
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VULCAN: CRAFTING COMPACT CLASS-SPECIFIC VI-
SION TRANSFORMERS FOR EDGE INTELLIGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Vision Transformers (ViTs) must often be compressed before they can be
deployed on resource-constrained edge devices. However, many edge devices
require only part of the all-classes knowledge of a pre-trained ViT in their corre-
sponding application scenarios. This is overlooked by existing compression meth-
ods. Lightweight models produced by these methods retain a substantial amount
of class-irrelevant knowledge and suffer suboptimal performance on target classes.
To address this, we analyze the knowledge distribution of ViT and reveal a knowl-
edge disentanglement within it: neurons in the feed-forward network (FFN) mod-
ules encode class-specific knowledge, while the multi-head attention (MHA) mod-
ules capture class-agnostic patterns. Building on this insight, we introduce Vulcan,
a pruning-oriented post-training method for deriving compact class-specific mod-
els from a pre-trained ViT under given resource budgets. Vulcan follows a novel
train-then-prune paradigm, which introduces redundancy into ViTs deliberately
by collapsing FFN neurons onto those with the highest class-specific activations
and by enforcing low-rankness in MHA weights. This design mitigates the irre-
versible knowledge loss of direct pruning, so that the post-trained model can be
compressed into a compact one with negligible performance loss. Notably, the
derived edge ViTs not only achieve significant reductions in size and computation
but also even surpass the original ViTs in performance on specific classes. Com-
prehensive experiments with five base ViTs covering three representative visual
tasks on four datasets demonstrate that Vulcan-derived ViTs outperform the base
ViTs on class-specific tasks by up to 15.12% in accuracy, with only 20%–40%
of their sizes. Compared with state-of-the-art structured pruning methods, Vulcan
improves class-specific accuracy by up to 13.92%. Code is available at Vulcan.

1 INTRODUCTION

Vision Transformers (ViTs) have achieved remarkable success in diverse visual tasks, including
image recognition (Lu et al., 2025; Fixelle, 2025), object detection (Singh, 2023; Wang et al., 2025a),
and instance segmentation (Yang et al., 2022; Ravi et al., 2025). Recent advances largely come
from scaling up ViTs, which enhances their representation and generalization ability (Wang et al.,
2024; 2025b; Han et al., 2025). While such scaling trends have pushed performance boundaries on
various benchmarks, they inevitably result in ViTs that are computationally expensive and memory-
intensive (Papa et al., 2024; Saha & Xu, 2025). As a result, these oversized ViTs are typically
deployed on cloud servers with sufficient computing resources (Jiang et al., 2025).

As illustrated in Figure 1, cloud deployment often fails to guarantee real-time performance, security,
and reliability, while edge deployment can address these issues via local inference (Wen et al.,
2023; Liao et al., 2024; Ding et al., 2024; Bonazzi et al., 2025). This highlights the urgent need to
unlock the potential of ViTs on edge devices such as drones and autonomous vehicles through model
compression (Tuli & Jha, 2023; Ye et al., 2024). However, existing compression methods ignore
the fact that edge ViTs, i.e., ViTs deployed on edge devices, typically require only class-specific
knowledge in their own application scenarios, rather than the all-classes knowledge embedded in
large-scale pre-trained ViTs (Yao & Abdelzaher, 2023; Zhuang et al., 2024). For example, an in-
vehicle sensor tasked with recognizing traffic-related classes such as vehicles, street signs, and traffic
lights does not require knowledge about flowers or insects. The presence of irrelevant knowledge
distracts a model from focusing on target classes, leading to suboptimal performance. This raises

1

https://anonymous.4open.science/r/Vulcan-4CEB

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Cloud Deployment Edge Deployment

Birds

Base ViT All-Classes Knowledge

Insects

Flowers Vehicles

Insects

Class-Specific Edge ViTs

Vehicles

Base ViT
Birds

Flowers

Model
Derivation

Data
Processing

1) High latency

2) Privacy leakage

3) Poor reliability

Model Distribution···

Figure 1: Comparison between cloud and edge ViTs deployment. 1) Cloud Deployment: users
access models via cloud APIs, suffering from high latency, privacy risks, and poor reliability due
to communication and network dependence. 2) Edge Deployment: local inference reduces latency,
preserves privacy, and improves reliability. Class-specific models are provided for users.

a key question: how to derive compact class-specific edge ViTs from a general-purpose pre-trained
base ViT for lightweight deployment?

To address this question, we adopt structured pruning (Cheng et al., 2024), an edge-friendly tech-
nique (§2), for lightweight deployment. However, existing pruning methods (Zhang et al., 2024;
Sun et al., 2025) lack pruning strategies tailored to class specificity. Simply replacing calibration
datasets with class-specific data during pruning and retraining is insufficient, as it results in models
that still fail to focus on target classes. Moreover, these methods follow the conventional prune-then-
train paradigm, which often incurs irreversible knowledge loss, particularly at high pruning rates,
since pruned weights may be unimportant but not dispensable. More fundamentally, achieving class-
specific model derivation requires an understanding of how class-specific knowledge is distributed
across ViT modules—a question that remains largely unresolved, as existing interpretability studies
offer only limited insights (Choi et al., 2024; Li et al., 2025).

We investigated the knowledge distribution within ViTs (Geva et al., 2021; Dai et al., 2022) and
found a disentangled distribution: FFNs primarily encode interpretable class-specific knowledge,
while MHAs capture class-agnostic patterns. Building on this insight, this paper presents Vulcan, a
pruning-oriented post-training method that can derive compact class-specific ViTs from a pre-trained
ViT. Unlike conventional pruning methods, Vulcan follows a novel train-then-prune paradigm that
ensures near-lossless pruning after post-training and minimizes knowledge loss during model com-
pression. Specifically, Vulcan employs class-centric neuron collapse to aggregate FFN neurons
onto those with the highest activations, deliberately introducing redundancy while enabling class-
relevant neurons to dominate feature extraction. Meanwhile, Vulcan applies truncated nuclear-norm
regularization to enhance the low-rankness of projection matrices in MHA, enabling near-lossless
pruning via singular value decomposition (SVD). Given a specified resource budget (e.g., #Param,
GFLOPs), Vulcan integrates these two strategies under an augmented Lagrangian framework (Birgin
& Martı́nez, 2014) to derive edge ViTs. We summarize the key contributions of Vulcan as follows:

• We provide fundamental insights into the internal knowledge distribution of ViTs, revealing a
knowledge disentanglement where FFN modules encode class-specific knowledge while MHA
modules capture class-agnostic patterns.

• To the best of our knowledge, Vulcan is the first technique for deriving compact class-specific
ViTs. As a pruning-oriented post-training method, it is also the first to introduce the novel train-
then-prune compression paradigm, which minimizes knowledge loss during pruning.

• Extensive experiments with five base ViTs covering three typical visual tasks and four bench-
marks demonstrate that Vulcan-derived edge ViTs achieve significant reductions in model size
while outperforming both the base ViTs and models derived by state-of-the-art structured prun-
ing methods in class-specific performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Post-Training
and Pruning

(3.4)

Vulcan

Transformer Block

Transformer Block

Layer Norm

Multi-Head
Attention (MHA)

Feed Forward
Network (FFN)

Add

Layer Norm

Add

Transformer Block

...

Class-Centric Neuron Collapse (3.2)

Weight-based Clustering

Calculate #Clusters based on Activation
Base ViT (3.1)

Anchor Neurons

Neuron Collapse

Sub-Task Data

Truncated Nuclear Norm Regularization (3.3)

Calculate Pruning
Rate based on Erank

Singular Value
Decomposition (SVD)

Interpretability
Analyses (3.2, 3.3)

Low-Rank Structure

Pruned FFN

Original FFN

OriginalMHA

+ + + + + +

PrunedMHA

Transformer Block

Figure 2: Overview of Vulcan. 1) Class-Centric Neuron Collapse (CCNC): neurons in FFN modules
are clustered, and all neurons within a cluster collapse into the one with the highest activation for
the target classes. 2) Truncated Nuclear Norm Regularization (TNNR): low-rank structures are
introduced into matrices in MHA modules to support near-lossless SVD-based compression.

2 BACKGROUND AND RELATED WORK

Edge Model Deployment. Recently, a series of increasingly large ViTs have been developed (Zhai
et al., 2022; Dehghani et al., 2023; Wang et al., 2024), contrasting with the growing demand for
deploying models on edge devices for real-time responsiveness, privacy preservation, and reliable
service. To address this, several edge-friendly architectures have been proposed, such as Mobile-
ViT (Mehta & Rastegari, 2022), EfficientViT (Liu et al., 2023), and Flatten Transformer (Han et al.,
2023). While effective, these approaches rely on manual architecture design and require training
from scratch. Moreover, such specialized architectures do not naturally scale with the rapid advances
of large ViTs, limiting their ability to deliver increasingly powerful models for edge deployment. In
contrast, Vulcan focuses on deriving compact ViTs from a pre-trained base ViT, allowing edge ViTs
to inherit knowledge from the base ViT and enabling efficient model development.

Model Compression. Various compression methods enable edge deployment of ViTs, including
quantization (Choi & Kim, 2025; Zhong et al., 2025), knowledge distillation (Yang et al., 2024b;
Cao et al., 2025), as well as structured (Zhang et al., 2024; Sun et al., 2025) and unstructured prun-
ing (Chen et al., 2021; Liao et al., 2023). However, not all are edge-friendly (Appendix A). Quan-
tization and unstructured pruning typically rely on specialized infrastructure for acceleration, which
limits their applicability on diverse edge devices (Yang et al., 2024a; Cheng et al., 2024). Knowledge
distillation transfers knowledge only from the feature space, incurring substantial training cost (He
et al., 2025). In contrast, structured pruning extracts knowledge from the parameter space and yields
regularly shaped models that can be deployed across diverse edge devices, which serves as the
foundation of Vulcan. Different from the conventional prune-then-train paradigm, Vulcan follows a
train-then-prune paradigm that avoids irreversible knowledge loss caused by direct weight removal
and achieves near-lossless pruning. It is worth noting that Vulcan is orthogonal to other compression
techniques and can be seamlessly combined with them for even lighter deployment (Appendix J.8).

Interpretability of ViTs. Extensive research has investigated the interpretability of ViTs from dif-
ferent perspectives, such as attention visualization (Chefer et al., 2021; Choi et al., 2024), decision
pathways (Komorowski et al., 2023; Brinkmann et al., 2024), and robustness to perturbations (Fu
et al., 2022; Hu et al., 2024). However, the distribution of class-specific knowledge across different
modules of ViTs remains largely unexplored. This missing insight is particularly critical for sup-
porting class-specific model derivation, which is essential to meet the customized requirements of
edge users. In this paper, we shed light on this issue by providing an analysis of how class-specific
and class-agnostic knowledge are structurally disentangled within ViTs (§3.2-§3.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) n(1,1890)
1 (b) n(3,790)

1 (c) n(5,2891)
1 (d) n(7,1430)

1 (e) n(9,2154)
1 (f) n(11,1644)

1

Figure 3: Top-25 activated images for random FFN neurons in DeiT-Base. (a)-(f) correspond to pat-
terns of cold color tones, vertical stripes, monotone backgrounds, grid textures, stacked objects, and
snakes, illustrating the strong interpretability of FFN neurons. See Appendix B for more examples.

3 VULCAN: CLASS-SPECIFIC MODEL DERIVATION

This section introduces Vulcan, a pruning-oriented post-training method for class-specific model
derivation. We begin with notations and preliminaries (§3.1), then detail two key components: class-
centric neuron collapse for FFNs (§3.2) and truncated nuclear norm regularization for MHAs (§3.3).
Finally, we introduce the post-training procedure and the pruning strategy for constructing compact
models from the post-trained base ViT (§3.4). An overview of Vulcan is illustrated in Figure 2.

