 and accuracy are used to evaluate time series classification. [More results
 361 on more evaluation metrics and model efficiency analysis can be seen in Appendix C.](#)

363 4.2 TIME SERIES FORECASTING

364 Table 1: Overall Performance Comparison of Time Series Forecasting (Average)

365 Models	ETTm1		ETTm2		ETTh1		ETTh2		ECL		Weather		Traffic		Solar	
	MSE	MAE														
ARIMA(2013)	1.172	0.813	2.425	1.208	1.228	0.851	3.126	1.382	0.589	0.579	0.474	0.484	1.041	0.572	1.293	1.375
N-HiTS(2023)	0.452	0.461	0.305	0.370	0.493	0.514	0.436	0.470	0.210	0.313	0.279	0.317	0.457	0.344	0.285	0.307
TimesNet(2023)	0.525	0.521	0.411	0.453	0.578	0.570	0.527	0.547	0.231	0.333	0.294	0.323	0.632	0.352	0.243	0.325
PatchTST(2023)	0.439	0.460	0.361	0.411	0.480	0.502	0.393	0.405	0.199	0.298	0.257	0.298	0.421	0.305	0.232	0.299
DLinear (2021)	0.453	0.467	0.461	0.477	0.473	0.479	0.376	0.432	0.195	0.295	0.270	0.321	0.453	0.328	0.252	0.313
UniTime(2024d)	0.419	0.626	0.470	0.494	0.634	0.623	0.555	0.563	0.189	0.429	0.265	0.489	0.404	0.397	0.227	0.492
TimeVLM(2025)	0.371	0.410	0.289	0.355	0.440	0.451	0.364	0.410	0.190	0.294	0.257	0.296	0.463	0.341	0.247	0.297
iTransformer(2024e)	0.428	0.436	0.316	0.358	0.466	0.487	0.412	0.445	0.197	0.286	0.289	0.306	0.460	0.305	0.269	0.290
UniTS (2024)	0.459	0.469	0.478	0.494	0.474	0.426	0.384	0.379	0.214	0.312	0.258	0.298	0.491	0.356	0.266	0.333
AutoTimes (2024g)	0.438	0.452	0.453	0.511	0.617	0.640	0.538	0.580	0.355	0.283	0.491	0.303	0.614	0.369	0.422	0.272
TimeLLM (2024)	0.442	0.467	0.493	0.526	0.657	0.655	0.578	0.595	0.211	0.318	0.255	0.295	0.440	0.333	0.293	0.365
Timer(2024h)	0.384	0.418	0.295	0.354	0.420	0.448	0.370	0.417	0.199	0.295	0.263	0.301	0.361	0.268	0.352	0.422
TimerXL (2025c)	0.366	0.407	0.288	0.350	0.441	0.464	0.363	0.417	0.199	0.295	0.264	0.300	0.393	0.296	0.223	0.295
TimeCDS	0.356	0.393	0.258	0.320	0.395	0.419	0.340	0.390	0.182	0.262	0.242	0.284	0.431	0.337	0.192	0.203

375 Time series forecasting is a central task in time series analysis. To evaluate the performance of
 376 TimeCDS in time series forecasting, we compared it with 13 baseline models on standard bench-
 377 marks, including ETTh, ECL, Weather, Traffic, and Solar. We train and test the time series founda-
 378 tions models, i.e., TimeCDS, Timer, TimeXL, and UniTS, on all datasets simultaneously. As shown

in Table 1, we report the average performance of forecasting, the complete results can be found in Table 4. TimeCDS achieves the best performance in most cases across various prediction lengths from 96 to 720. TimeCDS performs better than the best among the baselines by up to 15.9%. We see that ARIMA has the worst performance. This is because the traditional statistics-based method is often shallow, failing to capture the complex temporal correlations. In addition, time series foundation models perform better than transformer-based methods, e.g., PatchTST, and MLP-based methods, e.g., TimesNet, in most cases, showing their superior generalization capabilities, enhancing model performance.

4.3 ANOMALY DETECTION

Table 2: Overall Performance Comparison of Time Series Anomaly Detection ($\times 100\%$)

Models	SMD			PSM			SWaT			MSL			SMAP			Average		
	F1	AUC	PATE															
ARIMA(2013)	31.74	26.95	13.59	36.21	31.25	42.13	32.99	34.98	11.59	26.95	29.99	16.39	24.69	27.10	16.98	30.52	30.05	20.14
FEDformer(2022)	75.63	68.32	57.90	70.31	78.45	55.34	52.36	59.48	43.63	48.69	50.98	65.32	51.46	69.47	48.01	59.69	65.34	54.04
Informer(2021)	69.35	82.48	67.49	65.20	74.32	57.64	33.65	54.31	23.31	66.54	78.31	77.31	76.86	63.73	64.85	62.32	70.63	58.12
DCDetector(2023)	65.48	80.36	68.93	60.38	68.32	51.36	68.31	62.31	67.41	56.70	66.54	56.30	23.88	60.07	40.80	54.96	67.52	56.96
Autoformer(2021)	57.90	58.69	62.47	59.58	68.75	65.30	67.54	56.63	65.25	44.68	59.62	66.75	40.40	57.46	46.73	54.02	60.23	61.30
DLinear(2021)	68.49	74.75	55.46	70.65	76.49	43.59	60.70	70.53	56.78	65.31	69.49	58.61	66.75	68.84	55.16	66.38	72.02	53.92
TimesNet (2023)	69.74	73.85	64.90	73.21	75.65	72.60	65.19	68.93	58.36	75.36	77.69	85.36	67.15	69.98	73.83	70.13	73.22	71.01
Ser2graph(2020)	63.51	71.65	55.32	64.98	69.46	66.79	56.84	66.32	59.64	59.64	68.49	55.30	66.70	68.31	59.67	62.33	68.85	59.34
TranAD(2022)	66.31	75.65	62.98	65.39	71.85	67.59	64.25	71.36	62.39	63.59	69.75	62.98	59.62	65.31	60.81	63.83	70.78	63.35
IMDIFUSION (2023)	69.75	73.86	64.91	73.32	75.76	72.71	65.20	75.65	75.36	75.37	77.70	85.37	67.16	69.99	73.84	70.16	74.59	74.44
Timer(2024h)	79.65	82.36	61.87	80.02	83.54	62.39	77.06	79.65	58.67	75.09	75.63	57.31	77.63	77.17	60.81	77.89	79.67	60.21
TimeCDS	82.61	85.96	77.31	83.26	85.64	76.59	79.67	85.95	72.69	74.62	85.45	79.56	80.06	83.55	72.50	80.52	85.31	75.73

Since the anomalies are usually hidden in the large-scale data, making the data labeling hard, we focus on unsupervised time series anomaly detection, which is to detect the abnormal time points. We evaluate unsupervised point-wise anomaly detection on five benchmarks (SMD, MSL, SMAP, SWaT, PSM) spanning service monitoring, space telemetry, and industrial control. Following Anomaly Transformer, we use fixed-length sliding windows and train via reconstruction. We report F1, AUC, and PATE as our primary metrics as prior works (Ghorbani et al., 2024; Liu et al., 2024a). As shown in Table 2, TimeCDS attains the highest average performance across five benchmarks on F1/AUC/PATE (80.20/85.31/75.73). It ranks first on SMD and PSM across all three metrics; on SMD, TimeCDS reaches 12.4% absolute gain in terms of PATE over the second-best IMDIFFICTION. These results demonstrate that TimeCDS provides stable cross-domain generalization and effective range handling in unsupervised anomaly detection.

