
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

E2Usd: Efficient-yet-effective Unsupervised State Detection for
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ABSTRACT

Cyber-physical system sensors emit multivariate time series (MTS)
that monitor physical system processes. Such time series generally
capture unknown numbers of states, each with a different duration,
that correspond to specific conditions, e.g., “walking” or “running”
in human-activity monitoring. Unsupervised identification of such
states facilitates storage and processing in subsequent data analyses,
as well as enhances result interpretability. Existing state-detection
proposals face three challenges. First, they introduce substantial
computational overhead, rendering them impractical in resource-
constrained or streaming settings. Second, although state-of-the-art
(SOTA) proposals employ contrastive learning for representation,
insufficient attention to false negatives hampers model convergence
and accuracy. Third, SOTA proposals predominantly only empha-
size offline non-streaming deployment, we highlight an urgent need
to optimize online streaming scenarios. We propose E2Usd that
enables efficient-yet-accurate unsupervised MTS state detection.
E2Usd exploits a Fast Fourier Transform-based Time Series Com-
pressor (fftCompress) and a Decomposed Dual-view Embedding
Module (ddEM) that together encode input MTSs at low computa-
tional overhead. Additionally, we propose a False Negative Cancel-
lation Contrastive Learning method (fnccLearning) to counteract
the effects of false negatives and to achieve more cluster-friendly
embedding spaces. To reduce computational overhead further in
streaming settings, we introduce Adaptive Threshold Detection
(adaTD). Comprehensive experiments with six baselines and six
datasets offer evidence that E2Usd is capable of SOTA accuracy at
significantly reduced computational overhead. Our code is available
at http://bit.ly/3rMFJVv.

1 INTRODUCTION

In Cyber-Physical Systems (CPSs) [23, 29, 41], sensors monitor
physical processes continuously, generating streams of Multivariate
Time Series (MTS) data. This raw data, often complex and devoid of
immediate interpretability, requires human labors to discern under-
lying “states” that correspond to specific conditions. For instance,
consider an MTS corresponding to a dance routine as depicted in
Fig. 1. The MTS is collected using four accelerometers situated in
the dancer’s arms and legs, capturing transitions between states
that can be labeled “walk”, “run”, “jump”, “kick”, and “left hop”. The
aim of state detection is to segment the MTS into a sequence of
concise segments and assign each segment a state. Segments that
share similar characteristics should be assigned the same state. In
Fig. 1, the first and last segments exhibit similar fluctuations and
are consequently assigned the same state, “walk”.

Supervised state detection [12, 19, 27] requires known segments
of an MTS and their labels, which are often not available. Thus,
there has been a growing interest in unsupervised state detection
(USD) [16, 20, 25, 26, 33, 36]. USD is capable of identifying distinct
states in an MTS directly, without relying on known segments and
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Fig. 1: An example of unsupervised state detection on MTS.

their labels. Once their USD process is completed, minimal human
intervention is needed to assign a semantic label to each detected
state. As depicted in Fig. 1, USD often uses clustering to associate
each time step with a sufficiently similar already seen state or a
new state if no similar state has been seen. Consecutive time steps
with the same state are merged to form a segment. In the dance
example, developers are not required to know the number and types
of dance states beforehand. Instead, they can identify and label the
dance states based on the USD results. This level of flexibility is
particularly attractive in open-ended detection tasks, e.g., as found
in cyber-attacks [9], web application behavior [21], and beyond.

A commonly used USD approach [20, 26, 36], as depicted in Fig. 1,
involves two stages. An initial encoding stage projects input data,
acquired using a sliding window, into a latent embedding; then, a
clustering stage identifies the state of this latent embedding. By
moving the sliding window as data arrives, it is possible to support
real-time detection of states.While recent advances in deep learning
(DL) have improved the initial MTS data encoding [26, 36], DL-
based USD methods excel at capturing intricate MTS features, thus
enhancing the subsequent clustering process. However, three main
challenges remain.

C1 (Resource-Intensive Architectures). The intricate archi-
tectures, particularly those of DL-based MTS encoders [26, 36],
incur substantial computational and storage overheads. This pre-
cludes the deployment of such USD models on devices with limited
resources, which occur frequently in practice.

C2 (False Negative Sampling of Unsupervised Contrastive

Learning). State-of-the-art (SOTA) learning proposals for MTS en-
coders are rooted in unsupervised contrastive learning [36] and aim
to maximize the similarity between similar samples (from consecu-
tive windows) and to minimize the similarity between dissimilar
ones (from distant windows). However, this approach can be prone
to false negative sampling due to its idealized assumption that
distant windows have distinct states. Ensuring the robustness of
unsupervised contrastive learning at forming a clustering-friendly
embedding space is an important concern.

1
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C3 (Suboptimal Methodology on Streaming Scenarios).
While current studies [25, 26, 36] focus primarily on offline, non-
streaming USD, there is a critical need for optimization for online
deployments. Unconditional invocation of a USD model for all win-
dowed MTS data can cause redundant clustering computations.
Thus, more efficient strategies for streaming use are needed.

In this study, we present E2Usd, an efficient-yet-effective model
addressing these challenges in unsupervisedMTS state detection. To
tackle C1, E2Usd includes a compact embedding method featuring
two key strategies. First, it utilizes a Fast Fourier Transform-based
Time Series Compressor (fftCompress) to selectively retain essen-
tial frequency components, discarding noisy ones. This reduces the
computational overhead of subsequent operations. Second, to strike
a balance between feature extraction capacity and model simplicity,
E2Usd advocates a return to the original nature of a time series by
decomposing compressed MTS into trend and seasonal components
followed by a simple but sufficiently effective dual-view DL embed-
ding module (named ddEM). This eliminates reliance on complex
end-to-end DL architectures.

To tackle C2, we propose a False Negative Cancellation Con-
trastive Learning method (fnccLearning) tailored to mitigate false
negative sampling in SOTA contrastive learning for USD. fnc-
cLearning introduces a novel negative sampling scheme, where
selecting genuinely false negatives is carried out by taking into
account both the trend and seasonal similarities between paired
samples. Moreover, instead of considering individual windowed
samples, we take a holistic approach by harnessing groups of con-
secutive samples for similarity computation in the negative aspect,
thereby ensuring consistent embedding within the same state. This
unique treatment is reflected in the overall fnccLearning loss.

To tackleC3, we present Adaptive Threshold Detection (adaTD),
which aims to reduce the number of clustering operations in online
USD by first assessing the similarity between the currently win-
dowed MTS data and the data in the preceding window and then
deciding whether to perform clustering on the current windowed
MTS data. A customized adaptive threshold, based on a simple and
effective similarity metric is proposed to determine the similarity
sufficiency. In experiments, E2Usd achieves the best accuracy while
using only 4% of the total and 1% of the trainable parameters when
compared to the SOTA method, while also achieving the lowest
processing time among all competitors.