3.1 NOTATIONS AND PRELIMINARIES

Vision Transformer. A ViT (Dosovitskiy, 2021) consists of a stack of Transformer blocks, each
containing an MHA and FFN module. Given a patch token sequence X ∈ RN×d with N tokens and
embedding dimension d, each MHA head computes and aggregates contextualized representations:

MHA(l)(X) =

Hl∑
h=1

Attn(l,h)(X) =

Hl∑
h=1

softmax
(XW

(l,h)
Q

⊤
W

(l,h)
K X⊤

√
ql

)
XW

(l,h)
V

⊤
W

(l,h)
O

⊤
(1)

where W (l,h)
Q|K ∈ Rql×d, W (l,h)

V ∈ Rvl×d and W (l,h)
O ∈ Rd×vl are the query, key, value, and out-

put projection matrices for the h-th head in the l-th block. For simplicity, bias terms are omitted.
Following MHA, the FFN module applies a two-layer multi-layer perceptron:

FFN(l)(X) = σ(XW
(l)
1

⊤
)W

(l)
2

⊤
=

el∑
i=1

σ(XW
(l)
1 [i])⊗W

(l)
2

⊤
[i] =

el∑
i=1

σ(Xn
(l,i)
1)⊗ n

(l,i)
2 (2)

where W (l)
1 ∈ Rel×d and W (l)

2 ∈ Rd×el are the FFN projection matrices in l-th block, σ(·) is a
nonlinear activation (e.g., GELU), n(l,i)

1|2 ∈ Rd is the i-th neuron in W (l)
1|2, and⊗ is the outer product.

Sub-Task. LetMB be the pre-trained base ViT trained onDY for classes Y = y1, . . . , y|Y|. Vulcan
aims to derive a compact class-specific edge ViTME fromMB , specialized for a subset S ⊆ Y .
We refer to S as a sub-task ofMB , and denote its corresponding dataset by DS .

3.2 CLASS-CENTRIC NEURON COLLAPSE FOR FFNS

Insight. As shown in Eq. (2), an FFN computes via weighted aggregation, where the activation of
each neuron n(l,i)

1 serves as weights and n(l,i)
2 as values. Thus, activation magnitudes decisively de-

termine neuron contributions to FFN outputs. Inspired by the concept of “knowledge neurons” (Geva
et al., 2021; Dai et al., 2022), we conduct an activation-driven analysis on DeiT-Base (Touvron et al.,
2021). Specifically, for each neuron n(l,i)

1 , we sum its activations over all patch tokens for each image
in the ImageNet-1K validation set (Russakovsky et al., 2015), and visualize the top-25 images with
the highest activations to inspect what kind of knowledge is encoded in the neuron. Figure 3 shows
that these neurons exhibit remarkably strong human-recognized interpretability, with knowledge be-
coming more semantic in deeper blocks. For example, shallow neurons capture simple patterns such
as color tones, textures, or backgrounds, while deeper neurons specialize in semantic concepts such
as specific classes like snakes. This suggests that FFN modules serve as reservoirs of class-specific
knowledge, since different classes can be distinguished by shallow and semantic patterns.

Class-Centric Neuron Collapse (CCNC). Building on this insight, we propose CCNC to introduce
redundancy into the FFN intermediate dimension (e) for pruning. Given a sub-task S, Vulcan useDS
to compute the activations a(l,i) =

∑
i σ(X[i] · n(l,i)

1). Higher activation implies stronger relevance
of n(l,i)

1 to target classes in S. To guide the model to focus on class-specific knowledge, Vulcan
performs k-means clustering on n(l,i)

1 in each block based on their weights, and collapses all neurons

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

20 30 40 50 60 70 80

T1/25 (0.6)

T2/50 (0.6)

T3
/10

0 (
0.6

)

T1/25 (0.8)

T2/50 (0.8)

T3
/10

0 (
0.8

)

Query-Key Dimension

20 30 40 50 60 70 80

T1/25 (0.6)

T2/50 (0.6)

T3
/10

0 (
0.6

)

T1/25 (0.8)

T2/50 (0.8)

T3
/10

0 (
0.8

)

Value-Output Dimension
Activation Gradient Taylor Expansion SVD

Figure 4: Comparison of accuracy between
SVD-based and score-based pruning for DeiT-
Base on ImageNet-1K. Tj/N (R) represents sub-
task Tj (|Tj|=N) with pruning rate R. SVD out-
performs other methods by a significant margin.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B120

100

200

300

400

500

600

700

QK
/V

O
Ef

fe
ct

iv
e

Ra
nk

QK Erank
VO Erank
QK+VO Erank

800

900

1000

1100

1200

1300

1400

QK
+V

O
Ef

fe
ct

iv
e

Ra
nk

Figure 5: Effective rank (Erank) distribution of
QK and VO dimensions across different blocks
of DeiT-Base. The QK/VO Erank represents the
sum of the Erank values across all heads in these
two dimensions for each block.

within the same cluster C(l)k into the neuron with the highest activation â(l)k , termed the anchor neuron
n̂(l)
k . As Figure 3 shows that neurons in different blocks specialize in distinct functions, Vulcan

avoids uniform pruning rates across all blocks (Appendix J.2). Instead, it adaptively determines the
number of clusters per block based on activation distribution and overall pruning rate R ∈ (0, 1).
Formally, the number of clusters in the FFN of the l-th block K(l) is calculated as follows:

K(l) =

el∑
i=1

I
(
a(l,i) > Φ

(
A(l), ⌈(

L∑
j=1

ej)×R⌉
))

, A(l) =

L⋃
l=1

{a(l,i)|i = 1, . . . , el} (3)

where Φ(A, k) returns the k-th smallest element in set A. To realize cluster-level collapse, Vulcan
enforces the weights or activations of all neurons within the same cluster to contract toward the
anchor neuron. This is achieved by introducing a collapse regularization term during post-training:

Lcollapse =

L∑
l=1

1

K(l)

K(l)∑
k=1

|C(l)
k |∑

i=1

|ν(l,i)k − ν̂
(l)
k |, ν̂

(l)
k = ν

(l,i∗)
k , i∗ = max

i∈[|C(l)
k |]

a
(l,i)
k (4)

where C(l)k is the k-th cluster in the l-th block, and ν(l,i)k denotes either the weight n(l,i)
k or the

activation a(l,i)k of the i-th neuron in C(l)k , with a unique choice applied in practice. Experiments
show that weight collapse converges faster and performs better than activation collapse (Figure 10).
Through Eq. (4), Vulcan guides the model to focus on class-specific knowledge and enables each
cluster to be represented by a single anchor neuron, which achieves effective compression of the FFN
modules. Appendix C further shows that CCNC can also be applied to other FFN architectures.

3.3 TRUNCATED NUCLEAR NORM REGULARIZATION FOR MHAS

Insight. For MHA, Vulcan prunes the query-key (QK: q) and value-output dimensions (VO: v), en-
forcing identical sizes across heads in each block (Appendix D). As shown in Eq. (1), the QK and VO
dimensions are intermediate dimensions of two matrix multiplications (i.e., W⊤

QWK ,W⊤
V W⊤

O ∈
Rd×d), indicating that they can be pruned through singular value decomposition (SVD). Surpris-
ingly, we observe that this data-free SVD-based method consistently outperforms data-independent
score-based pruning methods (Yu et al., 2018; Chen et al., 2021; Yang et al., 2023), as shown in
Figure 4. It suggests that effective compression of MHA can be achieved even when the sub-task
is unknown. This method-driven analysis indicates that the QK and VO dimensions in MHA store
class-agnostic knowledge. We provide a theoretical explanation for this observation in Appendix E.

Truncated Nuclear Norm Regularization (TNNR). To leverage SVD for near-lossless MHA prun-
ing, we propose TNNR to introduce low-rank structures into W (l,h)

Q and W (l,h)
V , with their low-rank

properties shared by W (l,h)
K and W (l,h)

O , respectively. We use effective rank (Roy & Vetterli, 2007)
to measure the knowledge capacity of each attention head and observe that the knowledge in MHA
is also unevenly distributed across different blocks and dimensions, as shown in Figure 5. Based
on this observation, Vulcan adaptively determines the pruning rate R(l)

QK|V O for the QK and VO
dimensions according to the dimension-level effective ranks and the overall pruning rate R:

R
(l)
QK|V O =

2r
(l)
V O|QK

r
(l)
QK + r

(l)
V O

R(l), R(l) =
L∑L

i=1 1/(r
(i)
QK + r

(i)
V O)

· R

r
(l)
QK + r

(l)
V O

(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

r
(l)
QK|V O =

Hl∑
h=1

E(W (l,h)
QK|V O), E(W) = exp(−

∑
i

pi log pi), pi =
σi∑
j σj

(6)

where W (l,h)
QK = W (l,h)

Q
⊤W (l,h)

K , W (l,h)
V O = W (l,h)

V
⊤W (l,h)

O
⊤, E(W) is the effective rank of matrix

W and σi is the i-th singular value of W . Then, Vulcan applies truncation to the nuclear norm of
W (l,h)

Q and W (l,h)
V according to Eq. (5) and constructs a regularization term:

Lrank =

L∑
l=1

Hl∑
h=1

 ql∑
i=q′l+1

σ
(l,h,i)
Q +

vl∑
i=v′

l+1

σ
(l,h,i)
V

 , q′l = ⌊ql(1−R
(l)
QK)⌋, v′l = ⌊vl(1−R

(l)
V O)⌋ (7)

where σ(l,h,i)
Q|V is the i-th singular value of W (l,h)

Q|V . With Eq. (7), Vulcan effectively extracts class-
agnostic knowledge from the MHA and supports near-lossless pruning after post-training.

3.4 POST-TRAINING AND PRUNING

Objective. Vulcan post-training aims to focus the model on specific classes while introducing re-
dundancy in the three ViT dimensions (e, q, v) for pruning. Eqs. (4) and (7) serve as redundancy
constraints that guide the compression process. To strictly enforce these constraints during post-
training, Vulcan uses the augmented Lagrangian framework to construct the final objective function.
Specifically, it extends Eqs. (4) and (7) into linear and quadratic functions, and introduces two learn-
able Lagrange multipliers λ1 and λ2 to control convergence. The final loss function is as follows:

L = LT +

L∑
l=1

1

K(l)

K(l)∑
k=1

|C(l)
k |∑

i=1

(
λ1|ν(l,i)k − ν̂

(l)
k |+ λ2(ν

(l,i)
k − ν̂

(l)
k)2

)

+

L∑
l=1

Hl∑
h=1

 ql∑
i=q′l+1

(
λ1σ

(l,h,i)
Q + λ2σ

(l,h,i)
Q

2)
+

vl∑
i=v′

l+1

(
λ1σ

(l,h,i)
V + λ2σ

(l,h,i)
V

2) (8)

where LT is the loss term for visual tasks, as well as λ1 and λ2 are initialized to zero and updated
using gradient ascent with a penalty parameter ρ as the learning rate.

