Under review as a conference paper at ICLR 2026

VULCAN: CRAFTING COMPACT CLASS-SPECIFIC VI-
SION TRANSFORMERS FOR EDGE INTELLIGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Vision Transformers (ViTs) must often be compressed before they can be
deployed on resource-constrained edge devices. However, many edge devices
require only part of the all-classes knowledge of a pre-trained ViT in their corre-
sponding application scenarios. This is overlooked by existing compression meth-
ods. Lightweight models produced by these methods retain a substantial amount
of class-irrelevant knowledge and suffer suboptimal performance on target classes.
To address this, we analyze the knowledge distribution of ViT and reveal a knowl-
edge disentanglement within it: neurons in the feed-forward network (FFN) mod-
ules encode class-specific knowledge, while the multi-head attention (MHA) mod-
ules capture class-agnostic patterns. Building on this insight, we introduce Vulcan,
a pruning-oriented post-training method for deriving compact class-specific mod-
els from a pre-trained ViT under given resource budgets. Vulcan follows a novel
train-then-prune paradigm, which introduces redundancy into ViTs deliberately
by collapsing FFN neurons onto those with the highest class-specific activations
and by enforcing low-rankness in MHA weights. This design mitigates the irre-
versible knowledge loss of direct pruning, so that the post-trained model can be
compressed into a compact one with negligible performance loss. Notably, the
derived edge ViTs not only achieve significant reductions in size and computation
but also even surpass the original ViTs in performance on specific classes. Com-
prehensive experiments with five base ViTs covering three representative visual
tasks on four datasets demonstrate that Vulcan-derived ViTs outperform the base
ViTs on class-specific tasks by up to 15.12% in accuracy, with only 20%—-40%
of their sizes. Compared with state-of-the-art structured pruning methods, Vulcan
improves class-specific accuracy by up to 13.92%. Code is available at Vulcan.

1 INTRODUCTION

Vision Transformers (ViTs) have achieved remarkable success in diverse visual tasks, including
image recognition (Lu et al., 2025; Fixelle, 2025), object detection (Singh, 2023; Wang et al., 2025a),
and instance segmentation (Yang et al., 2022; Ravi et al., 2025). Recent advances largely come
from scaling up ViTs, which enhances their representation and generalization ability (Wang et al.,
2024; 2025b; Han et al., 2025). While such scaling trends have pushed performance boundaries on
various benchmarks, they inevitably result in ViTs that are computationally expensive and memory-
intensive (Papa et al., 2024; Saha & Xu, 2025). As a result, these oversized ViTs are typically
deployed on cloud servers with sufficient computing resources (Jiang et al., 2025).

As illustrated in Figure 1, cloud deployment often fails to guarantee real-time performance, security,
and reliability, while edge deployment can address these issues via local inference (Wen et al.,
2023; Liao et al., 2024; Ding et al., 2024; Bonazzi et al., 2025). This highlights the urgent need to
unlock the potential of ViTs on edge devices such as drones and autonomous vehicles through model
compression (Tuli & Jha, 2023; Ye et al., 2024). However, existing compression methods ignore
the fact that edge ViTs, i.e., ViTs deployed on edge devices, typically require only class-specific
knowledge in their own application scenarios, rather than the all-classes knowledge embedded in
large-scale pre-trained ViTs (Yao & Abdelzaher, 2023; Zhuang et al., 2024). For example, an in-
vehicle sensor tasked with recognizing traffic-related classes such as vehicles, street signs, and traffic
lights does not require knowledge about flowers or insects. The presence of irrelevant knowledge
distracts a model from focusing on target classes, leading to suboptimal performance. This raises

https://anonymous.4open.science/r/Vulcan-4CEB

Under review as a conference paper at ICLR 2026

Cloud Deployment Edge Deployment

__

Class-Specific Edge ViTs 1

Derivation

| [}
i : Base ViT All-Classes Knowledge) ! e O S]
1 : 1 f Base ViT : Tnsect B
' : Birds Insects : ' . nsects
' : : 1
3 1 3
P X P z
4 g p '
4 : p '
1 H Flowers Vehicles 1 4
H 1
' : — > 1 '
! : Data ! ! Model
1 B T 1 d
A .

2) Privacy leakage

Figure 1: Comparison between cloud and edge ViTs deployment. 1) Cloud Deployment: users
access models via cloud APIs, suffering from high latency, privacy risks, and poor reliability due
to communication and network dependence. 2) Edge Deployment: local inference reduces latency,
preserves privacy, and improves reliability. Class-specific models are provided for users.

a key question: how to derive compact class-specific edge ViTs from a general-purpose pre-trained
base ViT for lightweight deployment?

To address this question, we adopt structured pruning (Cheng et al., 2024), an edge-friendly tech-
nique (§2), for lightweight deployment. However, existing pruning methods (Zhang et al., 2024;
Sun et al., 2025) lack pruning strategies tailored to class specificity. Simply replacing calibration
datasets with class-specific data during pruning and retraining is insufficient, as it results in models
that still fail to focus on target classes. Moreover, these methods follow the conventional prune-then-
train paradigm, which often incurs irreversible knowledge loss, particularly at high pruning rates,
since pruned weights may be unimportant but not dispensable. More fundamentally, achieving class-
specific model derivation requires an understanding of how class-specific knowledge is distributed
across ViT modules—a question that remains largely unresolved, as existing interpretability studies
offer only limited insights (Choi et al., 2024; Li et al., 2025).

We investigated the knowledge distribution within ViTs (Geva et al., 2021; Dai et al., 2022) and
found a disentangled distribution: FFNs primarily encode interpretable class-specific knowledge,
while MHAS capture class-agnostic patterns. Building on this insight, this paper presents Vulcan, a
pruning-oriented post-training method that can derive compact class-specific ViTs from a pre-trained
ViT. Unlike conventional pruning methods, Vulcan follows a novel train-then-prune paradigm that
ensures near-lossless pruning after post-training and minimizes knowledge loss during model com-
pression. Specifically, Vulcan employs class-centric neuron collapse to aggregate FFN neurons
onto those with the highest activations, deliberately introducing redundancy while enabling class-
relevant neurons to dominate feature extraction. Meanwhile, Vulcan applies truncated nuclear-norm
regularization to enhance the low-rankness of projection matrices in MHA, enabling near-lossless
pruning via singular value decomposition (SVD). Given a specified resource budget (e.g., #Param,
GFLOPs), Vulcan integrates these two strategies under an augmented Lagrangian framework (Birgin
& Martinez, 2014) to derive edge ViTs. We summarize the key contributions of Vulcan as follows:

* We provide fundamental insights into the internal knowledge distribution of ViTs, revealing a
knowledge disentanglement where FFN modules encode class-specific knowledge while MHA
modules capture class-agnostic patterns.

* To the best of our knowledge, Vulcan is the first technique for deriving compact class-specific
ViTs. As a pruning-oriented post-training method, it is also the first to introduce the novel train-
then-prune compression paradigm, which minimizes knowledge loss during pruning.

» Extensive experiments with five base ViTs covering three typical visual tasks and four bench-
marks demonstrate that Vulcan-derived edge ViTs achieve significant reductions in model size
while outperforming both the base ViTs and models derived by state-of-the-art structured prun-
ing methods in class-specific performance.

Under review as a conference paper at ICLR 2026

Base ViT (3.1) A gAY !

Calculate #Clusters based on Activation

|
' L e T,
Transformer Block S wPerve : {a(m}@ > (KU
D ! & | g H -----
i
/o [= o
I i ' Weight-based Clustering
h
Lo v .
' K i

Post-Training ;.
Interpretability and Pruning e le

Analyses (3.2,3.3)

R E AEEEEE i ! Calculate Pruning
Rate based on Erank

o) o«
{EWGeho) 299 T3,

(3.4)

Low-Rank Structure

o) 4 43 1 09 Srinad i

wer. | (@ |

Original MHA
(L,h) X,
(Wi e Roxd}

1
'
i H
p : : Singular Value
: ! Decomposition (SVD)
'
' —

(Lh) _ pr(Lh)sa(Lh) gy (L)
W =Uy"8g" Vg

‘., ! v g
R R E

i V| wn = oy
REE e

o g
@XEX@ :“svn(ﬁxﬂ){

'
'

'

'

'

'

. Il

W&u.)’ € R, W[‘,’*")/ € R%p
i

'

'

e

Sub-Task Data Ds

Figure 2: Overview of Vulcan. 1) Class-Centric Neuron Collapse (CCNC): neurons in FFN modules
are clustered, and all neurons within a cluster collapse into the one with the highest activation for
the target classes. 2) Truncated Nuclear Norm Regularization (TNNR): low-rank structures are
introduced into matrices in MHA modules to support near-lossless SVD-based compression.

2 BACKGROUND AND RELATED WORK

Edge Model Deployment. Recently, a series of increasingly large ViTs have been developed (Zhai
et al., 2022; Dehghani et al., 2023; Wang et al., 2024), contrasting with the growing demand for
deploying models on edge devices for real-time responsiveness, privacy preservation, and reliable
service. To address this, several edge-friendly architectures have been proposed, such as Mobile-
ViT (Mehta & Rastegari, 2022), EfficientViT (Liu et al., 2023), and Flatten Transformer (Han et al.,
2023). While effective, these approaches rely on manual architecture design and require training
from scratch. Moreover, such specialized architectures do not naturally scale with the rapid advances
of large ViTs, limiting their ability to deliver increasingly powerful models for edge deployment. In
contrast, Vulcan focuses on deriving compact ViTs from a pre-trained base ViT, allowing edge ViTs
to inherit knowledge from the base ViT and enabling efficient model development.

Model Compression. Various compression methods enable edge deployment of ViTs, including
quantization (Choi & Kim, 2025; Zhong et al., 2025), knowledge distillation (Yang et al., 2024b;
Cao et al., 2025), as well as structured (Zhang et al., 2024; Sun et al., 2025) and unstructured prun-
ing (Chen et al., 2021; Liao et al., 2023). However, not all are edge-friendly (Appendix A). Quan-
tization and unstructured pruning typically rely on specialized infrastructure for acceleration, which
limits their applicability on diverse edge devices (Yang et al., 2024a; Cheng et al., 2024). Knowledge
distillation transfers knowledge only from the feature space, incurring substantial training cost (He
et al., 2025). In contrast, structured pruning extracts knowledge from the parameter space and yields
regularly shaped models that can be deployed across diverse edge devices, which serves as the
foundation of Vulcan. Different from the conventional prune-then-train paradigm, Vulcan follows a
train-then-prune paradigm that avoids irreversible knowledge loss caused by direct weight removal
and achieves near-lossless pruning. It is worth noting that Vulcan is orthogonal to other compression
techniques and can be seamlessly combined with them for even lighter deployment (Appendix J.8).

Interpretability of ViTs. Extensive research has investigated the interpretability of ViTs from dif-
ferent perspectives, such as attention visualization (Chefer et al., 2021; Choi et al., 2024), decision
pathways (Komorowski et al., 2023; Brinkmann et al., 2024), and robustness to perturbations (Fu
et al., 2022; Hu et al., 2024). However, the distribution of class-specific knowledge across different
modules of ViTs remains largely unexplored. This missing insight is particularly critical for sup-
porting class-specific model derivation, which is essential to meet the customized requirements of
edge users. In this paper, we shed light on this issue by providing an analysis of how class-specific
and class-agnostic knowledge are structurally disentangled within ViTs (§3.2-§3.3).

Under review as a conference paper at ICLR 2026

(a) n§1,1890) (b) n§3’790) © n§5,2891)) n§7’1430> @ n§9‘2154) () n§11,1644)
Figure 3: Top-25 activated images for random FFN neurons in DeiT-Base. (a)-(f) correspond to pat-

terns of cold color tones, vertical stripes, monotone backgrounds, grid textures, stacked objects, and
snakes, illustrating the strong interpretability of FFN neurons. See Appendix B for more examples.

3 VULCAN: CLASS-SPECIFIC MODEL DERIVATION

This section introduces Vulcan, a pruning-oriented post-training method for class-specific model
derivation. We begin with notations and preliminaries (§3.1), then detail two key components: class-
centric neuron collapse for FFNs (§3.2) and truncated nuclear norm regularization for MHASs (§3.3).
Finally, we introduce the post-training procedure and the pruning strategy for constructing compact
models from the post-trained base ViT (§3.4). An overview of Vulcan is illustrated in Figure 2.

