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Abstract
Text classification is an important problem with001
a wide range of applications in NLP. However,002
naturally occurring data is imbalanced which003
can induce biases when training classification004
models. In this work, we introduce a novel005
contrastive learning (CL) approach to help with006
imbalanced text classification task. CL has an007
inherent structure which pushes similar data008
closer in embedding space and vice versa us-009
ing data samples anchors. However, in tradi-010
tional CL methods text embeddings are used011
as anchors, which are scattered over the em-012
bedding space. We propose a CL approach013
which learns key anchors in the form of label014
embeddings and uses them as anchors. This015
allows our approach to bring the embeddings016
closer to their labels in the embedding space017
and divide the embedding space between la-018
bels in a fairer manner. We also introduce a019
novel method to improve the interpretability020
of our approach in a multi-class classification021
scenario. This approach learns the inter-class022
relationships during training which provide in-023
sight into the model decisions. Since our ap-024
proach is focused on dividing the embedding025
space between different labels we also exper-026
iment with hyperbolic embeddings since they027
have been proven successful in embedding hi-028
erarchical information. Our proposed method029
outperforms several state-of-the-art baselines030
by an average 11% F1. Our interpretable ap-031
proach highlights key data relationships and032
our experiments with hyperbolic embeddings033
give us important insights for future investiga-034
tions. We will release the implementation of035
our approach with the publication.036

1 Introduction037

A common way of approaching the text classifica-038

tion problem is training a model using pre-trained039

text embeddings as language features (Mikolov040

et al., 2013; Pennington et al., 2014; Devlin et al.,041

2018). These embeddings can be fine-tuned using042

the signals from an objective function to improve043
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Figure 1: SCL can cause the embeddings for positive
and negative sentiment text samples to be dispersed
together in the embedding space (right illustration). Our
approach in contrast utilizes the embedding space more
effectively (left illustration). This is also shown in the
form of Euclidean distance between embeddings of text
samples of opposite sentiment. Our approach embeds
these samples farther away from each than SCL in terms
of Euclidean distance: 13.2 vs. 3.2.

their efficacy for the classification task at hand. 044

However, a common impediment to training a ro- 045

bust classifier is the fact that naturally occurring 046

data is imbalanced. Since classifier predictions re- 047

flect the distribution of the training data, they can 048

induce bias. There are many approaches proposed 049

to address this issue, such as oversampling, under- 050

sampling, using weighted objective functions or us- 051

ing situation/domain specific methods to improve 052

the robustness of classification models (Chawla 053

et al., 2002a; Tahir et al., 2012). Our work focuses 054

on introducing a novel algorithm to deal with the 055

challenges of imbalanced data. 056

Recent research shows an increasing use of con- 057

trastive learning (CL) to solve different problems 058

in areas of computer vision and NLP (Gao et al., 059

2021a; Hénaff et al., 2019; Jaiswal et al., 2021). In 060

this work, we explore CL to address the problem of 061

imbalanced text classification. In general, CL uses 062

anchors to embed similar samples closer in the em- 063

bedding space while pushing dissimilar examples 064

away. Unsupervised CL (Tian et al., 2019) tries to 065
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contrast a data sample, called anchor, with every066