Pruning. After post-training, Vulcan can directly derive a compact class-specific edge ViT from the
post-trained base ViT with negligible performance loss (Appendix F and G). Specifically, the pruned
FFN module contains two new weights, W (l)′

1 ∈ RK(l)×d and W (l)′

2 ∈ Rd×K(l)

, which satisfy:

W
(l)′

1 [k] = n̂
(l)
k , W

(l)′

2 [:, k] =

|C(l)
k |∑

i=1

n
(l,i)
k,2 , k ∈ [K(l)] (9)

where n(l,i)
k,2 denotes the neuron in W (l)

2 corresponding to n(l,i)
k . This process is essentially the

inverse of network expansion (Ding et al., 2023; Yao et al., 2024) and adheres to the function-
preserving principle (Chen et al., 2016). For the pruned MHA module, its four new weights,
W (l,h)′

Q|K ∈ Rq′l×d, W (l,h)′

V ∈ Rv′
l×d, and W (l,h)′

O ∈ Rd×v′
l can be directly obtained through SVD:

W
(l,h)′

Q = (U
(l,h)
QK [:, : q′l]Σ

(l,h)
QK [: q′l, : q

′
l])

⊤ ×
√
q′l/ql, W

(l,h)′

K = (V
(l,h)
QK [:, : q′l])

⊤ (10)

W
(l,h)′

V = (U
(l,h)
V O [:, : v′l]Σ

(l,h)
V O [: v′l, : v

′
l])

⊤, W
(l,h)′

O = V
(l,h)
V O [:, : v′l] (11)

where U (l,h)
QK Σ(l,h)

QK V (l,h)
QK

⊤ = W (l,h)
QK and U (l,h)

V O Σ(l,h)
V O V (l,h)

V O
⊤ = W (l,h)

V O . It is worth noting that
conventional pruning methods remove weights based on importance scores, which may still discard
useful knowledge. In contrast, Vulcan ensures that the pruned weights are entirely redundant and do
not contain any valuable knowledge. Pseudocode is provided in Appendix K.

4 EXPERIMENTS AND ANALYSIS

Models and Datasets. We evaluate Vulcan on two widely adopted ViT families: DeiT-
Base/Small/Tiny (Touvron et al., 2021) and Fast/Mask R-CNN (Swin-T) (Liu et al., 2021). For
recognition tasks, we use ImageNet-1K (Russakovsky et al., 2015) and CIFAR-100/10 (Krizhevsky
et al., 2009); for detection and segmentation tasks, we use COCO (Lin et al., 2014). Sub-tasks of
varying scales are constructed by randomly sampling classes from each dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance of Vulcan and baselines on DeiT-Base with ImageNet-1K sub-tasks
of different sizes (25, 50, 100 classes) under pruning rates of 0.60 and 0.80. The best top-1 accuracy
(%) in each column is highlighted in bold, while the second best is underlined. ‘(FT)’ denotes
fine-tuning on the class-specific data. Results for other pruning rates are provided in Appendix J.1.

Method T1/25 T2/25 T3/25 Avg T4/50 T5/50 T6/50 Avg T7/100 T8/100 T9/100 Avg

DeiT-Base 79.92 82.56 80.67 81.05 80.48 79.64 84.96 81.69 80.49 84.12 78.58 81.06
DeiT-Base (FT) 96.40 96.96 96.96 96.77 95.00 93.36 94.68 94.35 91.56 93.29 92.84 92.56

Pruning Rate = 0.60
Random 91.76 92.72 89.69 91.39 86.16 85.60 87.56 86.44 83.11 86.10 80.42 83.21
NViT 83.91 87.12 85.62 85.55 81.64 81.20 80.72 81.19 78.31 80.31 78.12 78.91
X-Pruner 91.68 93.04 93.21 92.64 90.24 88.28 90.16 89.56 84.51 87.12 86.46 86.03
DC-ViT 71.60 83.28 76.92 77.27 69.48 67.20 66.96 67.88 60.06 64.98 65.18 64.41
MDP 91.04 94.80 92.09 92.64 90.32 85.00 91.16 88.83 82.61 84.33 82.86 83.27
Vulcan 95.04 96.24 95.53 95.60 92.16 91.72 92.44 92.11 88.03 90.70 89.02 89.25

Pruning Rate = 0.80
Random 71.36 78.48 82.90 77.58 71.92 71.16 73.28 72.12 65.28 67.71 60.98 64.66
NViT 64.16 58.00 60.38 60.85 52.76 53.44 49.04 51.75 41.56 47.62 48.74 45.97
X-Pruner 85.60 86.00 85.62 85.74 76.24 74.00 79.72 76.65 72.62 76.74 75.52 74.95
DC-ViT 54.72 66.24 64.46 61.81 47.52 53.40 50.84 50.59 35.66 35.12 34.66 35.15
MDP 83.68 88.08 84.66 85.47 74.04 74.20 79.88 76.04 61.72 67.81 67.54 65.69
Vulcan 92.24 94.32 92.57 93.04 88.36 88.12 88.52 88.33 81.82 85.20 82.84 83.29

Implementations. GFLOPs is used as the metric to compute pruning rates. During post-training,
we set the batch size to 256, the learning rate to 10−4, the penalty parameter ρ to 1.0, and use the
AdamW for optimization. For CCNC, we apply z-score normalization to the activation values across
blocks before computing K(l). Anchor neurons are updated per batch. To ensure that the derived
models can achieve accelerated inference on a wide range of edge devices, Vulcan aligns the pruned
dimensions to multiples of 8 (NVIDIA, 2023). See Appendix H for more details.

Baselines. We compare Vulcan with five state-of-the-art structured pruning methods: Random Prun-
ing (Gadhikar et al., 2023), NViT (Yang et al., 2023), X-Pruner (Yu & Xiang, 2023), DC-ViT (Zhang
et al., 2024), and MDP (Sun et al., 2025) (Appendix I). To ensure fairness, we retrain the models
pruned by these methods until they converge.

4.1 RESULTS

T1/25

T2/25

T3/25
T4/50

T5/50

T6/50

T7/100
T8/100

T9/100

65 70 75 80 85 90 95 100

Pruning Rate = 0.20

T1/25

T2/25

T3/25
T4/50

T5/50

T6/50

T7/100
T8/100

T9/100

65 70 75 80 85 90 95 100

Pruning Rate = 0.40

Random
NViT

X-Pruner
DC-ViT

MDP
Vulcan

Figure 6: Comparison between class-agnostic
and class-specific model derivation. Tj/N rep-
resents sub-task Tj with N random classes.

Class-Agnostic vs. Class-Specific. We compare
class-agnostic and class-specific methods to high-
light the advantages of the latter. Baselines derive
class-agnostic models from DeiT-Base for all Im-
ageNet classes, while Vulcan derives class-specific
models tailored to the target sub-task S. Figure 6
shows that Vulcan consistently outperforms base-
lines in class-specific accuracy at the same prun-
ing rate. This demonstrates Vulcan’s advantage in
meeting edge devices’ customized needs.

Overall Performance. For a fair comparison, we replace the calibration datasets originally used
by the baselines with the sub-task dataset DS , which adapts them to the setting of class-specific
model derivation. As shown in Table 1, Vulcan-derived edge ViTs achieve up to 15.12% higher
accuracy than the base ViT and up to 13.92% over the models derived by state-of-the-art baselines
across different sub-tasks and pruning rates. At a pruning rate of 0.60, Vulcan improves accuracy by
11.05% over the base ViT, and surpasses the two best-performing baselines, X-Pruner and MDP, by
2.91% and 4.07%, respectively. Even at a high pruning rate of 0.80, where all methods suffer from
significant accuracy degradation, Vulcan still delivers strong performance, yielding improvements of
6.95%, 9.11%, and 12.49% over the base ViT, X-Pruner, and MDP, respectively. It can be seen that
the advantages of Vulcan become more pronounced as the pruning rate increases and the sub-task
size grows. Meanwhile, Vulcan is able to retain 97.63% and 93.30% of the accuracy of the fine-
tuned base ViT at pruning rates of 0.60 and 0.80, respectively. These results demonstrate Vulcan’s
strong capability to specialize models for target classes.

Generality Across Models and Datasets. To further validate the generality of Vulcan, we extend
our evaluation to different base models (DeiT-Small/Tiny and Fast/Mask R-CNN with Swin-T back-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 70 80 90 0 20 40 60 70 80 90
Pruning Rate (%)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

DeiT-Small DeiT-Tiny

CIFAR100: T1/10 T2/25 T3/50

0 20 40 60 70 80 90 0 20 40 60 70 80 90
Pruning Rate (%)

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

DeiT-Small DeiT-Tiny

CIFAR10: T1/2 T2/5 T3/8

0 20 40 60 80 0 20 40 60 80
Pruning Rate (%)

20

30

40

50

60

70

80

m
AP

 (b
ox

/m
as

k)
 (%

)

Fast R-CNN (Swin-T) Mask R-CNN (Swin-T)

COCO: T1/person T2/car T3/cat

Figure 7: Performance of edge ViTs derived by Vulcan across different base models and datasets.

Table 2: Comparison of computational efficiency between DeiT-Base and edge ViTs derived by
Vulcan under different R, evaluated on Jetson Orin NX (bz=1) and NVIDIA RTX 4090 (bz=256).

Methods
Latency (ms) Throughput (image/s) Memory (GB) #Param #FLOPs

Orin NX RTX 4090 Orin NX RTX 4090 Orin NX RTX 4090 (M) (G)

DeiT-Base 45.45 274.27 22.00 933.39 0.34 2.21 86.57 17.57

Vulcan (0.20) 36.84 (1.23×) 218.16 (1.26×) 27.14 1173.43 0.27 2.14 67.22 13.56 (↓21.51%)
Vulcan (0.40) 29.73 (1.53×) 176.01 (1.56×) 33.63 1454.42 0.21 1.82 51.00 10.24 (↓41.72%)
Vulcan (0.60) 21.81 (2.16×) 136.67 (2.01×) 45.86 1873.11 0.15 1.66 34.09 6.77 (↓61.47%)
Vulcan (0.80) 15.06 (3.02×) 99.59 (2.75×) 66.41 2570.61 0.08 1.40 16.96 3.26 (↓81.45%)

bone) and datasets (CIFAR-100/10 and COCO2017). As shown in Figure 7, for recognition tasks,
the derived edge ViTs consistently outperform the base ViT on sub-tasks when the pruning rate is
below 0.60. Even at pruning rates higher than 0.80, the accuracy of edge ViTs does not degrade
severely enough to make the models unusable. For some small-scale sub-tasks, edge ViTs even
significantly outperform the base ViT at pruning rates as high as 0.90. For detection and segmenta-
tion tasks, Vulcan also effectively extracts class-specific (i.e., person, car, and cat) knowledge from
Swin Transformer backbones and yields edge ViTs that rival the performance of the base ViT. See
Appendix J.4–J.6 for experiments on generalization, robustness, and open-domain adaptation.

Computational Efficiency. We evaluate the efficiency of edge ViTs derived by Vulcan on both a
representative edge device, Jetson Orin NX, and an NVIDIA RTX 4090. Considering that requests
typically arrive sequentially in real-time edge scenarios, whereas servers process requests in batches,
we use batch sizes of 1 and 256 to measure the speedup on Orin NX and RTX 4090, respectively. All
results are averaged over the models for nine sub-tasks listed in Table 1. As shown in Table 2, when
the pruning rate ranges from 0.20 to 0.80, Vulcan-derived models achieve 1.23×–3.02× speedup on
Orin NX and 1.26×–2.75× on RTX 4090, while reducing memory consumption by 20.59%–76.47%
and 3.17%–36.65%, respectively. See Appendix J.3 for comparisons with baselines.

4.2 ANALYSIS

We further analyze the effectiveness of Vulcan from multiple perspectives. Unless otherwise speci-
fied, all experiments are conducted on DeiT-Base at a pruning rate of 0.60, with the sub-tasks T1–T3
in Table 1 constructed by sampling classes from ImageNet-1K.

Understanding the Post-Training Process. We visualize the post-training process of Vulcan by
tracking 1) the accuracy of the derived edge ViT (Acc-Pruned) and the base ViT (Acc-Base) as well
as their accuracy gap (∆Acc), and 2) the overall loss L in Eq. (8). As shown in Figure 8, the post-
training process can be viewed as a gradual alignment between the edge ViT and the base ViT. At
the early stage, the task loss LT dominates, leading to an improvement in the accuracy of the base
ViT. As the Lagrange multipliers λ1,2 increase, the redundancy-enforcing losses Lcollapse and Lrank
begin to dominate. Consequently, the accuracy of the base ViT slightly decreases while that of the
edge ViT increases substantially. In the later stage, the two models converge, achieving equivalence.

