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Abstract

It has been recently observed that a good embedding is all we need to solve many1

few-shot learning benchmarks. In addition, other work has strongly suggested2

that Model Agnostic Meta-Learning (MAML) mostly works via this same method3

– by learning a good embedding. This highlights our lack of understanding of4

what meta-learning algorithms are doing and when they work. In this work we5

provide empirical results that shed some light towards understanding meta-learning6

algorithms better. In particular we identify three interesting properties: 1) In7

contrast to previous work, we show that it is possible to define a family of synthetic8

benchmarks that result in a low degree of feature re-use – suggesting that current9

few-shot learning benchmarks might not have the properties needed for the success10

of meta-learning algorithms; 2) meta-overfitting occurs when the number of classes11

(or concepts) are finite, and this issue disappears once the task has an unbounded12

number of concepts (e.g. online learning); 3) more adaptation at meta-test time13

with MAML does not necessarily result in a significant representation change14

or even an improvement in meta-test performance – even when training on our15

proposed synthetic benchmarks. Finally, we suggest that, to understand meta-16

learning algorithms better, it is imperative that we go beyond tracking only absolute17

performance and in addition formally quantify the degree of meta-learning and18

track both metrics together. Reporting results in future work this way will help19

us identify the sources of meta-overfitting more accurately, and hopefully design20

more flexible meta-learning algorithms that learn beyond fixed feature re-use.21

1 Introduction22

Few-shot learning is a research challenge that assesses an artificial intelligence (AI) model’s capacity23

to quickly adapt to new tasks or new environments. This has been the leading area where AI24

researchers apply meta-learning algorithms - where a strategy that learns to learn quickly is likely to25

be the most promising. However, it was recently shown by Tian et al. [20] that a model that only has26

a good embedding is able to match and beat many modern sophisticated meta-learning algorithms. In27

addition, there seems to be growing evidence that this is a real phenomena [1, 3, 7, 13]. Furthermore,28

analysis of the representations learned by Model Agnostic Meta-Learning (MAML) [9] (on few-shot29

learning tasks) revealed that MAML mainly works by learning a feature that is re-usable for many30

tasks [19] – what we are calling a good embedding in this paper.31

These discoveries reveal a lack of understanding on when and why meta-learning algorithms work32

and are the main motivations for this work. In particular our contributions are:33

1. It is possible to define a synthetic task that results in lower degree of feature re-use, thus34

suggesting that current few-shot learning benchmarks might not have the properties needed35

for the success of meta-learning algorithms;36
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2. Meta-overfitting occurs when the number of classes (or concepts) are finite, and the issue37

disappears once the tasks have an unbounded number of concepts;38

3. More adaptation for MAML does not necessarily result in representations that change39

significantly or even perform better at meta-test time.40

2 Unified Framework for Studying Meta-Learning and Absolute41

Performance42

We propose that future work on meta-learning should not only report absolute performance, but also43

quantify and report the degree of meta-learning. In addition, for us to be able to understand and trust44

such a system, we need metrics that can diagnose basic issues, e.g. if the system is meta-overfitting45

– defined as when the system has a high degree of meta-learning coupled with a high gap between46

meta-train and meta-test errors.47

In this work, we make an important first step, inspired by [19], that defines the degree of meta-learning48

by measuring the normalized degree of change in the representation of a neural network nnθ after49

using meta-adaptation A:50

ML(nnθ) = Diff(nnθ, A(nnθ)). (1)

In this work we set ML(nnθ) to be distance based Canonical Correlation Analysis (dCCA) [17].51

Note that dCCA is simply 1 minus CCA to switch the similarity based metric to a difference based52

metric is between 0 and 1.53

3 Benchmarks that Require Meta-Learning54

3.1 Background55

Model-Agnostic Meta-Learning (MAML). The MAML algorithm [9] attempts to meta-learn an56

initialization of parameters for a neural network that is primed for quick gradient descent adaptation.57