sample in the batch while supervised CL (SCL)067

(Khosla et al., 2020a) tries to utilize label informa-068

tion and embed samples from the same class as the069

anchor closer to each other. However, these CL070

approaches rely on utilizing data embeddings as071

anchors which are scattered over the embedding072

space. We hypothesize that label embeddings, rep-073

resenting a label category in the embedding space,074

can be utilized as key anchors in CL. This allows a075

model to embed data samples closer to their cate-076

gory representations and results in a model learning077

better embedding representations for the data. We078

present an illustration in the figure 1 where we com-079

pare how SCL divides embedding space in com-080

parison to our approach utilizing label embeddings081

in a binary classification task. This shows that our082

approach is able to achiever better class separa-083

tion between data belong to different labels. This084

is highlighted by the fact that distance between a085

positive and negative text embedding pair is larger086

when our approach is utilized in comparison to the087

SCL.088

Our proposed approach uses two embedding089

modules to embed text and labels individually090

which are fine-tuned using label-supervised CL091

(LSCL). The text embedding module utilizes a self-092

attention mechanism to make use of token-level093

relations while the label embedding module is an094

embedding layer. Both of these are fine-tuned using095

our proposed CL objective. In addition, we also096

experiment with hyperbolic embeddings, where097

pre-trained model (e.g. BERT), provides repre-098

sentations with hyperbolic structure (Chen et al.,099

2021). We show that our approach outperforms sev-100

eral SOTA and CL baselines in both Euclidean and101

hyperbolic spaces. Finally, we also try to improve102

the interpretability of our model by proposing a103

modification to our approach which allows it to104

represent inter-class relationships in an intuitive105

manner for a multi-class classification task. We106

structure our contributions in the following man-107

ner: section 2 focuses on related work, section 3108

highlights the background formulations on CL and109

section 4 details our approach. Section 5 presents110

generalization of our model to hyperbolic spaces,111

section 6 describes our experiment setup followed112

by the performance analysis in section 7. Finally,113

we conclude by presenting the limitations and con-114

clusion of our work.115

2 Related Work 116

Data imbalance is a common problem and clas- 117

sification literature has adopted a variety of ap- 118

proaches to deal with the biases it might introduce. 119

One of these ways is oversampling of less frequent 120

data. SMOTE is the first minority oversampling 121

method (Chawla et al., 2002b). Iglesias et al. (2013) 122

presents a hidden markov model which generates 123

data from minority distribution. Other works focus 124

on the use of oversampling on the basis of sample 125

difficulty (Tian et al., 2021). Song et al. (2016) 126

combines the SMOTE technique with a K-Means 127

based undersampling algorithm to try and improve 128

classifier performance on an imabalanced dataset. 129

Some methods undersample the majority class sam- 130

ples to create a balanced data distribution for the 131

training process. Smith et al. (2013); Anand et al. 132

(2010) both present methods which use a notion of 133

sample difficulty to undersample the majority class 134

samples. 135

Some works rely on weighing the objective func- 136

tion to deal with data imbalance. The idea is to in- 137

crease the loss contribution for the minority classes 138

during the training. Cao et al. (2019); Chen et al. 139

(2016); Park et al. (2021) each presents a different 140

way of weighing the label-specific loss. 141

There is a third class of works which tries to 142

introduce novel algorithms focused on the data 143

imbalance problem. These methods avoid induc- 144

ing biases that might arise because of distribution 145

changes in data. An example is (Gao et al., 2021c) 146

which introduces a convolution based algorithm to 147

handle the class imbalance problem in data. Our 148

work fits in this category as we explore the use of 149

label-supervised CL to address this problem. An- 150

other example is Díaz-Vico et al. (2018), which 151

uses cost-sensitive learning to regularize the poste- 152

rior distributions for a given sample. This relies on 153

domain specific information which can be hard to 154

obtain in realistic scenarios (Krawczyk, 2016). 155

Lately, contrastive learning is being used in a 156

variety of tasks due to its effective utilization of 157

embedding space. Kang et al. (2021) present KCL 158

which is a variation of SCL algorithm (Khosla et al., 159

2020b) and explores the use of contrastive learning 160

for learning balanced embedding spaces in the area 161

of computer vision. Lopez-Martin et al. (2022); 162

Zhang et al. (2022) present label-centered varia- 163

tions of CL methods but do not explore the data- 164

imbalance effects or the effect of computational 165

spaces on the model performance. 166
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Hyperbolic spaces are becoming well-known for167

their superiority in embedding hierarchical informa-168

tion like WordNet graphs (Nickel and Kiela, 2017,169

2018). This is because of their natural hierarchi-170

cal structure. We view the classification task as a171

sub-class of hierarchical problem where a label em-172

bedding represents a category and each data sample173

is near to its label embedding. This is why we try174

to assess the performance of our model in the hy-175

perbolic space as well. Another motivation for our176

work comes from Chen et al. (2021), which show177

that BERT embeddings contain hyperbolic struc-178

ture between tokens by probing BERT embedding179

in hyperbolic spaces.180

3 Contrastive Learning Overview181

Contrastive learning tries to embed similar samples182

closer in the embedding space by trying to make183

the samples closer to their anchors. Formally, CL184

can be expressed as (Tian et al., 2019; Khosla et al.,185

2020b):186

3.1 Contrastive Learning187

We can define {(t1, y1), (t2, y2), ..., (tN , yN )} =188

D as a dataset consisting of a set of text ti =189

{wi1, wi2, .., wisn} and label pairs yi, where sn is190

the length of the text sample ti and wij is the token191

representation corresponding to the jth token in the192

text sample ti. Given an embedding representation193

xi for the text sample ti, we can define contrastive194

learning objective L for mini-batches Bk ⊂ D of195

size bn as:196

−1

bn

∑
xi∈Xk

log
exp(sim(xi, x

+
i ))∑

xj∈{x+
i }∪A(i)