Penalty Parameter ρ. As discussed in Section 3.4, the penalty parameter ρ, as the only hyperpa-
rameter of Vulcan, serves as the learning rate for updating λ1,2. It determines when Lcollapse and
Lrank dominate post-training and align edge ViTs with base ViT. However, Vulcan is largely insen-
sitive to ρ. As shown in Figure 9, when ρ is set to 0.1, 1.0, or 10.0, both the convergence speed and
the final accuracy of the edge ViT remain almost unchanged, which demonstrates the robustness of
Vulcan. We further analyze the effects of batch size and learning rate in Appendix J.7.

Weight vs. Activation Collapse. As discussed in Section 3.2, the term ν(l,i)k in Lcollapse can be
defined in two ways: using the weight vector n(l,i)

k (weight collapse) or the activation value a(l,i)k
(activation collapse). As shown in Figure 10, weight collapse achieves both faster convergence
and higher final accuracy compared to activation collapse. We attribute this to two main reasons:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Acc-Pruned (R=0.6)
Acc-Base (R=0.6)

Acc (R=0.6)

0 500 1000 1500 2000 2500 3000
Step

0.0e+00

1.0e+05

2.0e+05

3.0e+05

4.0e+05

5.0e+05

Lo
ss

Loss (R=0.6)

0 1000 2000 3000 4000 5000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Acc-Pruned (R=0.8)
Acc-Base (R=0.8)

Acc (R=0.8)

0 1000 2000 3000 4000 5000
Step

0.0e+00

1.0e+05

2.0e+05

3.0e+05

4.0e+05

5.0e+05

6.0e+05

7.0e+05

Lo
ss

Loss (R=0.8)

Figure 8: Mean accuracy and loss curves with standard deviation bands on sub-
tasks T1/25, T2/25, and T3/25 when deriving models from DeiT-Base using
Vulcan at pruning rates 0.60 and 0.80.

0 1000 2000 3000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

=0.1
=1.0
=10.0

Figure 9: Vul-
can is insensitive
to the choice of ρ.

0
500

1000
1500

2000
2500

3000
Step

0
1

2
3

4
5

0
20
40
60
80

Ac
cu

ra
cy

 (%
)

A Coll.(T1)
A Coll.(T2)
A Coll.(T3)
W Coll.(T1)
W Coll.(T2)
W Coll.(T3)

Figure 10: Accuracy trajectories of derived edge
ViTs during post-training with weight collapse
(W Coll.) and activation collapse (A Coll.).

Table 3: Ablation study of Vulcan. At a prun-
ing rate of 0.60, the edge ViTs derived from DeiT-
Base for classes in sub-tasks T1–T3 exhibit sig-
nificant accuracy degradation when any of CCNC,
TNNR, or anchor neurons are removed.

Setting T1/25 T2/25 T3/25 Avg

Vulcan 95.04 96.24 95.53 95.60

w/o CCNC 8.08 13.68 12.30 11.35 (↓84.25%)
w/o TNNR 79.36 81.60 77.38 79.45 (↓16.15%)
w/o anchor 90.00 92.32 90.81 91.04 (↓4.56%)

1) weight collapse directly enforces equality among weights, which better aligns with the pruning
process of Vulcan; and 2) the Lcollapse under activation collapse is smaller in magnitude, resulting in
weaker constraints. Moreover, we observe that simply increasing ρ does not alleviate this issue.

Ablation Study. Class-centric neuron collapse (CCNC) and truncated nuclear norm regularization
(TNNR) are Vulcan’s core components, responsible for extracting class-relevant knowledge from the
FFN and MHA modules, respectively. Table 3 summarizes their effectiveness. Removing CCNC
causes an 84.25% accuracy drop due to irreversible knowledge loss in the FFN. Without TNNR,
accuracy drops 16.15%, smaller since MHA matrices are inherently low-rank. We further compare
collapsing neurons toward the anchor neuron versus a random neuron within each cluster, and find
that the absence of anchor guidance leads to an average accuracy drop of 4.56%. These results
demonstrate that all designs in Vulcan are indispensable for effective class-specific model derivation.

Figure 11: Dog-related neurons in the
last block of Vulcan-derivedME/dogs.

Visualization. To further show that the models derived
by Vulcan indeed specialize in the target classes, we de-
rive an edge ViTME/dogs from DeiT-Base at a pruning
rate of 0.60 for the Stanford Dogs (Khosla et al., 2011), a
subset of ImageNet consisting of 120 dog classes. Fol-
lowing the same procedure as Figure 3, we visualize
the 680 neurons in the last block of ME/dogs and iden-
tify 229 neurons specialized in recognizing dog-related
classes. Representative examples are shown in Figure 11.
This demonstrates Vulcan’s ability to effectively guide
the model toward target classes.

5 CONCLUSION

This paper presented Vulcan, a novel pruning-oriented post-training method that derives class-
specific models from pre-trained ViTs for deployment on edge devices. Motivated by the insight that
the FFN modules of ViTs primarily encode class-specific knowledge while the MHA modules cap-
ture class-agnostic patterns, Vulcan adopts a novel train-then-prune compression paradigm, lever-
aging class-centric neuron collapse and truncated nuclear norm regularization to introduce redun-
dancy into the FFN and MHA modules, respectively. This design allows Vulcan to derive compact
class-specific edge ViTs from the post-trained base ViTs under resource constraints with negligible
performance loss. Extensive experiments demonstrate its effectiveness, generality, and robustness.
In future work, we plan to extend Vulcan to large language models (LLMs), vision-language models
(VLMs), and multi-modal language models (MMLMs).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ernesto G Birgin and José Mario Martı́nez. Practical augmented Lagrangian methods for con-
strained optimization. SIAM, 2014. 2

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of Machine Learning and Systems, 2:129–146, 2020. 18

Pietro Bonazzi, Christian Vogt, Michael Jost, Lyes Khacef, Federico Paredes-Vallés, and Michele
Magno. Towards low-latency event-based obstacle avoidance on a fpga-drone. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4938–4946, 2025. 1

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative com-
ponents with random forests. In European Conference on Computer Vision, pp. 446–461, 2014.
27

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mech-
anistic analysis of a transformer trained on a symbolic multi-step reasoning task. Association for
Computational Linguistics, 2024. 3

Jiajun Cao, Yuan Zhang, Tao Huang, Ming Lu, Qizhe Zhang, Ruichuan An, Ningning Ma, and
Shanghang Zhang. Move-kd: Knowledge distillation for vlms with mixture of visual encoders.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19846–19856, 2025.
3

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 782–791, 2021. 3

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974–19988, 2021. 3, 5

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. International Conference on Learning Representations, 2016. 6

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024. 2, 3

John S Chipman. “proofs” and proofs of the eckart–young theorem. In Stochastic processes and
functional analysis, pp. 71–83. CRC Press, 2020. 19

Dahun Choi and Hyun Kim. GradQ-ViT: Robust and efficient gradient quantization for vision
transformers. In AAAI Conference on Artificial Intelligence, volume 39, pp. 16019–16027, 2025.
3

Hoyoung Choi, Seungwan Jin, and Kyungsik Han. Icev2: Interpretability, comprehensiveness, and
explainability in vision transformer. International Journal of Computer Vision, pp. 1–18, 2024.
2, 3

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. In 60th Annual Meeting of the Association for Computational Linguistics,
pp. 8493–8502, 2022. 2, 4

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International conference on machine learning,
pp. 7480–7512. PMLR, 2023. 3

Ning Ding, Yehui Tang, Kai Han, Chao Xu, and Yunhe Wang. Network expansion for practical
training acceleration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20269–20279, 2023. 6

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie Tang, Chengfei Lyu, and Guihai Chen. Enhancing
on-device llm inference with historical cloud-based llm interactions. In 30th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 597–608, 2024. 1

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
9rd International Conference on Learning Representations (ICLR 2021), 2021. 4

Joshua Fixelle. Hypergraph vision transformers: Images are more than nodes, more than edges. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9751–9761, 2025. 1

Yonggan Fu, Shunyao Zhang, Shang Wu, Cheng Wan, and Yingyan Lin. Patch-fool: Are vision
transformers always robust against adversarial perturbations? International Conference on Learn-
ing Representations, 2022. 3

Advait Harshal Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all
we need to start sparse. In International Conference on Machine Learning, pp. 10542–10570.
PMLR, 2023. 7, 16

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Conference on Empirical Methods in Natural Language Processing, pp.
5484–5495, 2021. 2, 4

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vision
transformer using focused linear attention. In IEEE/CVF International Conference on Computer
Vision, pp. 5961–5971, 2023. 3

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15733–15744, 2025. 1

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015. 15

Changyi He, Yifu Ding, Jinyang Guo, Ruihao Gong, Haotong Qin, and Xianglong Liu. DA-KD:
Difficulty-aware knowledge distillation for efficient large language models. In Forty-second In-
ternational Conference on Machine Learning, 2025. 3

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In IEEE/CVF International Conference on Com-
puter Vision, pp. 8340–8349, 2021. 26

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015. 16

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. 9rd International
Conference on Learning Representations (ICLR 2021), 2021. 28

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. Improving interpretation
faithfulness for vision transformers. In International Conference on Machine Learning, 2024. 3

Linyi Jiang, Silvery D Fu, Yifei Zhu, and Bo Li. Janus: Collaborative vision transformer under
dynamic network environment. In IEEE INFOCOM 2025-IEEE Conference on Computer Com-
munications, pp. 1–10. IEEE, 2025. 1

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), volume 2, 2011. 9

Piotr Komorowski, Hubert Baniecki, and Przemyslaw Biecek. Towards evaluating explanations
of vision transformers for medical imaging. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3726–3732, 2023. 3

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision Workshops, pp. 554–561,
2013. 27

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 6, 16

Ken Lang. Newsweeder: Learning to filter netnews. In International Conference on Machine
Learning, pp. 331–339. Elsevier, 1995. 26

Lu Li, Jiale Liu, Xingyu Ji, Maojun Wang, and Zeyu Zhang. Self-explainable graph transformer for
link sign prediction. In AAAI Conference on Artificial Intelligence, volume 39, pp. 12084–12092,
2025. 2

Song Liao, Mohammed Aldeen, Jingwen Yan, Long Cheng, Xiapu Luo, Haipeng Cai, and Hongxin
Hu. Understanding gdpr non-compliance in privacy policies of alexa skills in european market-
places. In ACM Web Conference, pp. 1081–1091, 2024. 1

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In IEEE/CVF International Conference on Computer Vision,
pp. 1402–1406, 2023. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pp. 740–755. Springer, 2014. 6

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14420–14430, 2023. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 10012–10022, 2021. 6, 23

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 5rd International Con-
ference on Learning Representations (ICLR 2017), 2017. 22

Zhiying Lu, Chuanbin Liu, Xiaojun Chang, Yongdong Zhang, and Hongtao Xie. DHVT: Dynamic
hybrid vision transformer for small dataset recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2025. 1

Sachin Mehta and Mohammad Rastegari. MobileViT: Light-weight, general-purpose, and mobile-
friendly vision transformer. In International Conference on Learning Representations, 2022. 3

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference on Learning Representations, 2019.
18

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp.
722–729, 2008. 27

NVIDIA. Train with mixed precision, 2023. URL https://docs.nvidia.com/
deeplearning/performance/mixed-precision-training/index.html. 7

Lorenzo Papa, Paolo Russo, Irene Amerini, and Luping Zhou. A survey on efficient vision trans-
formers: algorithms, techniques, and performance benchmarking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):7682–7700, 2024. 1

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. International Conference on Learning Representations, 2025. 1