3.1 NOTATIONS AND PRELIMINARIES

Vision Transformer. A ViT (Dosovitskiy, 2021) consists of a stack of Transformer blocks, each
containing an MHA and FEN module. Given a patch token sequence X € RV *? with N tokens and
embedding dimension d, each MHA head computes and aggregates contextualized representations:

LR T iar(Lh
Xwi™ wiEhxT
Va

where TV, l[h € Ruxd Whh) ¢ Rv*d and WS € R¥*™ are the query, key, value, and out-
put projection matrices for the h-th head in the [-th block. For simplicity, bias terms are omitted.
Following MHA, the FFN module applies a two-layer multi-layer perceptron:

H, H,
T T
MHA® (X) = 3~ At (X) = softmax ()XWt wEh @)
h=1 h=1

T T T L . .
FENO(X) = o (xXw{? g =3 (Xl e W3" (i) = 3o (Xni") @y @)
i=1 i=1
where W € Re*? and W{H € R*¢ are the FEN projection matrices in I-th block, o(-) is a

nonlinear activation (e.g., GELU), ngllg) € R% is the i-th neuron in Wl(‘l%, and ® is the outer product.

Sub-Task. Let M g be the pre-trained base ViT trained on Dy, for classes J = y1, ..., y|y|. Vulcan
aims to derive a compact class-specific edge ViT Mg from M g, specialized for a subset S C).
We refer to S as a sub-task of M g, and denote its corresponding dataset by Dgs.

3.2 CLASS-CENTRIC NEURON COLLAPSE FOR FFNs

Insight. As shown in Eq. (2), an FEN computes via weighted aggregation, where the activation of
each neuron n{"?) serves as weights and n"?) as values. Thus, activation magnitudes decisively de-
termine neuron contributions to FFN outputs. Inspired by the concept of “knowledge neurons” (Geva
etal., 2021; Dai et al., 2022), we conduct an activation-driven analysis on DeiT-Base (Touvron et al.,
2021). Specifically, for each neuron n{"»*), we sum its activations over all patch tokens for each image
in the ImageNet-1K validation set (Russakovsky et al., 2015), and visualize the top-25 images with
the highest activations to inspect what kind of knowledge is encoded in the neuron. Figure 3 shows
that these neurons exhibit remarkably strong human-recognized interpretability, with knowledge be-
coming more semantic in deeper blocks. For example, shallow neurons capture simple patterns such
as color tones, textures, or backgrounds, while deeper neurons specialize in semantic concepts such
as specific classes like snakes. This suggests that FFN modules serve as reservoirs of class-specific
knowledge, since different classes can be distinguished by shallow and semantic patterns.

Class-Centric Neuron Collapse (CCNC). Building on this insight, we propose CCNC to introduce
redundancy into the FFN intermediate dimension (e) for pruning. Given a sub-task S, Vulcan use D
to com_g)ute the activations al') = 3. o(X[i] - n{"¥)). Higher activation implies stronger relevance
of n{""? to target classes in S. To %uide the model to focus on class-specific knowledge, Vulcan

performs k-means clustering on n{"*) in each block based on their weights, and collapses all neurons

Under review as a conference paper at ICLR 2026

—s— Activation —s— Gradient Taylor Expansion —s— SVD QK Erank 1400

Query-Key Dimension Value-Output Dimension 700 WWm VO Erank
T2/50 (0.6) T2/50 (0.6) QK+VO Erank] »

|

T2/50 (0.8) T2/50 (0.8) Bl B2 B3 B4 B5 B6 B7 B8 B9 B0 BIl BI2

Figure 4: Comparison of accuracy between Figure 5: Effective rank (Erank) distribution of
SVD-based and score-based pruning for DeiT- QK and VO dimensions across different blocks
Base on ImageNet-1K. Tj/N(R) represents sub- of DeiT-Base. The QK/VO Erank represents the
task Tj (|Tj|=N) with pruning rate R. SVD out- sum of the Erank values across all heads in these
performs other methods by a significant margin. two dimensions for each block.

1300

o
8
3

1200

g
3

=
8
g
8
Effective Rank

1000 5

QK/VO Effective Rank
g
8

N
S
8

5
s

within the same cluster C ,gl) into the neuron with the highest activation dg) , termed the anchor neuron
ﬁg). As Figure 3 shows that neurons in different blocks specialize in distinct functions, Vulcan
avoids uniform pruning rates across all blocks (Appendix J.2). Instead, it adaptively determines the
number of clusters per block based on activation distribution and overall pruning rate R € (0, 1).
Formally, the number of clusters in the FFN of the [-th block K (1) is calculated as follows:

er L

L
KO = 211(@(“‘) > ®(AD, 1D ej) x R])), AD = | J{a?
=1

i=1 j=1

i=1,....a} 3

where ® (A, k) returns the k-th smallest element in set .A. To realize cluster-level collapse, Vulcan
enforces the weights or activations of all neurons within the same cluster to contract toward the
anchor neuron. This is achieved by introducing a collapse regularization term during post-training:

Lo KY e
Li) (1 (1 Li*) s Li
Comme =3 oy 0 S0 W60 o = = s

=1 k=1 i=1 i€f|C,]
where C{!) is the k-th cluster in the [-th block, and v{"?) denotes either the weight n{’*) or the
activation ag’l) of the 4-th neuron in C{"), with a unique choice applied in practice. Experiments
show that weight collapse converges faster and performs better than activation collapse (Figure 10).
Through Eq. (4), Vulcan guides the model to focus on class-specific knowledge and enables each
cluster to be represented by a single anchor neuron, which achieves effective compression of the FFN
modules. Appendix C further shows that CCNC can also be applied to other FFN architectures.

3.3 TRUNCATED NUCLEAR NORM REGULARIZATION FOR MHAS

Insight. For MHA, Vulcan prunes the query-key (QK: ¢) and value-output dimensions (VO: v), en-
forcing identical sizes across heads in each block (Appendix D). As shown in Eq. (1), the QK and VO
dimensions are intermediate dimensions of two matrix multiplications (i.e., W Wi, Wy W €
R¥*4) " indicating that they can be pruned through singular value decomposition (SVD). Surpris-
ingly, we observe that this data-free SVD-based method consistently outperforms data-independent
score-based pruning methods (Yu et al., 2018; Chen et al., 2021; Yang et al., 2023), as shown in
Figure 4. It suggests that effective compression of MHA can be achieved even when the sub-task
is unknown. This method-driven analysis indicates that the QK and VO dimensions in MHA store
class-agnostic knowledge. We provide a theoretical explanation for this observation in Appendix E.

Truncated Nuclear Norm Regularization (TNNR). To leverage SVD for near-lossless MHA prun-
ing, we propose TNNR to introduce low-rank structures into W) and W‘(/l’h), with their low-rank
properties shared by W}(l’h) and Wg’h), respectively. We use effective rank (Roy & Vetterli, 2007)
to measure the knowledge capacity of each attention head and observe that the knowledge in MHA
is also unevenly distributed across different blocks and dimensions, as shown in Figure 5. Based
on this observation, Vulcan adaptively determines the pruning rate Rg)K\vo for the QK and VO
dimensions according to the dimension-level effective ranks and the overall pruning rate R:

0
2r L R
RY._ o= LA R RO — : _—)
QK|VO l l ’ 7 i 1 l
YO Dk v St YrGgk +1v0) Tok + o

Under review as a conference paper at ICLR 2026

lh) 04
QK|VO Z EW, QK\VO E(W) = exp(— sz logpi), pi= m (6)

where Wil = Wg’h)TW}(l’h), Wb = W‘(}’h)TWél’h)T, (W) is the effective rank of matrix
W and o; is the i-th singular value of W. Then, Vulcan applies truncation to the nuclear norm of
Wél’h) and W‘(}’h) according to Eq. (5) and constructs a regularization term:

q1

L H;
ZZ DR Z W) g = la(1=RE) | v) = [u(1-RYp)] (D)

1 h=1 i:q{Jrl = v+1

where 08]’(/") is the i-th singular value of Wél‘{}) With Eq. (7), Vulcan effectively extracts class-
agnostic knowledge from the MHA and supports near-lossless pruning after post-training.

3.4 POST-TRAINING AND PRUNING

Objective. Vulcan post-training aims to focus the model on specific classes while introducing re-
dundancy in the three ViT dimensions (e, g, v) for pruning. Egs. (4) and (7) serve as redundancy
constraints that guide the compression process. To strictly enforce these constraints during post-
training, Vulcan uses the augmented Lagrangian framework to construct the final objective function.
Specifically, it extends Eqs. (4) and (7) into linear and quadratic functions, and introduces two learn-
able Lagrange multipliers A; and A2 to control convergence. The final loss function is as follows:

K(l) ‘C(Z)‘
(1,%) ~(1 1, (1
L= £T+ZK(l) Z Z ()‘) = o] + Xa (v)—y,g))2)
k=1 i=1
(8)
L H; q Lhi Lhi)2 v ha L2
X (el 20") + D (ol aao)
=1 h=1 \i=q;+1 i=v)+1

where Lt is the loss term for visual tasks, as well as A\; and \s are initialized to zero and updated
using gradient ascent with a penalty parameter p as the learning rate.

Pruning. After post-training, Vulcan can directly derive a compact class-specific edge ViT from the
post-trained base ViT with negligible performance loss (Appendlx Fand G). Spemﬁcally, the pruned
FFN module contains two new weights, W0 € RE"”*?and W' € R?>*K" which satisfy:

e
1’ ~ (1 1)’ 1,3
Wi = a, WV LK = D ey, ke (KO ©)
i=1

where ngé) denotes the neuron in W4 corresponding to ng’i). This process is essentially the
inverse of network expansion (Ding et al., 2023; Yao et al., 2024) and adheres to the function-
preserving principle (Chen et al., 2016). For the pruned MHA module, its four new weights,
WS }? € Ruxd , Wi n' e R xd ,and W&)" ¢ R9*¥I can be directly obtained through SVD:

l,h l,h l,h l,h l,h
Wy ! = USR L dI=SR Ll dl a)T < \Jd/a, Wi / = (VP L a)T (10)
I,h L,h I,h I,h I,h
W = U Pl ISSE T v olDT, WS = Vo] (11)

where Ugf})Eg’}é) Vél;?)T = Wg;’}) and U{ (45 V&Oh)T = W), 1t is worth noting that
conventional pruning methods remove weights based on importance scores, which may still discard
useful knowledge. In contrast, Vulcan ensures that the pruned weights are entirely redundant and do
not contain any valuable knowledge. Pseudocode is provided in Appendix K.

4 EXPERIMENTS AND ANALYSIS

Models and Datasets. We evaluate Vulcan on two widely adopted ViT families: DeiT-
Base/Small/Tiny (Touvron et al., 2021) and Fast/Mask R-CNN (Swin-T) (Liu et al., 2021). For
recognition tasks, we use ImageNet-1K (Russakovsky et al., 2015) and CIFAR-100/10 (Krizhevsky
et al., 2009); for detection and segmentation tasks, we use COCO (Lin et al., 2014). Sub-tasks of
varying scales are constructed by randomly sampling classes from each dataset.

Under review as a conference paper at ICLR 2026

Table 1: Overall performance of Vulcan and baselines on DeiT-Base with ImageNet-1K sub-tasks
of different sizes (25, 50, 100 classes) under pruning rates of 0.60 and 0.80. The best top-1 accuracy
(%) in each column is highlighted in bold, while the second best is underlined. ‘(FT)’ denotes
fine-tuning on the class-specific data. Results for other pruning rates are provided in Appendix J.1.