exp(sim(xi, xj))
(1)197

where sim is a similarity function (usually the dot198

product), A(i) = {xj |xj ̸= xi, xj ∈ Xk}, Xk199

is set of text representations in the mini-batch Bk200

and x+i is an augmented representation of the text201

sample ti. This objective causes a model to learn202

embedding for xi which are closer to its augmenta-203

tion and pushes it away from other examples in the204

mini-batch.205

4 Proposed Approach206

We propose a supervised CL approach which uses207

label embeddings as anchors and causes the model208

to learn representations which are closer to their209

respective label representations or key anchors in210

the embedding space. An architecture diagram211

for our approach, Label Supervised Contrastive212

Learning (LSCL), is presented in the figure 2 and 213

its formulation LLSCL is given as follows: 214

LLSCL =
1

bn

∑
xi∈Xk

−log
exp(sim(xi, li))∑

lj∈L exp(sim(xi, lj))

(2) 215

where L is the set of all label representations. This 216

approach embeds the text samples closer to their la- 217

bel embeddings in the embedding space. Labels for 218

each text embedding can be predicted by choosing 219

the label whose embedding is closest. 220

4.0.1 Increasing Interpretability Through 221

Learning Inter-Class Relationships 222

In a multi-class classification scenario, sometimes 223

label categories are related to each other, e.g. emo- 224

tions love and joy are likely to be expressed in 225

similar ways in many cases. In such cases it is 226

hard to interpret how model embedded certain text 227

samples in certain parts of the embedding space. 228

Considering this we modify our approach to learn 229

interpretable inter-class relationships, in form of 230

a weight matrix, so these could be used to high- 231

light the reasoning behind model decisions. This 232

variation LLSCL−W can be formulated as follows: 233

−1

bn

∑
xi∈Xk

log
exp(sim(xi, li))∑

lj∈L−li
wijexp(sim(xi, lj))

(3) 234

where wij ∈ W |L|∗|L| is a weight matrix we learn 235

during the training process and wij = 1 when i = 236

j. A problem here is that a learning method would 237

just take the weight matrix W to zero. To prevent 238

that, we add a Shanon Entropy (Shannon, 1948) 239

regularization term to the objective which ensure 240

that there is a relative difference in the magnitude of 241

weights so the new objective L′
LSCL−W becomes: 242

L′
LSCL−W = LLSCL−W + λH(Wi)

H(Wi) = −
∑

wij∈Wi

wij log(wij) (4) 243

where wij is the relation between labels li and lj . 244

The greater the weight the more difficult to separate 245

data belonging to these two labels which is why the 246

model assigns a higher weight to the contrastive 247

weight of these labels. The λ is a term between 248

0 and 1 to control the contribution of entropy ob- 249

jective. W is not symmetric because of the data 250

imbalance. 251

4.0.2 How Our Approach Helps with Data 252

Imbalance 253

Our approach tries to bring the data samples in the 254

closer to their respective labels and push the other 255
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Figure 2: A batch of utterances is passed through a self-attention encoder to obtain text embeddings. These
embeddings may be passed through an exponential map function to obtain embeddings in hyperbolic plane. Label
embeddings are obtained by passing the input labels through a label embedding layer. These label embeddings
are used as anchors in the CL objective which outputs loss signals for fine-tuning both the text encoder and label
embedding layer together.