12

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400.
PMLR, 2019. 26

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 15th
European Signal Processing Conference, pp. 606–610. IEEE, 2007. 5

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115:211–252, 2015. 4, 6

Shaibal Saha and Lanyu Xu. Vision transformers on the edge: A comprehensive survey of model
compression and acceleration strategies. Neurocomputing, pp. 130417, 2025. 1

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. 17

Apoorv Singh. Training strategies for vision transformers for object detection. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 110–118, 2023. 1

Xinglong Sun, Barath Lakshmanan, Maying Shen, Shiyi Lan, Jingde Chen, and Jose M Alvarez.
MDP: Multidimensional vision model pruning with latency constraint. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20113–20123, 2025. 2, 3, 7, 23

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357, 2021. 4, 6, 15

Shikhar Tuli and Niraj K Jha. EdgeTran: Device-aware co-search of transformers for efficient
inference on mobile edge platforms. IEEE Transactions on Mobile Computing, 23(6):7012–7029,
2023. 1

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014. 16

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(10):6761–6774, 2024. 1, 3

Xiao Wang, Yu Jin, Wentao Wu, Wei Zhang, Lin Zhu, Bo Jiang, and Yonghong Tian. Object detec-
tion using event camera: A moe heat conduction based detector and a new benchmark dataset. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 29321–29330, 2025a. 1

Zhaoqing Wang, Xiaobo Xia, Runnan Chen, Dongdong Yu, Changhu Wang, Mingming Gong, and
Tongliang Liu. Lavin-dit: Large vision diffusion transformer. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 20060–20070, 2025b. 1

Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang, Yaqin Zhang,
and Yunxin Liu. AdaptiveNet: Post-deployment neural architecture adaptation for diverse edge
environments. In 29th Annual International Conference on Mobile Computing and Networking,
pp. 1–17, 2023. 1

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kai Jun Teh, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with int8 data flow and per-block quantization. International
Conference on Machine Learning, 2024. 15

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18547–18557, 2023. 5, 7, 18, 23

Shusheng Yang, Xinggang Wang, Yu Li, Yuxin Fang, Jiemin Fang, Wenyu Liu, Xun Zhao, and Ying
Shan. Temporally efficient vision transformer for video instance segmentation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2885–2895, 2022. 1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
Conference on Empirical Methods in Natural Language Processing, 2024a. 3

Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. ViTKD: Feature-based
knowledge distillation for vision transformers. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1379–1388, 2024b. 3

Shuochao Yao and Tarek Abdelzaher. Model compression for edge computing. In Artificial Intelli-
gence for Edge Computing, pp. 153–195. Springer, 2023. 1

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. International Conference on Learning Representations, 2024. 6

Shengyuan Ye, Jiangsu Du, Liekang Zeng, Wenzhong Ou, Xiaowen Chu, Yutong Lu, and Xu Chen.
Galaxy: A resource-efficient collaborative edge ai system for in-situ transformer inference. In
IEEE INFOCOM 2024-IEEE Conference on Computer Communications, pp. 1001–1010. IEEE,
2024. 1

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 24355–24363, 2023. 7, 23

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194–9203, 2018. 5

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104–12113, 2022.
3

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few
samples. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15825–
15834, 2024. 2, 3, 7, 23

Yunshan Zhong, You Huang, Jiawei Hu, Yuxin Zhang, and Rongrong Ji. Towards accurate post-
training quantization of vision transformers via error reduction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2025. 3

Yan Zhuang, Zhenzhe Zheng, Yunfeng Shao, Bingshuai Li, Fan Wu, and Guihai Chen. Nebula: An
edge-cloud collaborative learning framework for dynamic edge environments. In 53rd Interna-
tional Conference on Parallel Processing, pp. 782–791, 2024. 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A COMPARISON OF MODEL COMPRESSION TECHNIQUES

Quantization and Unstructured Pruning. As discussed in Section 2, quantization and unstruc-
tured pruning cannot deliver practical acceleration on edge devices without specialized hardware
or software support. To empirically validate this point, we conduct experiments on Jetson Orin
NX, a widely used embedded device in robotics, industrial inspection, and autonomous driving.
Specifically, we apply INT8 quantization (Xi et al., 2024) and magnitude pruning (Han et al., 2015)
as representative techniques of quantization and unstructured pruning, respectively, on DeiT-Base,
DeiT-Small, and DeiT-Tiny (Touvron et al., 2021). We then measure inference latency with a batch
size of 1, since edge devices are typically deployed in real-time scenarios where inputs arrive se-
quentially. As shown in Table 4, INT8-quantized models cannot be executed on the GPU of Jetson
Orin NX due to the lack of INT8 support, and are instead forced to run on the CPU, which results in
significantly slower inference compared to the original base ViTs. For magnitude pruning, although
the pruned models can still run on the GPU, the parameter count remains unchanged, leading to vir-
tually no difference in inference latency before and after pruning. This result suggests that relying on
quantization or unstructured pruning would undermine the latency advantage of edge deployment.

Table 4: Inference latency and throughput of ViTs before and after INT8 quantization and magnitude
pruning. Quantized models run on CPU due to lack of TensorRT support, resulting in much slower
inference, while magnitude pruning does not reduce parameter count and thus yields no speedup.

Methods

Base ViT (GPU) INT8 Quantization (CPU) Magnitude Pruning (GPU)

Latency Throughput Latency Throughput Latency Throughput
(ms) (image/s) (ms) (image/s) (ms) (image/s)

DeiT-Base 45.45 22.00 3429.48 0.29 45.47 21.99
DeiT-Small 15.58 64.16 1497.11 0.67 15.80 63.28
DeiT-Tiny 14.52 68.87 666.43 1.50 14.88 67.21

Knowledge Distillation. As discussed in Section 2, knowledge distillation (KD) incurs substantial
training overhead. This is because KD transfers knowledge primarily in the feature space, where
the student model is trained from scratch to fit the outputs of a teacher model. Given a student
architecture, it is often infeasible to obtain a pre-trained model with the exact same architecture
for initialization. The absence of parameter-space knowledge transfer results in slow convergence.
In contrast, structured pruning naturally enables parameter-space knowledge transfer by inheriting
weights from the pre-trained model, which provides a strong initialization and significantly acceler-
ates convergence compared to KD.

0 1000 2000 3000 4000 5000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Step=100 (50x) Step=1000 (5x)

KD (0.6)
Pruning (0.6)
KD (0.8)
Pruning (0.8)

Figure 12: Comparison of convergence speed between logit-based knowledge distillation (KD) and
random pruning (Pruning) across different pruning rates with DeiT-Base on CIFAR-10.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To illustrate this, we compare the convergence speed of logit-based KD (Hinton, 2015) with random
pruning (Gadhikar et al., 2023) with DeiT-Base on CIFAR-10 (Krizhevsky et al., 2009). Specifically,
random pruning uniformly selects a proportion of query-key and value-output dimensions in MHA
modules as well as neurons in FFN modules according to the target pruning rate, and removes them
to construct a smaller model. In the KD setting, the same student architecture derived from random
pruning is instead trained from scratch, with the original pre-trained model serving as the teacher.
A KL divergence loss (Van Erven & Harremos, 2014) between the student and teacher logits is
used to perform distillation. As shown in Figure 12, the pruned models converge significantly faster
than their KD counterparts, highlighting the effectiveness of parameter-space knowledge transfer.
Nevertheless, it is worth noting that KD can be effectively combined with structured pruning to
further improve the accuracy of pruned models.

B INTERPRETABILITY OF NEURONS IN FFN

As discussed in Section 3.2, neurons in the FFN modules of ViTs exhibit remarkably strong in-
terpretability. In this appendix, we provide additional experimental details and supplementary re-
sults to further support this finding. We begin by clarifying how the activation of a specific neuron
n(l,i)
1 ∈ Rd is computed for a given image. For an input image, it is represented as a sequence of

patch tokens X ∈ RN×d fed into the FFN of the l-th block. The activation of neuron n(l,i)
1 for this

image is then defined as:

a(l,i) =

N∑
j=1

σ (⟨X[j], n(l,i)
1 ⟩) (12)

We use Eq. (12) to measure the relevance between an image and a neuron, and then rank all images
in the dataset accordingly. For each neuron, we select the top-25 images with the highest activations
to examine the type of knowledge encoded in that neuron.

(a) n(1,2640)
1 : Dark color tones. (b) n(2,718)

1 : Repetitive textures. (c) n(3,1718)
1 : Grid textures.

(d) n(4,543)
1 : Grid textures. (e) n(5,575)

1 : Close-up shots. (f) n(6,1848)
1 : Honeycomb textures.

Figure 13: Additional visualizations of top-25 activated images for randomly selected FFN neurons
from the first six blocks of DeiT-Base.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) n(7,1296)
1 : Green backgrounds. (b) n(8,1732)

1 : Paired objects. (c) n(9,801)
1 : Chocolate drizzles.

(d) n(10,1670)
1 : Urban landscapes. (e) n(11,2501)

1 : Water birds. (f) n(12,17)
1 : Dogs.

Figure 14: Additional visualizations of top-25 activated images for randomly selected FFN neurons
from the last six blocks of DeiT-Base.

As shown in Figures 13 and 14, we provide additional visualizations of randomly selected neurons
from all blocks of DeiT-Base. Consistent with the observations in Section 3.2, these neurons ex-
hibit strong interpretability, and the knowledge stored in deeper blocks tends to be more semantic.
Interestingly, as illustrated in Figure 13(e), we even observe neurons that capture patterns such as
“close-up shots,” which are unrelated to the actual content of the image. This further demonstrates
that FFN neurons not only encode class-specific knowledge but also capture interpretable patterns
beyond classes.

C EXTENDING NEURON COLLAPSE TO ALTERNATIVE FFN ARCHITECTURES

Our class-centric neuron collapse (CCNC), originally designed for the canonical FFN architecture,
is representative and generalizable, making it applicable to other mainstream Transformer FFN vari-
ants. Taking SwiGLU (Shazeer, 2020), a widely used design in LLMs, as an example, its computa-
tion is as follows:

SwiGLU(l)(X) =
(
σ(XW

(l)⊤
1)⊙ (XW (l)⊤

g)
)
W

(l)⊤
2

=

el∑
i=1

(
σ(XW

(l)
1 [i])⊙ (XW (l)

g [i])
)
⊗W

(l)⊤
2 [i]

=

el∑
i=1

(
σ(Xn

(l,i)
1)⊙ (Xn(l,i)

g)
)
⊗ n

(l,i)
2

(13)

where W (l)
1 ∈ Rel×d and W (l)

2 ∈ Rd×el are the up- and down-projection matrices of the FFN in
the l-th block of ViT, Wg ∈ Rel×d is the gating matrix, and n(l,i)

1|2|g ∈ Rd denotes the i-th neuron in
W (l)

1|2|g . To prune the intermediate dimension el of the FFN, one only needs to extend Eq. (4) with
additional constraints on ng . Specifically, the anchor neuron of each cluster for n1 and ng is selected

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

as the one that maximizes the following value:

s(l,i) =

N∑
j=1

(
σ
(
⟨X[j], n

(l,i)
1 ⟩

)
⊙ ⟨X[j], n(l,i)

g ⟩
)

(14)

Notably, in most Transformer architectures, the neurons associated with different intermediate di-
mensions of the FFN (e.g., n(l,i)

1 , n(l,i)
2 , and n(l,i)

g at the i-th dimension in SwiGLU) are mutually
independent, which implies that CCNC can be readily applied to these architectures as well.

D COMPARISON OF PRUNING SETTINGS IN MHA

Table 5: Comparison of head-level and dimension-level pruning on DeiT-Base with ImageNet-1K
sub-tasks under pruning rates of 0.40 and 0.60. Dimension pruning achieves consistently higher
accuracy, showing its advantage in preserving knowledge compared to coarse-grained head pruning.