Method || TI/25 T2/25 T3/25 | Avg || T4/50 T5/50 T6/50 | Avg || T7/100 T8/100 T9/100 | Avg
DeiT-Base 7992 8256 80.67 | 81.05 || 8048 79.64 8496 | 81.69 || 8049 8412 7858 | 81.06
DeiT-Base (FT) || 9640 96.96 96.96 | 96.77 || 9500 9336 94.68 | 9435 || 91.56 9329 92.84 | 92.56
Random 91.76 9272 89.69 | 91.39 || 86.16 85.60 87.56 | 86.44 || 83.11 86.10 8042 | 8321
NViT 8391 87.2 85.62 | 8555 || 81.64 8120 8072 | 81.19 || 7831 8031 78.12 | 78.91
X-Pruner 91.68 93.04 9321 | 92.64 || 9024 8828 90.16 | 89.56 || 84.51 87.12 86.46 | 86.03
DC-ViT 7160 8328 7692 | 77.27 || 6948 6720 66.96 | 67.88 || 60.06 6498 6518 | 64.41
MDP 91.04 9480 92.09 | 92.64 || 9032 8500 91.16 | 88.83 || 82.61 8433 8286 | 83.27
Vulcan 95.04 9624 9553 | 95.60 || 92.16 91.72 9244 | 92.11 || 88.03 90.70 89.02 | 89.25
Random 7136 7848 8290 | 77.58 || 7192 71.16 7328 | 72.12 || 6528 67.71 6098 | 64.66
NViT 64.16 5800 6038 | 60.85 || 5276 53.44 49.04 | 5175 || 4156 47.62 4874 | 4597
X-Pruner 8560 86.00 85.62 | 85.74 || 7624 7400 7972 | 76.65 || 72.62 7674 7552 | 74.95
DC-ViT 5472 6624 6446 | 61.81 || 4752 5340 50.84 | 50.59 || 35.66 3512 3466 | 35.15
MDP 83.68 88.08 84.66 | 8547 || 74.04 7420 79.88 | 76.04 || 6172 6781 67.54 | 65.69
Vulcan 9224 9432 9257 | 93.04 || 8836 88.12 8852 | 88.33 || 81.82 8520 82.84 | 83.29

Implementations. GFLOPs is used as the metric to compute pruning rates. During post-training,
we set the batch size to 256, the learning rate to 10~%, the penalty parameter p to 1.0, and use the
AdamW for optimization. For CCNC, we apply z-score normalization to the activation values across
blocks before computing KV, Anchor neurons are updated per batch. To ensure that the derived
models can achieve accelerated inference on a wide range of edge devices, Vulcan aligns the pruned
dimensions to multiples of 8 (NVIDIA, 2023). See Appendix H for more details.

Baselines. We compare Vulcan with five state-of-the-art structured pruning methods: Random Prun-
ing (Gadhikar et al., 2023), NViT (Yang et al., 2023), X-Pruner (Yu & Xiang, 2023), DC-ViT (Zhang
et al., 2024), and MDP (Sun et al., 2025) (Appendix I). To ensure fairness, we retrain the models
pruned by these methods until they converge.

4.1 RESULTS Random - XPruner —e— MDP

NVIT —s— DC-VIT —e— Vulcan

Pruning Rate = 0.20 Pruning Rate = 0.40
T3125 T3125

Class-Agnostic vs. Class-Specific. We compare
class-agnostic and class-specific methods to high-
light the advantages of the latter. Baselines derive
class-agnostic models from DeiT-Base for all Im-
ageNet classes, while Vulcan derives class-specific
models tailored to the target sub-task S. Figure 6
shows that Vulcan consistently outperforms base- e T

lines in class-specific accuracy at the same prun- Figure 6: Comparison between class-agnostic
ing rate. This demonstrates Vulcan’s advantage in and class-specific model derivation. Tj/N rep-
meeting edge devices’ customized needs. resents sub-task Tj with /N random classes.

Overall Performance. For a fair comparison, we replace the calibration datasets originally used
by the baselines with the sub-task dataset Dg, which adapts them to the setting of class-specific
model derivation. As shown in Table 1, Vulcan-derived edge ViTs achieve up to 15.12% higher
accuracy than the base ViT and up to 13.92% over the models derived by state-of-the-art baselines
across different sub-tasks and pruning rates. At a pruning rate of 0.60, Vulcan improves accuracy by
11.05% over the base ViT, and surpasses the two best-performing baselines, X-Pruner and MDP, by
2.91% and 4.07%, respectively. Even at a high pruning rate of 0.80, where all methods suffer from
significant accuracy degradation, Vulcan still delivers strong performance, yielding improvements of
6.95%, 9.11%, and 12.49% over the base ViT, X-Pruner, and MDP, respectively. It can be seen that
the advantages of Vulcan become more pronounced as the pruning rate increases and the sub-task
size grows. Meanwhile, Vulcan is able to retain 97.63% and 93.30% of the accuracy of the fine-
tuned base ViT at pruning rates of 0.60 and 0.80, respectively. These results demonstrate Vulcan’s
strong capability to specialize models for target classes.

Generality Across Models and Datasets. To further validate the generality of Vulcan, we extend
our evaluation to different base models (DeiT-Small/Tiny and Fast/Mask R-CNN with Swin-T back-

Under review as a conference paper at ICLR 2026

CIFAR100: = T110 T2/25 T3/50 CIFAR10: —— T12 T2/5 T3/8 COCO: = Tijperson T2/car T3/cat

P —
/

8

8

Accuracy (%)
3

2
g

DeiT-Small DeiT-Tiny
0 20 40 60708090 0 20
Pruning Rate (%)

DeiT-Small DeiTTiny
0 20 40 60708090 0 20
Pruning Rate (%)

Fast R-CNN (Swin-T)
30 6070 80 90 0 20 40 60

Mask R-CNN (Swin-T)
70 60 80

40 6070 80 90 80 0 20
Pruning Rate (%)

Figure 7: Performance of edge ViTs derived by Vulcan across different base models and datasets.

Table 2: Comparison of computational efficiency between DeiT-Base and edge ViTs derived by
Vulcan under different R, evaluated on Jetson Orin NX (bz=1) and NVIDIA RTX 4090 (bz=256).

Latency (ms) Throughput (image/s) Memory (GB) #Param #FLOPs
Methods Orin NX RTX 4090 | OinNX RTX 4090 | OrinNX RTX4090 | (M) (©)
DeiT-Base || 4545 274.27 22.00 93339 | 034 221 | 8657 | 1757
Vulcan (0.20) || 36.84 (1.23x) 218.16 (1.26x) | 27.14 1173.43 0.27 2.14 67.22 | 13.56 (121.51%)
Vulcan (0.40) || 29.73 (1.53x) 176.01 (1.56x) | 33.63 1454.42 0.21 1.82 51.00 | 10.24 (141.72%)
Vulcan (0.60) || 21.81 (2.16X) 136.67 (2.01x) | 45.86 1873.11 0.15 1.66 3409 | 6.77 (161.47%)
Vulcan (0.80) || 15.06 (3.02x) 99.59 (2.75%) 66.41 2570.61 0.08 1.40 1696 | 3.26 (181.45%)

bone) and datasets (CIFAR-100/10 and COCO2017). As shown in Figure 7, for recognition tasks,
the derived edge ViTs consistently outperform the base ViT on sub-tasks when the pruning rate is
below 0.60. Even at pruning rates higher than 0.80, the accuracy of edge ViTs does not degrade
severely enough to make the models unusable. For some small-scale sub-tasks, edge ViTs even
significantly outperform the base ViT at pruning rates as high as 0.90. For detection and segmenta-
tion tasks, Vulcan also effectively extracts class-specific (i.e., person, car, and cat) knowledge from
Swin Transformer backbones and yields edge ViTs that rival the performance of the base ViT. See
Appendix J.4-J.6 for experiments on generalization, robustness, and open-domain adaptation.

Computational Efficiency. We evaluate the efficiency of edge ViTs derived by Vulcan on both a
representative edge device, Jetson Orin NX, and an NVIDIA RTX 4090. Considering that requests
typically arrive sequentially in real-time edge scenarios, whereas servers process requests in batches,
we use batch sizes of 1 and 256 to measure the speedup on Orin NX and RTX 4090, respectively. All
results are averaged over the models for nine sub-tasks listed in Table 1. As shown in Table 2, when
the pruning rate ranges from 0.20 to 0.80, Vulcan-derived models achieve 1.23x-3.02x speedup on
Orin NX and 1.26x-2.75x on RTX 4090, while reducing memory consumption by 20.59%-76.47%
and 3.17%-36.65%, respectively. See Appendix J.3 for comparisons with baselines.

4.2 ANALYSIS

We further analyze the effectiveness of Vulcan from multiple perspectives. Unless otherwise speci-
fied, all experiments are conducted on DeiT-Base at a pruning rate of 0.60, with the sub-tasks T1-T3
in Table | constructed by sampling classes from ImageNet-1K.

Understanding the Post-Training Process. We visualize the post-training process of Vulcan by
tracking 1) the accuracy of the derived edge ViT (Acc-Pruned) and the base ViT (Acc-Base) as well
as their accuracy gap (AAcc), and 2) the overall loss £ in Eq. (8). As shown in Figure 8, the post-
training process can be viewed as a gradual alignment between the edge ViT and the base ViT. At
the early stage, the task loss L1 dominates, leading to an improvement in the accuracy of the base
ViT. As the Lagrange multipliers \; 5 increase, the redundancy-enforcing losses Lcoiiapse and Lrank
begin to dominate. Consequently, the accuracy of the base ViT slightly decreases while that of the
edge ViT increases substantially. In the later stage, the two models converge, achieving equivalence.

Penalty Parameter p. As discussed in Section 3.4, the penalty parameter p, as the only hyperpa-
rameter of Vulcan, serves as the learning rate for updating A\; o. It determines when Lcgjiapse and
L nx dominate post-training and align edge ViTs with base ViT. However, Vulcan is largely insen-
sitive to p. As shown in Figure 9, when p is set to 0.1, 1.0, or 10.0, both the convergence speed and
the final accuracy of the edge ViT remain almost unchanged, which demonstrates the robustness of
Vulcan. We further analyze the effects of batch size and learning rate in Appendix J.7.

Weight vs. Activation Collapse. As discussed in Section 3.2, the term z/,(cl’i) in Leollapse €an be
defined in two ways: using the weight vector ng’i) (weight collapse) or the activation value ag’i)
(activation collapse). As shown in Figure 10, weight collapse achieves both faster convergence
and higher final accuracy compared to activation collapse. We attribute this to two main reasons:

Under review as a conference paper at ICLR 2026

S R S s S — Loss (R=0.6) B 7.064+05 —— Loss (R=0.8)

80 a0eros | 80 = 60ev0s{ || 80
s.0e+051 | |
—— Accpruned (R=0.8)

2 4.0e4+051 |
— 0. 2

a0 | BAcc (R=0.8) = 3.0e+05

Accuracy (%)
Loss
Accuracy (%)
Accuracy (%)

| | | 2.0e+05
20 100405 20 20 p=01
| 106405 —— p=10

o 0.0e+00- e s T 0 0.0e+00] | T - o — p=100

G 560 1000 1500 2000 2500 3000 6 500 1000 1500 2000 2500 3000 6 1000 2000 3000 4000 5000 6 1000 2000 3000 4000 5000 [1600 2000 3000
Step Step Step

Figure 8: Mean accuracy and loss curves with standard deviation bands on sub- Figure 9: Vul-
tasks T1/25, T2/25, and T3/25 when deriving models from DeiT-Base using can is insensitive
Vulcan at pruning rates 0.60 and 0.80. to the choice of p.

DR Table 3: Ablation study of Vulcan. At a prun-
—— ACoIL(T3) o0 = ing rate of 0.60, the edge ViTs derived from DeiT-
60 g Base for classes in sub-tasks T1-T3 exhibit sig-

—— W Coll.(T1)
W Coll.(T2)
W Coll.(T3)

03 nificant accuracy degradation when any of CCNC,
0 TNNR, or anchor neurons are removed.
1000 2 Setting || T125 T225 T3)25 | Avg
Step 209 5500 ! Vulean || 9504 9624 9553 | 95.60

3000 O

8.08 13.68 12.30 11.35 (184.25%)
79.36 81.60 77.38 79.45 (116.15%)
90.00 92.32 90.81 91.04 (14.56%)

Figure 10: Accuracy trajectories of derived edge =~ w/o CCNC
ViTs during post-training with weight collapse z;z ;ﬁ(‘fr
(W Coll.) and activation collapse (A Coll.).

1) weight collapse directly enforces equality among weights, which better aligns with the pruning
process of Vulcan; and 2) the Lconapse under activation collapse is smaller in magnitude, resulting in
weaker constraints. Moreover, we observe that simply increasing p does not alleviate this issue.

Ablation Study. Class-centric neuron collapse (CCNC) and truncated nuclear norm regularization
(TNNR) are Vulcan’s core components, responsible for extracting class-relevant knowledge from the
FFN and MHA modules, respectively. Table 3 summarizes their effectiveness. Removing CCNC
causes an 84.25% accuracy drop due to irreversible knowledge loss in the FFN. Without TNNR,
accuracy drops 16.15%, smaller since MHA matrices are inherently low-rank. We further compare
collapsing neurons toward the anchor neuron versus a random neuron within each cluster, and find
that the absence of anchor guidance leads to an average accuracy drop of 4.56%. These results
demonstrate that all designs in Vulcan are indispensable for effective class-specific model derivation.