It consists of two main optimization loops: 1) an outer loop used to prime the parameters for fast58

adaptation, and 2) an inner loop that does the fast adaptation. During meta-testing, only the inner59

loop is used to adapt the representation learned by the outer loop.60

Feature re-use. In the context of MAML, this term usually means that the inner loop provides little61

adaptation during meta-testing, when solving an unseen task. In particular, Raghu et al. [19] showed62

that MAML has little representation change as measured with CCA and CKA after adaptation, during63

meta-testing on the mini-ImageNet few-shot learning benchmark.64

3.2 Motivation for Our Work65

The analysis by Raghu et al. [19] showing that MAML works mainly by feature re-use is the66

main motivation for our work. However, we argue that their conclusion is highly dependent on67

the benchmark used. This motivates us to construct a different benchmark and show that by only68

constructing a different benchmark, we can exhibit lower degrees of feature re-use in a statistically69

significant way. Therefore, our goal will be to show a lower degree of feature re-use than them.70

In particular, their work [19] showed that the representation layer of a neural network trained with71

MAML had a dCCA of 0.1± 0.02 [19]. Therefore, our concrete goal will be to show that the dCCA72

on our task is greater than 0.12. If this is achieved, it is good evidence that this new benchmark73

benefits from meta-learning and can be detected at a higher degree than previous work [19] in a74

statistically significant way. This is our main result of this section and is discussed in detail in Section75

3.3.3.76

3.3 Synthetic Task that Requires Meta-learning77

3.3.1 Overview and Goal78

The main idea is to sample functions to be approximated, such that the final layer needs little or no79

adaptation but the feature layers require a large amount of adaptation. This type of task would forcibly80

require that the meta-learner at least learns a representation that needs the feature layers to change to81
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achieve good meta-test performance (i.e. it cannot rely solely on feature re-use). Therefore, to perform82

well, not only would it be good to adapt the representation layers, but additionally performance is83

likely to be obtained from a (meta-learned) initialization that is primed to changed flexibly. In other84

words, tasks must not all have the same shared representation to be solved for meta-learning to be85

most useful and detectable.86

3.3.2 Definition87

In this section we describe a family of benchmarks that exhibits detectable meta-learning and requires88

more than a re-usable representation layer to be solved. We propose a set of regression functions89

specified as a fully connected neural network (FCNN), such that the magnitude of parameters of the90

representation are larger than the head. In particular we sample the parameters of the representation91

layer from a Gaussian with a larger standard deviation, compared to the parameter sampling of the92

head. We define the representation layer to be the first L− 1 layers, and the head to be the final layer.93

Next we describe the process to sample one function (regression task) from a Gaussian distribution.94

We have two pairs of benchmark parameters [(µ(1), σ(1)), (µ(2), σ(2))]: (µ(1), σ(1)) to sample the95

parameters for the representation layer, and (µ(2), σ(2)) to sample the parameters for the final layer.96

Then each regression task f (t) (with index t) is sampled as follows:97

• Sample the representation parameters w(l) ∼ N(µ(1), σ(1)) for each layer l ∈ [L − 1] in98

the representation layers99

• Sample the final layer parameters w(L) ∼ N(µ(2), σ(2))100

The idea is that for some c ∈ R we have σ(1) > c · σ(2) such that the variance in tasks is due to101

the representation layers, and therefore adapting the representation layers is necessary. For all our102

experiments σ(2) = 1.0. An example task can be seen in Figure 1. During meta-training, points103

are uniformly sampled from [−1, 1], and the standard support set and query set are constructed by104

computing f (t)w (x).105

Figure 1: An example regression task constructed as described in Section 3.3.2. Addressing such
tasks requires high degree of meta-learning.