The primary contributions are as follows.
• We propose a compact MTS embedding method, comprising (i)

fftCompress for retaining essential temporal information while
mitigating noise for simplified time series representation and
(ii) ddEM, which enables dual-view embedding of trend and
seasonal components in MTS, effectively integrating traditional
and modern methodologies (Section 3.1).

• We propose fnccLearning, aimed at mitigating the likelihood
of false negatives in unsupervised contrastive learning for MTS
state detection. This is achieved by a unique treatment of poten-
tial negative pairs exhibiting the lowest similarities (Section 3.2).

• We devise the adaTD scheme tailored for streaming USD. By
comparing the current windowedMTS data to the preceding win-
dow, adaTD reduces clustering operations based on an adaptive
similarity threshold (Section 3.3).

• We study E2Usd on six datasets while considering six baselines,
providing evidence of SOTA accuracy and substantial compu-
tational costs reduction. We also provide evidence of practical
applicability by deploying E2Usd on an STM32 MCU (Section 4).
Besides, Section 2 provides necessary background information,

Section 5 reviews related work, and Section 6 concludes the paper.

2 PRELIMINARIES

2.1 Unsupervised State Detection for MTS

Definition 1 (Multivariate Time Series, MTS). A multivari-
ate time series (MTS), denoted by𝑿 , is an ordered sequence of sensory
observations:

𝑿 = {𝒙𝑖 }T𝑖=1, 𝒙𝑖 ∈ RN, (1)
where 𝒙𝑖 is the observation at the 𝑖-th time step; the parameters N and
T are the MTS dimensionality and the length of the MTS, respectively.
A segment of 𝑿 ∈ RN×T spanning time steps 𝑖 to 𝑗 is denoted as
𝑿𝑖:𝑗 ∈ RN×( 𝑗−𝑖 ) .

Definition 2 (State in MTS). A state acts as a concise represen-
tation of the underlying condition associated with an MTS segment.

States are discernible due to their unique internal features, such
as recurring patterns or consistent statistical behaviors [17, 20, 40].
Referring to the dance routine example in Fig. 1, states might cor-
respond to different dance movements, each of which exhibits a
unique pattern: “walk” with rhythmic variations, “jump” with in-
tense spikes, “hop” with recurrent bursts, and “run” with higher
frequency and intensity than “walk”. Accurate identification of
these specific patterns (states) is crucial to understanding the un-
derlying process captured by an MTS and to enable downstream
applications like urban monitoring [4] and healthcare [35].

Definition 3 (Unsupervised State Detection, USD). Given
an MTS 𝑿 of length T, the process of unsupervised state detection
(USD) aims to assign each observation 𝒙𝑖 ∈ 𝑿 a state index, 𝑠𝑖 , without
any training data and a set of predefined states. This process ultimately
yields a state sequence 𝒔 = {𝑠𝑖 }T𝑖=1, where 𝑠𝑖 ∈ R

+ identifies a specific
state detected by the USD process.

Note that the number of distinct states found by the USD process,
Distinct(𝒔), is unknown prior to the start of the process.

We proceed to introduce the classical USD pipeline [20, 26, 36].
In general, USD utilizes a sliding window, i.e., MTS data is processed
by the USD system per window along the time dimension. In Fig. 1,
a sliding window of size P and step size B traverses the MTS. Let
𝑾𝑡 = 𝑿𝑡−P:𝑡 be the current window of the MTS. This window is
processed by the MTS encoder to obtain an embedding 𝒛𝑡 in a
latent space. This embedding is input to a clustering model that
deduces its state index 𝒔𝑡 ∈ {R+}P, which is then assigned to the P
time steps in window𝑾𝑡 ∈ RN×P.

As the sliding window moves at step size B, each time step even-
tually has ⌊ PB ⌋ state indexes determined by the USD process1. To
reconcile these sets of state indexes and ensure smoother transi-
tions, the final state index for each time step is determined through
majority voting [20, 26, 36].
1In general, the initial time steps within the first window and the final time steps
within the last window have fewer than ⌊ PB ⌋ associated state indexes.
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Conventional DL-based USD methods [26, 36] employ intricate
neural networks and take the raw MTS data as input directly. To
enhance efficiency, we incorporate a Fast Fourier Transform (FFT)-
based time series compressor (see Section 3.1.1). Below, we provide
a brief overview of FFT.

2.2 FFT in Time Series Analysis

FFT [6] is fundamental to signal processing. Engineered for opti-
mal computational efficiency, FFT calculates the Discrete Fourier
Transform of numerical sequences. This capability is essential for
identifying frequency components in a time series, enabling noise
reduction and compression. Further, this capability supports our
goal of reducing the computational overhead of the USD process,
since this overhead is correlated with the length of the MTS. Inte-
grating FFT offers a promising avenue for enhancing both efficiency
and accuracy.

Specifically, we utilize real-valued FFT. Crafted as a variant of
FFT, it transforms an MTS window𝑾 with P time steps into K =

(⌊P⌋/2 + 1) frequency components, represented as a matrix 𝑸 ∈
RN×K. Conversely, the inverse real-valued FFT converts 𝑸 back to
a new time-domain representation, denoted by 𝑾̂ .

The computation of real-valued FFT and the inverse real-valued
FFT are formulated in Equations 2 and 3, respectively.

𝒒𝑘 ←
P−1∑︁
𝑝=0

(
𝒙𝑝 cos

(
− 2𝜋𝑘𝑝

P

)
+ 𝑗 sin

(
− 2𝜋𝑘𝑝

P

))
, 𝑘 = 0, . . . , K − 1 (2)

𝒙̂𝑝 ←
1
P

K−1∑︁
𝑘=0

(
𝒒𝑘 cos

(
2𝜋𝑘𝑝
P

)
− 𝒒𝑘 𝑗 sin

(
2𝜋𝑘𝑝
P

))
, 𝑝 = 0, . . . , P − 1 (3)

Here, 𝒒𝑘 is the 𝑘-th (0 ≤ 𝑘 < K) frequency component of the real-
valued FFT result 𝑸 , and 𝒙̂𝑝 is the 𝑝-th (0 ≤ 𝑝 < P) time step’s data
of the inverse real-valued FFT result 𝑾̂ .

3 KEY TECHNIQUES OF E2USD

E2Usd follows the classical USD pipeline (Section 2.1), encompass-
ing MTS embedding and clustering. In particular, E2Usd utilizes
the Dirichlet Process Gaussian Mixture Model (DPGMM) [5] for
clustering. Below, we present the key innovations in E2Usd. E2Usd
first applies a compact embedding procedure to the input MTS
to ease subsequent neural computations (Section 3.1). In the com-
pact embedding procedure, E2Usd also incorporates a novel False
Negative Cancellation Contrastive Learning method (Section 3.2)
to ensure or improve the effectiveness of the learned embeddings.
Finally, E2Usd employs an Adaptive Threshold Detection (adaTD)
scheme for improved applicability in online streaming (Section 3.3).