Methods
T1/25 T2/50 T3/100

0.40 0.60 0.40 0.60 0.40 0.60

Head-level 4.56 1.12 1.68 0.92 14.11 3.47
Dimension-level 78.08 59.76 78.76 62.20 77.29 61.46

Head or Dimension? The Multi-Head Attention (MHA) module can be pruned at two different
granularities: head-level pruning, which removes entire attention heads, and dimension-level prun-
ing, which reduces the dimensionality of the query, key, or value vectors. To determine the appro-
priate pruning granularity for Vulcan, we conduct a comparative study between these two strate-
gies. For head-level pruning, we follow prior works and adopt the Taylor expansion approxima-
tion (Molchanov et al., 2019; Yang et al., 2023) criterion to evaluate the importance of each attention
head and perform block-uniform pruning (Blalock et al., 2020). For dimension-level pruning, we
apply singular value decomposition (SVD) to compress the query-key (QK) and value-output (VO)
dimensions, motivated by the clear advantage of SVD observed in Figure 4.

As shown in Table 5, we compare these two strategies across different pruning rates (0.40, 0.60) and
sub-task (25, 50, 100) sizes with DeiT-Base on ImageNet-1K. The results show that dimension-level
pruning consistently outperforms head-level pruning, indicating that coarse-grained head pruning
leads to substantial knowledge loss. In contrast, Vulcan leverages the computational structure of
MHA and applies SVD-based adaptive pruning to the QK and VO dimensions, enabling more effi-
cient and effective knowledge extraction.

Table 6: Inference latency of DeiT-Base, DeiT-Small, and DeiT-Tiny under uniform vs. uneven
QK/VO dimensions on Jetson Orin NX (bz=1) and NVIDIA A40 (bz=256). In the uneven setting,
the dimensions of each head in each block are randomly assigned while keeping the total parameter
count unchanged.

Methods
DeiT-Base (ms) DeiT-Small (ms) DeiT-Tiny (ms)

bz=1 bz=256 bz=1 bz=256 bz=1 bz=256

Uniform 45.45 600.52 15.58 186.30 14.52 76.45
Uneven 84.10 629.62 50.66 200.63 31.50 82.51

Uniform vs. Uneven QK/VO Dimensions. One key design of Vulcan is to enforce identical query-
key (QK) and value-output (VO) dimensions across all heads within the same block, which is crucial
for efficient inference. When head dimensions are uniform, the MHA module can be computed
in parallel across heads; otherwise, attention must be evaluated sequentially, introducing slicing
operations and memory copies that significantly increase latency. As shown in Table 6, we measure
inference latency on both Jetson Orin NX (batch size = 1) and NVIDIA A40 (batch size = 256) for
DeiT-Base, DeiT-Small, and DeiT-Tiny under two settings: uniform vs. uneven QK/VO dimensions.
Despite identical parameter counts and GFLOPs, the uniform-head setting achieves consistently
lower latency, with the gap particularly pronounced on edge devices.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E THEORETICAL ANALYSIS OF SVD FOR MHA COMPRESSION

As shown in Figure 4, pruning the query-key and value-output dimensions with singular value de-
composition (SVD) achieves significantly better performance than score-based pruning methods. In
this section, we first introduce the fundamentals of SVD, and then provide a theoretical explanation
for this seemingly counterintuitive observation.

SVD. Given a matrix W ∈ Rm×n, SVD factorizes it into a set of orthogonal singular vectors
and their associated singular values, which capture the intrinsic low-rank structure of the matrix.
Formally, SVD expresses W as:

W = UΣV ⊤, U ∈ Rm×m,Σ ∈ Rm×n, V ∈ Rn×n (15)
where U is the left singular matrix, Σ is the diagonal singular value matrix, and V is the right singular
matrix. The columns of U , referred to as the left singular vectors, are eigenvectors of WW⊤ and
provide an orthogonal basis for the input (row) space. The columns of V , referred to as the right
singular vectors, are eigenvectors of W⊤W and provide an orthogonal basis for the output (column)
space. The diagonal entries of Σ are non-negative real numbers known as singular values, arranged
in descending order. Each singular value quantifies the “stretching factor” of the matrix along the
corresponding singular direction, with larger values indicating more informative directions.

Why SVD is Better? SVD not only reveals the low-rank structure of W but also allows for con-
structing its best rank-k approximation by truncating the top-k singular values and their associated
singular vectors. Taking WQ ∈ Rq×d and WK ∈ Rq×d as an example, when pruning the query-key
dimension, the goal is to preserve the intermediate representations as much as possible. In other
words, the optimal pruned matrices W ′

Q
∗ ∈ Rq′×d and W ′

K
∗ ∈ Rq′×d should satisfy:

W ′
Q
∗
,W ′

K
∗
= argmin

W ′
Q,W ′

K

∥W ′
Q
⊤
W ′

K −W⊤
QWK∥F (16)

According to the Eckart-Young theorem (Chipman, 2020), SVD guarantees the minimization of the
truncation error in the Frobenius norm. Specifically, for a given pruned query-key dimension q′ < q,
the optimal pruned matrices W ′

Q and W ′
K are obtained by applying SVD to W⊤

QWK :

W⊤
QWK = UQKΣQKV ⊤

QK (17)

W ′
Q
∗
= (UQK [:, : q′]ΣQK [: q′, : q′])

⊤
, W ′

K
∗
= (VQK [:, : q′])⊤ (18)

In contrast, score-based pruning methods remove certain row vectors from WQ and WK directly,
which leads to a truncated error in the Frobenius norm that is no smaller than that obtained by
SVD. This inevitably results in greater loss of information. Therefore, SVD maximizes knowledge
preservation under the same pruning rate, which explains its significant advantage over score-based
methods.

F PROOF OF PRUNING RATE SATISFACTION IN DERIVED MODELS

The pruning rate R is determined according to the resource constraints of the target edge device. To
ensure that the derived models can be successfully deployed for inference on such devices, Vulcan
must strictly satisfy the specified pruning rate. In this section, we first introduce the computation
of FLOPs for ViT, and then provide a formal proof that the size of the models derived by Vulcan
exactly matches the pruning rate R.

FLOPs. FLOPs represent the number of floating-point operations required for a model to perform
inference on a single image. For a ViT, let the embedding dimension be d, the query–key dimension,
value–output dimension, and the number of heads in the MHA module of the l-th block be ql, vl,
and Hl, respectively, and let the intermediate dimension of the FFN module in the l-th block be el.
Then, for a ViTMB consisting of L blocks, the total FLOPs can be formulated as:

FLOPs(MB) =

L∑
l=1

[(
2Ndql + 2Ndvl +N2ql +N2vl

)
×Hl + (2Ndel)

]

= (2Nd+N2)

L∑
l=1

Hl(ql + vl) + 2Nd

L∑
l=1

el

(19)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where N is the number of patch tokens. It can be observed that the three dimensions pruned by
Vulcan, i.e., ql, vl, and el, are directly associated with the FLOPs of a ViT.

Proof1: Pruning Rate Satisfaction. We denote the actual pruning rate of the derived model ME

as R′. Then, proving that Vulcan strictly satisfies the target pruning rate amounts to showing that:

R′ = 1− FLOPs(ME)

FLOPs(MB)
≥ R (20)

From Eq. (3), it follows that the intermediate dimension of the pruned FFN module in the l-th block,
denoted e′l, satisfies:

L∑
l=1

e′l =

L∑
l=1

K(l) =

L∑
l=1

el∑
i=1

I
(
a(l,i) > Φ

(
A, ⌈(

L∑
j=1

ej)×R⌉
))

=

L∑
l=1

el − ⌈(
L∑

l=1

el)×R⌉ <
L∑

l=1

el − (

L∑
l=1

el)×R

=

(
L∑

l=1

el

)
× (1−R)

(21)

Under the assumption that ql = vl and qi = qj , according to Eq. (5) and Eq. (6), the query–key
dimension q′l and value–output dimension v′l in the pruned MHA modules satisfy:

L∑
l=1

(q′l + v′l) =

L∑
l=1

(
⌊ql(1−R

(l)
QK)⌋+ ⌊vl(1−R

(l)
V O)⌋

)
<

L∑
l=1

(
ql(1−R

(l)
QK) + vl(1−R

(l)
V O)

)

=

L∑
l=1

(
r
(l)
QK + r

(l)
V O − 2r

(l)
V OR

(l)

r
(l)
QK + r

(l)
V O

ql +
r
(l)
QK + r

(l)
V O − 2r

(l)
QKR(l)

r
(l)
QK + r

(l)
V O

vl

)

=

L∑
l=1

2(r
(l)
QK + r

(l)
V O)− 2(r

(l)
QK + r

(l)
V O)R

(l)

r
(l)
QK + r

(l)
V O

ql

= 2

L∑
l=1

(1−R(l))ql = 2q1

L∑
l=1

(1−R(l))

= 2q1

L∑
l=1

(
1− L∑L

i=1 1/(r
(i)
QK + r

(i)
V O)

· R

r
(l)
QK + r

(l)
V O

)

= 2Lq1 − 2q1
LR

∑L
l=1 1/(r

(l)
QK + r

(l)
V O)∑L

i=1 1/(r
(i)
QK + r

(i)
V O)

= 2Lq1 − 2Lq1R

= 2Lq1 · (1−R) = (L(q1 + v1)) (1−R) =

(
L∑

l=1

(ql + vl)

)
(1−R)

(22)

Under the assumption that Hi = Hj , substituting these relations into Eq. (20), we obtain:

R′ = 1−
(2Nd+N2)

∑L
l=1 Hl(q

′
l + v′l) + 2Nd

∑L
l=1 e

′
l

(2Nd+N2)
∑L

l=1 Hl(ql + vl) + 2Nd
∑L

l=1 el

< 1−
(2Nd+N2)

∑L
l=1 Hl(ql + vl)(1−R) + 2Nd

∑L
l=1 el(1−R)

(2Nd+N2)
∑L

l=1 Hl(ql + vl) + 2Nd
∑L

l=1 el

= 1− (1−R) = R

(23)

This establishes that the models derived by Vulcan strictly satisfy the specified pruning rate R.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G PROOF OF LOSSLESS PERFORMANCE AFTER PRUNING

As discussed in Section 3.4, once the constraints in Eq. (4) and Eq. (7) are fully satisfied, i.e.,
Lcollapse = 0 and Lrank = 0, Vulcan ensures lossless pruning for the post-trained model. In this
section, we provide a formal proof of this property.

Proof2: Lossless Performance after Pruning. After post-training, the base ViT satisfies the fol-
lowing two key conditions:

1. All neurons within the same cluster C(l)k in the FFN module in l-th block collapse to the anchor
neuron n̂(l)

k of that cluster.

2. For the h-th attention head in l-th block, the matrices W (l,h)
Q and W (l,h)

V contain exactly q′l and
v′l non-zero singular values, respectively. This means rank(W (l,h)

Q) ≤ q′l and rank(W (l,h)
V) ≤ v′l.