3.3.3 Results on Benchmarks that Require Meta-Learning106

In this section we show a higher degree of meta-learning and a lower degree of feature re-use from an107

initialization trained with MAML on the benchmarks described in Section 3.3.2. In particular we108

show this in Figure 2 because the dCCA value exhibited is much larger than 0.12 of previous work109

[19]. Most importantly, the results are statistically significant, because the error bars do not intersect110

with the red dotted line with (worst case) dCCA value of 0.12. The red dotted line is the top error111

band of previous work - i.e. the mean plus the standard deviation.112

Note that a dCCA higher than 0.12 was observed across all of our experiments in over sixteen different113

benchmarks. In particular this happened even in models that had meta-overfitted e.g. see Figure 3.114

This is strongly suggestive that the benchmarks we defined in Section 3.3.2 require meta-learning,115

since they do not solely rely on feature re-use to be solved.116
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Figure 2: Shows the of lack of feature re-use and a higher degree of meta-learning, as the standard
deviation of the representation layer σ(1) for generating regression. The x-axis is the standard
deviation (std) of the parameter σ(1) for generating the tasks for the data sets. The models used for
each point in the plot are models selected from early stopping (using the meta-validation MSE loss)
when meta-trained with MAML. The models are the same architecture as the target function (4 layers
fully connected neural network) with ReLU activation function. We also show the meta-validation
loss vs the standard deviation of the task. The dCCA was computed by from the average and standard
deviation over the representation layers, in this case the first three layers. The average is across
different runs using the same meta-learned initialization. The red dotted line shows the value of 0.12
that our models have to be statistically significant. The only difference of this figure with respect to
figure 3 is that we selected a model with the best validation here and in the figure 3 we selected the
model in last step.

4 Meta-Overfitting117

In this section, we show how being armed with the additional metric discussed in Section 2, we are118

able to identify an increasing gap between the meta-test and meta-train losses/accuracy – a term we119

refer to as meta-overfitting. In particular, this phenomena is observed when we meta-train models120

with MAML, and beceomes more pronounced as the number of iterations increases. We attribute121

this to the adaptation, because this increase in the meta-generalization gap is observed in conjunction122

to the low degree of feature re-use (as discussed in Section 3.3.3), and is most noticeable in our123

synthetic benchmarks compared to in mini-ImageNet [19]. Note that the dCCA of the models was124

much larger in our synthetic benchmarks than in mini-ImageNet. In addition, we show that if the125

number of regression tasks (in this case functions) is not fixed, then the meta-overfitting issue is no126

longer observed.127

4.1 Finite Number of Tasks128

When the number of regression tasks (functions) is finite (200 in our experiments), we consistently129

observe meta-overfitting. We show this in Figure 4 by increasing the meta-generalization gap (i.e. an130

increase in the difference between the meta-train and the meta-validation losses). This is consistently131

observed in over 30 experiments with a finite number of regression tasks.132

Furthermore, meta-overfitting is also observed in a few-shot image recognition benchmark. This is133

shown in Figure 5 with mini-ImageNet. With a Pytorch ResNet-18 model, one can observe a meta-134

generalization gap of about 30%. With a state-of-the-art ResNet-12 [20], the meta-generalization gap135

is instead about 20%.136
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Figure 3: This figure supports the main result of the paper because a higher degree of meta-learning
and a lack of feature re-use are present – even in models that are meta-overfitted. A meta-overfitted
model can be easily obtained in our experiments by selecting a model at the final iteration. The x-axis
is the standard deviation (std) of the parameter σ(1) for generating the tasks for the data sets. The
red dotted line shows the value of 0.12 that our models have to be above for statistically significant
results that support our claims. The only difference of this figure with respect to figure 2 is that we
selected a model in last step (after trough and it had meta-overfitted) while in in figure 2 we select the
model with lowest meta-validation loss.

4.2 Infinite Number of Tasks137

We believe it is important to highlight that meta-overfitting was not observed when the number of138

regression tasks is unbounded, as shown in Figure 6. This suggests that, when the number of tasks139

is unbounded but sampled from a related set of tasks, meta-learning algorithms can leverage their140

power to adapt without meta-overfitting.141

To measure the amount of meta-learning and the lack of feature re-use, we compute the dCCA value142

of the model as in Section 3.3.3 and observe a value of 0.31± 0.11. This also implies that the degree143

of meta-learning is higher when the number of tasks is unbounded.144

5 Effects of More Meta-Adaptation145

In this section, we show that increasing the number of inner steps for MAML during adaptation does146

not necessarily change the representation further as measured with dCCA (as in Equation 1). In147

addition, the meta-validation performance also does not change.148

To show this, we obtain a single neural network meta-trained with MAML using a dataset as described149

in Section 3.3.2. Then we plot how the representation changes and how the meta-validation error150

changes as a function of the inner steps. We show this in Figures 7 and 8. We observe that the MAML151

neural networks are robust to meta-overfitting with respect to the inner steps of its inner adaptation152

rule.153

Note that this is different from what was observed in Section 4.1, because that section shows it as a154

function of the meta iterations (what is sometimes called outer iterations). In addition, it is important155

to emphasize that the representation change in the plots is above the 0.12 compared to previous work156