4.4 CLASSIFICATION

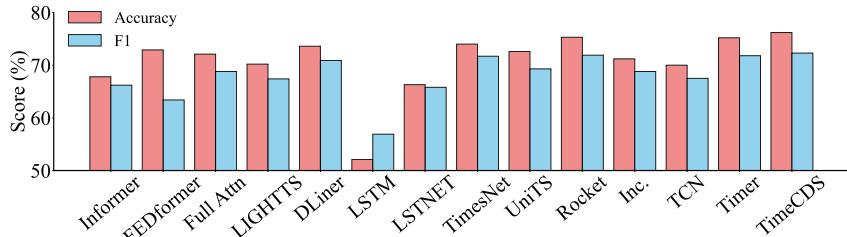


Figure 4: Performance Comparison of classification.

We conduct experiments on time series classifications on 10 subsets of the UEA time series archive. Accuracy and F1-score (F1) are adopted as evaluation metrics. The overall average performance results are provided in Figure 4. TimeCDS performs better than the best among the baselines. Overall, TimeCDS achieves the best results on 10 time series datasets in UEA, which shows that TimeCDS is effective in time series classification. We can see that the time series foundation model Timer achieves the best performance among baselines, showing the promising potential of foundation models. TimeCDS performs better than Timer due to the dual-branch encoding module, which learn an effective representation across two complementary modalities.

4.5 ABLATION STUDY

To gain insight into the effects of the different components of TimeCDS, we evaluate three components including 1). *w/o_TS*: TimeCDS without time series encoding branch; 2). *w/o_Image*: TimeCDS without time image encoding branch; 3) *w/o_CMA*: TimeCDS without cross-modal attention mechanism. Figure 5 shows results for forecasting (Figures 5(a) and (b)) and anomaly detection (Figures 5(c) and (d)). Regardless of the datasets, TimeCDS outperforms its counterparts, showing

432 that these three components are all useful for effective universal time series modeling. TimeCDS
 433 obtains MSE and MAE reductions by up to 38.6% and 22.5%, respectively. Further, on all datasets,
 434 *w/o_TS* performs worst among all variants. TimeCDS performs better than *w/o_TS* by at least 8%,
 435 which indicates the importance of time series encoding branch.

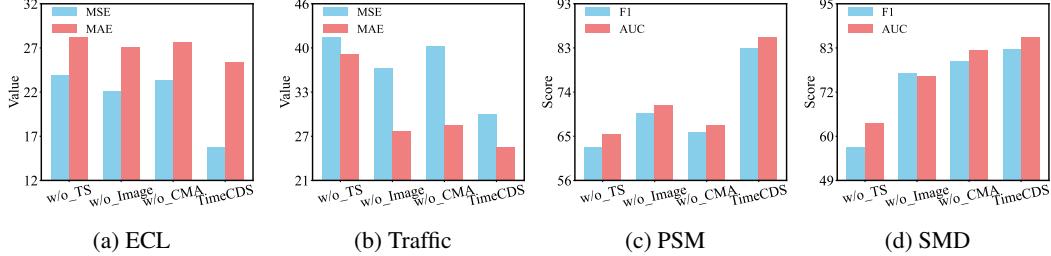


Figure 5: TimeCDS and Its Variants on Four Datasets

446 4.6 CASE STUDY

447 To intuitively show the effectiveness of the proposed TimeCDS, we provide case studies on ECL
 448 and SMD in terms of forecasting and anomaly detection, respectively, as shown in Figure 6. In
 449 Figure 6(a), we see that the predictions are highly consistent with the ground truth, demonstrating
 450 the effectiveness of TimeCDS. Figure 6(b) shows that TimeCDS successfully identifies the
 451 outliers on SMD, demonstrating its superior performance for anomaly detection. These two
 452 figures jointly demonstrate that the TimeCDS model can accurately predict future trends and promptly
 453 detect anomalies when handling different time series analysis tasks, reflecting its superior capability
 454 in universal time series modeling.

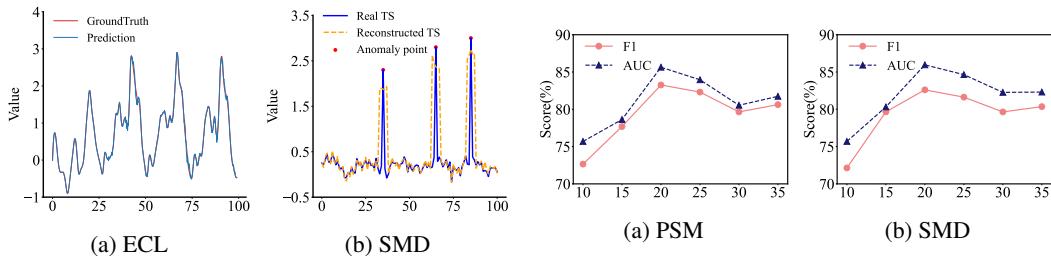


Figure 6: Case Study on Forecasting (ECL) and Anomaly Detection (SMD)

Figure 7: The Effect of K .

467 4.7 THE EFFECT OF THE NUMBER OF K

468 We next investigate the effect of the number of K on model performance, which denotes the number
 469 of selected representative channels. We vary the value of $K=[10, 15, 20, 25, 30, 35]$. As shown
 470 in Figure 7, we observe that the F1 and AUC curves first increase, then drop, and finally increase
 471 slightly. We see that TimeCDS achieves the best performance when K is set to 20, which shows that
 472 20 is the ideal setting in this study. More representative channels may introduce noises, degrading
 473 the model performance.

475 5 CONCLUSION

476 This work presents TimeCDS, a modality-aware dual-branch framework for universal time series
 477 forecasting. Extensive experiments on real-world datasets show the effectiveness of the proposed
 478 TimeCDS. To accommodate the heterogeneous dimensionalities across domain-varying time series,
 479 we propose a channel dependency search strategy to select a certain number of representative
 480 channels. To achieve the comprehensive feature extraction, we introduce a time series imaging method
 481 and a dual-branch architecture to perform representation learning from sequence and vision sim-
 482 ultaneously. A cross-modal alignment module is designed to fuse the complementary cross-modal
 483 features. Comprehensive experiments on real datasets offer evidence that TimeCDS achieves the
 484 state-of-the-art accuracy. In the future, an interesting research direction is to further improve the
 485 pre-training process of TimeCDS with more training data.