FFN Case. According to Eq. (2), the output of the FFN in the l-th block can be expressed as:

FFN(l)(X) =

el∑
i=1

σ(Xn
(l,i)
1)⊗ n

(l,i)
2 =

K(l)∑
k=1

|C(l)
k |∑

j=1

σ(Xn
(l,j)
k)⊗ n

(l,j)
k,2

=

K(l)∑
k=1

|C(l)
k |∑

j=1

σ(Xn̂
(l)
k)⊗ n

(l,j)
k,2 =

K(l)∑
k=1

σ(Xn̂
(l)
k)⊗

|C(l)
k |∑

j=1

n
(l,j)
k,2

(24)

where n(l,j)
k,2 denotes the neuron in W (l)

2 corresponding to n(l,j)
k . According to Eq. (9), the output of

the pruned FFN in the l-th block can be expressed as:

FFN(l)
pruned(X) =

e′l∑
k=1

σ(XW
(l)
1

′
[k])⊗W

(l)′
2

⊤
[k] =

K(l)∑
k=1

σ(XW
(l)
1

′
[k])⊗W

(l)′
2 [:, k]

=

K(l)∑
k=1

σ(Xn̂
(l)
k)⊗

|C(l)
k |∑

j=1

n
(l,j)
k,2 = FFN(l)(X)

(25)

MHA Case. According to the second key condition, we can conclude that:

rank(W (l,h)⊤

Q W
(l,h)
K) ≤ min(rank(W (l,h)

Q), rank(W (l,h)
K)) ≤ q′l

rank(W (l,h)⊤

V W
(l,h)⊤

O) ≤ min(rank(W (l,h)
V), rank(W (l,h)

O)) ≤ v′l

(26)

Therefore, the pruning process based on SVD is lossless, i.e., the pruned matrices W (l,h)′

Q|K|V |O satisfy:

W
(l,h)′

Q

⊤
W

(l,h)′
K = W

(l,h)
Q

⊤
W

(l,h)
K ,W

(l,h)′

V

⊤
W

(l,h)′
O

⊤
= W

(l,h)
V

⊤
W

(l,h)
O

⊤
(27)

Substituting these equalities into the Eq. (1), we obtain:

MHA(l)
pruned(X) =

Hl∑
h=1

softmax
(XW

(l,h)′
Q

⊤
W

(l,h)′
K X⊤

√
ql

)
XW

(l,h)′
V

⊤
W

(l,h)′
O

⊤

=

Hl∑
h=1

softmax
(XW

(l,h)
Q

⊤
W

(l,h)
K X⊤

√
ql

)
XW

(l,h)
V

⊤
W

(l,h)
O

⊤
= MHA(l)(X)

(28)

Thus, both the FFN and MHA modules of the pruned model produce identical outputs to those of
the post-trained base ViT, which completes the proof.

In practice, since Lcollapse and Lrank only asymptotically approach zero, the model accuracy be-
fore and after pruning exhibits minimal fluctuations, meaning that Vulcan effectively achieves near-
lossless pruning.

H IMPLEMENTATION DETAILS

We summarize the hyperparameter settings used during the post-training process in Table 7.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for the post-training process of Vulcan. Here, R denotes the target pruning
rate and λ represents the Lagrange multipliers.

Hyperparam Value
Steps 6250R2 + 1250R, R ∈ (0, 1)

Optimizer AdamW (Loshchilov & Hutter, 2017)
Batch Size 256 (Recognition), 8 (Detection/Segmentation)
Learning Rate (LR) 1e-4 (Recognition), 5e-5 (Detection/Segmentation)
LR Scheuler Constant
Weight Decay 0.05
Penalty Parameter ρ 1.0
Penalty Update Rule λi+1 = λi + ρ(∂L/∂λi)

Seed 42

Normalization. As discussed in Section 4, Vulcan will normalize the activations of each neuron
before computing K(l). The choice of normalization strategy is closely related to the derived model
architecture. Therefore, we compare three commonly used normalization strategies. For activation
vectors a(l) = [a(l,1), a(l,2), . . . , a(l,el)] ∈ Rel , their normalization processes are as follows:

• L2 Normalization:

a(l,i)norm =
a(l,i)√∑el

i=1

(
a(l,i)

)2
• Min-Max Normalization:

a(l,i)norm =
a(l,i) −min(a(l))

max(a(l))−min(a(l))

• Z-score Normalization:

a(l,i)norm =
a(l,i) − µ

σ
, µ =

1

el

el∑
j=1

a(l,j), σ =

√√√√ el∑
j=1

(
a(l,j) − µ

)2

1 2 3 4 5 6 7 8 9 101112
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n L2

1 2 3 4 5 6 7 8 9 101112
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n Min-Max

1 2 3 4 5 6 7 8 9 101112
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n Z-Score

1 2 3 4 5 6 7 8 9 101112
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n Uniform

Figure 15: Architectures of models de-
rived under different normalization strate-
gies. Since the architectures corresponding
to T1–T3 are highly similar, this figure shows
their averaged architectures.

0 500 1000 1500 2000 2500 3000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

L2
Min-Max
Z-Score
Uniform

2500 2600 2700 2800 2900 3000
91

92

93

94

95

96

Figure 16: Convergence curves of models with three
normalization methods and the uniform architecture.
Z-score normalization and the uniform architecture
achieve faster convergence and higher accuracy than
L2 and Min-Max normalization.

At a pruning rate of 0.60, we derive a series of edge ViTs from DeiT-Base for the three ImageNet
sub-tasks (T1–T3) in Table 1. In addition, we introduce uniformly structured models as a baseline

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

for comparison with the activation-adaptive architectures. As illustrated in Figure 15, the architec-
tures resulting from different normalization methods exhibit substantial differences. Specifically,
L2 normalization produces architectures with fewer parameters in the intermediate blocks, min-max
normalization leads to architectures with fewer parameters in the deeper blocks, while z-score nor-
malization yields relatively uniform architectures, showing an overall trend where the number of
parameters decreases as the block depth increases. Figure 16 further demonstrates that the archi-
tecture derived with z-score normalization achieves the best performance, and thus Vulcan adopts
it for normalizing activation values of DeiT. At the same time, we also observe that the effective-
ness of normalization strategies is model-dependent. For Swin-Transformer, Vulcan instead adopts
min-max normalization.

Adaptive Pruning Rate Allocation for Non-Uniform Architectures. Eq. (3) and Eq. (5) implicitly
assume that all Transformer blocks share an identical architecture, which does not hold for non-
uniform models such as Swin-Transformer (Liu et al., 2021), where different blocks may contain
heterogeneous structures. To address this limitation, we extend Eq. (3) and Eq. (5) to support non-
uniform architectures. First, let the number of parameters in the FFN module and the MHA module
of the l-th block be denoted as P (l)

F and P (l)
M , respectively. By incorporating P (l)

F and P (l)
M into the

importance evaluation, we generalize the computation of K(l) and R(l) as follows:

K(l) =

el∑
i=1

I
(

a(l,i)

log(P
(l)
F)

> Φ
(
A, ⌈(

L∑
j=1

ej)×R⌉
))

, A =

L⋃
l=1

{ a(l,i)

log(P
(l)
F)
|i = 1, . . . , el} (29)

R(l) =

∑L
i=1 P

(i)
M∑L

i=1 P
(i)
M

(
P

(i)
M /(r

(i)
QK + r

(i)
V O)

) · P
(l)
M

r
(l)
QK + r

(l)
V O

·R (30)

It is worth noting that in certain extreme cases (e.g., when the importance of a particular block
is significantly lower than that of others while the pruning rate is very high), the values of R(l)

computed by Eq. (5) and Eq. (30) may exceed 1. In such situations, Vulcan sets the query–key and
value–output dimensions of the overflowing blocks to 1, and iteratively recalculates the R(l) of the
remaining blocks until all blocks satisfy R(l) ∈ (0, 1).

I BASELINES

In this section, we detail the five baselines used for comparison with Vulcan:

• Random. The random pruning method operates on the same dimensions as Vulcan, i.e., the
intermediate dimension (e) of the FFN and the query–key and value–output dimensions (q, v) of
the MHA. Given a pruning rate, it uniformly prunes dimensions by randomly selecting neurons
to delete, without considering the specific sub-task. We adopt this class-agnostic pruning method
as a lower-bound benchmark to evaluate the effectiveness of class-specific model derivation.

• NViT (Yang et al., 2023). NViT prunes all dimensions of a ViT, including the intermediate
dimension (e) of the FFN, the query–key, value–output dimensions (q, v), and the number of
attention heads (H) of the MHA, and the embedding dimension (d). It groups the weights along
each dimension and evaluates their importance using a Hessian-based importance score. The
pruning process is performed iteratively by removing the groups with the lowest scores until the
resource constraints of the target device are satisfied.

• X-Pruner (Yu & Xiang, 2023). X-Pruner prunes the intermediate dimension of the FFN (e)
and the number of attention heads (H) in the MHA. It introduces learnable masks into the ViT,
and pruning is achieved by applying sparsity regularization to gradually drive parts of the mask
values to zero.

• DC-ViT (Zhang et al., 2024). The goal of DC-ViT is to achieve the target pruning rate while
pruning as few blocks as possible. It designs an importance metric to evaluate each block, and
for the selected blocks, it removes the entire MHA module and uniformly prunes the intermediate
dimension (e) of the FFN at random. Among all the baselines, DC-ViT is the only method that
performs pruning at the module level.

• MDP (Sun et al., 2025). Similar to NViT, MDP jointly prunes multiple dimensions of ViTs,
including the embedding dimension (d), the number of attention heads (H), the query–key and
value–output dimensions (q, v), and the FFN intermediate dimension (e). It formulates pruning

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

as a mixed-integer nonlinear program (MINLP) problem under latency budgets, solved with
Hessian-based importance scores and a precomputed latency lookup table (LUT).

It is worth noting that although Random pruning is intuitively expected to perform the worst, it ac-
tually outperforms some score-based methods. We attribute this to the fact that it adopts the same
pruning dimensions and granularity as Vulcan. In contrast, DC-ViT suffers from overly coarse prun-
ing granularity, making it difficult to recover model accuracy through retraining when the pruning
rate becomes high.

J ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results and analyses. Appendix J.1 compares
Vulcan with five baselines at lower pruning rates to further demonstrate the effectiveness of Vul-
can. Appendix J.2 visualizes the model architectures of edge ViTs derived by Vulcan and further
investigates how class-specific knowledge is distributed across different blocks. Appendix J.3 com-
pares the computational efficiency of Vulcan-derived models with five baselines, demonstrating the
edge-friendliness of Vulcan. Appendix J.4 further demonstrates the scalability of Vulcan on larger
ViTs and BERT. Appendix J.5 shows that Vulcan enhances model generalization and robustness.
Appendix J.6 evaluates Vulcan in complex open-domain scenarios. Appendix J.7 investigates the
trade-off between derivation performance and derivation overhead. Appendix J.8 illustrates how
Vulcan can be combined with other compression techniques to achieve extreme lightweighting.

J.1 PERFORMANCE UNDER MODERATE PRUNING

Table 8: Overall performance of Vulcan and baselines on DeiT-Base with ImageNet-1K sub-tasks
of different sizes (25, 50, 100 classes) under pruning rates of 0.20 and 0.40.