Visualization. To further show that the models derived
by Vulcan indeed specialize in the target classes, we de-
rive an edge ViT Mg/ 4,45 from DeiT-Base at a pruning
rate of 0.60 for the Stanford Dogs (Khosla et al., 2011), a
subset of ImageNet consisting of 120 dog classes. Fol-
lowing the same procedure as Figure 3, we visualize
the 680 neurons in the last block of Mg /4,4, and iden-
tify 229 neurons specialized in recognizing dog-related

classes. Representative examples are shown in Figure 11. 8 calinll’ 000 & Ion FE R
This demonstrates Vulcan’s ability to effectively guide Figure 11: Dog-related neurons in the
the model toward target classes. last block of Vulcan-derived Mg /404s-

5 CONCLUSION

This paper presented Vulcan, a novel pruning-oriented post-training method that derives class-
specific models from pre-trained ViTs for deployment on edge devices. Motivated by the insight that
the FFN modules of ViTs primarily encode class-specific knowledge while the MHA modules cap-
ture class-agnostic patterns, Vulcan adopts a novel train-then-prune compression paradigm, lever-
aging class-centric neuron collapse and truncated nuclear norm regularization to introduce redun-
dancy into the FFN and MHA modules, respectively. This design allows Vulcan to derive compact
class-specific edge ViTs from the post-trained base ViTs under resource constraints with negligible
performance loss. Extensive experiments demonstrate its effectiveness, generality, and robustness.
In future work, we plan to extend Vulcan to large language models (LLMs), vision-language models
(VLMs), and multi-modal language models (MMLMs).

Under review as a conference paper at ICLR 2026

REFERENCES

Ernesto G Birgin and José Mario Martinez. Practical augmented Lagrangian methods for con-
strained optimization. SIAM, 2014. 2

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of Machine Learning and Systems, 2:129-146, 2020. 18

Pietro Bonazzi, Christian Vogt, Michael Jost, Lyes Khacef, Federico Paredes-Vallés, and Michele
Magno. Towards low-latency event-based obstacle avoidance on a fpga-drone. In [EEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4938-4946, 2025. 1

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative com-
ponents with random forests. In European Conference on Computer Vision, pp. 446—461, 2014.
27

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mech-
anistic analysis of a transformer trained on a symbolic multi-step reasoning task. Association for
Computational Linguistics, 2024. 3

Jiajun Cao, Yuan Zhang, Tao Huang, Ming Lu, Qizhe Zhang, Ruichuan An, Ningning Ma, and
Shanghang Zhang. Move-kd: Knowledge distillation for vims with mixture of visual encoders.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19846-19856, 2025.
3

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 782791, 2021. 3

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974-19988, 2021. 3, 5

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. International Conference on Learning Representations, 2016. 6

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024. 2, 3

John S Chipman. “proofs” and proofs of the eckart—young theorem. In Stochastic processes and
Sfunctional analysis, pp. 71-83. CRC Press, 2020. 19

Dahun Choi and Hyun Kim. GradQ-ViT: Robust and efficient gradient quantization for vision
transformers. In AAAI Conference on Artificial Intelligence, volume 39, pp. 16019-16027, 2025.
3

Hoyoung Choi, Seungwan Jin, and Kyungsik Han. Icev2: Interpretability, comprehensiveness, and
explainability in vision transformer. International Journal of Computer Vision, pp. 1-18, 2024.
2,3

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. In 60th Annual Meeting of the Association for Computational Linguistics,
pp- 8493-8502, 2022. 2, 4

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In Infernational conference on machine learning,
pp. 7480-7512. PMLR, 2023. 3

Ning Ding, Yehui Tang, Kai Han, Chao Xu, and Yunhe Wang. Network expansion for practical

training acceleration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20269-20279, 2023. 6

10

Under review as a conference paper at ICLR 2026

Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie Tang, Chengfei Lyu, and Guihai Chen. Enhancing
on-device llm inference with historical cloud-based llm interactions. In 30th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 597-608, 2024. 1

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
9rd International Conference on Learning Representations (ICLR 2021), 2021. 4

Joshua Fixelle. Hypergraph vision transformers: Images are more than nodes, more than edges. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9751-9761, 2025. 1

Yonggan Fu, Shunyao Zhang, Shang Wu, Cheng Wan, and Yingyan Lin. Patch-fool: Are vision
transformers always robust against adversarial perturbations? International Conference on Learn-
ing Representations, 2022. 3

Adbvait Harshal Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all
we need to start sparse. In International Conference on Machine Learning, pp. 10542—-10570.
PMLR, 2023. 7, 16

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Conference on Empirical Methods in Natural Language Processing, pp.
5484-5495, 2021. 2, 4

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vision
transformer using focused linear attention. In IEEE/CVF International Conference on Computer
Vision, pp. 5961-5971, 2023. 3

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15733-15744, 2025. 1

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015. 15

Changyi He, Yifu Ding, Jinyang Guo, Ruihao Gong, Haotong Qin, and Xianglong Liu. DA-KD:
Difficulty-aware knowledge distillation for efficient large language models. In Forty-second In-
ternational Conference on Machine Learning, 2025. 3

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In IEEE/CVF International Conference on Com-
puter Vision, pp. 8340-8349, 2021. 26

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015. 16

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. 9rd International
Conference on Learning Representations (ICLR 2021), 2021. 28

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. Improving interpretation
faithfulness for vision transformers. In International Conference on Machine Learning, 2024. 3

Linyi Jiang, Silvery D Fu, Yifei Zhu, and Bo Li. Janus: Collaborative vision transformer under
dynamic network environment. In IEEE INFOCOM 2025-1EEE Conference on Computer Com-
munications, pp. 1-10. IEEE, 2025. 1

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), volume 2, 2011. 9

Piotr Komorowski, Hubert Baniecki, and Przemyslaw Biecek. Towards evaluating explanations
of vision transformers for medical imaging. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3726-3732,2023. 3

11

Under review as a conference paper at ICLR 2026

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision Workshops, pp. 554-561,
2013. 27

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 6, 16

Ken Lang. Newsweeder: Learning to filter netnews. In International Conference on Machine
Learning, pp. 331-339. Elsevier, 1995. 26

Lu Li, Jiale Liu, Xingyu Ji, Maojun Wang, and Zeyu Zhang. Self-explainable graph transformer for
link sign prediction. In AAAI Conference on Artificial Intelligence, volume 39, pp. 12084—-12092,
2025. 2

Song Liao, Mohammed Aldeen, Jingwen Yan, Long Cheng, Xiapu Luo, Haipeng Cai, and Hongxin
Hu. Understanding gdpr non-compliance in privacy policies of alexa skills in european market-
places. In ACM Web Conference, pp. 1081-1091, 2024. 1

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In IEEE/CVF International Conference on Computer Vision,
pp. 1402-1406, 2023. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pp. 740-755. Springer, 2014. 6

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14420-14430, 2023. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 10012-10022, 2021. 6, 23

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 5rd International Con-
ference on Learning Representations (ICLR 2017), 2017. 22

Zhiying Lu, Chuanbin Liu, Xiaojun Chang, Yongdong Zhang, and Hongtao Xie. DHVT: Dynamic
hybrid vision transformer for small dataset recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2025. 1

Sachin Mehta and Mohammad Rastegari. MobileViT: Light-weight, general-purpose, and mobile-
friendly vision transformer. In International Conference on Learning Representations, 2022. 3

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for

resource efficient inference. In 5th International Conference on Learning Representations, 2019.
18

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number

of classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp.
722-729, 2008. 27

NVIDIA. Train with mixed precision, 2023. URL https://docs.nvidia.com/
deeplearning/performance/mixed-precision-training/index.html. 7

Lorenzo Papa, Paolo Russo, Irene Amerini, and Luping Zhou. A survey on efficient vision trans-
formers: algorithms, techniques, and performance benchmarking. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):7682-7700, 2024. 1

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham

Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. International Conference on Learning Representations, 2025. 1

12

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

Under review as a conference paper at ICLR 2026

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389-5400.
PMLR, 2019. 26

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In /5th
European Signal Processing Conference, pp. 606-610. IEEE, 2007. 5

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115:211-252, 2015. 4,6

Shaibal Saha and Lanyu Xu. Vision transformers on the edge: A comprehensive survey of model
compression and acceleration strategies. Neurocomputing, pp. 130417, 2025. 1

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. 17

Apoorv Singh. Training strategies for vision transformers for object detection. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 110-118, 2023. 1

Xinglong Sun, Barath Lakshmanan, Maying Shen, Shiyi Lan, Jingde Chen, and Jose M Alvarez.
MDP: Multidimensional vision model pruning with latency constraint. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20113-20123, 2025. 2, 3,7, 23

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347-10357, 2021. 4, 6, 15

Shikhar Tuli and Niraj K Jha. EdgeTran: Device-aware co-search of transformers for efficient
inference on mobile edge platforms. IEEE Transactions on Mobile Computing, 23(6):7012-7029,
2023. 1

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797-3820, 2014. 16

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(10):6761-6774, 2024. 1, 3

Xiao Wang, Yu Jin, Wentao Wu, Wei Zhang, Lin Zhu, Bo Jiang, and Yonghong Tian. Object detec-
tion using event camera: A moe heat conduction based detector and a new benchmark dataset. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 29321-29330, 2025a. 1

Zhaoqing Wang, Xiaobo Xia, Runnan Chen, Dongdong Yu, Changhu Wang, Mingming Gong, and
Tongliang Liu. Lavin-dit: Large vision diffusion transformer. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 20060-20070, 2025b. 1

Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang, Yaqin Zhang,
and Yunxin Liu. AdaptiveNet: Post-deployment neural architecture adaptation for diverse edge
environments. In 29th Annual International Conference on Mobile Computing and Networking,
pp. 1-17,2023. 1

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kai Jun Teh, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with int8 data flow and per-block quantization. International
Conference on Machine Learning, 2024. 15

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18547-18557, 2023. 5,7, 18, 23

Shusheng Yang, Xinggang Wang, Yu Li, Yuxin Fang, Jiemin Fang, Wenyu Liu, Xun Zhao, and Ying

Shan. Temporally efficient vision transformer for video instance segmentation. In /EEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2885-2895, 2022. 1

13

Under review as a conference paper at ICLR 2026

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
Conference on Empirical Methods in Natural Language Processing, 2024a. 3

Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. ViTKD: Feature-based
knowledge distillation for vision transformers. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1379—1388, 2024b. 3

Shuochao Yao and Tarek Abdelzaher. Model compression for edge computing. In Artificial Intelli-
gence for Edge Computing, pp. 153-195. Springer, 2023. 1

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. International Conference on Learning Representations, 2024. 6

Shengyuan Ye, Jiangsu Du, Liekang Zeng, Wenzhong Ou, Xiaowen Chu, Yutong Lu, and Xu Chen.
Galaxy: A resource-efficient collaborative edge ai system for in-situ transformer inference. In
IEEE INFOCOM 2024-IEEE Conference on Computer Communications, pp. 1001-1010. IEEE,
2024. 1

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 24355-24363, 2023. 7, 23

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194-9203, 2018. 5

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104-12113, 2022.
3

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few
samples. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15825—
15834, 2024. 2,3,7,23

Yunshan Zhong, You Huang, Jiawei Hu, Yuxin Zhang, and Rongrong Ji. Towards accurate post-
training quantization of vision transformers via error reduction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2025. 3

Yan Zhuang, Zhenzhe Zheng, Yunfeng Shao, Bingshuai Li, Fan Wu, and Guihai Chen. Nebula: An
edge-cloud collaborative learning framework for dynamic edge environments. In 53rd Interna-
tional Conference on Parallel Processing, pp. 782-791, 2024. 1

14

Under review as a conference paper at ICLR 2026

A COMPARISON OF MODEL COMPRESSION TECHNIQUES

Quantization and Unstructured Pruning. As discussed in Section 2, quantization and unstruc-
tured pruning cannot deliver practical acceleration on edge devices without specialized hardware
or software support. To empirically validate this point, we conduct experiments on Jetson Orin
NX, a widely used embedded device in robotics, industrial inspection, and autonomous driving.
Specifically, we apply INT8 quantization (Xi et al., 2024) and magnitude pruning (Han et al., 2015)
as representative techniques of quantization and unstructured pruning, respectively, on DeiT-Base,
DeiT-Small, and DeiT-Tiny (Touvron et al., 2021). We then measure inference latency with a batch
size of 1, since edge devices are typically deployed in real-time scenarios where inputs arrive se-
quentially. As shown in Table 4, INT8-quantized models cannot be executed on the GPU of Jetson
Orin NX due to the lack of INTS8 support, and are instead forced to run on the CPU, which results in
significantly slower inference compared to the original base ViTs. For magnitude pruning, although
the pruned models can still run on the GPU, the parameter count remains unchanged, leading to vir-
tually no difference in inference latency before and after pruning. This result suggests that relying on
quantization or unstructured pruning would undermine the latency advantage of edge deployment.