486 REFERENCES
487488 L Zhang Q Xu A Zeng, M Chen. Dlinear: Are transformers effective for time series forecasting?
489 *AAAI*, 2021.490 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
491 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv*
492 *preprint arXiv:1811.00075*, 2018.493 S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent
494 networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.495 Richard J Bolton and David J Hand. Statistical fraud detection: A review. *Statistical science*, 17(3):
496 235–255, 2002.497 David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S Jensen. Lightts:
498 Lightweight time series classification with adaptive ensemble distillation. *SIGMOD*, 1(2):1–27,
499 2023.500 Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen Li, Shilin He,
501 Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Imdiffusion: Imputed diffusion models
502 for multivariate time series anomaly detection. *PVLDB*, 17(3):359–372, 2023.503 Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang, and Christian S
504 Jensen. Weakly guided adaptation for robust time series forecasting. *PVLDB*, 17(4):766–779,
505 2024.506 Boris N. Oreshkin Federico Garza Max Mergenthaler-Canseco Artur Dubrawski Cristian Challu,
507 Kin G. Olivares. Nhits: Neural hierarchical interpolation for time series forecasting. *AAAI*, 2023.508 A. Dempster, F. Petitjean, and G. I. Webb. Rocket: exceptionally fast and accurate time series
509 classification using random convolutional kernels. *Data Mining and Knowledge Discovery*, 34
510 (5):1454–1495, 2020. doi: 10.1007/s10618-020-00696-z.511 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
512 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *SIGKDD*,
513 pp. 459–469, 2023.514 Y Yang H Liu G Lai, WC Chang. Modeling long-and short-term temporal patterns with deep neural
515 networks. *SIGIR*, 2018.516 Shanghua Gao, Teddy Koker, Owen Queen, Tom Hartvigsen, Theodoros Tsiliqkaridis, and Marinka
517 Zitnik. Units: A unified multi-task time series model. *NeurIPS*, 37:140589–140631, 2024.518 Ramin Ghorbani, Marcel JT Reinders, and David MJ Tax. Pate: Proximity-aware time series
519 anomaly evaluation. In *SIGKDD*, pp. 872–883, 2024.520 Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong. Bigst: Linear com-
521 plexity spatio-temporal graph neural network for traffic forecasting on large-scale road networks.
522 *PVLDB*, 17(5):1081–1090, 2024.523 Zhihong Deng Haoqing Wang, Shibo Jie. Focus your attention when few-shot classification.
524 *NeurIPS*, 2023.525 Jieqi Peng Shuai Zhang Jianxin Li Hui Xiong-Wancai Zhang Haoyi Zhou, Shanghang Zhang. In-
526 former: Beyond efficient transformer for long sequence time-series forecasting. *AAAI*, 2021.527 Kethmi Hirushini Hettige, Jiahao Ji, Shili Xiang, Cheng Long, Gao Cong, and Jingyuan Wang.
528 Airphynet: Harnessing physics-guided neural networks for air quality prediction. In *ICLR*, 2024.529 E. H. Hssayni, N. E. Joudar, and M. Ettaouil. A deep learning framework for time series classi-
530 fication using normal cloud representation and convolutional neural network optimization. vol-
531 ume 38, pp. 2056–2074, 2022.

- 540 H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, and G. I. Webb. Inceptiontime:
 541 Finding alexnet for time series classification. *Data Mining and Knowledge Discovery*, 34(6):
 542 1936–1962, 2020. doi: 10.1007/s10618-020-00710-2.
- 543
- 544 Yue Jiang, Yile Chen, Xiucheng Li, Qin Chao, Shuai Liu, and Gao Cong. Fstllm: Spatio-temporal
 545 lilm for few shot time series forecasting. In *ICML*, 2025.
- 546
- 547 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 548 uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-lilm: Time series forecasting by reprogramming
 549 large language models. *ICLR*, 2024.
- 550
- 551 Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Fan Yang, Funing Sun, Depeng Jin, and Yong Li.
 552 Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution.
 553 *ACM transactions on knowledge discovery from data*, 2023.
- 554
- 555 Zhiyu Liang and Hongzhi Wang. Fedst: secure federated shapelet transformation for time series
 556 classification. *VLDBJ*, 33(5):1617–1641, 2024.
- 557
- 558 Chenxi Liu, Hao Miao, Qianxiong Xu, Shaowen Zhou, Cheng Long, Yan Zhao, Ziyue Li, and Rui
 559 Zhao. Efficient multivariate time series forecasting via calibrated language models with privileged
 560 knowledge distillation. In *ICDE*, pp. 3165–3178, 2025a.
- 561
- 562 Chi Harold Liu, Chengzhe Piao, Xiaoxin Ma, Ye Yuan, Jian Tang, Guoren Wang, and Kin K Leung.
 563 Modeling citywide crowd flows using attentive convolutional lstm. In *ICDE*, pp. 217–228, 2021.
- 564
- 565 Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao Xia.
 566 Calf: Aligning llms for time series forecasting via cross-modal fine-tuning. In *AAAI*, volume 39,
 567 pp. 18915–18923, 2025b.
- 568
- 569 Q. Liu, P. Boniol, T. Palpanas, and J. Paparrizos. Time-series anomaly detection: Overview and new
 570 trends. *Proceedings of the VLDB Endowment*, 17(12):4229–4232, 2024a.
- 571
- 572 Qinghua Liu, Paul Boniol, Themis Palpanas, and John Paparrizos. Time-series anomaly detection:
 573 Overview and new trends. *VLDB*, 17(12):4229–4232, 2024b.
- 574
- 575 Qingxiang Liu, Xu Liu, Chenghao Liu, Qingsong Wen, and Yuxuan Liang. Time-FFM: Towards lm-
 576 empowered federated foundation model for time series forecasting. *NeurIPS*, 37:94512–94538,
 577 2024c.
- 578
- 579 Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
 580 Unitime: A language-empowered unified model for cross-domain time series forecasting. In
 581 *WWW*, pp. 4095–4106, 2024d.
- 582
- 583 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 584 itransformer: Inverted transformers are effective for time series forecasting. In *ICLR*, 2024e.
- 585
- 586 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 587 itransformer: Inverted transformers are effective for time series forecasting. In *ICLR*, 2024f.
- 588
- 589 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autore-
 590 gressive time series forecasters via large language models. 2024g.
- 591
- 592 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
 593 Timer: Generative pre-trained transformers are large time series models. *ICLR*, 2024h.
- 594
- 595 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xl: Long-
 596 context transformers for unified time series forecasting. *ICLR*, 2025c.
- 597
- 598 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
 599 using hierarchical navigable small world graphs. *TPAMI*, 42(4):824–836, 2018.
- 600
- 601 P. Manuso, V. Piccialli, and A. M. Sudo. A machine learning approach for forecasting hierarchical
 602 time series. *Expert Systems with Applications*, 182:115102, 2021.

- 594 S. Mouatadid, P. Orenstein, G. Flaspholer, M. Oprescu, J. Cohen, F. Wang, S. Knight, M. Ge-
 595 ogdzhayeva, S. Levang, and et al. Fraenkel, E. Subseasonalclimateusea: A dataset for subseasonal
 596 forecasting and benchmarking. *Advances in Neural Information Processing Systems*, 36, 2024.
 597
- 598 Zhuo Li Xiaoyun Joy Wang Jianling Sun Chenghao Liu Mouxiang Chen, Lefei Shen. Visions:
 599 Visual masked autoencoders are free-lunch zero-shot time series forecasters. *ICML*, 2025.
- 600 T. Nguyen, J. Jewik, H. Bansal, P. Sharma, and A. Grover. Climatelearn: Benchmarking machine
 601 learning for weather and climate modeling. *Advances in Neural Information Processing Systems*,
 602 36, 2024.
 603
- 604 Zhao Z Ni J and Shen C A. Harnessing vision models for time series analysis: A survey. *arXiv*
 605 preprint *arXiv:2502.08869*, 2025.
- 606 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 607 64 words: Long-term forecasting with transformers. *ICLR*, 2023.
 608
- 609 Themis Palpanas Paul Boniol. Series2graph: Graph-based subsequence anomaly detection for time
 610 series. *VLDB*, 2020.
- 611 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 612 ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-
 613 marking of time series forecasting methods. *PVLDB*, 17(9):2363–2377, 2024.
 614
- 615 Lei Rui, Xiangdong Huang, Shaoxu Song, Yuyuan Kang, Chen Wang, and Jianmin Wang. Time
 616 series representation for visualization in apache iotdb. *SIGMOD*, 2(1):1–26, 2024.
- 617 Sebastian Schmidl, Felix Naumann, and Thorsten Papenbrock. Autotsad: Unsupervised holistic
 618 anomaly detection for time series data. *PVLDB*, 17(11):2987–3002, 2025.
 619
- 620 Zezhi Shao, Yujie Li, Fei Wang, Chengqing Yu, Yisong Fu, Tangwen Qian, Bin Xu, Boyu Diao,
 621 Yongjun Xu, and Xueqi Cheng. Blast: Balanced sampling time series corpus for universal fore-
 622 casting models. In *SIGKDD*, pp. 2502–2513, 2025.
- 623 Shashank Shekhar and Billy M Williams. Adaptive seasonal time series models for forecasting
 624 short-term traffic flow. *TRR*, 2024(1):116–125, 2007.
 625
- 626 Xingjian Shi, Zhe Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-Chun Woo. Convo-
 627 lutional LSTM network: A machine learning approach for precipitation nowcasting. *NeurIPS*,
 628 2015.
- 629 Nicholas R. Jennings Shreshth Tuli, Giuliano Casale. Tranad: Deep transformer networks for
 630 anomaly detection in multivariate time series data. *VLDB*, 2022.
 631
- 632 Ming Jin Huan Li Qingsong Wen Yuxuan Liang Siru Zhong, Weilin Ruan. Time-vlm: Exploring
 633 multimodal vision-language models for augmented time series forecasting. *ICML*, 2025.
 634
- 635 Eric Stellwagen and Len Tashman. Arima: The models of box and jenkins. volume 33, pp. 28–33,
 636 2013.
- 637 Qingsong Wen Xue Wang Liang Sun Rong Jin Tian Zhou, Ziqing Ma. Fedformer: Frequency
 638 enhanced decomposed transformer for long-term series forecasting. *ICLR*, 2022.
 639
- 640 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 641 formers with auto-correlation for long-term series forecasting. In *Advances in Neural Information
 642 Processing Systems*, volume 34, pp. 22419–22430, 2021.
- 643 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 644 Temporal 2d-variation modeling for general time series analysis. 2023.
 645
- 646 L. Xu, M. Herold, N.-E. Tsednbazar, D. Masiliunas, L. Li, M. Lesiv, S. Fritz, and J. Verbesselt. Time
 647 series analysis for global land cover change monitoring: A comparison across sensors. *Remote
 648 Sensing of Environment*, 271:112905, 2022.