[19], supporting the main results of section 3.3.3.157

6 Related Work158

Oh et al. [18] shows that one can encourage models to use less feature re-use purely algorithmically159

by setting the inner learning rate to zero for the final layer. They showed BOIL outperforms MAML160
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Figure 4: Shows meta-overfitting when the number of tasks (functions) is finite at 200 regression
tasks because the meta-validation loss increases as the meta-train loss decreases. In particular the
dCCA for this models was 0.36± 0.12 corresponding to σ(1) = 1.0. The plot is the learning curve
for a 4-layered fully connected neural network trained with MAML [9] using episodic meta-learning.
Note that we use a (large) meta-batch size of 75 to decrease the noise during training in the figure.
The main difference of this figure with figure 6 is that in this one has a finite set of tasks using our
synthetic benchmark while the other has an infinite set of tasks using the sinusoid tasks suggested in
[9].

Figure 5: Shows that meta-overfitting is a real phenomenon in mini-Imagenet. We interpret this due
to the peak in the meta-validation accuracy followed by a decline as the number of iterations increases.
Importantly, the meta-train accuracy continues to increase as it converges. The model trained is an
out-of-the-box PyTorch ResNet-18. Note that the higher noise of the meta-validation accuracy is due
to having a meta-batch size of 2 to speed up experiments. We smoothed the meta-validation curve
with a tensorboard smoothing weight of 0.8. We consistently saw that increases in meta-batch size
lead to decreases in noise in the learning curves but we didn’t re-run these experiments since it can
take up to a week to reproduce a episodic meta-learning run - even on a Quadro RTX 6000.

in both traditional few-shot learning (e.g. meta-trained on mini-ImageNet then meta-tested on mini-161

ImageNet) and cross-domain few-shot learning (meta-trained on mini-ImageNet then meta-tested162

on tiered ImageNet). In particular, their cross-domain few-shot learning is similar in spirit to the163

synthetic task we propose in section 3.3.2. However, note that we show that even MAML (and164

algorithm that has been shown to work by feature re-use [19, 18]) can exhibit large representation165

changes if it is trained solely on a task that requires large feature changes. Concisely, we encourage166

rapid learning by only changing the task while Oh et al [18] do encourage it by changing the algorithm167

itself.168

Guo el al.’s [11] work is similar to ours in that they focus on defining a benchmark more appropriate169

for meta-learning and transfer learning. They propose that meta-learning should be done in a fashion170

where the distribution of tasks sampled changes considerably when moving from meta-training171

to meta-evaluation. Our work is different in that we emphasize more that the meta-training tasks172

themselves need to have diversity to be able to encourage meta-learning. Although Guo et al.’s [11]173

meta-evaluation procedure is excellent, we believe - based on our results - that their benchmark won’t174
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Figure 6: Shows that meta-overfitting does not occur and perfect meta-generalization occurs when the
number of tasks (functions) is unbounded when training with MAML. In other words the meta-train
and meta-validation error are indistinguishable and decrease together as the meta-iterations increases.
The main difference of this figure with figure 4 is that in this one has a finite set of tasks using our
synthetic benchmark while the other has an infinite set of tasks using the sinusoid tasks suggested in
[9].