Table 4: Inference latency and throughput of ViTs before and after INT8 quantization and magnitude
pruning. Quantized models run on CPU due to lack of TensorRT support, resulting in much slower
inference, while magnitude pruning does not reduce parameter count and thus yields no speedup.

Base ViT (GPU) INTS8 Quantization (CPU) Magnitude Pruning (GPU)
Methods Latency = Throughput Latency Throughput Latency Throughput
(ms) (image/s) (ms) (image/s) (ms) (image/s)
DeiT-Base 45.45 22.00 3429.48 0.29 45.47 21.99
DeiT-Small 15.58 64.16 1497.11 0.67 15.80 63.28
DeiT-Tiny 14.52 68.87 666.43 1.50 14.88 67.21

Knowledge Distillation. As discussed in Section 2, knowledge distillation (KD) incurs substantial
training overhead. This is because KD transfers knowledge primarily in the feature space, where
the student model is trained from scratch to fit the outputs of a teacher model. Given a student
architecture, it is often infeasible to obtain a pre-trained model with the exact same architecture
for initialization. The absence of parameter-space knowledge transfer results in slow convergence.
In contrast, structured pruning naturally enables parameter-space knowledge transfer by inheriting
weights from the pre-trained model, which provides a strong initialization and significantly acceler-
ates convergence compared to KD.

100

60 -

80 7? _________

40 A

Accuracy (%)

1
|
|
|
|
|
|
T
|
|
|
|
|

20 4 4

|

|

]
i
[—e— KD (0.6)
f ! ! Pruning (0.6)
: Step=100 (50x) : Step=1000 (5x) - KD(08)
04 o le) Pruning (0.8)
E) 10'00 20‘00 30‘00 40‘00 SdOO

Step

Figure 12: Comparison of convergence speed between logit-based knowledge distillation (KD) and
random pruning (Pruning) across different pruning rates with DeiT-Base on CIFAR-10.

15

Under review as a conference paper at ICLR 2026

To illustrate this, we compare the convergence speed of logit-based KD (Hinton, 2015) with random
pruning (Gadhikar et al., 2023) with DeiT-Base on CIFAR-10 (Krizhevsky et al., 2009). Specifically,
random pruning uniformly selects a proportion of query-key and value-output dimensions in MHA
modules as well as neurons in FFN modules according to the target pruning rate, and removes them
to construct a smaller model. In the KD setting, the same student architecture derived from random
pruning is instead trained from scratch, with the original pre-trained model serving as the teacher.
A KL divergence loss (Van Erven & Harremos, 2014) between the student and teacher logits is
used to perform distillation. As shown in Figure 12, the pruned models converge significantly faster
than their KD counterparts, highlighting the effectiveness of parameter-space knowledge transfer.
Nevertheless, it is worth noting that KD can be effectively combined with structured pruning to
further improve the accuracy of pruned models.

B INTERPRETABILITY OF NEURONS IN FFN

As discussed in Section 3.2, neurons in the FFN modules of ViTs exhibit remarkably strong in-
terpretability. In this appendix, we provide additional experimental details and supplementary re-
sults to further support this finding. We begin by clarifying how the activation of a specific neuron
n{t? € R? is computed for a given image. For an input image, it is represented as a sequence of
patch tokens X € RV *4 fed into the FFN of the I-th block. The activation of neuron n{"* for this
image is then defined as:

N
at =3 "o (X[j],n{"")) (12)
Jj=1
We use Eq. (12) to measure the relevance between an image and a neuron, and then rank all images
in the dataset accordingly. For each neuron, we select the top-25 images with the highest activations
to examine the type of knowledge encoded in that neuron.

(a) ngl’%‘m): Dark color tones. (b) n?’”g): Repetitive textures. (©) n§3’”18>~ Grid textures.

(d) n§4’543): Grid textures. (e) n55‘575>: Close-up shots. ® n§6’1848): Honeycomb textures.

Figure 13: Additional visualizations of top-25 activated images for randomly selected FFN neurons
from the first six blocks of DeiT-Base.

16

Under review as a conference paper at ICLR 2026

(d) n§1°’167°>: Urban landscapes. e)n (11’2501 : Water birds. ® nﬁ”’”): Dogs.
Figure 14: Additional visualizations of top—25 activated images for randomly selected FFN neurons
from the last six blocks of DeiT-Base.

As shown in Figures 13 and 14, we provide additional visualizations of randomly selected neurons
from all blocks of DeiT-Base. Consistent with the observations in Section 3.2, these neurons ex-
hibit strong interpretability, and the knowledge stored in deeper blocks tends to be more semantic.
Interestingly, as illustrated in Figure 13(e), we even observe neurons that capture patterns such as
“close-up shots,” which are unrelated to the actual content of the image. This further demonstrates
that FFN neurons not only encode class-specific knowledge but also capture interpretable patterns
beyond classes.

C EXTENDING NEURON COLLAPSE TO ALTERNATIVE FFN ARCHITECTURES

Our class-centric neuron collapse (CCNC), originally designed for the canonical FEN architecture,
is representative and generalizable, making it applicable to other mainstream Transformer FFN vari-
ants. Taking SwiGLU (Shazeer, 2020), a widely used design in LLMs, as an example, its computa-
tion is as follows:

swiGLU® (X) = (a(xwf’”) ® (XWg(l)T)) wT

_ Z (xwi) o (xwd [i])) o W T[]

_2:(() (Xnynﬁc@nuﬂ

where W1 € R®*4 and WV € Rdxel are the up- and down-projection matrices of the FFN in
the I-th block of ViT, W, ¢ Re’ *d i5 the gating matrix, and ngl‘gf R? denotes the i-th neuron in
W1(|l2| To prune the intermediate dimension e; of the FFN, one only needs to extend Eq. (4) with

additional constraints on n4. Specifically, the anchor neuron of each cluster for n; and n, is selected

13)

17

Under review as a conference paper at ICLR 2026

as the one that maximizes the following value:

N
% . 1,3 . i
s00 =3 (o (Xl nf™)) @ (X[nf)) (14)
j=1
Notably, in most Transformer architeqtures, the neurons associated with different intermediate di-
mensions of the FEN (e.g., n{?), n{"), and ng“) at the i-th dimension in SwiGLU) are mutually
independent, which implies that CCNC can be readily applied to these architectures as well.

D COMPARISON OF PRUNING SETTINGS IN MHA

Table 5: Comparison of head-level and dimension-level pruning on DeiT-Base with ImageNet-1K
sub-tasks under pruning rates of 0.40 and 0.60. Dimension pruning achieves consistently higher
accuracy, showing its advantage in preserving knowledge compared to coarse-grained head pruning.

T1/25 T2/50 T3/100
Methods 040 060 | 040 060 | 040 0.0
Head-level 456 112 | 168 092 | 1411 347
Dimension-level || 78.08 5976 | 7876 6220 | 7729 61.46

Head or Dimension? The Multi-Head Attention (MHA) module can be pruned at two different
granularities: head-level pruning, which removes entire attention heads, and dimension-level prun-
ing, which reduces the dimensionality of the query, key, or value vectors. To determine the appro-
priate pruning granularity for Vulcan, we conduct a comparative study between these two strate-
gies. For head-level pruning, we follow prior works and adopt the Taylor expansion approxima-
tion (Molchanov et al., 2019; Yang et al., 2023) criterion to evaluate the importance of each attention
head and perform block-uniform pruning (Blalock et al., 2020). For dimension-level pruning, we
apply singular value decomposition (SVD) to compress the query-key (QK) and value-output (VO)
dimensions, motivated by the clear advantage of SVD observed in Figure 4.

As shown in Table 5, we compare these two strategies across different pruning rates (0.40, 0.60) and
sub-task (25, 50, 100) sizes with DeiT-Base on ImageNet-1K. The results show that dimension-level
pruning consistently outperforms head-level pruning, indicating that coarse-grained head pruning
leads to substantial knowledge loss. In contrast, Vulcan leverages the computational structure of
MHA and applies SVD-based adaptive pruning to the QK and VO dimensions, enabling more effi-
cient and effective knowledge extraction.

Table 6: Inference latency of DeiT-Base, DeiT-Small, and DeiT-Tiny under uniform vs. uneven
QK/VO dimensions on Jetson Orin NX (bz=1) and NVIDIA A40 (bz=256). In the uneven setting,
the dimensions of each head in each block are randomly assigned while keeping the total parameter
count unchanged.

DeiT-Base (ms) DeiT-Small (ms) DeiT-Tiny (ms)
bz=1 bz=256 bz=1 bz=256 bz=1 bz=256

Uniform 4545 600.52 15.58 186.30 14.52 76.45
Uneven 84.10 629.62 50.66 200.63 31.50 82.51

Methods

Uniform vs. Uneven QK/VO Dimensions. One key design of Vulcan is to enforce identical query-
key (QK) and value-output (VO) dimensions across all heads within the same block, which is crucial
for efficient inference. When head dimensions are uniform, the MHA module can be computed
in parallel across heads; otherwise, attention must be evaluated sequentially, introducing slicing
operations and memory copies that significantly increase latency. As shown in Table 6, we measure
inference latency on both Jetson Orin NX (batch size = 1) and NVIDIA A40 (batch size = 256) for
DeiT-Base, DeiT-Small, and DeiT-Tiny under two settings: uniform vs. uneven QK/VO dimensions.
Despite identical parameter counts and GFLOPs, the uniform-head setting achieves consistently
lower latency, with the gap particularly pronounced on edge devices.

18

Under review as a conference paper at ICLR 2026

E THEORETICAL ANALYSIS OF SVD FOR MHA COMPRESSION

As shown in Figure 4, pruning the query-key and value-output dimensions with singular value de-
composition (SVD) achieves significantly better performance than score-based pruning methods. In
this section, we first introduce the fundamentals of SVD, and then provide a theoretical explanation
for this seemingly counterintuitive observation.

SVD. Given a matrix W € R™*", SVD factorizes it into a set of orthogonal singular vectors
and their associated singular values, which capture the intrinsic low-rank structure of the matrix.
Formally, SVD expresses W as:

W:UZVT, UERmxm,E ERan7V€Ran (15)

where U is the left singular matrix, ¥ is the diagonal singular value matrix, and V is the right singular
matrix. The columns of U, referred to as the left singular vectors, are eigenvectors of WW ' and
provide an orthogonal basis for the input (row) space. The columns of V, referred to as the right
singular vectors, are eigenvectors of W T W and provide an orthogonal basis for the output (column)
space. The diagonal entries of 3 are non-negative real numbers known as singular values, arranged
in descending order. Each singular value quantifies the “stretching factor” of the matrix along the
corresponding singular direction, with larger values indicating more informative directions.

Why SVD is Better? SVD not only reveals the low-rank structure of W but also allows for con-
structing its best rank-%k approximation by truncating the top-k singular values and their associated
singular vectors. Taking Wq € R7*? and Wy € R7%? as an example, when pruning the query-key
dimension, the goal is to preserve the intermediate representations as much as possible. In other
words, the optimal pruned matrices Wé)* € RY %4 and Wi e R4 >4 should satisfy:

W, Wi* = argmin|[W5, " Wi — WS Wk||r (16)
QK

According to the Eckart-Young theorem (Chipman, 2020), SVD guarantees the minimization of the

truncation error in the Frobenius norm. Specifically, for a given pruned query-key dimension ¢’ < g,

the optimal pruned matrices I/Vé2 and W/, are obtained by applying SVD to Wg W

Wo Wk =UqkSorVox (17)

Wh" = Ukl d1Sexl:d:). Wik™ = Vor[:)7 (18)

In contrast, score-based pruning methods remove certain row vectors from Wg and Wy directly,
which leads to a truncated error in the Frobenius norm that is no smaller than that obtained by
SVD. This inevitably results in greater loss of information. Therefore, SVD maximizes knowledge
preservation under the same pruning rate, which explains its significant advantage over score-based
methods.