648 Zhongchao Yi, Zhengyang Zhou, Qihe Huang, Yanjiang Chen, Liheng Yu, Xu Wang, and Yang
 649 Wang. Get rid of isolation: A continuous multi-task spatio-temporal learning framework.
 650 *NeurIPS*, 37:136701–136726, 2024.

652 Tian Zhou Qingsong Wen Liang Sun Yiyuan Yang, Chaoli Zhang. Dcdetector: Dual attention
 653 contrastive representation learning for time series anomaly detection. *SIGKDD*, 2023.

656 A DATASETS AND METRICS

658 The table below presents a comprehensive summary of the experimental datasets utilized in the
 659 study, categorized into three primary tasks: Forecasting, Anomaly Detection and Classification.
 660 Each task is associated with specific benchmark datasets and corresponding metrics that are em-
 661 ployed to evaluate the performance of models tailored to these tasks.

663 Table 3: Summary of Experiment Datasets.

665 Tasks	666 Benchmarks	667 Metrics
667 Forecasting	668 ETT (4 subsets), ECL, Traffic, Weather, Solar	MSE, MAE
669 Anomaly Detection	670 SMD, MSL, SWaT, PSM, SMAP	Precision, Recall, F1-Score, AUC, PATE
671 Classification	672 UEA (10 subsets)	Accuracy, Precision, Recall, F1-Score

673 A.1 FORECASTING

675 In the context of *Forecasting*, the datasets include ETT, ECL, Traffic, Weather and Solar. These
 676 datasets are typically used for time series forecasting tasks, which involve predicting future values
 677 at specific time points.

- 678 • **ETT.** The ETT dataset includes two hourly-level datasets (ETTh1 and ETTh2) and two 15-minute-
 679 level datasets (ETTm1 and ETTm2). Each dataset includes 7 oil and load features of electricity
 680 transformers between July 2016 and July 2018.
- 681 • **Traffic.** The Traffic dataset contains hourly road occupancy rates obtained from sensors located
 682 at San Francisco freeways from 2015 to 2016.
- 683 • **Weather.** The Weather dataset contains 21 indicators of weather (e.g., air temperature and humidity),
 684 which are collected in Germany. The data is recorded every 10 minutes.
- 685 • **ECL.** The ECL dataset captures hourly electricity consumption data from 321 clients.
- 686 • **Solar.** The Solar dataset records solar power production from 137 PV plants in 2006, sampled
 687 every 10 minutes.

689 The performance of forecasting models is gauged using the Mean Squared Error (MSE) and the
 690 Mean Absolute Error (MAE), which are defined as follows.

$$692 \text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2, \quad (14)$$

$$693 \text{MAE} = \frac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|,$$

698 where n is the number of observations, y_i is the actual value of the i -th observation, and \hat{y}_i is
 699 the predicted value of the i -th observation. The MSE measures the average of the squares of the
 700 differences between predicted and actual values, with lower values indicating higher accuracy. The
 701 MAE, on the other hand, measures the average magnitude of the errors in a set of predictions,
 without considering their direction, also with lower values indicating better performance.

702 A.2 ANOMALY DETECTION
703704 The *Anomaly Detection* task leverages datasets such as SMD , MSL , SWaT , PSM and SMAP.
705 These datasets are employed to identify anomalous patterns or outliers within the data.

- 706
- 707 • **SMD.** Server Machine Dataset (SMD) is a 5-week-long dataset collected from a large Internet
708 company with 38 feature dimensions.
 - 709 • **MSL.** Mars Science Laboratory rover (MSL) dataset contains the telemetry anomaly data derived
710 from the incident surprise anomaly reports of spacecraft monitoring systems with 55 feature di-
711 mensions.
 - 712 • **SWaT.** Secure Water Treatment (SWaT) dataset is obtained from 51 sensors of the critical infras-
713 tructure system under continuous operations.
 - 714 • **PSM.** Pooled Server Metrics (PSM) dataset is collected from multiple application servers at eBay
715 with 25 feature dimensions.
 - 716 • **SMAP.** Soil Moisture Active Passive (SMAP) dataset is a publicly available real-world expert-
717 labeled dataset from NASA. This dataset contains data from 25 entities.

718 The evaluation metrics for anomaly detection include the F1-Score, which is the harmonic mean of
719 precision and recall, providing a balance between the two especially in cases of class imbalance.
720 The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve is also
721 used, with values closer to 1 indicating better model performance. Additionally, We use advanced
722 evaluation metrics of time series anomaly detection: PATE. All metrics are defined as follows.

723
$$\begin{aligned} \text{Precision} &= \frac{TP}{TP + FP}, \\ \text{F1-Score} &= \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}, \\ \text{Recall} &= \frac{TP}{TP + FN}, \\ \text{AUC} &= \int_0^1 \text{ROC}_{\text{curve}} dFPR, \end{aligned} \tag{15}$$

724
725
726
727
728
729
730
731
732

733 where TP represents True Positive, FP denotes False Positive, and FN is False Negative. FPR
734 (False Positive Rate) represents the proportion of negative instances that are incorrectly classified as
735 positive. AUC represents the Area Under the Receiver Operating Characteristic (ROC) curve.736 The Proximity-Aware Time series anomaly Evaluation (PATE) metric assesses model performance
737 through a proximity-aware weighting mechanism. For predefined pre- and post-anomaly buffer sizes
738 $e \in \mathcal{E}$ and $d \in \mathcal{D}$, it computes a weighted Area Under the Precision-Recall curve (AUC-PR). The
739 final score is the average across all buffer combinations:

740
$$\text{PATE} = \frac{1}{|\mathcal{E}| \times |\mathcal{D}|} \sum_{e \in \mathcal{E}} \sum_{d \in \mathcal{D}} \text{AUC-PR}_{e,d} \tag{16}$$

741
742
743

744 For each combination (e, d) and threshold θ , the weighted Precision and Recall are derived from time
745 point-level weights $\mathbf{w}^{\text{TP}}(t)$, $\mathbf{w}^{\text{FP}}(t)$, and $\mathbf{w}^{\text{FN}}(t)$, which are assigned based on the spatiotemporal
746 relationship between predictions and ground-truth anomaly segments $\mathbf{a}_k = (i_k, n_k)$:

747
$$\text{Precision}_{e,d}(\theta) = \frac{\sum_t \mathbf{w}^{\text{TP}}(t)}{\sum_t \mathbf{w}^{\text{TP}}(t) + \sum_t \mathbf{w}^{\text{FP}}(t)} \tag{17}$$

748
749

750
$$\text{Recall}_{e,d}(\theta) = \frac{\sum_t \mathbf{w}^{\text{TP}}(t)}{\sum_t \mathbf{w}^{\text{TP}}(t) + \sum_t \mathbf{w}^{\text{FN}}(t)} \tag{18}$$

751
752

753 Key weight assignments include: $\mathbf{w}^{\text{TP}}(t) = 1$ for true detections; $\mathbf{w}^{\text{FP}}(t) = 1$ for points outside
754 any buffer zone; and $\mathbf{w}^{\text{FN}}(t) = 1$ for totally missed anomalies. Weights for points within buffer
755 zones decay with increasing temporal distance from the anomaly segment. Detailed definitions of
the weight functions are provided in the original paper (Ghorbani et al., 2024).

756 A.3 CLASSIFICATION
757

758 Lastly, the *Classification* task utilizes the University of East Anglia (UEA) dataset, which consists
759 of 10 subsets. These datasets are used for classification tasks, where the objective is to assign data
760 points to different categories. The model performance of classification tasks is evaluated using
761 Accuracy, Precision, Recall, and F1-Score. Accuracy is the ratio of correctly classified instances to
762 the total number of instances.

$$763 \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \quad (19)$$

765 A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)
766

767 LLMs are used in this work solely for auxiliary purposes. Specifically, they assisted in improving
768 the accuracy of writing by identifying and correcting grammatical issues. All research ideas,
769 methodological developments, experiments, and the main body of the manuscript are independently
770 conceived, conducted, and written by the authors.

772 B IMPLEMENTATION DETAILS
773

774 All experiments are implemented in PyTorch. The pre-trained model is based on the high-quality
775 UTSD-4G dataset and the powerful NVIDIA H200 Tensor Core GPU. The fine-tuned models for
776 downstream tasks and the models for small-scale cross-domain training are deployed on the NVIDIA
777 H20 Tensor Core GPU.

779 B.1 PRE-TRAINING
780

781 In the pre-training stage, the optimizer we used was AdamW. The attenuation strategy for the learning
782 rate adopted the cosine annealing algorithm. The cosine annealing algorithm is very effective in
783 dynamically adjusting the learning rate. The initial learning rate is set at 10^{-5} , and the final learning
784 rate is 10^{-6} . The decay steps are proportional to the number of training steps of 10 epochs. We
785 set the batch size to 2048, which fully utilized the memory bandwidth without encountering out-
786 of-memory errors. Gradient accumulation was therefore unnecessary. The model was trained with
787 mixed precision (FP16/BF16) to accelerate computation while maintaining numerical stability.

788 B.2 DOWNSTREAM TASKS
789790 B.2.1 FORECASTING FINE-TUNING
791

792 The pretrained TimeCDS checkpoint ($K = 20$) was loaded on a single NVIDIA H20. Input series of
793 length 672 were normalized and patched into $M = 7$ segments of size 96, yielding a temporal tensor
794 $\mathbf{X}_{ts} \in \mathbb{R}^{B \times 20 \times 7}$ and an image tensor $\mathbf{X}_{img} \in \mathbb{R}^{B \times 7 \times 20 \times 5}$. Training used batch size 64, AdamW
795 ($\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$) and a cosine scheduler with 3-epoch warm-up:

$$796 \eta_t = \eta_{\min} + (\eta_{\max} - \eta_{\min}) \cdot \frac{1 + \cos(\pi t/T)}{2}, \quad (20)$$

797 where $\eta_{\max} = 10^{-4}$, $\eta_{\min} = 10^{-5}$, $T = 20$ epochs; early stopping (patience 5) monitored validation
798 MSE. Only LayerNorm, CMAM, DWAM and the decoder were updated.

800 For inference, **a single model performs rolling forecasting** on each dataset: the same checkpoint
801 is applied with sliding window (stride 1) to iteratively generate 96-step predictions, which are con-
802 catenated to produce horizons of $\{96, 192, 336, 720\}$ without retraining or parameter adjustment.

804 B.2.2 ANOMALY DETECTION FINE-TUNING
805

806 The same $K = 20$ checkpoint was used on H20. Sliding windows of length 672 (stride 1) generated
807 samples for reconstruction-based training. Batch size was 32 with gradient accumulation 2; opti-
808 mizer and cosine schedule identical to forecasting. Training ran for 20 epochs with early stopping
809 on validation AUC (patience 5). Backbone weights remained frozen; only CMAM, DWAM and the
reconstruction decoder were fine-tuned.

810 B.2.3 CLASSIFICATION FINE-TUNING
811

812 On H20, variable-length series were padded to the dataset-specific maximum and processed with
813 $K = 20$ channels, producing $\mathbf{X}_{\text{img}} \in \mathbb{R}^{B \times 7 \times 20 \times 5}$. After global average pooling, a linear classifier
814 was appended. Batch size was 128, label-smoothing 0.01 was applied, and the cosine LR schedule
815 followed the same parameters as above for 20 epochs, with early stopping on macro-F1 (patience
816 5). Only LayerNorm, CMAM, DWAM and the classification head were trainable.

817 B.3 SMALL-SCALE CROSS-DOMAIN FORECASTING
818

819 A single shared backbone was trained on the concatenated ETTh, ECL, Weather, Traffic and Solar.
820 All series were domain-wise standardised, zero-padded to 336 steps, and reduced to K=8 represen-
821 tative channels via the pretrained Channel-Dependency Search. Patch size 48 yields 7 tokens; the
822 imaging branch produces $7 \times 8 \times 5$ tensors.

823 The converged checkpoint was subsequently rolled on each individual dataset to generate horizons
824 $\{96,192,336,720\}$ without further fine-tuning.
825

826 C ADDITIONAL EXPERIMENTAL RESULTS
827828 C.1 TIME SERIES FORECASTING
829830 Table 5: Overall performance comparison in forecasting without pre-training
831

Models	TimeCDS		DUET		UniTS		TimeLLM		AutoTimes		UniTime		DLinear		PatchTST		TimesNet		ARIMA	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.355	0.424	0.358	0.399	0.469	0.471	0.471	0.510	0.356	0.364	0.462	0.393	0.393	0.421	0.414	0.482	0.355	0.451	1.005	0.952
ETTh2	0.269	0.301	0.307	0.331	0.370	0.448	0.433	0.463	0.430	0.482	0.510	0.471	0.347	0.464	0.215	0.376	0.457	0.498	0.996	0.973
ETTm1	0.381	0.401	0.391	0.416	0.416	0.415	0.488	0.504	0.370	0.355	0.424	0.397	0.456	0.483	0.463	0.477	0.386	0.391	1.033	0.993
ETTm2	0.357	0.395	0.380	0.390	0.433	0.476	0.436	0.479	0.522	0.484	0.498	0.488	0.548	0.618	0.482	0.489	0.463	0.492	1.018	1.010
ECL	0.365	0.422	0.386	0.423	0.530	0.489	0.489	0.505	0.318	0.356	0.557	0.457	0.366	0.414	0.397	0.510	0.471	0.507	1.003	0.889
Weather	0.356	0.420	0.414	0.437	0.425	0.433	0.555	0.571	0.369	0.383	0.398	0.423	0.415	0.464	0.447	0.511	0.413	0.460	1.019	1.088
Traffic	0.492	0.415	0.524	0.476	0.440	0.489	0.557	0.533	0.505	0.501	0.466	0.502	0.414	0.454	0.390	0.458	0.439	0.460	1.070	1.038
Solar	0.207	0.233	0.213	0.240	0.268	0.258	0.234	0.262	0.202	0.225	0.253	0.188	0.200	0.217	0.192	0.208	0.239	0.243	1.061	1.067