3.1 Compact Embedding of MTS

Contemporary DL-based embedding methods often utilize complex
end-to-end networks [24, 26, 34, 36], potentially overlooking the
rich domain-specific knowledge in traditional feature engineering.
To generate concise yet informative embeddings for input MTS, we
advocate for revisiting fundamental principles in data analysis and
signal processing, particularly in frequency domain analysis [6]
and time series decomposition [39]. Our studies indicate that these
approaches can yield effective embedding outcomes while using
simpler techniques. As shown in Fig. 2, our compact embedding
comprises an FFT-based Time Series Compressor (fftCompress)
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Trend component
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𝒛

Feature
Projection

Pooling

Fusion

Trend/Seasonal
Embedding
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(1) FFTCOMPRESS (2) DDEM

𝑾𝒕 𝑸
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(1)

Q

(1) Real-valued FFT
(2) Energy-based Frequency Compressor
(3) Inverse Real-valued FFT

(2)

(3)

Fig. 2: Compact embedding of the input MTS.

and a Decomposed Dual-view Embedding Module (ddEM), detailed
in Section 3.1.1 and Section 3.1.2, respectively.

3.1.1 fftCompress. In practical applications, sensor designs often
incorporate over-sampling rates to ensure comprehensive infor-
mation capture. In this sense, maintaining a sparse representation
of time series is reasonable and beneficial for retaining essential
information and reducing noise, ultimately simplifying subsequent
temporal feature extraction. Frequency domain analysis, primarily
using FFT [10, 44–46], is a well-established technique to achieve
this goal. However, it remains challenging to effectively identify the
set of distinct active frequency components for FFT analysis across
different tasks. To address this aspect, we introduce fftCompress,
which encompasses three steps.
(1) Real-valued FFT. Given a window𝑾𝑡 = 𝑿𝑡−P:𝑡 ∈ RN×P, this
step transforms𝑾𝑡 into its frequency domain representation 𝑸 ∈
RN×K, using Equation 2. Expressing the input signal in the frequency
domain is crucial for our goal of compressing time series data. In
the frequency domain, we can identify and prioritize the most
significant frequency components, thus achieving compression by
emphasizing salient features and discarding less critical ones.
(2) Energy-based Frequency Compressor. As the core of fft-
Compress, this step dynamically selects and retains active frequen-
cies from the frequency domain based on the cumulative energy
observed across all the MTS dimensions. Energy in signal process-
ing quantifies the strength (magnitude) of a signal’s frequency
components. Typically, low energy implies reduced strength and
activation. A possible solution is to select discrete frequencies,
rather than forming a continuous band. However, two important
factors need to be considered: first, research has shown that noise
is often concentrated at the extreme frequencies [46]; second, ac-
tive frequencies tend to cluster around a central range. Skipping
frequencies could potentially lead to the omission of crucial infor-
mation. Considering these factors, we choose to utilize a continuous
frequency band. This decision is especially effective at removing
both high- and low-frequency noise, which improves the overall
data representation. Specifically, given a frequency-domain rep-
resentation 𝑸 ∈ RN×K, we compute for its cumulative energy

𝒆 ∈ RK [31], where the 𝑘-th component 𝒆𝑘 corresponds to a viable
starting frequency 𝑘 (0 ≤ 𝑘 < K) and is computed as follows:

𝒆𝑘 =
∑︁𝑘+Q−1

𝑖=𝑘

∑︁N−1
𝑛=0
(𝑸𝑛,𝑖 )2 . (4)

Here, Q (< K) is a predefined frequency bandwidth; N is dimension-
ality of the MTS; and 𝑸𝑛,𝑖 , a scalar, is the amplitude of the 𝑖-th
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frequency component of the 𝑛-th dimension. We then identify the
starting position 𝑘′ ∈ (0, K) that yields the maximum cumulative
energy over the given bandwidth Q. Subsequently, we cut off Q con-
secutive frequency components starting from the 𝑘′-th frequency
component of 𝑸 :

𝑸 ′ = 𝑸 [0 : N ; 𝑘′ : 𝑘′ + Q] . (5)

As a result, 𝑸 ′ encompasses Q consecutive frequency components
that capture the most pronounced energy contributions.
(3) Inverse Real-valued FFT. The compressed frequency domain
representation 𝑸 ′ ∈ RN×Q is then transformed back to its time
domain using Equation 3. This yields a compressedMTS 𝑾̂ ∈ RN×P′ ,
where P′ = 2× (Q−1). As illustrated in the right part of Fig. 9, for an
original time series of length P = 480, the energy-based frequency
compressor retains a frequency bandwidth of Q = 41. This results in
a compressed time series of length P′ = 80. Through fftCompress,
the MTS is compressed from P to P′ in the temporal dimension.
This leads to a significant reduction in computational overhead for
the subsequent feature extraction while preserving essential signal
attributes and reducing noise.

A detailed assessment of the energy-based frequency compres-
sor’s impact, along with a comprehensive parameter sensitivity
analysis related to Q, can be found in the Appendix [1].

3.1.2 ddEM. Many DL-based approaches employ computation-
ally intensive modules for MTS feature extraction [24, 26, 34, 36].
While effective, these complex structures may capture redundantly
features that can be obtained efficiently using lightweight, tradi-
tional tools, thus incurring unnecessary computational costs. Time
series decomposition is a widely used technique for extracting
essential components like trend and seasonality. Recognizing its
significance, we introduce the Decomposed Dual-view Embedding
Module (ddEM), which features an innovative and lightweight ar-
chitecture that seamlessly combines time series decomposition with
a subsequent lightweight dual-view neural embedding module. It
facilitates the embedding of both trend and seasonality in MTS by
leveraging the strengths of both traditional and modern approaches.
(1) Decomposition of Compressed MTS. Studies [13, 38, 42]
show that time series data can be broken down into trend, seasonal,
and residual (noise) components. In our approach, we exclude the
residual component, as the prior fftCompress step has eliminated
noise. Thus, with the compressed MTS 𝒘̂ ∈ RN×P′ , we employ a
proven method, the moving average scheme [42], for decompos-
ing it into trend and seasonal components. This approach is well
recognized for its effectiveness in this context.
• The trend component tc ∈ RN×P′ is calculated using a moving

average kernel of size 𝜅, which is odd, as follows:

tc[𝑛, 𝑡] = 1
𝜅

∑︁(𝜅−1)/2
𝑖=−(𝜅−1)/2 𝒘̂ [𝑛, 𝑡 + 𝑖] . (6)

• The seasonal component sc ∈ RN×P′ is obtained by subtracting
the trend component tc from 𝒘̂ , formally, sc = 𝒘̂ − tc.