Figure 7: Shows 1) the lack of representation change and b) meta-validation change as the number
of inner steps increases. 1 is shown by the relative flatness of the blue and orange lines in the upper
plot. Similarly 2 is shown by the flatness of the green line in the lower plot. In particular notice that
we exponentially increase the inner steps from 1 to 2 to 32. The models used are 4 layered FCNN
tained with MAML with 1 inner step and 0.1 inner learning rate, selected using early stopping using
the meta-validation set with the Sigmoid activation function. The only difference of this figure with
figure 8 is that this figure uses a sigmoid activation and the other one uses a ReLU. Note that this is
the model used for figure 4. Note the dCCA value remains above 0.12 suggesting lower degree of
feature re-use.

have enough diversity to encourage large representation changes during meta-traning. However, we175

believe that combining our ideas and their’s to design one benchmark is a promising step for creating176

a better benchmark for meta-learning.177

Similar work by Triantafillou et al. [21] attempt to improve benchmarks by merging more data sets178

but we believe their data sets are not diverse enough to achieve this. In terms of methods our work179

is most similar to Raghu et al. [19], but they lack an analysis of the role of the tasks in explaining180

their observations. There is also other work [1, 3, 7, 13] that shows that a good representation is181
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Figure 8: Shows 1) the lack of representation change and b) meta-validation change as the number
of inner steps increases. 1 is shown by the relative flatness of the blue and orange lines in the upper
plot. Similarly, 2 is shown by the flatness of the green line in lower figure. We want to emphasize that
we exponentially increase the inner steps from 1 to 2 to 32. The models used are 4 layered FCNN
tained with MAML with 1 inner step and 0.1 inner learning rate, selected using early stopping using
the meta-validation set with the ReLU activation function. The only difference of this figure with
figure 7 is that this figure uses a ReLU activation and the other one uses a sigmoid. Note the dCCA
value remains above 0.12 suggesting lower degree of feature re-use.

sufficient to achieve a high meta-accuracy on modern few-shot learning tasks e.g. mini-Imagenet,182

tiered-Imagenet, Cifar FS, FC100, Omniglot, [20], which we hope to analyze in the future. We also183

believe in is imperative that a definition of meta-learning is developed and conned to the general184

intelligence. Chollet [4] takes this direction but to our understanding the proposed definition is mostly185

focused for program synthesis. We also hope that in the future a metric for AI safety is ubiquitously186

reported as suggested in Miranda et al. [15].187

7 Discussion188

We believe it’s exciting that by only changing the few shot learning benchmark one can consistently189

showed higher degrees of representation changes as measured by two different metrics. We believe190

this is the case because the meta-learning system has to be trained explicitly with a task that demands191

it to learn to adapt.192

An important discussion point is the lack of an authoritative definition for measuring meta-learning in193

our work and in the general literature. In particular in our work we decided to not report any results194

with CKA. We decided this because Ding et al [8] showed that it’s possible remove up to 97% of the195

principal components of the weights of a layer until CKA starts to detect it. Thus, we used dCCA196

which doesn’t have the problem. It instead has a higher variance but it’s easier to address this with197

experiment repetition sand error bars (which we did). However, we believe it would be interesting to198

use and extend Orthogonal Procrustes as suggest by [8] in future work.199

The most obvious gap in our work is a thorough analysis with a real world vision data set. We hope200

to repeat our work with the hinted extension in section 6 benchmarks as suggested in [11, 21].201

In addition, Figures 7, 8 shows that as the number of inner steps increases, the dCCA does not202

increase. This is somewhat surprising given the meta-overfitting results observed in section 4 and203

further experiments would be valuable.204
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8 Broader Impact205

8.1 Quantifying general intelligence through meta-learning206

There is valuable efforts that try to make benchmarks which require higher level cognition e.g. [22].207

An example of work that tries to quantify AGI and proposes a benchmark is [4]. We believe the208

second approach is likely to have more impact in the long run because it also deliberately quantifies209

general intelligence. We believe that suggesting benchmarks without clearly specifying the long term210

goal or measuring the metric we are trying to optimize is a suboptimal approach. However, we do211

believe grounding benchmarks on tasks that humans are able to perform is a good idea but suggest to212

augment these proposals with metrics and explicit discussions of general intelligence.213

Another approach we believe has high potential is program synthesis [2] and theorem proving [16, 5]214

because humans create higher abstractions that are composed and re-sue thus suggesting to meta-215

learning might be taking place. We believe that higher level cognition tasks are a challenging to216

assess meta-learning algorithms.217

8.2 Quantifying AI safety218

We also believe quantifying and tracking metrics for AI safety as early as possible is crucial. Few-shot219

learning is likely one of simplest - and arguably the atomic buildings blocks for general intelligence.220