F PROOF OF PRUNING RATE SATISFACTION IN DERIVED MODELS

The pruning rate R is determined according to the resource constraints of the target edge device. To
ensure that the derived models can be successfully deployed for inference on such devices, Vulcan
must strictly satisfy the specified pruning rate. In this section, we first introduce the computation
of FLOPs for ViT, and then provide a formal proof that the size of the models derived by Vulcan
exactly matches the pruning rate R.

FLOPs. FLOPs represent the number of floating-point operations required for a model to perform
inference on a single image. For a ViT, let the embedding dimension be d, the query—key dimension,
value—output dimension, and the number of heads in the MHA module of the /-th block be q;, vy,
and Hj, respectively, and let the intermediate dimension of the FEN module in the [-th block be e;.
Then, for a ViT M p consisting of L blocks, the total FLOPs can be formulated as:
L
FLOPs(Mp) = Z [(2Ndg, + 2Ndv, + N*q; + Nv;) x H; + (2Nde)

=1 (19)

~

L

= (2Nd + N?) Z (@ +v) +2Nd Y e
=1 =1

19

Under review as a conference paper at ICLR 2026

where IV is the number of patch tokens. It can be observed that the three dimensions pruned by
Vulcan, i.e., q;, v;, and e, are directly associated with the FLOPs of a ViT.

Proof1: Pruning Rate Satisfaction. We denote the actual pruning rate of the derived model Mg
as R'. Then, proving that Vulcan strictly satisfies the target pruning rate amounts to showing that:

FLOPs(M)
FLOPs(Mp)

From Eq. (3), it follows that the intermediate dimension of the pruned FFN module in the /-th block,
denoted e, satisfies:

Ze;—zmw—zz (a4 > B[e) < 1))

= =1 i=1 j=1

L
=Y a—-T1Q e)xRI<Y a—(D ea)xR @1
=1

R =1- >R (20)

[l
~

Under the assumption that g = v; and ¢; = ¢;, according to Eq. (5) and Eq. (6), the query—key
dimension ¢; and value—output dimension v; in the pruned MHA modules satisfy:
L L

>+ o) =Y (Ll = RG]+ Lu(1 — RE)))

=1 =1

L
<> (@t = RGO +u(1 - RY))

L rg)K + r%,l)o — 2r€,l)OR(l) (l) Kt r(l) — 2r(l) R®
=D OIN0) @t 0) (z> U
=1 rox T Tvo Tor T TV

((Z)K+ ()) (7”8)[(+7“())R()

L
= 0 0} @

=1 oK T 7"vo

L
2370 RO 20 Y0~)
=1

(22)

L R
=2q 1- ;
Z(S rgwsz)
LRY., /< e+ D)
SE (S + i)

L
=2Lg - (1-R) = (L(q1 +v1)) (1 - R) = (Z(qz + vz)) (1-R)
=1
Under the assumption that H; = H ;, substituting these relations into Eq. (20), we obtain:

R NAEN?) S Hilg +) +2Nd 30 ¢
(2Nd + N2) S Hy(q +w) +2NdY 7 e
(2Nd + N?) S Hi(g +v)(1— R) + 2Nd Y/ ei(1 — R) (23)
(2Nd + N?) Zlel Hi(q +wv) + QNle 1€
=1-(1-R)=R
This establishes that the models derived by Vulcan strictly satisfy the specified pruning rate R. [

=2Lq —2q1 =2Lg1 — 2L, R

<1-

20

Under review as a conference paper at ICLR 2026

G PROOF OF LOSSLESS PERFORMANCE AFTER PRUNING

As discussed in Section 3.4, once the constraints in Eq. (4) and Eq. (7) are fully satisfied, i.e.,
Leoapse = 0 and Lk = 0, Vulcan ensures lossless pruning for the post-trained model. In this
section, we provide a formal proof of this property.

Proof2: Lossless Performance after Pruning. After post-training, the base ViT satisfies the fol-
lowing two key conditions:

1. All neurons within the same cluster C{!) in the FFN module in {-th block collapse to the anchor
neuron ng) of that cluster.

2. For the h-th attention head in I-th block, the matrices W) and W‘(/l’h) contain exactly q; and
v} non-zero singular values, respectively. This means rank(Wg’h)) < ¢} and rank(W{}M)) < v,

FFN Case. According to Eq. (2), the output of the FFN in the [-th block can be expressed as:

e KO ||
FFN(l) (X) — Z U(X (l Z) (l Z) Z Z (lvj) gél)
i=1 k=1 j=1 24)
KO eV KO lch)
_ (l (1,3) _ (@,
= > oXa)emy =) oX ®ZW
k=1 j=1 k=1

where ngfﬂ) denotes the neuron in W2(l) corresponding to ng”) According to Eq (9), the output of
the pruned FEN in the /-th block can be expressed as:

el KO

1 ' A ' 1
FFNjunea (X) = > o (XW{V (k) @ W3 [k] = 37 o (XW,Y [K]) @ W31, 1]
k=1 k=1
&®) (25)
= Z XA ® Z nyy = FFANO(X)
MHA Case. Accordmg to the second key condltlon, we can conclude that:
(,0) T 15 (LR) . (1,h) (1,h) /
rank(Wg™" W) < min(rank(Wg), rank(Wp™)) < g 26)

T T
rank(W‘(/l’h) Wg’h)) < min(rank(W‘(,l’h)),rank(Wg’h))) <)
Therefore, the pruning process based on SVD is lossless, i.e., the pruned matrices W, l|’;?|/\/\o satisfy:

WR) T (k) W0 T oy (h) (Y T (k) T @h) T) T
W, Wi =Wy W Wt Wyt =W gt 27)
Substituting these equalities into the Eq. (1), we obtain:
H, XW(l,h)/TW(l,h)/XT . .
MHAY (X) = 3 softmax (—2 \FK)XWl
hel q
H) T (Lh) ~ T (28)
L XWw, WX T T
=" softmax (—2 K)XW Wi = MHA® (X)
o Va
Thus, both the FFN and MHA modules of the pruned model produce identical outputs to those of
the post-trained base ViT, which completes the proof. O

In practice, since Leoliapse and Lragk only asymptotically approach zero, the model accuracy be-
fore and after pruning exhibits minimal fluctuations, meaning that Vulcan effectively achieves near-
lossless pruning.

H IMPLEMENTATION DETAILS

We summarize the hyperparameter settings used during the post-training process in Table 7.

21

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for the post-training process of Vulcan. Here, R denotes the target pruning
rate and A represents the Lagrange multipliers.

Hyperparam \ \ Value

Steps 6250R2 + 1250R, R € (0,1)
Optimizer AdamW (Loshchilov & Hutter, 2017)
Batch Size 256 (Recognition), 8 (Detection/Segmentation)
Learning Rate (LR) le-4 (Recognition), Se-5 (Detection/Segmentation)
LR Scheuler Constant

Weight Decay 0.05

Penalty Parameter p 1.0

Penalty Update Rule Ait1 = N + p(OL/ON;)

Seed 42

Normalization. As discussed in Section 4, Vulcan will normalize the activations of each neuron
before computing K. The choice of normalization strategy is closely related to the derived model
architecture. Therefore, we compare three commonly used normalization strategies. For activation
vectors) = [a:D), (b2 a(be)] € R, their normalization processes are as follows:

¢ .2 Normalization:
abd)

Sl (at9)”

a) — min(a®)

max(a®) — min(a®)

1) _
anorm -
* Min-Max Normalization:

l,i) _
ar(lorm -

e 7Z-score Normalization:

1,1) ey e;
) albi) — 1 . .
i) — K — 2N 5= ald) —)2
norm y M) 1%
g €] 4 X
j=1 j=1
100
S 30007 mmm L2 § 3000 = Min-Max
@ «
C 2500 C 2500
£ £
15 2000 -5 2000 8
E 1500 3 1500
2]
el e
@ 1000 @ 1000
£ £
= =
9 500 9 500 = 60
£ £ X
1234567 89101112 ° 1234567 89101112 a
Block Block ©
3
o
§ 3000 = Z-Score | § 3000 Uniform 2 40 o
2 2
C 2500 < 2500
[} o 91
£ 2000 £ 2000 250 260 2700 2000 2990 3000
© S 20
2 1500 2 1500
© ° — L2
° © in-

@ 1000 @ 1000 Min-Max
g g —— Z-Score
500 500 0 .
€ € Uniform

0 0
12345678 9101112 12345678 9101112 0 500 1000 1500 2000 2500 3000
Block Block Step

Figure 15: Architectures of models de- Figure 16: Convergence curves of models with three
rived under different normalization strate- normalization methods and the uniform architecture.
gies. Since the architectures corresponding Z-score normalization and the uniform architecture
to T1-T3 are highly similar, this figure shows achieve faster convergence and higher accuracy than
their averaged architectures. L2 and Min-Max normalization.

At a pruning rate of 0.60, we derive a series of edge ViTs from DeiT-Base for the three ImageNet
sub-tasks (T1-T3) in Table 1. In addition, we introduce uniformly structured models as a baseline

22

Under review as a conference paper at ICLR 2026

for comparison with the activation-adaptive architectures. As illustrated in Figure 15, the architec-
tures resulting from different normalization methods exhibit substantial differences. Specifically,
L2 normalization produces architectures with fewer parameters in the intermediate blocks, min-max
normalization leads to architectures with fewer parameters in the deeper blocks, while z-score nor-
malization yields relatively uniform architectures, showing an overall trend where the number of
parameters decreases as the block depth increases. Figure 16 further demonstrates that the archi-
tecture derived with z-score normalization achieves the best performance, and thus Vulcan adopts
it for normalizing activation values of DeiT. At the same time, we also observe that the effective-
ness of normalization strategies is model-dependent. For Swin-Transformer, Vulcan instead adopts
min-max normalization.

Adaptive Pruning Rate Allocation for Non-Uniform Architectures. Eq. (3) and Eq. (5) implicitly
assume that all Transformer blocks share an identical architecture, which does not hold for non-
uniform models such as Swin-Transformer (Liu et al., 2021), where different blocks may contain
heterogeneous structures. To address this limitation, we extend Eq. (3) and Eq. (5) to support non-
uniform architectures. First, let the number of parameters in the FFN module and the MHA module
of the [-th block be denoted as P{") and P{!), respectively. By incorporating P{") and P{} into the
importance evaluation, we generalize the computation of K () and R as follows:

o (L) L L)
KO = 11(“><I> AT e;) x R]) A= L —ji=1,....e1} (9
; log(P}) (; ’) zzul log(P{)

L (1))
RO — >im1 Par . Py .
L i i i i @ @)
Sl P (PR 05 +100)) ke + 10
It is worth noting that in certain extreme cases (e.g., when the importance of a particular block
is significantly lower than that of others while the pruning rate is very high), the values of R()
computed by Eq. (5) and Eq. (30) may exceed 1. In such situations, Vulcan sets the query—key and

value—output dimensions of the overflowing blocks to 1, and iteratively recalculates the R(") of the
remaining blocks until all blocks satisfy R € (0,1).

(30)

I BASELINES
In this section, we detail the five baselines used for comparison with Vulcan:

¢ Random. The random pruning method operates on the same dimensions as Vulcan, i.e., the
intermediate dimension (e) of the FFN and the query—key and value—output dimensions (g, v) of
the MHA. Given a pruning rate, it uniformly prunes dimensions by randomly selecting neurons
to delete, without considering the specific sub-task. We adopt this class-agnostic pruning method
as a lower-bound benchmark to evaluate the effectiveness of class-specific model derivation.

e NVIiT (Yang et al., 2023). NVIiT prunes all dimensions of a ViT, including the intermediate
dimension (e) of the FFN, the query—key, value—output dimensions (g, v), and the number of
attention heads (H) of the MHA, and the embedding dimension (d). It groups the weights along
each dimension and evaluates their importance using a Hessian-based importance score. The
pruning process is performed iteratively by removing the groups with the lowest scores until the
resource constraints of the target device are satisfied.