(2) Dual-view Embedding. Referring to Fig. 2, after decomposing
the signals into two distinct views, they undergo embedding using
lightweight networks. Both trend and seasonal views share identi-
cal embedding structures (1D convolution + max pooling + linear

embedding). The embeddings resulting from both views are fused
to create a compact MTS embedding.
Feature Projection Layer (no training). The trend and seasonal com-
ponents are projected into high-dimensional latent spaces using
1D convolution:

𝒉T = Conv1D(tc) 𝒉S = Conv1D(sc) . (7)

This step employs convolution feature maps to provide varying
perspectives on the signals. Notably, this projection module does
not require training. It has been proven effective in multiple MTS
classification studies [14, 15, 30]. The subsequent layers are trained
to extract features from each view. Additionally, a detailed parame-
ter sensitivity analysis regarding the dimensionality of these two
latent spaces can be found in the Appendix [1].
Linear Embedding Layer (trainable). A max pooling layer is used
to reduce dimensionality, thus enhancing computational efficiency
while highlighting the most informative features. Then, a linear
layer is applied to effectuate the embedding:

𝒛T = ReLU(Linear(MaxPooling1D(𝒉T);ΘT)), (8)

𝒛S = ReLU(Linear(MaxPooling1D(𝒉S);ΘS)), (9)

where 𝒛T ∈ RD and 𝒛S ∈ RD are the trend and seasonal embeddings
of size D, respectively. Trainable parametersΘT andΘS for Linear(·)
encompass weights and biases.
Fusion Layer (trainable). The embeddings from both views are con-
catenated and further transformed to generate the final MTS em-
bedding 𝒛 ∈ RD, providing a comprehensive representation that
captures inter-view relationships:

𝒛 = Linear(Concat(𝒛T, 𝒛S);Θ), (10)

where Θ is the corresponding trainable parameters. For a detailed
sensitivity analysis regarding the final embedding size D, refer to
the Appendix [1].

By employing fftCompress and ddEM, we avoid intricate neu-
ral networks and their computational demands. In the following
section, we introduce an innovative contrastive learning scheme
to ensure that the compact embedding structure preserves crucial
information effectively.

3.2 False Negative Cancellation Contrastive

Learning for Effective Embedding

As a technique used widely in the embedding stage of USD, con-
trastive learning [11] maximizes the similarity between similar
samples (so-called positive pairs), while minimizing it for dissimilar
ones (so-called negative pairs). However, false negative sampling

is a common issue: current approaches [17, 34, 36] involve randomly
sampling U distinct window groups from an MTS, each having V
consecutive windows (see Fig. 3) through a sliding window. With
this setup, each group is assumed to represent a unique state, with
positive sample pairs always being from the same group and neg-
ative sample pairs always being from different groups. However,
this setup can lead to a problem, where different groups inadver-
tently share the same state, causing samples from these groups to
be incorrectly regarded as negative pairs. In Fig. 3, the blue and
green windowed samples, which come from different groups, are
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Fig. 3: Overview ofLFNCC. Same-color windows belong to the

same group. The blue and green groups denote a pair of false
negatives; these are random selections labeled as negative

pairs, although they share the same state.

incorrectly classified as negative pairs. In reality, they belong to
the same state “walk” and should be considered as positive pairs.

We thus propose fnccLearning (False Negative Cancellation
Contrastive Learning), a novel approach that addresses this issue
with a unique similarity-based negative sampling scheme. By con-
sidering seasonal and trend embeddings, it can sample those gen-
uinely dissimilar negative pairs from the groups with low similarity,
enhancing MTS embedding effectiveness for USD. We proceed to
present the new sampling scheme, followed by the overall fnc-
cLearning loss.
(1) Similarity-based Negative Sampling. This scheme ensures
the selection of genuinely dissimilar negative pairs via a similarity-
based approach, evaluating seasonal and trend similarities for each
pair and retaining the least similar pairs. The process involves three
main steps:
Listing Possible Negative Pairs. Let U be the number of randomly
sampled window groups, each of which contains V consecutive
windows. A comprehensive set, J , is compiled encompassing all
conceivable pair combinations from a total of U groups, resulting
in U × (U − 1)/2 possible negative pairs.
Computing Similarities for Each Pair. For each pair (𝑖, 𝑗) ∈ J , we
compute seasonal (simS

𝑖, 𝑗
) and trend (simT

𝑖, 𝑗
) similarities using dot

products, capturing both seasonal patterns and evolving trends:

simS
𝑖, 𝑗 = (𝒅

𝑆
𝑖 )
⊤ · 𝒅𝑆𝑗 ; simT

𝑖, 𝑗 = (𝒅
𝑇
𝑖 )
⊤ · 𝒅𝑇𝑗 , (11)

where 𝒅𝑆𝑖 (resp. 𝒅𝑇𝑖 ) represent the centroid (i.e., average embedding)
of the seasonal embeddings 𝒛𝑆 (resp. trend embeddings 𝒛𝑇 ) of all V
consecutive windowed samples in the 𝑖-th window group.

The comprehensive similarity, sim𝑂
𝑖,𝑗
, for each pair (𝑖, 𝑗) is finally

computed as the product of the trend and seasonal similarities:

sim𝑂
𝑖,𝑗 = simT

𝑖, 𝑗 · sim
S
𝑖, 𝑗 (12)

Filtering True False Negative Pairs. The ⌊𝜆×|J |⌋ least similar pairs
based on sim𝑂

𝑖,𝑗
, with 𝜆 as a fraction parameter in (0, 1] (set to 0.5

by default), are selected to form the set J ′ of negative pairs.
(2) fnccLearning Loss. The following negative loss Lneg aims
to minimize the similarity between negative pairs from J ′:

Lneg =
1
|J ′ |

∑︁
(𝑖, 𝑗 ) ∈J′ − log(Sigmoid(−𝒅⊤𝑖 · 𝒅 𝑗 )), (13)

where 𝒅𝑖 refers to the centroid of the final embedding 𝒛 of all V
consecutive windowed samples in the 𝑖-th window group.

In Fig. 3, it is assumed that consecutive windowed samples from
the same group (indicated by the same color) share a uniform state.

Accordingly, the positive loss Lpos aims to maximize the similarity
between their embeddings:

Lpos = 1/M
U−1∑︁
𝑘=0

V−1∑︁
𝑖=0

V−1∑︁
𝑗=0, 𝑗<𝑖

− log(Sigmoid((𝒛𝑘,𝑖 )⊤ · (𝒛𝑘,𝑗 ))), (14)

where 𝒛𝑘,𝑖 represents the embedding of the 𝑖-th (0 ≤ 𝑖 < V) window
from the 𝑘-th (0 ≤ 𝑘 < U) group, and M =

U×V×(V−1)
2 is used for

normalization.
Ultimately, the fnccLearning aims to enhance the similarity

among positive pairs while diminishing the similarity among nega-
tive pairs. Thus, the fnccLearning loss is defined as the sum of its
positive and negative loss components:

LFNCC = Lpos + Lneg (15)

The two hyperparameters, U and V, directly impact the loss com-
putation, and the evaluation of their impact has been provided in
the Appendix [1].