label embeddings away. This creates a push-pull256

effect for data samples w.r.t to the label embed-257

dings. Both of these effects help improve the model258

performance. The data samples belonging to the259

majority class help improve the performance for260

the minority classes in this way as these samples261

push the minority label embeddings away as well262

while trying to get close to the their respective label263

embeddings.264

5 Generalization to Multiple265

Computational Spaces266

Hyperbolic models show great promise for embed-267

ding hierarchical or graph structures (Nickel and268

Kiela, 2017, 2018). Our CL approach treats the269

classification problem as a hierarchical task by try-270

ing to learn the embedding regions for their respec-271

tive labels. In addition, Chen et al. (2021) shows272

that pre-trained text embedding contain hyperbolic273

structure. Due to these reasons we explore the ef-274

fect of hyperbolic embeddings on our approach and275

show that these models perform competitively to276

their Euclidean counterparts and outperform all the277

baselines.278

5.1 Manifold Centric Label Embeddings279

We wanted to make use of the information encoded280

in the pre-trained textual representations and they281

are usually trained in Euclidean space. Due to this282

reason, we make use of hyperbolic exponential map283

to obtain hyperbolic textual embeddings. However, 284

label embeddings need not have any such restric- 285

tion so we embed the labels in a manifold specific 286

representation space. This entails that hyperbolic 287

versions of our approach embed labels directly in 288

the hypberbolic space so there is no need to use 289

exponential map to obtain label embeddings. 290

5.2 Notion of Similarity 291

Contrastive learning uses a measure of similarity 292

to embed similar examples closer to each other 293

in a higher dimensional space. We generalize the 294

notion of similarity between two vectors h and h′ 295

across Euclidean and hyperbolic manifolds, in an 296

intuitive manner, as follows: 297

simmanifold(h, h
′) = −dmanifold(h, h

′) (5) 298

where dmanifold represents the manifold specific 299

distance function. 300

5.2.1 Vector Similarity in Euclidean Space 301

Following the formulation specified above the sim- 302

ilarity function can be defined as: 303

simeucl(h, h
′) = −

∑
i<=d

√
(hi − h′

i)
2 (6) 304

5.2.2 Vector Similarity in Hyperbolic Space 305

For our hyperbolic model variation, we use Lorentz 306

formulation of Riemannian Manifolds because 307

(Nickel and Kiela, 2018) suggests that Loretnz for- 308

mulation of hyperbolic space is numerically stable 309
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compared to the Poincare’ formulation. The simi-310

larity function for the hyperbolic variation is thus311

given as:312

simlorentz(h, h
′) = −arcosh(− < h, h′ >L)