832 In order to test the cross-domain task capability under a small data scale, our experiment specifically
833 designed a small-scale cross-domain forecasting experiment. The training of the model was restricted
834 to the datasets of ETTh, ECL, Weather, Traffic and Solar. The joint datasets are divided in [6 : 2
835 : 2] ratio, and the performance of the backbone networks of multiple advanced models used for
836 time series prediction was compared. They are DUET, UniTS, TimeLLM, AutoTimes, UniTime,
837 DLinear, PatchTST, Timesnet and ARIMA. From Table 5, in the forecasting task of the small-scale
838 cross-domain, TimeCDS performed outstandingly, achieving the lowest MSE and MAE values on
839 multiple datasets, demonstrating its generalization ability and prediction accuracy across different
840 datasets. Although slightly inferior to UniTS on the Traffic dataset, TimeCDS still demonstrated
841 good performance. Overall, TimeCDS outperforms or approaches other advanced models on mul-
842 tiple datasets, demonstrating its effectiveness and superiority in handling small-scale cross-domain
843 time series data.
844

845 C.2 TIME SERIES ANOMALY DETCTION
846847 Table 6: Overall performance comparison for time series anomaly detection without pre-training
848

Models	SMD		PSM		SWAT		MSL		SMAP		AVG	
	Precision	Recall										
ARIMA	42.69	31.00	35.63	29.65	29.30	34.65	26.31	31.39	21.95	25.63	31.18	30.46
FEDformer	69.52	56.31	72.36	69.69	58.36	54.63	60.31	58.65	55.05	57.27	63.12	59.31
Informer	78.65	80.23	77.94	72.63	33.64	39.40	75.31	73.65	71.01	76.34	67.31	68.45
DCdetector	70.31	79.65	71.35	57.36	75.21	65.72	58.36	62.34	36.32	47.03	62.31	62.42
Autoformer	55.43	53.32	62.31	63.54	55.31	52.39	52.31	49.75	35.99	44.95	52.27	52.79
DLinear	64.51	72.36	67.21	76.54	60.49	67.54	62.37	65.89	62.02	65.17	63.32	69.50
TimesNet	78.31	72.65	71.36	74.68	63.54	65.74	72.68	82.96	70.66	83.07	71.31	75.82
Ser2graph	75.66	72.39	69.78	73.26	59.76	59.71	62.95	66.92	53.69	62.31	64.37	66.92
TranAD	73.52	71.32	72.31	76.51	63.44	68.54	69.58	72.31	62.31	63.14	68.23	70.36
IMDIFFCTION	78.32	72.66	71.37	74.79	63.65	65.85	72.69	82.97	70.67	83.08	71.34	75.87
Timer	78.65	80.21	82.14	83.65	72.63	76.99	75.65	76.59	72.03	75.46	76.22	78.58
TimeCDS	81.65	84.31	83.56	86.59	82.46	83.62	79.65	83.32	77.78	80.36	81.02	83.64

862 Table 6 provides supplementary performance metrics for each model in the time series anomaly
863 detection task, including Precision and Recall. The TimeCDS model proposed in this study demon-
864 strated outstanding performance on all datasets, with its average precision and recall rates reaching