We believe AI safety could be enriched if research community deliberately tracks, discusses and221

report it in all it’s research - especially in meta-learning research. For a brief discussion see [15].222

8.3 Summary of Broader Impact223

We hope that this discussion inspires the AI community - but especially the meta-learning research224

community - to always report their progress using, what Miranda et al. [15] call the "the big three":225

1) the score for absolute performance (to ensure usefulness) 2) the score for general skill acquisition226

(to ensure flexibility and general intelligence) and 3) the AI safety score (to ensure positive outcome).227
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(b) Did you include complete proofs of all theoretical results? [N/A]301

3. If you ran experiments...302
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(a) Did you include the code, data, and instructions needed to reproduce the main exper-303

imental results (either in the supplemental material or as a URL)? [No] We include304

hyperparms in the supp section. But are happy better instructions for reproducibility305

and the our weight and biases (wandb) repo with recordings of our runs etc and we are306

happy to make them available upon acceptance307

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they308

were chosen)? [No] Not every single detail but every details has been recorded and we309

are happy to make them available upon acceptance310

(c) Did you report error bars (e.g., with respect to the random seed after running experi-311

ments multiple times)? [Yes]312

(d) Did you include the total amount of compute and the type of resources used (e.g., type313

of GPUs, internal cluster, or cloud provider)? [Yes] More details in supp314

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...315

(a) If your work uses existing assets, did you cite the creators? [N/A]316

(b) Did you mention the license of the assets? [N/A]317

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]318

319

(d) Did you discuss whether and how consent was obtained from people whose data you’re320

using/curating? [N/A]321

(e) Did you discuss whether the data you are using/curating contains personally identifiable322

information or offensive content? [N/A]323

5. If you used crowdsourcing or conducted research with human subjects...324

(a) Did you include the full text of instructions given to participants and screenshots, if325

applicable? [N/A]326

(b) Did you describe any potential participant risks, with links to Institutional Review327

Board (IRB) approvals, if applicable? [N/A]328

(c) Did you include the estimated hourly wage paid to participants and the total amount329

spent on participant compensation? [N/A]330

A Supplementary Material331

A.1 Experimental and hyper-parameter details332

A.1.1 Details for experiments on our benchmark that requires more than feature re-use333

All models were trained on a CPU cluster with intel CPUs. All models were 4 layered FCNN. All334

models had batch-normalization and collected running statistics during meta-training but used batch335

statistics during training. MAML models for figure 2 and 3 had inner learning rate of 0.1 and 1336

inner step. One inner super was chosen to further emphasizes the feature re-use since it is the lowest337

inner step we can choose (nothing lower exists except 0 which doesn’t exhibit adaptation). Adam338

outer optimizer was used with learning rate 0.001 and default parameters. No learning schedulers339

were used but would be interesting to experiment with. Since there were 200 regression tasks, we340

trained the models with meta-epochs instead of meta-iterations. This means that we reported errors,341

losses etc. after all tasks were seen. Note that the input and target values were guaranteed to be342

novel because during meta-train and meta-testing we sample a function and generate data on the fly -343

similar to online learning. Note that this is very similar to how classification tasks for few-shot work344

(e.g. mini-Imagenet) because those tasks have a very limited number of image classes and thus results345

in highly correlated tasks. In addition, we showed how both exhibited similar meta-overfitting. For346

CCA value computation we used a query set size of 100 due to numerical issues with the Anatome347

library [12]. We did not use first order MAML. All models were trained until convergence with about348

200, 000 meta-epochs.349

For models with 8 and 7, we meta-trained with MAML but used 2 inner steps. The remaining350

hyperparameters remain the same. We did not use first order MAML.351
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A.1.2 Details for experiments on ResNet-18 meta-overfitting on mini-Imagenet352