< h, h′ >L= −h0h
′
0 +

∑
1<=d

hih
′
i

(7)313

6 Experiment Setup314

We conduct experiments to compare the perfor-315

mance of our approach on two classification tasks316

with several baselines. In addition, we conduct317

experiments to compare the performance of our318

approach between hyperbolic and Euclidean em-319

beddings. We rely on 256 dimensional variation of320

BERT (Turc et al., 2019) to obtain the seed embed-321

dings for our text encoder.322

6.1 Datasets323

We rely on two datasets for the purpose of our eval-324

uation: 1) Amazon Reviews Sentiment Classifica-325

tion (Keung et al., 2020) 2) Twitter Emotion Clas-326

sification dataset1. We create a binary sentiment327

classification task from the former by splitting the328

the review ratings into positive and negative classes.329

Reviews with rating greater >=4 are categorized as330

positive and reviews with rating <=2 are considered331

negative. We induce a data imbalance of 9:1 for332

positive and negative classes respectively to obtain333

an imbalanced dataset containing a total of 15000334

reviews.335

Twitter emotion dataset is a multi-class data with336

six emotions: sadness, joy, love, anger, fear, sur-337

prise, contains a total of 20000 tweets and is natu-338

rally imbalanced. Class ratios for both datasets are339

given in the tables 1 and 2.340

6.2 Model Parameters341

Figure 2 shows the architecture of the text encoder342

we use for CL. We utilize a self-attention layer343

to embed the text embeddings. When we need to344

obtain the hyperbolic embeddings we utilize the345

exponential map operation to project the euclidean346

embeddings into the hyperbolic space. We seed347

our text embedding layer with BERT embeddings348

which improves the training time of the model dur-349

ing fine-tuning with CL. The right side of the archi-350

tecture diagram shows the label embeddings which351

are used to computer similarity with the text emeb-352

ddings. These embeddings are fine-tuned using the353

LSCL training objective shown in the section 4.354

1https://huggingface.co/datasets/emotion

We use a prefix of E or H to indicate whether the 355

model utilizes euclidean embeddings or hyperbolic 356

ones respectively. 357

When using euclidean embeddings we fine-tune 358

our model using the Adam optimizer (Kingma and 359

Ba, 2014) while we use Reimannian SGD2 to opti- 360

mize the hyperbolic weights as it relies on the ex- 361

ponential map to update the weights using Reiman- 362

nian gradients. Inspired from (Gao et al., 2021b), 363

we use a dropout layer (rate: 0.1) to obtain the 364

augmented representations when needed. We use 365

a learning rate of 10−3 for Adam and a learning 366

rate of 10−1 for Reimannian optimizer with a batch 367

size of 64. 368

6.3 Baselines 369

We compare our proposed approach with several 370

baselines. We divide the baselines in two groups: 371

1) SOTA baselines – baselines designed to help 372

with data imbalance in classification task; and 2) 373

CL baselines – baselines utilzing other versions of 374

contrastive. 375

6.3.1 Baselines for Imbalanced Classification 376

We use the following baselines to indicate the ad- 377

vantages of using a label-supervised CL approach 378

to deal with the problem of class imbalance in a 379

classification task. 380

SetConv: Gao et al. (2021c) presents a convolu- 381

tion based method to learn better representations 382

for the minority class samples. It utilizes a minor- 383

ity class representative as anchor to learn kernel 384

weights during the training process. 385

GILE: Pappas and Henderson (2019) uses joint 386

embeddings obtained using a dimension-wise prod- 387

uct of text and label embeddings. Their approach 388

uses a fully-connected layer to score these joint 389

embeddings and makes use of binary cross-entropy 390

objective to train the model. 391

BertGCN: Lin et al. (2021) treats the textual 392

data as a graph of token and document representa- 393

tions. The graph encodes token-level information 394

using measures like tf-idf and documents using 395

BERT representations. The approach utilizes a 396

graph convolution operation to obtain a vector rep- 397

resentation for a given text document. 398

6.3.2 Contrastive Learning Baselines 399

We utilize the following CL approaches to highlight 400

the advantages of utilizing our CL approach in a 401

2https://github.com/facebookresearch/poincare-
embeddings
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classification task.402

K-Contrastive Learning: Kang et al. (2021)403

presents KCL, a variation of supervised contrastive404

learning in the domain of computer vision which405

learns balanced features spaces. Instead of using406

batch data samples as positive and negative anchors407

their approach samples k samples for each class408

from training data.409

Supervised Contrastive Learning: SCL410

(Khosla et al., 2020a) is a CL approach which tries411

to contrast data samples from one class with data412

samples belonging to other classes while trying to413

bring the data samples from same classes closer to414

each other. As highlighted by the results presented415

below, this is a poor choice for imbalanced classi-416

fication as skew in data distribution will create a417

bias in favor of majority class data when the model418

tries to bring samples from same class together.419

7 Performance Analysis420

We evaluate the performance of our approach on421

two tasks: binary sentiment classification and multi-422

class emotion classification. Both tasks highlight423

different aspects of our approach as a binary clas-424

sification task with sufficient disparity in labels425

might be easier than a multi-class classification426

task which requires a model to learn inter-class re-427

lationships. For all our experiments, we measure428

the overall performance of a model using macro F1429

score average because it equally weighs the model430

performance of the minority classes; hence reflects431

effect of data imbalance. Our key insights are:432

• Our proposed CL approach is able to out-433

perform the baselines in both computational434

spaces as shown in the tables 1 and 2).435

• Euclidean version of our approach achieves436

the best overall performance as shown in the437

tables 1 and 2.438

• We can improve model-decision interpretabil-439

ity by learning inter-class relationship weights.440

This is highlighted in the figure 4.441

• Visualizing our approach in a 2-dimensional442

setting shows that hyperbolic version of our443

approach divides the embedding space fairly444

in the binary setting. This is highlighted in the445

figure 3.446

7.1 Baseline Performance Comparison447

We compare the performance of our approach with448

several contrastive learning and SOTA baselines449

Model Macro F1 Positive
Class F1

Negative
Class F1

Class Ratios 0.9 0.1
SOTA Baselines

SetConv 0.682 0.888 0.476
GILE 0.706 0.951 0.462

BertGCN 0.702 0.948 0.455
Contrastive Learning Baselines

SCL 0.594 0.95 0.237
KCL(k=5) 0.646 0.944 0.346

Our Approach
HLSCL 0.72 0.930 0.511
ELSCL 0.779 0.959 0.6

Table 1: This table shows the per class F1 scores
achieved by our model and their corresponding macro
averages on Amazon Reviews Sentiment classification
task. We show the results of both hyperbolic and eu-
clidean models. The bold numbers represent the best
performing model.