3.3 Streaming USD with Adaptive Threshold
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Fig. 4: Saved overhead.

Upon obtaining the embed-
ding of each windowed sam-
ple, a clustering algorithm,
typically the Dirichlet Pro-
cess Gaussian Mixture Model
(DPGMM) [5], is traditionally
employed. However, current

methodologies often do not take into account the challenges of
real-world online streaming. In such scenarios, states tend to per-
sist, making clustering unnecessary for successive samples. To avoid
redundant clustering, we propose the Adaptive Threshold Detec-
tion (adaTD) mechanism that defers clustering until a new sample
shows low similarity (controlled by an adaptive threshold) to the
previous one. This ensures that clustering is invoked only when
needed, enhancing USD efficiency. Fig. 4 illustrates adaTD’s com-
putational savings compared to the classical “Always Clustering
Detection” (acD) mechanism.

The adaTD process is detailed in Algorithm 1. Specifically, to
gauge the temporal consistency between the current sample and its
predecessor, we employ the dot product to quantify the similarity
between their respective embeddings, 𝒛pre and 𝒛𝑡 :

sim(𝒛pre, 𝒛𝑡 ) = 𝒛⊤pre · 𝒛𝑡 . (16)

Then, this similarity value is compared to an adaptive threshold 𝜏 .
If the similarity is below this threshold, this indicates a likely state
transition, triggering clustering to identify the new state 𝑠𝑡 .

𝑠𝑡 ←
{
𝑠pre if sim(𝒛pre, 𝒛𝑡 ) ≥ 𝜏

Cluster(𝒛𝑡 ) otherwise
(17)

The overall adaTD process is outlined in Algorithm 1, where
the threshold 𝜏 adapts to the context of streaming MTS. Its tuning
is controlled by the computed similarity with two scaling factors
𝛿𝑖 and 𝛿𝑟 . When the similarity exceeds 𝜏 , it implies that the state
remains unchanged, prompting an increase in the threshold by the
scaling factor 𝛿𝑖 (line 10 in Algorithm 1), as the growing probability
of a state transition. Conversely, if the similarity falls below the
threshold, we hypothesize a state transition, prompting a clustering
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operation for confirmation (line 12). Upon verification (line 13), 𝜏 is
raised to act conservatively against the state transition (line 15). If
the transition is deemed false, the threshold is decreased to counter
overestimation from an excessively high threshold (line 16), and a
higher value of the scaling factor 𝛿𝑟 is selected to ensure a rapid
response to incorrect state transition hypotheses. Concurrently, a
reduced value for 𝛿𝑖 is preferred, particularly considering the prob-
ability of an impending state transition rises. Parameter sensitivity
study of 𝛿𝑟 and 𝛿𝑖 is reported in the Appendix [1].

In general, adaTD seamlessly incorporates a cost-effective sim-
ilarity metric tailored for streaming USD, significantly reducing
redundant clustering operations. Empirical evaluation in Section 4.4
confirms the efficacy of adaTD.

Algorithm 1 Adaptive Threshold Detection (adaTD)
Require: MTS stream 𝑿 , threshold 𝜏 , and scaling factors 𝛿𝑟 and 𝛿𝑖
Ensure: State 𝑠𝑡 for continuous time step 𝑡 on 𝑿
1: 𝑾0 ← 𝑿0:P−1 ⊲ sliding window sampling
2: 𝒛0 ← CompactEmbedding(𝑾0) ⊲ see Section 3.1
3: 𝑠0 ← Clustering(𝒛0) ⊲ DPGMM
4: 𝒛pre, 𝑠pre ← 𝒛0, 𝑠0 ⊲ initialize state
5: while obtaining updated 𝒙𝑡 from 𝑿 do

6: 𝑾𝑡 ← 𝑿𝑡−P+1:𝑡 ⊲ sliding window sampling
7: 𝒛𝑡 ← CompactEmbedding(𝑾𝑡 )
8: if sim(𝒛pre, 𝒛𝑡 ) ≥ 𝜏 then

9: 𝑠𝑡 ← 𝑠pre ⊲ keep current state
10: 𝜏 ← 𝜏 × (1 + 𝛿𝑖 ) ⊲ increase 𝜏
11: else

12: 𝑠𝑡 ← Clustering(𝒛𝑡 ) ⊲ acquire new state
13: if 𝑠𝑡 ≠ 𝑠pre then ⊲ verify state transition
14: 𝒛pre, 𝑠pre ← 𝒛𝑡 , 𝑠𝑡 ⊲ update state
15: 𝜏 ← 𝜏 × (1 + 𝛿𝑖 ) ⊲ increase 𝜏
16: else 𝜏 ← 𝜏 × (1 − 𝛿𝑟 ) ⊲ decrease 𝜏

4 EXPERIMENTS

4.1 Experimental Settings

The entire codebase, datasets, hyperparameter settings, and in-
structions are available at http://bit.ly/3rMFJVv. We trained the
DL models on a server with an NVIDIA Quadro RTX 8000 GPU.
For model inference, we employed an Intel Xeon Gold 5215 CPU
(2.50GHz). Additionally, we carried out a case study of MCU de-
ployment using an STM32H747 device [2]. Further implementation
details can be found in the Appendix [1].

Baselines. The following baselines are introduced. Baselines 1–3
employ the USD pipeline outlined in Section 2.1, while the remain-
ing ones do not. (1) HVGH [26] employs a variational autoencoder
for encoding MTS windows and utilizes the Hierarchical Dirichlet
Process (HDP) for clustering. (2) TICC [20] uses a correlation net-
work for encoding and adopts Toeplitz inverse covariance-based
clustering. (3) Time2State [36] employs a Temporal Convolutional
Network to encode MTS windows and utilizes the DPGMM for
clustering (as does E2Usd). (4) Autoplait [25] applies the Mini-
mum Description Length principle to segment the MTS and recur-
sively models each segment with the Hidden Markov Model. (5)
ClaSPTS_KMeans [16] identifies change points in an MTS using

multiple binary classifiers and employs KMeans [32] for segment
clustering. (6)HDP_HSMM [33] is a Bayesian non-parametric exten-
sion of the Hidden Semi-Markov Model that uses HDP to estimate
the number of states.
Datasets. For evaluations, we employ six datasets used in previous
studies [25, 36]. These include one synthetic dataset, Synthetic [36],
and five real-world datasets from diverse fields:MoCap, ActRecTut,
PAMAP2, and UscHad track various human activities [7, 25, 28, 43],
and UcrSeg covers MTS from applications such as insect research,
robotics, and energy [18]. Among these, PAMAP2 exhibits the
largest MTS lengths (ranging from 253k to 408k), while UcrSeg

has the shortest (varying between 2k and 40k). UscHad features
the largest number of states (12 in total), whereas UcrSeg has the
fewest, with up to 3 states. Notably, UcrSeg stands out as a univari-
ate times series dataset. A detailed description of the datasets is
available in the Appendix [1].
Metrics. We use the Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) to assess the detection accuracy, as does
prior research [36]. ARI quantifies the instance-wise consistency
between predicted and ground truth clusters by emphasizing clus-
tering granularity, while NMI measures the shared information
between ground truth and model clusterings. Furthermore, for eval-
uating detection efficiency, we present the Processing Time (PT),
which records the time in seconds required by each method to
process USD over a specific length of an MTS.