* X-Pruner (Yu & Xiang, 2023). X-Pruner prunes the intermediate dimension of the FFN (e)
and the number of attention heads (H) in the MHA. It introduces learnable masks into the ViT,
and pruning is achieved by applying sparsity regularization to gradually drive parts of the mask
values to zero.

e DC-VIiT (Zhang et al., 2024). The goal of DC-VIiT is to achieve the target pruning rate while
pruning as few blocks as possible. It designs an importance metric to evaluate each block, and
for the selected blocks, it removes the entire MHA module and uniformly prunes the intermediate
dimension (e) of the FEN at random. Among all the baselines, DC-ViT is the only method that
performs pruning at the module level.

e MDP (Sun et al., 2025). Similar to NViT, MDP jointly prunes multiple dimensions of ViTs,
including the embedding dimension (d), the number of attention heads (H), the query—key and
value—output dimensions (g, v), and the FFN intermediate dimension (e). It formulates pruning

23

Under review as a conference paper at ICLR 2026

as a mixed-integer nonlinear program (MINLP) problem under latency budgets, solved with
Hessian-based importance scores and a precomputed latency lookup table (LUT).

It is worth noting that although Random pruning is intuitively expected to perform the worst, it ac-
tually outperforms some score-based methods. We attribute this to the fact that it adopts the same
pruning dimensions and granularity as Vulcan. In contrast, DC-ViT suffers from overly coarse prun-
ing granularity, making it difficult to recover model accuracy through retraining when the pruning
rate becomes high.

J ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results and analyses. Appendix J.1 compares
Vulcan with five baselines at lower pruning rates to further demonstrate the effectiveness of Vul-
can. Appendix J.2 visualizes the model architectures of edge ViTs derived by Vulcan and further
investigates how class-specific knowledge is distributed across different blocks. Appendix J.3 com-
pares the computational efficiency of Vulcan-derived models with five baselines, demonstrating the
edge-friendliness of Vulcan. Appendix J.4 further demonstrates the scalability of Vulcan on larger
ViTs and BERT. Appendix J.5 shows that Vulcan enhances model generalization and robustness.
Appendix J.6 evaluates Vulcan in complex open-domain scenarios. Appendix J.7 investigates the
trade-off between derivation performance and derivation overhead. Appendix J.8 illustrates how
Vulcan can be combined with other compression techniques to achieve extreme lightweighting.

J.1 PERFORMANCE UNDER MODERATE PRUNING

Table 8: Overall performance of Vulcan and baselines on DeiT-Base with ImageNet-1K sub-tasks
of different sizes (25, 50, 100 classes) under pruning rates of 0.20 and 0.40.

Method || T1/25 T2/25 T3/25 | Avg || T4/50 TS5/50 T6/50 | Avg || T7/100 T8/100 T9/100 | Avg
DeiT-Base 7992 8256 80.67 | 81.05 [8048 79.64 8496 [81.69 [[80.49 8412 7858 [81.06
DeiT-Base (FT) || 9640 9696 96.96 | 96.77 || 95.00 93.36 94.68 | 9435 || 9156 9329 92.84 | 92.56
Random 9560 9648 9640 | 96.16 || 93.84 9336 9460 | 93.93 || 9141 9307 9144 | 9197
NViT 9496 9632 9601 | 9576 || 9296 9272 9432 | 93.10 || 9127 9283 91.84 | 91.98
X-Pruner 96.56 9648 96.88 | 96.62 || 9440 93.00 9540 | 9426 || 9116 9265 9170 | 91.84
DC-ViT 9552 9576 9457 | 9528 || 9140 93.16 9400 | 92.85 || 8473 8834 90.84 | 87.97
MDP 9544 9656 9473 | 9558 || 92.60 88.00 9248 | 91.03 || 8450 9279 90.74 | 89.34
Vulcan 9648 97.12 97.04 | 96.88 [| 9500 9324 9460 | 9428 || 9149 9291 9174 | 92.05
Random 94.64 9568 9448 | 9493 || 91.84 9084 9248 | 91.72 || 87.94 9041 89.12 | 89.16
NViT 9208 9424 9417 | 9350 || 90.60 90.00 91.52 | 90.71 || 8723 90.10 87.88 | 88.40
X-Pruner 9476 9468 9501 | 94.82 || 92.34 9160 9328 | 9241 || 8895 9167 89.04 | 89.89
DC-ViT 86.80 89.12 88.66 | 88.19 || 83.84 80.60 87.52 | 83.99 || 8091 8373 83.16 | 82.60
MDP 9536 9640 93.69 | 9515 || 9340 89.76 90.60 | 9125 || 8889 8812 8936 | 88.79
Vulcan 9480 9568 9497 | 9515 || 9276 9152 93.60 | 92.63 || 8971 9159 89.84 | 90.38

We first compare Vulcan with five baselines at pruning rates of 0.20 and 0.40 to evaluate its perfor-
mance under moderate pruning conditions. As shown in Table 8, we observe that at pruning rates of
0.20 and 0.40, Vulcan consistently outperforms the base ViT and five baselines in terms of accuracy
across different sub-task sizes. Specifically, at a pruning rate of 0.20, the model derived by Vulcan
outperforms the base ViT by 13.13% on average, and further surpass the best-performing baselines,
X-Pruner and MDP, by up to 0.64% and 6.99%, respectively. At the higher pruning rate of 0.40,
Vulcan achieves average accuracy improvements of 11.45%, 0.35%, and 5.99% over the base ViT,
X-Pruner, and MDP, respectively. These results further confirm the effectiveness of Vulcan, showing
that it delivers consistent advantages even under moderate pruning conditions.

24

Under review as a conference paper at ICLR 2026

J.2 MODEL ARCHITECTURES OF EDGE VITS

3000

2500

2000

1500

1000

Intermediate dimension

g
8

o
12345678 09101112
oc!

3000
m—T1(R=0.6)

2500

2000

1500

1000

Intermediate dimension

g
g

Block

[
1234567 809101112
Block

T2 (R=0.6)

Intermediate dimension

3000

T3 (R=0.6)
2500
2000

1500

1000

g
8

QK/VO Dimension
Noow o os o
5 8 &8 & 3

3

i

= QK dim (R=0.6)
== VO dim (R=0.6)

1234567 809101112
Block

1234567809101112
<

Block

3000

2500

2000

1500

1000

Intermediate dimension

500

o

3000
- T1(R=0.8)
500
2000

1500

1000

Intermediate dimension

g
8

o

1234567 809101112
ock

BI

T2 (R=0.8)

Intermediate dimension

1234567 809101112
Block

3000
T3 (R=0.8)
2500
2000
1500

1000

500

QK/VO Dimension
Now o ouw o
s 8 &8 & 3

5

= QK dim (R=0.8)
== VO dim (R=0.8)

12324567 809101112
Block

Figure 17: Visualization of the architectures of edge ViTs derived by Vulcan from DeiT-Base for

sub-tasks T1-T3 on ImageNet under pruning rates of 0.60 and 0.80.

We visualize the architectures of edge ViTs derived from DeiT-Base for the sub-tasks T1-T3 in
Table 1, as shown in Figure 17. From the visualization, we observe that class-specific knowledge in
the FFN modules is more concentrated in the middle blocks, while class-agnostic knowledge in the
MHA modules is more concentrated in the value—output dimensions.

J.3 COMPUTATIONAL EFFICIENCY COMPARISON

Table 9: Comparison of computational efficiency between DeiT-Base and edge ViTs derived by
Vulcan and five baselines under different pruning rate R, evaluated on Jetson Orin NX (bz=1) and
NVIDIA RTX 4090 (bz=256).

Latency (ms) Throughput (image/s) M y (GB) #Param #FLOPs Acc.
Methods Orin NX RTX 4090 |Orin NX RTX 4090 | Orin NX RTX4000| (M) (G) (%)
DeiT-Base || 4545 27427 | 2200 93339 | 034 221 | 8657 | 17.57 81.27
Random ||42.97 (1.05x) 27821 (0.99x)| 23.27 920.15 0.28 275 69.47 | 14.06 (119.98%) | 94.02 (112.75)
NViT 37.49 (1.21x) 227.53 (1.21x)| 26.68 1125.15 0.27 2.15 68.71 | 14.05 (119.98%) | 93.61 (112.34)
X-Pruner ||37.49 (1.21x) 223.87 (1.23x)| 26.67 1143.51 0.28 2.15 68.58 | 13.94 (120.66%) | 94.24 (112.97)
DC-ViT ||36.98 (1.23x) 225.19 (1.22x)| 27.04 1136.83 0.28 2.15 69.62 | 12.49 (128.91%) | 92.03 (110.76)
MDP 33.78 (1.35%) 202.48 (1.35%)| 29.61 1264.31 0.25 2.12 6221 |14.05(119.98%) | 91.98 (110.71)
Vulcan 36.84 (1.23%) 218.16 (1.26x)| 27.14 1173.43 0.27 2.14 67.22 | 13.56 (121.51%) | 94.40 (113.13)
Random ||34.24 (1.33%) 229.04 (1.20x)| 29.20 1117.69 0.21 2.57 5239 |10.55 (139.95%) | 91.94 (110.67)
NViT 2925 (1.55%) 18220 (1.51x)| 34.19 1405.02 0.21 1.99 50.86 | 10.54 (140.01%) | 90.87 (19.60)
X-Pruner |[29.54 (1.54x) 183.33 (1.49x)| 33.86 1396.38 0.21 2.09 52.61 |10.71 (139.04%) | 92.37 (111.10)
DC-ViT ||28.62 (1.59%) 175.33 (1.56x)| 34.94 1460.09 0.21 2.08 5238 | 10.54 (139.04%) | 84.93 (13.66)
MDP 26.30 (1.73%) 159.68 (1.72x) | 38.03 1603.25 0.19 2.06 4576 | 9.25 (147.35%) |91.73 (110.46)
Vulcan 29.73 (1.53%) 176.01 (1.56x)| 33.63 1454.42 0.21 1.82 51.00 |10.24 (J41.72%) | 92.72 (1 11.45)
Random ||26.74 (1.70x) 184.40 (1.49%)| 37.39 1388.29 0.15 2.39 3529 | 7.04 (159.93%) | 87.01 (15.74)
NViT 2455 (1.85%) 137.03 (2.00x)| 40.73 1868.23 0.14 1.44 33.13 | 7.02 (460.05%) | 81.88 (10.61)
X-Pruner |[21.79 (2.09%) 135.53 (2.02x)| 45.89 1888.93 0.15 2.02 35.56 | 7.27 (158.62%) | 89.41 (18.14)
DC-ViT ||20.04 2.27x) 126.84 (2.16x)| 49.90 2018.22 0.15 2.02 3543 | 7.03 (159.99%) |69.85 (|.11.42)
MDP 19.35(2.35%) 122.99 (2.23x)| 51.67 2081.54 0.13 1.43 31.08 | 6.20 (164.71%) | 88.25 (16.98)
Vulcan 21.81 (2.16x) 136.67 (2.01x)| 45.86 1873.11 0.15 1.66 34.09 | 6.77 (161.47%) |92.32 (111.05)
Random || 15.19 (2.99%) 101.99 (2.69%)| 65.85 2510.1 0.08 1.06 1821 | 3.53(179.91%) | 71.45 (19.82)
NViT 19.13 (237x) 98.94(2.77x) | 52.28 2587.47 0.08 1.37 16.77 | 3.49 (180.14%) |52.86 (128.41)
X-Pruner |[19.76 (2.30x) 90.92 (3.02x) | 50.61 2815.58 0.09 133 19.19 | 3.80 (178.37%) | 79.11 (12.16)
DC-ViT || 14.76 3.08x) 79.66 (3.44x) | 67.75 3213.83 0.08 1.95 18.19 | 3.51 (480.02%) |49.18 (132.09)
MDP 18.30 (2.48%) 8279 (3.31x) | 54.64 3092.11 0.08 1.09 17.73 | 3.35(180.93%) | 75.73 (15.54)
Vulcan 15.06 (3.02x) 99.59 (2.75%) | 66.41 2570.61 0.08 1.40 16.96 | 3.26 (181.45%) | 88.22 (16.95)

25

Under review as a conference paper at ICLR 2026

Given that some pruning methods are not hardware-friendly, we compare the computational effi-
ciency of Vulcan with five baselines under different pruning rates. As shown in Table 9, under
the same pruning rate, Vulcan-derived models achieve comparable or better inference efficiency,
ranking in the top-3 speedups in most cases, demonstrating Vulcan’s hardware friendliness. It is
worth noting that although DC-VIT attains a significantly higher speedup at a pruning rate of 0.80
by removing part of the MHA modules, the resulting models suffer from overly degraded accuracy,
making this trade-off unreasonable.