as stated in the section 6.3. In short, our approach 450

outperforms the best SOTA baseline by a margin of 451

7% and 14% in the tasks of binary sentiment clas- 452

sification and multi-class emotion classification, 453

respectively. These results are shown in the tables 454

1 and 2 respectively. In addition our approach does 455

not sacrifice the majority class performance for a 456

gain in minority class performance. This can be 457

observed in both the binary and multi-class classi- 458

fication settings as our model consistently outper- 459

forms all the baselines in both overall and per-class 460

performance, as highlighted in the table 1. 461

In the multi-class classification setting, the best 462

performing baseline for the minority emotion sur- 463

prise is BertGCN with a macro F1 of 38%. 464

Our approach utilizing hyperbolic embeddings 465

outperforms BertGCN by 7% in the minor class 466

while achieving better performance in the majority 467

classes – sadness and joy, as shown in the table 2. 468

Comparing the performance of our approach 469

with CL baselines in the tables 1 and 2, specially 470

SCL, shows the our approach to CL outperforms 471

the other approaches in the task of imbalanced text 472

classification. 473

7.2 Performance Comparison Among 474

Computational Spaces 475

As described earlier, our formulation of the clas- 476

sification problem inspires us to test the perfor- 477

mance of hyperbolic space embeddings in the tasks 478

of binary and multi-class text classification tasks. 479

In both cases, euclidean embeddings are better at 480

embedding the text samples in the hidden space. 481

However, hyperbolic variant of our approach still 482
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Model Macro F1 Sadness Joy Love Anger Fear Surprise
Class Ratios 0.292 0.335 0.0815 0.135 0.121 0.0357

SOTA Baselines
SetConv 0.361 0.425 0.469 0.297 0.314 0.378 0.283

GILE 0.401 0.607 0.675 0.242 0.42 0.325 0.138
BertGCN 0.554 0.712 0.778 0.330 0.571 0.55 0.383

Contrastive Learning Baselines
SCL 0.285 0.555 0.646 0.0523 0.213 0.243 0.0

KCL(k=5) 0.299 0.508 0.63 0.0971 0.219 0.295 0.047
Our Approach

HLSCL 0.621 0.757 0.774 0.553 0.597 0.595 0.451
ELSCL 0.695 0.793 0.836 0.611 0.704 0.637 0.591

Table 2: This table shows the per class and macro F1 scores achieved by our model on the task of emotion
classification. We present both the hyperbolic and euclidean versions of our approach. The best performance
numbers have been made bold.