Table 4: Overall Performance Comparison of Time Series Forecasting

Models	ETTm1		ETTm2		ETTh1		ETTh2		ECL		Weather		Traffic		Solar		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE									
ARIMA	96	0.893	0.694	2.071	1.103	1.074	0.803	2.552	1.308	0.405	0.467	0.399	0.436	0.873	0.483	1.260	1.352
	192	1.143	0.806	2.279	1.142	1.247	0.862	3.342	1.414	0.472	0.503	0.446	0.465	0.877	0.483	1.279	1.366
	336	1.297	0.862	2.598	1.268	1.289	0.871	3.321	1.418	0.469	0.503	0.485	0.484	0.883	0.485	1.300	1.381
	720	1.354	0.888	2.750	1.317	1.301	0.868	3.287	1.387	1.010	0.844	0.565	0.550	1.530	0.835	1.331	1.401
N-HITS	96	0.385	0.421	0.211	0.302	0.440	0.452	0.355	0.410	0.171	0.274	0.197	0.247	0.406	0.315	0.255	0.263
	192	0.417	0.458	0.274	0.349	0.470	0.481	0.423	0.456	0.192	0.296	0.248	0.296	0.424	0.330	0.270	0.284
	336	0.476	0.461	0.329	0.388	0.499	0.544	0.470	0.502	0.214	0.319	0.300	0.337	0.452	0.346	0.308	0.339
	720	0.531	0.503	0.405	0.442	0.564	0.577	0.494	0.511	0.263	0.361	0.371	0.387	0.544	0.387	0.306	0.343
TimesNet	Avg	0.452	0.461	0.305	0.370	0.493	0.514	0.436	0.470	0.210	0.313	0.279	0.317	0.457	0.344	0.285	0.307
	96	0.482	0.493	0.307	0.387	0.504	0.522	0.431	0.494	0.214	0.318	0.199	0.258	0.623	0.345	0.210	0.302
	192	0.504	0.507	0.369	0.429	0.556	0.549	0.522	0.534	0.222	0.325	0.252	0.299	0.626	0.347	0.229	0.316
	336	0.523	0.519	0.441	0.471	0.611	0.589	0.572	0.572	0.230	0.333	0.320	0.340	0.630	0.349	0.250	0.331
PatchTST	720	0.590	0.564	0.528	0.523	0.641	0.620	0.582	0.588	0.258	0.355	0.406	0.394	0.649	0.365	0.281	0.351
	Avg	0.525	0.521	0.411	0.453	0.578	0.570	0.527	0.547	0.231	0.333	0.294	0.323	0.632	0.352	0.243	0.325
DLinear	96	0.404	0.431	0.304	0.367	0.442	0.466	0.339	0.331	0.162	0.262	0.181	0.232	0.389	0.285	0.198	0.267
	192	0.435	0.452	0.371	0.412	0.468	0.490	0.342	0.336	0.181	0.280	0.224	0.275	0.407	0.295	0.219	0.287
	336	0.453	0.465	0.359	0.414	0.493	0.512	0.417	0.449	0.201	0.302	0.274	0.315	0.423	0.306	0.242	0.307
	720	0.464	0.490	0.409	0.452	0.517	0.540	0.474	0.505	0.252	0.348	0.347	0.368	0.466	0.335	0.270	0.335
UniTime	Avg	0.439	0.460	0.361	0.411	0.480	0.502	0.393	0.405	0.199	0.298	0.257	0.298	0.421	0.305	0.232	0.299
	96	0.390	0.439	0.320	0.386	0.594	0.598	0.433	0.465	0.159	0.296	0.183	0.253	0.373	0.321	0.201	0.304
	192	0.418	0.607	0.388	0.430	0.571	0.559	0.511	0.514	0.177	0.408	0.231	0.481	0.392	0.383	0.220	0.461
	336	0.431	0.710	0.516	0.531	0.665	0.637	0.612	0.607	0.192	0.478	0.286	0.600	0.409	0.419	0.233	0.566
UniTS	720	0.436	0.749	0.657	0.630	0.706	0.697	0.662	0.664	0.229	0.532	0.361	0.623	0.443	0.465	0.252	0.638
	Avg	0.419	0.626	0.470	0.494	0.634	0.623	0.555	0.563	0.189	0.429	0.265	0.489	0.404	0.397	0.227	0.492
iTransformer	96	0.407	0.434	0.336	0.400	0.416	0.390	0.284	0.307	0.167	0.260	0.184	0.235	0.425	0.313	0.226	0.291
	192	0.442	0.456	0.430	0.465	0.452	0.412	0.348	0.350	0.188	0.288	0.226	0.279	0.455	0.332	0.249	0.314
	336	0.470	0.474	0.495	0.512	0.486	0.433	0.398	0.389	0.211	0.315	0.274	0.312	0.493	0.358	0.275	0.341
	720	0.518	0.513	0.652	0.598	0.542	0.468	0.514	0.468	0.248	0.385	0.348	0.365	0.590	0.422	0.315	0.384
TimeVLM	Avg	0.459	0.469	0.478	0.494	0.474	0.426	0.384	0.379	0.214	0.312	0.258	0.298	0.491	0.356	0.266	0.333
	96	0.316	0.368	0.186	0.286	0.399	0.412	0.287	0.350	0.165	0.261	0.194	0.231	0.428	0.287	0.241	0.247
	192	0.355	0.400	0.244	0.326	0.428	0.440	0.350	0.402	0.190	0.260	0.268	0.273	0.444	0.281	0.254	0.267
	336	0.382	0.422	0.306	0.369	0.448	0.457	0.374	0.416	0.192	0.297	0.276	0.311	0.459	0.338	0.276	0.315
AutoTimes	720	0.431	0.450	0.419	0.441	0.486	0.494	0.445	0.471	0.231	0.326	0.342	0.357	0.530	0.380	0.290	0.352
	Avg	0.428	0.436	0.316	0.358	0.466	0.487	0.412	0.445	0.197	0.286	0.289	0.306	0.460	0.305	0.269	0.309
TimeLLM	96	0.416	0.430	0.303	0.403	0.577	0.615	0.416	0.482	0.201	0.255	0.210	0.233	0.468	0.278	0.253	0.251
	192	0.429	0.449	0.371	0.447	0.554	0.576	0.494	0.531	0.323	0.271	0.480	0.280	0.568	0.387	0.403	0.266
	336	0.444	0.459	0.499	0.548	0.648	0.654	0.595	0.624	0.409	0.288	0.624	0.323	0.651	0.396	0.475	0.278
	720	0.461	0.470	0.640	0.647	0.689	0.714	0.645	0.681	0.485	0.318	0.648	0.375	0.767	0.414	0.556	0.292
Timer	Avg	0.438	0.452	0.453	0.511	0.617	0.640	0.538	0.580	0.355	0.283	0.491	0.303	0.614	0.369	0.422	0.272
	96	0.410	0.442	0.343	0.418	0.617	0.630	0.456	0.497	0.167	0.274	0.179	0.230	0.406	0.310	0.254	0.319
	192	0.438	0.461	0.411	0.462	0.594	0.591	0.534	0.546	0.188	0.296	0.223	0.273	0.427	0.324	0.278	0.345
	336	0.455	0.473	0.539	0.563	0.688	0.669	0.635	0.639	0.213	0.322	0.273	0.314	0.450	0.341	0.299	0.368
TimerXL	720	0.464	0.493	0.680	0.662	0.729	0.729	0.685	0.696	0.277	0.378	0.345	0.362	0.478	0.356	0.340	0.426
	Avg	0.442	0.467	0.493	0.526	0.657	0.655	0.578	0.595	0.211	0.318	0.255	0.295	0.440	0.333	0.293	0.365
TimeCDS	96	0.310	0.364	0.200	0.286	0.378	0.415	0.301	0.363	0.162	0.259	0.187	0.235	0.369	0.253	0.184	0.249
	192	0.351	0.396	0.259	0.330	0.423	0.448	0.357	0.406	0.182	0.280	0.235	0.281	0.379	0.272	0.208	0.275
	336	0.380	0.419	0.311	0.367	0.452	0.470	0.384	0.432	0.203	0.301	0.283	0.319	0.392	0.298	0.229	0.298
	720	0.424	0.448	0.381	0.417	0.511	0.523	0.411	0.465	0.248	0.341	0.350	0.366	0.431	0.362	0.270	0.356
904	Avg	0.366	0.407	0.288	0.350	0.441	0.464	0.363	0.417	0.199	0.295	0.264	0.300	0.393	0.296	0.223	0.295
	96	0.299	0.347	0.178	0.265	0.342	0.383	0.272	0.330	0.151	0.235	0.163	0.228	0.365	0.261	0.169	0.184
	192	0.335	0.379	0.234	0.297	0.387	0.409	0.334	0.373	0.167	0.268	0.211	0.256	0.395	0.323	0.175	0.196
	336	0.375	0.412	0.275	0.339	0.416	0.426	0.361	0.400	0.186	0.282	0.264	0.304	0.433	0.359	0.194	0.208
	720	0.415	0.434	0.343	0.378	0.433	0.459	0.394	0.457	0.224	0.317	0.329	0.347	0.530	0.405	0.228	0.222
	Avg	0.356	0.393	0.258	0.320	0.395	0.419	0.340	0.390	0.182	0.262	0.242	0.284	0.431	0.337	0.192	0.203

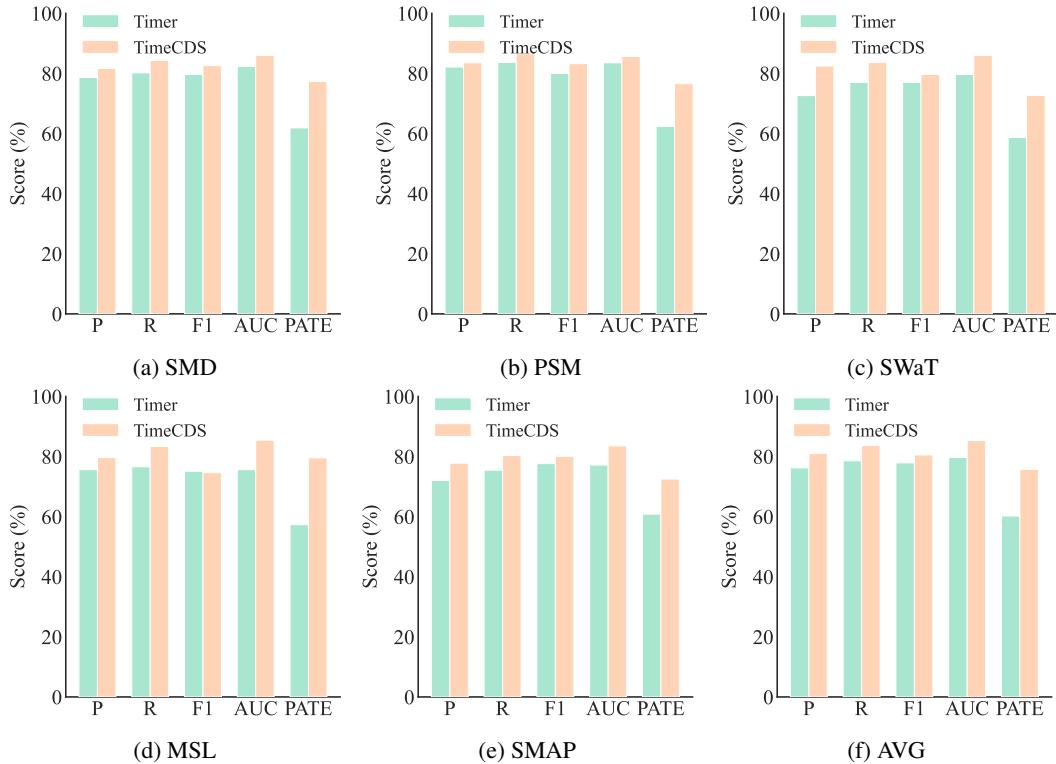
81.02% and 83.64%, respectively. This result indicates that TimeCDS outperforms other models such as Informer and TimesNet in terms of the accuracy and comprehensiveness of anomaly detection. Their average precision and recall rates are 68.45%, 67.31% and 75.82%, 71.31%, respectively. In addition, the impact of different datasets on model performance is also worthy of attention. For instance, the overall performance of the model on the SMAP dataset is superior to that on the SWaT dataset, which may be related to the specific characteristics of the dataset, such as data size and abnormal distribution. The consistent high-performance performance of TimeCDS on different datasets further demonstrates its excellent generalization ability. Overall, the performance of TimeCDS in time series anomaly detection tasks not only validates its effectiveness but also provides valuable references for research and practice in related fields.