J.4 SCALING TO LARGER MODEL AND NEW DOMAIN

Table 10: Performance of Vulcan on larger ViT-L/16 and BERT-Base from the NLP domain. ‘(FT)’
denotes fine-tuning on the class-specific data.

ViT-L/16 (ImageNet) BERT-Base (NewsGroups)
Methods TIR5 T2/25 T35 || T2 124 T378
Base ViT 8264 8472 8376 || 77.60 6834 7271
Base ViT (FT) || 9752 9728 98.16 || 9443 8795 8152

Vulcan (0.60) 96.72 97.10 97.58 9456 86.41 81.66
Vulcan (0.80) 94.54 94.73 93.75 93.16 85.68 80.19

To further demonstrate the scalability of Vulcan, we conduct experiments on both a larger vision
model, ViT-L/16, and a language model, BERT-Base, from a different domain. For ViT-L/16, we
derive edge ViTs for the sub-tasks T1-T3 in Table 1. For BERT-Base, we fine-tune the model on the
20 NewsGroups (Lang, 1995) dataset and derive edge ViTs for three sub-tasks with 2, 4, and 8 target
classes. As shown in Table 10, Vulcan achieves results comparable to those in Table 1, confirming
its strong scalability across both larger architectures and new domains.

J.5 GENERALIZATION AND ROBUSTNESS OF DERIVED MODELS
Table 11: Accuracy comparison on distribution-shifted datasets between DeiT-Base and Vulcan-

derived models for three ImageNet sub-tasks under pruning rates of 0.60 and 0.80. The models
derived from DeiT-Base by Vulcan exhibit stronger generalization and robustness on the sub-tasks.

ImageNet-V2 ImageNet-R
Methods TI5 T2/25 T35 || T1/Z5 T225 T3/25

1.63 0.11 0.00

DeiT-Base [[240 040 000 [[000 000 000
H 217 236 026

Vulcan (0.60) 11.60 11.20 8.00
Vulcan (0.80) 12.40 7.60 10.40

To evaluate the generalization and robustness of the edge ViTs derived by Vulcan, we further com-
pare DeiT-Base and its derived edge ViTs on two datasets whose distributions differ from ImageNet:

* ImageNet-V2 (Recht et al., 2019): A re-collection of ImageNet validation data designed to test
distribution shifts. It contains images sampled from the same class labels but gathered under
different conditions, serving as a benchmark for evaluating model generalization.

* ImageNet-R (Hendrycks et al., 2021): A dataset consisting of various renditions of ImageNet
classes (e.g., sketches, paintings, cartoons), which introduces significant appearance variations
and is commonly used to assess robustness against domain shifts.

As shown in Table 11, Vulcan can improve the generalization and robustness of base ViTs on sub-
tasks to some extent. We attribute this improvement to Vulcan’s ability to encourage edge ViTs to
focus on specific classes, enhancing their capacity to extract and recognize class-related features. An
interesting observation is that models with higher pruning rates exhibit even stronger generalization,
suggesting a promising direction for future exploration.

26

Under review as a conference paper at ICLR 2026

J.6 VULCAN FOR TRANSFER LEARNING

Vulcan is designed to derive compact models from a pre-trained base ViT for a sub-task S, where
S C Y and Y denotes the class set recognized by the base ViT. This corresponds to a closed-domain
scenario. In practical applications, however, users often encounter open-domain settings in which
the target classes of a sub-task are not contained in). Such cases fall within the scope of transfer
learning. To investigate Vulcan’s effectiveness in this context, we employ DeiT-Base pre-trained
on ImageNet as the base ViT and evaluate Vulcan-derived models under different pruning rates on
three downstream benchmarks: Stanford Cars (Krause et al., 2013), Oxford Flowers-102 (Nilsback
& Zisserman, 2008), and Food-101 (Bossard et al., 2014).

Table 12: Overall performance of Vulcan under different pruning rates on downstream tasks. The
classes and data distribution of downstream tasks are different from the pre-training data of the base
ViT. ‘(FT)’ denotes fine-tuning on the downstream task data.

Methods || Stanford Cars | Oxford Flowers-102 | Food-101 | Avg
DeiT-Base (FT) || 84.02 \ 90.58 [8681 [87.14
Vulcan (0.60) 79.62 86.40 80.60 82.21
Vulcan (0.80) 66.70 78.16 74.25 73.04

As shown in Table 12, at pruning rates of 0.60 and 0.80, the edge ViTs derived by Vulcan achieve
94.34% and 83.82% of the accuracy of models obtained by directly fine-tuning the base ViT. This
performance is somewhat lower than the results in Table 1, as the three selected downstream tasks
all belong to fine-grained image recognition (FGVC), which are inherently more challenging and
complex than the ImageNet sub-tasks. Nevertheless, the results clearly demonstrate the strong gen-
eralizability of Vulcan and its applicability to more difficult open-domain scenarios.

J.7 TRADE-OFF BETWEEN PERFORMANCE AND OVERHEAD

Effects of Batch Size and Learning Rate. Considering that practical applications often impose
varying constraints on memory usage and derivation efficiency, we investigate how batch size (bz)
and learning rate (Ir)—two critical training configurations directly related to these factors—affect
the performance of Vulcan. Specifically, for the three ImageNet sub-tasks T1-T3 defined in Table 1,
Vulcan derives models from DeiT-Base under different batch sizes and learning rates. We record
memory usage and the accuracy of the derived models across varying batch sizes, as well as the
convergence speed of the derivation process under different learning rates.

30 100+
B Accuracy
Memory 1
1007 9101 9292 9353 /95.60 125 801 |
_ 901 L |
8 w0 VB E o |
) o ‘
> 70 2> |
0 60 58 |
3 501 £ 5 40 !
g [T] i
1% c !
< 401 22 |
30 10 201 i ey e
o] i Ir=5e-4
ol > 01 i —— Ir=1e-3
0_) y y T
32 64 128 256 0 1000 2000 3000
Batch Size Step

Figure 18: Effects of batch size and learning rate on edge ViTs derived by Vulcan. The asterisks in
the right figure mark the step—accuracy points at convergence for each learning rate.

As shown in Figure 18, Vulcan exhibits robustness to batch size: memory usage is reduced by
86.34% with only a 4.59% average drop in accuracy. For the learning rate, convergence is defined
as accuracy fluctuations within 0.1% over 100 steps. When the learning rate is set to 5 x 10~%
and 1073, derivation efficiency improves by 57.14% and 65.44% with accuracy losses of 3.02%

27

Under review as a conference paper at ICLR 2026

and 6.05%, respectively, indicating that higher learning rates can accelerate derivation at a modest
accuracy cost.

Table 13: Compatibility of Vulcan with LoRA (r=256). The edge ViTs are derived from DeiT-Base
with a pruning ratio of 0.60, tailored for the three ImageNet subtasks T1-T3.

Acc. (%)
Methods Memory (GB) =735 T35 13735 Ave
Vulean 1.67 95.04 9624 95.53 95.60

Vulcan (LoRA) 1.10 (434.13%) ‘ 88.32 89.75 89.05 89.04 (16.56%)

Compatibility of Vulcan with LoRA. In addition, we can also extend Vulcan to LoRA (Hu et al.,
2021) to reduce memory usage. We observe that post-training with LoRA requires a relatively larger
learning rate to achieve stable convergence. Accordingly, we set the learning rate to 1 x 1073, As
shown in Table 13, when adapted to LoRA (r=256) with a batch size of 4 and gradient accumulation
steps of 64, Vulcan incurs an average accuracy drop of 6.56% while reducing memory consumption
by 34.13%. We must acknowledge that LoRA inevitably introduces a degree of accuracy degrada-
tion, as optimizing two low-rank matrices alone cannot fully satisfy the constraints associated with
Lecoltapse and Lani. Consequently, these losses do not monotonically decrease during the later stages
of post-training; instead, they tend to increase monotonically with larger values of A\; and Ay. Nev-
ertheless, the derived model still substantially outperforms the base ViT (DeiT-Base), achieving an
average improvement of 8.01% across the three sub-tasks.

J.8 EXTREME MODEL COMPRESSION

As discussed in Section 2, Vulcan is orthogonal to other model compression techniques and can be
combined with them to enable even lighter deployment. To demonstrate this, we take the edge ViT
Mg 1 derived from DeiT-Base at a pruning rate of 0.80 for the ImageNet sub-task T1/25, and
further compress it using knowledge distillation (KD) and INT8 quantization.

Table 14: Results of combining Vulcan with depth pruning, knowledge distillation, and FP16 quan-
tization on ImageNet T1/25. With Vulcan as the core, integrating other compression techniques
enables effective lightweighting.

Latency (ms) Throughput (image/s) Storage #Param | #FLOPs | Acc.
Methods Orin NX RTX 4090 | Orin NX _RTX 4090 (MB) ™) © | @
DeiT-Base 45.45 274.27 22.00 933.39 0.34 221 86.57 | 17.57
Vulcan (T1-0.80) 1504 3.02x) 99.14 (2.77x) | 6648 2581.97 | 69.48 (178.96%) | 1821 349 | 9224
Depth Pruning + KD || 13.16 3.45%) 8224 (333%) | 75.96 31128 | 60.24 (181.76%) | 1579 | 3.06 | 9232
Quantization (FP16) || 11.35 (4.00x) 28.34(9.68x) | 88.07 9033.06 |30.12(190.88%) | 1579 | 3.06 |92.32

Specifically, we sample 5,000 samples from the T1/25 training set to evaluate the accuracy change
after removing each block of Mp,r;. Following a greedy strategy, at each step we remove the
block that incurs the smallest accuracy drop. Through this depth pruning process, three blocks are
removed from Mg, 7, to construct a student model for knowledge distillation. Next, we take the
DeiT-Base fine-tuned on the T1/25 training set as the teacher model and fine-tune the student model
for 5,000 steps using logit-based knowledge distillation with a learning rate of le-5. As shown
in Table 14, the distilled model achieves an additional 0.08% accuracy gain. We then apply FP16
quantization to the distilled model, further reducing storage cost and improving inference efficiency.
Overall, this pipeline reduces the model’s storage cost by 90.88%, improves accuracy on the sub-
task by 12.40%, and achieves 4.00x and 9.68 x inference speedups on Orin NX and RTX 4090,
respectively, substantially enhancing the deployability of the model.

28

Under review as a conference paper at ICLR 2026

K PSEUDOCODE

Algorithm 1 Vulcan — Class-Specific Model Derivation

Input: pre-trained base ViT M g, sub-task S, class-specific dataset Dg, pruning rate R, Lagrange
multiplier A;, A2, penalty parameter p

Output: compact class-specific edge ViT Mg

Determine the target model architecture

{a(l’i)hgsz,lgige, — Mp(Ds) !

{K(l)}lglgL + Compute K® according to {a(l”)}1§z§L,1§¢§el and Eq. (3)
{CIE:I)}ISISLJSICSK”) <+ Perform clustering based on { KV}, <;<1,

AN A S N

{Rg)[(}lglﬁLa {R%}lgsz < Compute RS)K‘VO according to Eq. (5)

6: # Post-training

7: A1, A2 < 0.0,0.0

8: step < 0

9: total step < 6250R2 + 1250R
10: while true do

11: for t-th batch B; in Ds do

12: {a®®) h<i<r,1<i<e, < Forward propagation M g(B;)

13: Update the anchor neuron ﬁg) of each cluster C ,(cl) to the neuron with the max activation
14: L < Compute L according to A1, Ay and Eq. (8)

15: Backward propagation on £ and update parameters of M p using optimizer

16: /\1,2 — /\172 + p%

17: if step > total step then break

18: end for

19: if step > total step then break
20: end while

21: # Pruning
L l N | H Lh Lh Lh Lh
2: Mp = U (W w3 U g™ wie Wi wEM e M
23: for [-th block in Mg do
24: Create the weight matrix W' € RK"xd () ¢ Raxx®
25: I/Vl(l)/7 WQ(Z)/ < Pruning according to Eq. (9)
26: for h-th head in {-th block in Mg do

l l
2 g la(l - R o1 - Ry))
28: Create the weight matrix Wg[?/ € Rux4, W‘(,l’h)/ € Rvixd Wg’h)/ € RIxu
29: Wg’h)/, W]((l’h)/, W‘(/l’h)/, Wg’h)/ < Pruning according to Eq. (10) and Eq. (11)
30: end for
31: end for

32: Mp < U i wil U qws " wil o wil Y wiih
33: return Mg

29