outperforms all the baselines. This is evident from483

the results in the tables 1 and 2. In the case, of484

binary classification task, the highest performance485

difference between models in both spaces is minor,486

approximately 2% macro F1 score, but this differ-487

ence increases in the case of multi-class sentiment488

classification task to approximately 8% macro F1.489

This shows that Euclidean models are better at the490

task of imbalanced classification even though hy-491

perbolic models are effective classifiers.492

7.3 Analyzing Embedding Space493

We train our approach in both euclidean and hy-494

perbolic spaces with 2-dimensional embeddings to495

visualize how our approach divides the embedding496

space. We find that hyperbolic variation of our ap-497

proach divides the space more fairly between the498

minority and majority class in the binary classifi-499

cation case. This is interesting and may require500

further investigation in future work, as we fail to501

observe such a result when it comes to the multi-502

classification task. This could be because of data503

characteristics or may point to an innate trait of504

hyperbolic embeddings.505

7.4 Interpreting Model Decisions Using506

Inter-Class Relationships507

As described in the section 4, we proposed an ap-508

proach to make model decisions interpretable by509

learning the inter-class relationships in the form510

of weights between 0 and 1. We train a model511

with the weighted variation of our approach and512

results highlight that model tries to distance em-513

beddings which belong to similar emotions more514

than those belonging to different ones. This is ap-515

parent by looking at the weights in the figure 4516

which shows that relationship weight between the517

positive labels love and joy (0.540) is higher in con-518

trast to the weight between opposite ones joy and 519

sadness (0.186). Similarly, weight between cor- 520

related emotions like anger and surprise (0.447) 521

is higher than between emotions which are not 522

correlated like anger and love (0.0558). The is 523

interesting as this shows that model is capturing 524

the fact that some emotions even though not sim- 525

ilar are correlated. Another interesting insight is 526

that the relationship between non-opposite cate- 527

gories like anger and surprise or surprise and joy 528

are comparatively higher. This may point to an 529

interesting characteristic of the data and alludes 530

the fact that text expressing surprise can both be 531

positive or negative. These results highlight that, 532

along with improving interpretability, our approach 533

can be utilized to highlight data specific character- 534

istics and relationships. These may be used in data 535

modeling or adopting data specific approaches for 536

implementing practical solutions. 537

8 Limitations and Future Work 538

Our current approach is limited by the architecture 539

of the label embedding layer. In our current im- 540

plementation the label embeddings are obtained 541

using a simple embedding which is fine-tuned dur- 542

ing training along with text embedding module. 543

In future works, we should experiment with more 544

sophisticated ways to obtain label embeddings to 545

check if we can improve our approach further. 546

Our approach, specially with hyperbolic embed- 547

dings, may have applications in hierarchical classi- 548

fication tasks where classes have a hierarchy and re- 549

lationships between data samples and their classes 550

are more complex. Such a task may be able to bet- 551

ter utilize the natural structure of hyperbolic plane 552

more effectively. In addition, our hyperbolic mod- 553

els fall behind in performance to their Euclidean 554
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Figure 3: Space division by the 2-dimensional variation of our approach with negative text-samples. The figure
shows how our approach divides the embedding space when trained with hyperbolic vs. euclidean embeddings.
Rectangular space shows the normalized euclidean space while the circular shows a hyperbolic disk of poincare
radius=1.

Figure 4: Cells with darker red colors represent that
model learns to separate these pairs more.

counterparts so more investigation is needed into555

how can hyperbolic spaces be used to learn effec-556

tive classifiers.557

Another significant limitation of our approach,558

lie in the problem formulation. One powerful as-559

pect of CL approaches is that they do not need label560

information. However, we rely on the presence of561

label information in the corpus to learn label em-562

beddings. This may not always be possible. In the563

future, we may be able to combine our approach564

with traditional CL approaches. This will involve565

dividing the embedding space during pre-training566

in the first phase. Using the results from this pre-567

training, we may be able to obtain key anchors by568

averaging out the embeddings in a region. These569

key anchors may then be used in an approach simi-570

lar to ours to reduce noise in the CL training and571

better split the embedding space between different572

distributions in the data.573

Finally, weighted variation of our CL objective574

is successful in quantifying relationship between575

class pairs. This provides additional insight into576

how our model is making decisions and improves577

interpretability. It even helps decipher information578

which is not obvious without a detailed look at579

data, like relationship between correlated emotions.580

However, it does not help in improving the perfor- 581

mance. Investigation into how this information can 582

be used to learn better classifiers is another pos- 583

sible venue for future work. Similarly, using this 584

information to design data specific solutions for 585

deployment may offer another avenue for future 586

research. 587

9 Conclusion 588

We present a novel CL approach which uses label 589

embeddings as anchors for the task of imbalanced 590

text classification in both the binary and multi-class 591

classification settings. Our approach outperforms 592

several baselines by a margin of 7% in the binary 593

classification task and a margin of 15% in the multi- 594

class classification task. In addition, we extend our 595

approach to hyperbolic spaces, show its effective- 596

ness in the task of imbalanced data classification. 597

We also conduct a study of how our approach uti- 598

lizes embedding space and show that it may be 599

worth for future investigation that hyperbolic mod- 600

els divide the embedding space in a fairer manner 601

than euclidean couterparts. Finally, we present a 602

interpretable variation of our approach for multi- 603

class classification which helps us draw important 604

conclusions about data relationships. 605
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