4.2 Overall Comparison

An overall comparison between E2Usd and the baselines across
the six datasets is listed in Table 1. The comparison is conducted
on an Intel CPU over the STM device due to higher computational
demands for the baselines that surpass the STM device’s capacity.
E2Usd consistently exhibits top-tier performance, achieving the
best or near-best ARI and NMI scores. Notably, E2Usd also exhibits
superior efficiency, as evidenced by consistently having the shortest
processing time (PT)2. Among the baselines, Time2State manifests
high performance at ARI, NMI, and PT formost datasets, positioning
itself as the strongest competitor to E2Usd. Later in this section,
a more detailed comparison between E2Usd and Time2State is
provided. Autoplait excels in the MoCap dataset—notable for
its shortest average MTS length—achieving the highest ARI and
NMI scores, albeit with longer PT. However, it struggles on other
datasets, particularly as it is unable to process the PAMAP2 dataset
(marked as ‘N/A’ in Table 1), which has the longest average MTS
length. ClaSPTS_KMeans achieves the top ARI and NMI scores
on the univariate UcrSeg dataset. However, its performance is not
competitive on other datasets of MTS.

Efficiency is crucial in real-world applications, especially with
large sequences or variable data volumes. Thus, we conduct ex-
periments over sequence lengths ranging from 40k to 400k, using
the Synthetic dataset. As illustrated in Fig. 5 (a), E2Usd exhibits
by far the lowest overall processing times throughout the tested
range of sequence lengths, from 0.52s for 40k to 1.71s for 400k. This
renders E2Usd ideally suited for real-world scenarios demanding
swift responses and the capacity to adapt to varying data volumes.

2Here, PT denotes the processing time in seconds for each method applied to a medium-
sized MTS (40k length) from the given dataset.
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Table 1: Overall comparison.

Method

Synthetic MoCap ActRecTut PAMAP2 UscHad UcrSeg

PT ARI NMI PT ARI NMI PT ARI NMI PT ARI NMI PT ARI NMI PT ARI NMI

HVGH [26] 27.53 0.0809 0.1606 25.98 0.0500 0.1523 26.17 0.0881 0.2088 24.06 0.0032 0.0374 25.42 0.0788 0.1883 26.74 0.0638 0.1451
HDP_HSMM [33] 51.24 0.6619 0.7798 55.48 0.5509 0.7230 56.57 0.6644 0.6473 52.10 0.2882 0.5338 53.43 0.4678 0.6839 49.38 0.1625 0.2574
TICC [20] 20.55 0.6242 0.7489 21.09 0.7218 0.7524 22.41 0.7839 0.7466 24.94 0.3008 0.5955 21.51 0.3947 0.7028 19.29 0.2325 0.2158
Autoplait [25] 73.80 0.0713 0.1307 76.59 0.8057 0.8289 257.94 0.0586 0.1418 N/A N/A N/A 103.09 0.2948 0.5413 19.48 0.0688 0.1035
ClaSPTS_KMeans [16] 33.34 0.2950 0.4480 35.17 0.5450 0.6763 91.59 0.2825 0.2309 74.41 0.1700 0.5830 48.01 0.5075 0.6940 8.44 0.5050 0.5035

Time2State [36] 2.30 0.8176 0.8407 2.37 0.7529 0.7584 2.85 0.7670 0.7407 2.66 0.3135 0.5905 2.44 0.6522 0.8126 2.19 0.4325 0.4429

E2Usd (Ours) 0.63 0.8843 0.8025 0.66 0.7896 0.7812 0.72 0.7909 0.7473 0.79 0.3345 0.6143 0.68 0.6833 0.8164 0.60 0.3678 0.4468
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Fig. 5: Efficiency comparison.

Table 2: Key metrics comparison: Time2State vs. E2Usd.

Metric Time2State E2Usd Acceleration

Total Params 82,218 2,764 29.7 ×
Trainable Params 82,218 684 120.2 ×
MACC (M) 5.01 0.06 83.5 ×
Peak Memory (MB) 11.44 0.05 228.8 ×

E2Usd vs. Time2State. We compare with the current SOTA
model Time2State on the Synthetic dataset. Both methods utilize
DL-based encoders and share the same clustering model, direct-
ing our focus primarily on the encoder component. As depicted
in Table 2, E2Usd outperforms Time2State significantly in terms of
computational and storage efficiency. To be precise, E2Usd requires
roughly 30 times fewer total parameters, 120 times fewer trainable
parameters, and reduces Multiply-ACCumulate (MACC) counts3
by an impressive 83.5 times. Moreover, its peak memory usage is
about a factor of 229 times smaller. All in all, these statistics provide
evidence of E2Usd’s strength in resource-constrained scenarios.

4.3 Component Study of E2Usd

This section evaluates the effectiveness and efficiency of E2Usd’s
proposed components. As shown in Section 4.2, E2Usd exhibits rel-
atively high consistency between ARI and NMI scores. Due to space
limit, we thus focus on reporting the ARI scores. The corresponding
NMI results are available in the Appendix [1].

4.3.1 Encoder. We compare our encoder (denoted as E2Usd) with
two variants: one without fftCompress (E2Usd w/o FFT) and the
other without Trend-Seasonal Decomposition of ddEM (E2Usd w/o
TSD). Besides, we include widely usedMTS encoders LSTM [17] and
TCN [36] for comparison. To maintain fairness, we only substitute
the encoder component of E2Usd with these alternatives, while
keeping all the other settings unchanged.
3The MACC count refers to the aggregate of multiply-accumulate operations in a
given algorithm, commonly used as a metric for computational complexity in DL.
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Fig. 6: Effectiveness comparison for component study.

We first examine the efficiency of all encoders using the setting
described in Section 4.2. Fig. 5 (b) reveals that E2Usd consistently
offers top-tier temporal efficiency, starting at a 0.52s PT for a 40k
sequence and only slightly increasing to 1.71s for a 400k sequence.
When comparing E2Usd to its variants, we observe that introduc-
ing TSD marginally increases PT but significantly boosts accuracy
(explained later). Conversely, integrating fftCompress leads to a
notable reduction in PT. Further, LSTM and TCN increase the pro-
cessing time substantially, with LSTM at 39.46s and TCN at 10.51s
for processing a 400k sequence.

Referring to the accuracy results reported in Fig. 6 (a), E2Usd
consistently outperforms its competitors across all datasets. No-
tably, the inclusion of fftCompress does not compromise accuracy,
owing to its noise reduction capability, while TSD significantly en-
hances accuracy (see E2Usd vs. E2Usd w/o TSD). When juxtaposed
with LSTM and TCN, E2Usd also demonstrates better performance.
One of the distinct advantages of E2Usd is its ability to clearly ex-
tract valid frequency and period trend information, which is crucial
for accurate clustering. While LSTM and TCN have their merits,
their black-box nature makes it uncertain whether they can effec-
tively capture this information as reliably as the trend-seasonal
decomposition feature of E2Usd.