The ResNet-18 is a standard out of the box ResNet-18 downloaded from PyTorch. We trained the353

models for 5, 000, 000 meta-iterations. We used 1 inner step with 0.1 inner learning rate. We used354

meta-batch size of 4 and 2 for meta-training and meta-testing respectively. We used an outer learning355

rate of 0.001 and Adam with default parameters. We did not use first order MAML.356

A.2 Role of Backbone on meta-accuracy357

In this section we describe the relation of the depth of a Pytorch ResNet model with the meta-test358

accuracy. The motivation for these experiments is that if we can close the gap on mini-Imagenet359

to over 90% by only increasing the back bone depth then this would provide strong evidence that360

such benchmarks really only need a good embedding. However, we discovered that for the ResNets361

used in [20] it seems that accuracy saturates at 80% (results not shown in paper) but when using the362

Pytorch models we see meta-overfitting and decreasing meta-test error 9. This suggests that even this363

simple scenario of few-shot learning still has still space for meta-learning to be a solution.364

Figure 9: Shows that as the backbone of the Pytorch ResNets increases to 152 the meta-accuracy
on mini-Imagenet decreases. These models were trained with supervised union training is in [20].
The meta-adaption algorithm used logistic regression and was adapted to convergence on the final
layer as in [20]. When using the Pytorch ResNet models instead of the special ResNets designed for
mini-imagenet [20] we observe see that the meta-accuracy decreases 9.

A.3 Analysis of meta-learned initialization365

In this section we an experiment where fix the ResNet18 meta-learned initialization and use the366

adaption that only adapts the final later as in [20]. The results in figure 10 are mixed but it is interesting367

to note MAML with no inner steps performs worse than a random neural network. This result is368

interesting because this is very similar to supervised pre-raining in that no meta-learner is present369

during training but instead of seeing all 64 images it sees 5 randomly (but uses no meta-learner).370
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We would have expected that the initialization obtained would have been equivalent to one with371

supervised pre-training. Since they are not it shows a MAML is at the very least capable of learning a372

representation that is invariant to concept permutation.373

Figure 10: Shows relation of meta-test accuracy with models with a different meta-learned initial-
ization. PT stands for Pre-trained on Imagenet. Not Pt stands for a random model. All models are
ResNet18s from PyTorch. SL 64 stands for supervised union pre-training on mini-imagenet using all
64 labels during meta-training. MAML0 stands for only using episodic meta-training (i.e. MAML
with zero inner steps). MAML1 (15) and MAML1 (100) stand for training using MAML with a
query set of size 15 to 100. The meta-adaptation is the same as in [20] (training logistic regression in
the final layer to convergence).

A.4 Training with zero number of inner steps374

We believe it is an interesting observation that MAML with 0 inner steps (MAML0) (i.e. only using375

episodic meta-training) resulted in very different meta-learned initialization compared to MAML with376

1 inner step (MAML1) on mini-Imagenet. Previous work observed that supervised pre-training [20]377

with all 64 images during meta-training results in a strong baseline. With this in mind it is natural to378

ask: what is the difference between seeing all 64 images during supervised pre-training or seeing only379

5 using episodic training? With this in mind we trained MAML0 and obtained a model that performs380

at chance. Figure 11 compares MAML0 with MAML1 to show that MAML0 obtains a model that381

has a very high meta-training loss. Additionally, figure 10 shows such an initialization performed382

even worse than random. This is surprising but it seems that meta-learned initialization with MAML1383

learn at least a model that is invariant to permutation of the order of the classes. Unfortunately, this384

result seems to only be reproducible in classification since training MAML0 in a synthetic regression385

task did converge to have model with low meta-train loss 12. This suggests future studies would be386

interesting to disentangle the casual factors.387
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Figure 11: Compares MAML0 (only episodic training) vs MAML1 (MAML with 1 inner step).
MAML0 remains close to chance with a high loss while MAML1 converges. This suggests MAML0
is not equivalent to supervised pre-training and that MAML1 does learns a representation that is
invariant to class order permutation.