918
919
Table 7: Overall performance of time series classification without pre-training
920
921
922
923

Metric	Informer	FEDformer	Full Attn	LIGHTTS	DLiner	LSTM	LSTNET	TimesNet	UniTS	Timer	TimeCDS
Accuracy	0.678	0.729	0.721	0.702	0.736	0.521	0.663	0.740	0.726	0.752	0.762
F1	0.662	0.634	0.688	0.674	0.709	0.569	0.658	0.717	0.693	0.718	0.723
Recall	0.632	0.696	0.684	0.711	0.701	0.598	0.685	0.698	0.696	0.703	0.713
AUC	0.659	0.682	0.677	0.666	0.677	0.519	0.649	0.686	0.679	0.696	0.687

924
925
C.3 TIME SERIES CLASSIFICATION
926

927 Table 7 details the performance of each model in the time series classification task, supplementing
928 the two key indicators of Accuracy and Recall. These indicators are crucial for a comprehensive
929 assessment of the model’s performance in classification tasks. The TimeCDS model demonstrates
930 outstanding performance in all four major evaluation metrics. Specifically, TimeCDS achieved an
931 accuracy rate of 0.762 and a recall rate of 0.713, both significantly outperformed other models. This
932 indicates that TimeCDS has significant advantages in correctly classifying the proportion of samples
933 and identifying all positive category samples. In addition, TimeCDS also performed the best in F1
934 score (0.723) and AUC value (0.687), further demonstrating its excellent balance between precision
935 and recall, and its strong ability to distinguish between positive and negative class samples. The
936 Timer and TimesNet models also performed well, achieving results of 0.752 and 0.718 in accuracy
937 and 0.740 and 0.698 in recall rates, respectively. These results indicate that although slightly inferior
938 to TimeCDS, these models still have high performance in time series classification tasks. Overall,
939 the TimeCDS model performs comprehensively and evenly in time series classification tasks. It
940 significantly outperforms other models in terms of accuracy, recall rate, F1 score, and AUC value.
941 This result not only verifies the validity of the TimeCDS model, but also provides valuable references
942 for research and practice in related fields. The outstanding performance of TimeCDS indicates that it
943 can effectively capture the features of data and make accurate classification decisions when dealing
944 with time series classification problems, which holds significant value in practical applications.
945

946
947
C.4 COMPARISON WITH SOTA
948949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
Figure 8: Anomaly detection comparison: TimeCDS vs Timer
971

972 Figure 9 visually shows that TimeCDS outperforms the Timer model in all indicators, which powerfully
973 demonstrates the superiority of TimeCDS.

972 **C.5 EFFICIENCY**
973

974 In this study, we conducted an in-depth analysis of the computational efficiency of the model to
975 optimize resource utilization and enhance performance. By introducing the FlashAttention strategy,
976 we significantly reduced the computational complexity of the model. Specifically, we conducted a
977 detailed assessment of each module of the model in terms of FLOPs, parameter count, and memory
978 usage. In the complexity expression, N represents the total scale of the time series data, T is the

979 Table 8: Analysis of the computational complexity of each module of the model

Module	FLOPs	Parameters	Memory Footprint
Channel Dependency Search	$O(N \log N + K^2)$	$O(K^2)$	$O(NT + N \log N + K^2)$
Time Series Encoding Branch	$O(BK(T + MLd))$	$O(K^2d + Kd^2)$	$O(BK(T + ML + Md))$
Time Image Encoding Branch	$O(BK(T + LK + LD))$	$O(FKLT + K^2)$	$O(FKLT + K^2 + KD)$
Cross-Modal Alignment	$O(BL(d^2 + K))$	$O(Kd)$	$O(BL(d + L))$

980 length of a single time series, K is the number of representative features selected, B is the batch
981 size, M is the number of blocks the time series is divided into, L is the length of each block, d is
982 the feature dimension, and F is the size of the convolution kernel. D is related to the parameters
983 of the projection layer. These symbols jointly describe the computational overhead of the model
984 at different operation stages. As shown in Table 9, compared with the baseline model, our model
985

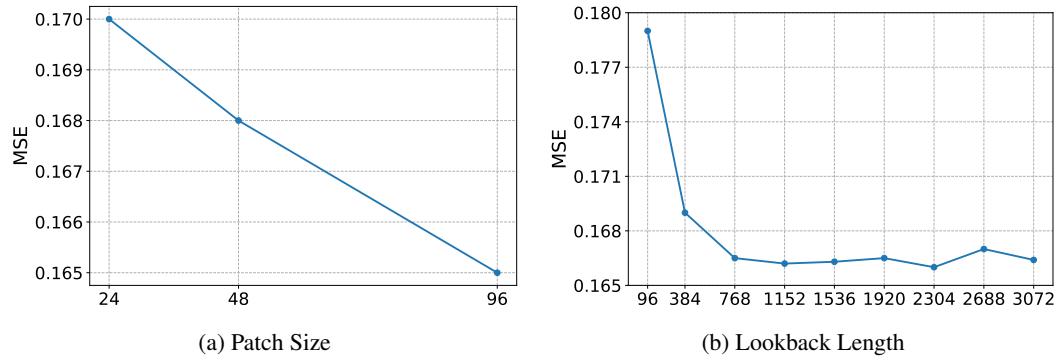
986 Table 9: Model efficiency performance comparison

Model	Training Speed (s/iter)	Inference Speed (s/iter)	Params (M)	Performance (MSE)
TimeCDS	0.2426	0.0454	16.73	0.151
PatchTST	0.0625	0.0079	16.21	0.162
Timer-XL	0.2157	0.0447	15.86	0.164
Timer	0.0458	0.0079	15.86	0.162

987 achieves higher operational efficiency while maintaining a lower computational cost. For instance,
988 the TimeCDS model achieved a training speed of 0.2426 seconds per iteration and an inference
989 speed of 0.0454 seconds per iteration, while maintaining a parameter count of 16.73M and a mean
990 square error (MSE) performance metric of 0.151. These results demonstrate the effectiveness and
991 efficiency of our model in processing high-dimensional time series data.

1002
1003 **C.6 PARAMETER SENSITIVITY**

1004 To further demonstrate the validity of the model, we chose to evaluate the hyperparameter sensitivity
1005 of TimeCDS on the widely recognized ERA 5-MS benchmark. The main ones are the patch
1006 size P and the Lookback Length L during the inference process. Our research results show that the
1007 optimal patch size is usually close to the predicted length because it avoids multi-step error accumu-
1008 lation. Meanwhile, the research on Lookback Length L found that the optimal lookback length is
1009 not necessarily the same as the length used during training, indicating that the appropriate selection
1010 of information length is effective, and the reasoning stage can be compatible with different lengths
1011 and dimensions of cross-domain time series data.

1024 Figure 9: Sensitive analysis of Patch Size and Lookback Length
1025