4.3.2 fnccLearning Loss. We compare our proposed LFNCC with
SOTA loss functions, including Temporal Neighborhood Coding
(TNC) [34], Contrastive Predictive Coding (CPC) [24], and Latent
State Encoding (LSE) [36]. Besides, we include a variant of LFNCC,
LFNCC-SE, by constructing negative pairs using Samples’ Embed-
dings (SE), rather than employing the centroids (i.e., average em-
beddings) of these groups. As emphasized in existing studies, these
losses are encoder-agnostic [24, 34, 36]. To ensure fairness, we only
replace the loss function of E2Usd, following established research
conventions [36]. This setup ensures that any performance differ-
ences stem solely from the inherent qualities of the loss functions
themselves, rather than variations in encoder architectures.

Fig. 6 (b) shows that LFNCC consistently outperforms baselines
on all datasets.A key factor contributing to this robust performance
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is LFNCC’s effectiveness in minimizing false negatives, which leads
to a cluster-friendly latent embedding space and enhances accuracy.
Note that incorporating LFNCC does not compromise the efficiency,
as trained DL models remain loss-agnostic.

4.4 Efficacy of adaTD

We have empirically evaluated the performance of the Adaptive
Threshold Detection (adaTD) algorithm when applied to the pro-
cessing of streaming MTS data using the Synthetic dataset. We
simulate streaming scenarios by continuously feeding MTS data
to the model. Our assessment involved a comparison with two
baseline detection schemes: “Always Clustering Detection” (acD)
and “Static Threshold Detection” (sTD), with sTD(𝜏) representing
detection based on a fixed threshold value 𝜏 .

As depicted in Fig. 7 (a) and (b), adaTD demonstrates a well-
balanced trade-off between accuracy and efficiency. While acD
achieves slightly higher accuracy, adaTD excels significantly in
terms of efficiency. Furthermore, adaTD surpasses sTD across a
range of static thresholds in terms of accuracy while requiring fewer
clustering operations and maintaining competitive processing time.
Notably, when increasing the static thresholds in sTD (i.e., 𝜏 ranging
from 0.2 to 0.8), the detection accuracy improves and approaches
that of adaTD at 𝜏 = 0.8, However, this increase in 𝜏 is accompanied
by a decrease in efficiency, and even at 𝜏 = 0.4, it still falls short of
matching the efficiency of adaTD. This observation highlights the
superior adaptability of adaTD to variations in the similarity across
different states, thus ensuring efficient and accurate detection.
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Fig. 7: Comparative analysis of adaTD with acD and sTD.

4.5 Case Study on Resource-limited MCU

To assess the viability of deploying E2Usd on edge devices, we con-
ducted experiments using a commodity STM32H747 MCU on the
Synthetic dataset. Significantly, this device could not accommodate
other baseline methods due to their high demands on computation
and memory. The results reveal the following operational metrics
during the operational phase. The Flash memory consumption
amounts to 63.72 KB, a mere 3.11% of the available 2 MB. In terms
of RAM, it uses 73.27 KB, representing a modest 7.16% of the over-
all 1 MB capacity, signifying efficient memory utilization. Moreover,
the latency for processing each sample is 44.95 ms, which equates
to a detection frequency close to 20 Hz. When assuming a state
persists for 10 sampling intervals, E2Usd is capable of handling
streaming USD scenarios below 200 Hz, encompassing a wide range
of practical applications. These results constitute strong evidence
of the efficient resource utilization of E2Usd, underscoring its ap-
plicability in resource-limited scenarios.

5 RELATEDWORK

Unsupervised State Detection for MTS. Broadly, USD for MTS
can be categorized into two groups: those that follow the two-stage
pipeline outlined in Section 2.1 and those that deviate from it. Re-
search in the former category typically places its focus on the MTS
embedding stage. A notable example is HVGH [26], which employs
a variational autoencoder for MTS encoding and the Hierarchi-
cal Dirichlet Process for clustering. Besides, TICC [20] proposes
a novel correlation network based on Toeplitz inverse covariance
for MTS embedding. Recently, Time2State [36] introduced con-
trastive learning to enhance the learning of the embedding mod-
ule, but it faces challenges of computational overhead and false
negative samples, highlighting the need for efficient models for
resource-constrained devices like MCUs. In contrast to the two-
stage pipeline, methods like Autoplait [25], HDP_HSMM [33],
and ClaSPTS_KMeans [16] adhere to a one-stage framework but
encounter significant scalability and stability issues (see Fig. 5 (a)),
rendering them unsuitable for online usage.
Compact Unsupervised Representation Learning for MTS.

While numerous DL studies have explored unsupervised represen-
tation learning for MTS data, the majority of current research has
concentrated on innovating intricate structures to enhance rep-
resentation effectiveness [16, 20, 26, 36] but has not considered
developing compact models for this purpose. There are also studies
dedicated to compact DL models for MTS, offering techniques that
can be adapted for unsupervised MTS representation learning. For
example, the recent LightCTS [23] introduces compact architec-
tures and operators for MTS forecasting. Similarly, LightTS [8]
employs adaptive ensemble distillation to achieve a compact ar-
chitecture for MTS classification. However, these studies tend to
exclusively explore DL approaches, overlooking the traditional
methods that have been developed over the years, which often
exhibit a higher level of compactness compared to DL structures.

Recognizing this gap, E2Usd aims to take into account the nature
of MTS data, bridging traditional MTS representation techniques
and DL methods. The method leverages an FFT-based approach to
obtain a sparse representation of MTS data and then employs a de-
composed dual-view embedding module, which integrates classical
time series decomposition and a lightweight DL model to produce
the final embedding. This offers a promising avenue for compact
unsupervised MTS representation learning.

6 CONCLUSION AND FUTUREWORK

In this study, we present E2Usd, an efficient-yet-effectivemethod for
unsupervised MTS state detection. An extensive empirical study of-
fers detailed insight into the properties of the components of E2Usd,
including fftCompress, ddEM, and fnccLearning. Overall, E2Usd
achieves state-of-the-art accuracy and efficiency in diverse scenar-
ios. The incorporation of an Adaptive Threshold Detection (adaTD)
enables a harmonious balance between accuracy and computational
requirements, positioning E2Usd as the best choice for streaming
state detection. As we move forward, we aim to investigate the
false positive cases in fnccLearning and explore wider real-world
applications for E2Usd.
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7 APPENDIX

7.1 Dataset Description

We use five real-world datasets and one synthetic dataset for com-
prehensive evaluations:
• Synthetic [36]: It is a synthetic dataset, generated by the MTS

generator TSAGen [37].
• MoCap [25]: Derived from the CMU motion capture repository.

In this dataset, every motion is represented as a sequence of
hundreds of frames.

• ActRecTut [7]: This dataset involves two participants perform-
ing hand movements with height gestures in daily life and 3D
gestures while playing tennis.

• PAMAP2 [28]: Covering both basic (e.g., walking, sitting) and
composite human activities (e.g., soccer), this dataset features
data from eight individuals.

• UscHad [43]: This dataset encompasses 12 distinct human activ-
ities such as jumping and running, recorded for 14 individuals.