A.5 Tips and tricks for episodic meta-training388

From our experiments we suggest the following (when episodic meta-training [9]):389

1. Use a large number of query examples e.g. greater than popular 15 (since they often speeds390

up convergence of the meta-learning algorithm).391

2. A large meta-batch size (since it’s important to be able to have a low level of noise when392

tracking the meta-validation error/loss for doing early stopping). We found empirically for393

75− 100 tasks to be a good meta-batch size.394

3. Episodic training as suggested in [9] is expensive and takes at least a week to train on mini-395

Imagenet on a Quadro RTX 6000 using torchmeta and higher [6, 10], so these suggestions396

are important.397

4. Experiments with synthetic data were run with CPU only.398

A.6 Future work399

A.6.1 Summary400

1. Defining a synthetic benchmark that is a classification problem that also requires meta-401

learning (or rapid learning with MAML).402

2. We also hope to construct a (real) benchmark from images that requires meta-learning.403

Formally, we propose a good start would be a benchmark were the probability of two task404

having the same class be small, otherwise we are more likely to see overfitting. Alterna-405

tively, a benchmark that requires the tasks to be different by at least requiring a different406

representation. We believe compositionality is an ideal benchmark since this would allow407

sophisticated re-use of lower level representations and simultaneously have an unbounded408

number of tasks. Humans are able to richly and flexibly cope with both. Additionally, it409

would be interesting to be able to quantify the distance between two different N-way, K-shot410

tasks to make these ideas more rigorous.411

3. An interesting benchmark with a large number of classes with real images is taking the412

union of many vision classification tasks and re-scaling all images to be of the size of413

mini-Imagenet.414

4. Plotting the meta-generalization gap (with a synthetic classification task) and demonstrate it415

decreases as the number of tasks increases would be interesting (note however we already416

have the limiting case when the number of tasks is unbounded and the meta-generalization417

gap is zero).418
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Figure 12: Shows MAML0 (only episodic training) getting zero meta-train loss (red curve) for a
synthetic regression task. This suggests that meta-learning in regression and classification might not
be enitrely equivalent. Note that meta-overfitting is still observed (purple curve). This is a regression
task so the blue curves can be ignored.

5. An interesting experiment would be to train a deep neural network with the episodic training419

(but without the MAML inner loop) but have an unbounded number of tasks and see if the420

test error keeps increases (or stays at chance as observed when this is done with mini-Imagent421

11).422

6. An interesting hypothesis to investigate is if meta-learning algorithms get representation423

that are optimal for their respective meta-learner (or adaptation rule). If this is true it means424

methods like [20] can be improved by making the entire pipeline differential and learning it425

end-to-end [14].426

7. Test meta-learning algorithms in domains were higher level cognition is required and thus427

compositionality is essential e.g. program synthesis [2] and theorem proving [16, 5].428

A.6.2 Proposal on Synthetic classification task that possibly require meta-learning429

Synthetic tasks that use classification instead of regression are not hard to define. Two possible430

alternatives are: 1) a mixture of Gaussians but the standard deviation controls the radius of limit431

of how far the classes can be from each other 2) another option is the similar as with a mixture of432

Gaussians but have the (vector) samples be weights of a Neural Networks (so that the goal is to433

identify from which Neural Network data is coming from)434

15


	Introduction
	Unified Framework for Studying Meta-Learning and Absolute Performance
	Benchmarks that Require Meta-Learning
	Background
	Motivation for Our Work
	Synthetic Task that Requires Meta-learning
	Overview and Goal
	Definition
	Results on Benchmarks that Require Meta-Learning


	Meta-Overfitting
	Finite Number of Tasks
	Infinite Number of Tasks

	Effects of More Meta-Adaptation
	Related Work
	Discussion
	Broader Impact
	Quantifying general intelligence through meta-learning
	Quantifying AI safety
	Summary of Broader Impact

	Supplementary Material
	Experimental and hyper-parameter details
	Details for experiments on our benchmark that requires more than feature re-use
	Details for experiments on ResNet-18 meta-overfitting on mini-Imagenet

	Role of Backbone on meta-accuracy
	Analysis of meta-learned initialization
	Training with zero number of inner steps
	Tips and tricks for episodic meta-training
	Future work
	Summary
	Proposal on Synthetic classification task that possibly require meta-learning