• UcrSeg [18]: This dataset encompasses diverse sources, including
medical fields, insect studies, robotics, and power demand data.
A summary of the statistics is provided in Table 3. Specifically,

the varying range denoted as 𝑥 − 𝑦 for the number of states, i.e.,
#(State), implies that an individual time series within the MTS can
encompass as few as 𝑥 states and as many as 𝑦 states. The same
applies to the length and state duration.

Table 3: Statistics of the datasets.

Dataset #(MTS) #(State) #(Variate) Length (k) State Duration (k)
∗

Synthetic 100 5 4 9.3-23.7 0.1-3.9
MoCap 9 5-8 4 4.6-10.6 0.4-2.0
ActRecTut 2 6 10 31.4-32.6 0.02-5.1
PAMAP2 10 11 9 253-408 2.0-40.3
UscHad 70 12 6 25.4-56.3 0.6-13.5
UcrSeg 32 2-3 1 2-40 1-25

∗The state duration is the range of continuous length of a state based on ground truth.

7.2 Implementation Details

Experiments were conducted on a server with an NVIDIA Quadro
RTX 8000 GPU and an Intel Xeon Gold 5215 CPU (2.50GHz). For
fftCompress in Section 3.1.1, the frequency bandwidth Q is set to
33 (see Equation (4) and Equation (5)). For ddEM in Section 3.1.2, 𝜅
in Equation (6) is set to 5, the dimension of the intermediate em-
beddings 𝒉T and 𝒉S (see Equation (7)), denoted as C, is set to 80 by
default, the random convolution kernel for Conv1D in Equation (7)
is set to 3, and the dimension of the final embedding 𝒛 in Equa-
tion (7), denoted as D is set to 4. The fnccLearning method used
U = 20 groups of windows (each with V = 4 neighboring windows)
and a fraction threshold 𝜆 of 0.5. Sliding window sizes were 128,
256, or 512, dataset-dependent, with step size B = 50. Adam opti-
mizer [22] was used with a learning rate of 0.003 for 20 epochs.
Lastly, AdaTD was configured with scaling factors 𝛿𝑖 = 0.08 and
𝛿𝑟 = 0.1 and initiated the threshold 𝜏 at a value of 1. The sensitivity
of various key parameters, including U, V, Q, D, C, 𝛿𝑖 , and 𝛿𝑟 are
reported later in this appendix.

The MCU deployment uses an STM32H747 device [2] with a 480
MHz Arm Cortex-M7 core, 2 MB Flash memory, and 1 MB RAM,
as presented in Fig. 8. The E2Usd model was converted to ONNX
format and translated to C code with X-CUBE-AI [3]. The C code

was compiled using an ARM-specific version of GCC to create an
executable binary.

Fig. 8: The STM32H747 device for model deployment.

7.3 Impact Assessment of the Energy-based

Frequency Compressor

To verify the effectiveness of the Energy-based Frequency Compres-
sor (EFC), we conduct fftCompress on the UcrSeg dataset using
various bandwidth values, denoted as Q = [120, 60, 40]. Referring
to Fig. 9, the top row showcases the original and reconstructed
waveforms within the native time domain. The middle row displays
their corresponding amplitude spectra, while the bottom row ex-
hibits the compressed waveforms. The original data is represented
in blue, the reconstructed versions in orange, and the compressed
versions in green.

Upon reverting the filtered frequency components to the original
time domain, we observe minimal distortion. Specifically, the Mean
Absolute Percentage Error (MAPE) is less than 5%, even though we
retain only a sixth of the original frequency domain representation.
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Fig. 9: Impact assessment of the Energy-based Frequency

Compressor on the performance of fftCompress.

7.4 Additional NMI Results for Component

Study

In Fig. 10, we present the NMI comparisons for both encoders and
losses. We note that the trends in NMIs are basically consistent with
the corresponding ARIs shown in Fig. 6. This observation further
substantiates the effectiveness of our proposed encoder and loss
components.
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Fig. 10: NMI comparison.

7.5 Parameter Sensitivity Study

We conduct a comprehensive parameter analysis using the ActRec-
Tut dataset, focusing on assessing how these key parameters affect
the ARI and NMI.

7.5.1 Impact of U and V in Negative Sampling. These two parame-
ters jointly contribute to the computation of LFNCC. More specifi-
cally, U designates the number of distinct window groups, whereas
V defines the number of consecutive windows within each group.
As shown in Fig. 11, altering V does not consistently influence ARI.
This unexpected result could be attributed to larger V values cap-
turing broader temporal scopes, thereby introducing false positives
due to state transitions. This implies that while increasing V appears
to be beneficial for capturing more data, it may inadvertently de-
grade performance. Conversely, ARI remains stable across a range
of U values, highlighting the robustness of E2Usd.

7.5.2 Impact of Frequency Bandwidth Q in fftCompress. This pa-
rameter Q serves as the size of the frequency bandwidth of Energy-
based Frequency Compression (EFC) on the fftCompress. It has
a direct bearing on the fftCompress’s compression rate. Fig. 12
exhibits two key trends. Lower Q values compromise ARI and NMI
due to aggressive data compression, causing the loss of essential
information. On the other hand, elevating Q leads to performance
plateaus or minor reductions, likely because of the introduction of
noise.
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Fig. 11: Impact of U and V.
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7.5.3 Impact of Intermediate Embedding Size C in ddEM. As illus-
trated in Fig. 13, enlarging the latent space dimensionality C gener-
ally boosts both ARI and NMI, peaking at C = 80. Further increases
in C result in diminishing returns and even minor performance
setbacks. Thus, by default, we set C to 80 for all the experiments.

7.5.4 Impact of Final Embedding Size D in ddEM. As demonstrated
in Fig. 14, increasing the embedding size D typically enhances ARI
and NMI metrics, with a peak performance observed at D = 4.
Beyond this value, the benefits of enlarging D decrease, and there

may even be slight performance deterioration. By default, we set
D = 4 in E2Usd.

20 40 60 80 100 120
 Latent Space Dimensionality C

0.73

0.74

0.75

0.76

0.77

0.78

0.79 ARI 
NMI

Fig. 13: Impact of C.
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Fig. 14: Impact of D.

7.5.5 Impact of 𝛿𝑖 and 𝛿𝑟 in adaTD. In E2Usd, the adaptability of
adaTD stems from its ability to adjust the threshold 𝜏 based on
the model’s response, which is directly influenced by the 𝛿𝑖

𝛿𝑟
ratio.

For our evaluation, we set 𝛿𝑟 = 0.1 and adjust the 𝛿𝑖
𝛿𝑟

ratio within a
range of 0.1 to 1.

As shown in Fig. 15, the effectiveness of adaTD improves in-
crementally with an increase in the 𝛿𝑖

𝛿𝑟
ratio. Remarkably, it nears

parity with the conventional “Always Clustering Detection” (acD)
approach when 𝛿𝑖

𝛿𝑟
= 0.8. This is achieved while executing notably

fewer clustering operations and maintaining a reduced average
processing time per window.
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