Method T1/25 T2/25 T3/25 Avg T4/50 T5/50 T6/50 Avg T7/100 T8/100 T9/100 Avg

DeiT-Base 79.92 82.56 80.67 81.05 80.48 79.64 84.96 81.69 80.49 84.12 78.58 81.06
DeiT-Base (FT) 96.40 96.96 96.96 96.77 95.00 93.36 94.68 94.35 91.56 93.29 92.84 92.56

Pruning Rate = 0.20
Random 95.60 96.48 96.40 96.16 93.84 93.36 94.60 93.93 91.41 93.07 91.44 91.97
NViT 94.96 96.32 96.01 95.76 92.96 92.72 94.32 93.10 91.27 92.83 91.84 91.98
X-Pruner 96.56 96.48 96.88 96.62 94.40 93.00 95.40 94.26 91.16 92.65 91.70 91.84
DC-ViT 95.52 95.76 94.57 95.28 91.40 93.16 94.00 92.85 84.73 88.34 90.84 87.97
MDP 95.44 96.56 94.73 95.58 92.60 88.00 92.48 91.03 84.50 92.79 90.74 89.34
Vulcan 96.48 97.12 97.04 96.88 95.00 93.24 94.60 94.28 91.49 92.91 91.74 92.05

Pruning Rate = 0.40
Random 94.64 95.68 94.48 94.93 91.84 90.84 92.48 91.72 87.94 90.41 89.12 89.16
NViT 92.08 94.24 94.17 93.50 90.60 90.00 91.52 90.71 87.23 90.10 87.88 88.40
X-Pruner 94.76 94.68 95.01 94.82 92.34 91.60 93.28 92.41 88.95 91.67 89.04 89.89
DC-ViT 86.80 89.12 88.66 88.19 83.84 80.60 87.52 83.99 80.91 83.73 83.16 82.60
MDP 95.36 96.40 93.69 95.15 93.40 89.76 90.60 91.25 88.89 88.12 89.36 88.79
Vulcan 94.80 95.68 94.97 95.15 92.76 91.52 93.60 92.63 89.71 91.59 89.84 90.38

We first compare Vulcan with five baselines at pruning rates of 0.20 and 0.40 to evaluate its perfor-
mance under moderate pruning conditions. As shown in Table 8, we observe that at pruning rates of
0.20 and 0.40, Vulcan consistently outperforms the base ViT and five baselines in terms of accuracy
across different sub-task sizes. Specifically, at a pruning rate of 0.20, the model derived by Vulcan
outperforms the base ViT by 13.13% on average, and further surpass the best-performing baselines,
X-Pruner and MDP, by up to 0.64% and 6.99%, respectively. At the higher pruning rate of 0.40,
Vulcan achieves average accuracy improvements of 11.45%, 0.35%, and 5.99% over the base ViT,
X-Pruner, and MDP, respectively. These results further confirm the effectiveness of Vulcan, showing
that it delivers consistent advantages even under moderate pruning conditions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J.2 MODEL ARCHITECTURES OF EDGE VITS

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T1 (R=0.6)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T2 (R=0.6)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T3 (R=0.6)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

10

20

30

40

50

60

QK
/V

O
Di

m
en

sio
n

QK dim (R=0.6)
VO dim (R=0.6)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T1 (R=0.8)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T2 (R=0.8)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

500

1000

1500

2000

2500

3000

In
te

rm
ed

ia
te

 d
im

en
sio

n

T3 (R=0.8)

1 2 3 4 5 6 7 8 9 10 11 12
Block

0

10

20

30

40

50

60

QK
/V

O
Di

m
en

sio
n

QK dim (R=0.8)
VO dim (R=0.8)

Figure 17: Visualization of the architectures of edge ViTs derived by Vulcan from DeiT-Base for
sub-tasks T1–T3 on ImageNet under pruning rates of 0.60 and 0.80.

We visualize the architectures of edge ViTs derived from DeiT-Base for the sub-tasks T1–T3 in
Table 1, as shown in Figure 17. From the visualization, we observe that class-specific knowledge in
the FFN modules is more concentrated in the middle blocks, while class-agnostic knowledge in the
MHA modules is more concentrated in the value–output dimensions.

J.3 COMPUTATIONAL EFFICIENCY COMPARISON

Table 9: Comparison of computational efficiency between DeiT-Base and edge ViTs derived by
Vulcan and five baselines under different pruning rate R, evaluated on Jetson Orin NX (bz=1) and
NVIDIA RTX 4090 (bz=256).

Methods
Latency (ms) Throughput (image/s) Memory (GB) #Param #FLOPs Acc.

Orin NX RTX 4090 Orin NX RTX 4090 Orin NX RTX 4090 (M) (G) (%)

DeiT-Base 45.45 274.27 22.00 933.39 0.34 2.21 86.57 17.57 81.27

Pruning Rate = 0.20
Random 42.97 (1.05×) 278.21 (0.99×) 23.27 920.15 0.28 2.75 69.47 14.06 (↓19.98%) 94.02 (↑12.75)
NViT 37.49 (1.21×) 227.53 (1.21×) 26.68 1125.15 0.27 2.15 68.71 14.05 (↓19.98%) 93.61 (↑12.34)
X-Pruner 37.49 (1.21×) 223.87 (1.23×) 26.67 1143.51 0.28 2.15 68.58 13.94 (↓20.66%) 94.24 (↑12.97)
DC-ViT 36.98 (1.23×) 225.19 (1.22×) 27.04 1136.83 0.28 2.15 69.62 12.49 (↓28.91%) 92.03 (↑10.76)
MDP 33.78 (1.35×) 202.48 (1.35×) 29.61 1264.31 0.25 2.12 62.21 14.05 (↓19.98%) 91.98 (↑10.71)
Vulcan 36.84 (1.23×) 218.16 (1.26×) 27.14 1173.43 0.27 2.14 67.22 13.56 (↓21.51%) 94.40 (↑13.13)

Pruning Rate = 0.40
Random 34.24 (1.33×) 229.04 (1.20×) 29.20 1117.69 0.21 2.57 52.39 10.55 (↓39.95%) 91.94 (↑10.67)
NViT 29.25 (1.55×) 182.20 (1.51×) 34.19 1405.02 0.21 1.99 50.86 10.54 (↓40.01%) 90.87 (↑9.60)
X-Pruner 29.54 (1.54×) 183.33 (1.49×) 33.86 1396.38 0.21 2.09 52.61 10.71 (↓39.04%) 92.37 (↑11.10)
DC-ViT 28.62 (1.59×) 175.33 (1.56×) 34.94 1460.09 0.21 2.08 52.38 10.54 (↓39.04%) 84.93 (↑3.66)
MDP 26.30 (1.73×) 159.68 (1.72×) 38.03 1603.25 0.19 2.06 45.76 9.25 (↓47.35%) 91.73 (↑10.46)
Vulcan 29.73 (1.53×) 176.01 (1.56×) 33.63 1454.42 0.21 1.82 51.00 10.24 (↓41.72%) 92.72 (↑11.45)

Pruning Rate = 0.60
Random 26.74 (1.70×) 184.40 (1.49×) 37.39 1388.29 0.15 2.39 35.29 7.04 (↓59.93%) 87.01 (↑5.74)
NViT 24.55 (1.85×) 137.03 (2.00×) 40.73 1868.23 0.14 1.44 33.13 7.02 (↓60.05%) 81.88 (↑0.61)
X-Pruner 21.79 (2.09×) 135.53 (2.02×) 45.89 1888.93 0.15 2.02 35.56 7.27 (↓58.62%) 89.41 (↑8.14)
DC-ViT 20.04 (2.27×) 126.84 (2.16×) 49.90 2018.22 0.15 2.02 35.43 7.03 (↓59.99%) 69.85 (↓11.42)
MDP 19.35 (2.35×) 122.99 (2.23×) 51.67 2081.54 0.13 1.43 31.08 6.20 (↓64.71%) 88.25 (↑6.98)
Vulcan 21.81 (2.16×) 136.67 (2.01×) 45.86 1873.11 0.15 1.66 34.09 6.77 (↓61.47%) 92.32 (↑11.05)

Pruning Rate = 0.80
Random 15.19 (2.99×) 101.99 (2.69×) 65.85 2510.1 0.08 1.06 18.21 3.53 (↓79.91%) 71.45 (↓9.82)
NViT 19.13 (2.37×) 98.94 (2.77×) 52.28 2587.47 0.08 1.37 16.77 3.49 (↓80.14%) 52.86 (↓28.41)
X-Pruner 19.76 (2.30×) 90.92 (3.02×) 50.61 2815.58 0.09 1.33 19.19 3.80 (↓78.37%) 79.11 (↓2.16)
DC-ViT 14.76 (3.08×) 79.66 (3.44×) 67.75 3213.83 0.08 1.95 18.19 3.51 (↓80.02%) 49.18 (↓32.09)
MDP 18.30 (2.48×) 82.79 (3.31×) 54.64 3092.11 0.08 1.09 17.73 3.35 (↓80.93%) 75.73 (↓5.54)
Vulcan 15.06 (3.02×) 99.59 (2.75×) 66.41 2570.61 0.08 1.40 16.96 3.26 (↓81.45%) 88.22 (↑6.95)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Given that some pruning methods are not hardware-friendly, we compare the computational effi-
ciency of Vulcan with five baselines under different pruning rates. As shown in Table 9, under
the same pruning rate, Vulcan-derived models achieve comparable or better inference efficiency,
ranking in the top-3 speedups in most cases, demonstrating Vulcan’s hardware friendliness. It is
worth noting that although DC-ViT attains a significantly higher speedup at a pruning rate of 0.80
by removing part of the MHA modules, the resulting models suffer from overly degraded accuracy,
making this trade-off unreasonable.

J.4 SCALING TO LARGER MODEL AND NEW DOMAIN

Table 10: Performance of Vulcan on larger ViT-L/16 and BERT-Base from the NLP domain. ‘(FT)’
denotes fine-tuning on the class-specific data.

Methods
ViT-L/16 (ImageNet) BERT-Base (NewsGroups)

T1/25 T2/25 T3/25 T1/2 T2/4 T3/8

Base ViT 82.64 84.72 83.76 77.60 68.34 72.71
Base ViT (FT) 97.52 97.28 98.16 94.43 87.95 81.52

Vulcan (0.60) 96.72 97.10 97.58 94.56 86.41 81.66
Vulcan (0.80) 94.54 94.73 93.75 93.16 85.68 80.19

To further demonstrate the scalability of Vulcan, we conduct experiments on both a larger vision
model, ViT-L/16, and a language model, BERT-Base, from a different domain. For ViT-L/16, we
derive edge ViTs for the sub-tasks T1–T3 in Table 1. For BERT-Base, we fine-tune the model on the
20 NewsGroups (Lang, 1995) dataset and derive edge ViTs for three sub-tasks with 2, 4, and 8 target
classes. As shown in Table 10, Vulcan achieves results comparable to those in Table 1, confirming
its strong scalability across both larger architectures and new domains.

J.5 GENERALIZATION AND ROBUSTNESS OF DERIVED MODELS

Table 11: Accuracy comparison on distribution-shifted datasets between DeiT-Base and Vulcan-
derived models for three ImageNet sub-tasks under pruning rates of 0.60 and 0.80. The models
derived from DeiT-Base by Vulcan exhibit stronger generalization and robustness on the sub-tasks.

Methods
ImageNet-V2 ImageNet-R

T1/25 T2/25 T3/25 T1/25 T2/25 T3/25

DeiT-Base 2.40 0.40 0.00 0.00 0.00 0.00

Vulcan (0.60) 11.60 11.20 8.00 1.63 0.11 0.00
Vulcan (0.80) 12.40 7.60 10.40 2.17 2.36 0.26

To evaluate the generalization and robustness of the edge ViTs derived by Vulcan, we further com-
pare DeiT-Base and its derived edge ViTs on two datasets whose distributions differ from ImageNet:

• ImageNet-V2 (Recht et al., 2019): A re-collection of ImageNet validation data designed to test
distribution shifts. It contains images sampled from the same class labels but gathered under
different conditions, serving as a benchmark for evaluating model generalization.

• ImageNet-R (Hendrycks et al., 2021): A dataset consisting of various renditions of ImageNet
classes (e.g., sketches, paintings, cartoons), which introduces significant appearance variations
and is commonly used to assess robustness against domain shifts.

As shown in Table 11, Vulcan can improve the generalization and robustness of base ViTs on sub-
tasks to some extent. We attribute this improvement to Vulcan’s ability to encourage edge ViTs to
focus on specific classes, enhancing their capacity to extract and recognize class-related features. An
interesting observation is that models with higher pruning rates exhibit even stronger generalization,
suggesting a promising direction for future exploration.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J.6 VULCAN FOR TRANSFER LEARNING

Vulcan is designed to derive compact models from a pre-trained base ViT for a sub-task S, where
S ⊆ Y and Y denotes the class set recognized by the base ViT. This corresponds to a closed-domain
scenario. In practical applications, however, users often encounter open-domain settings in which
the target classes of a sub-task are not contained in Y . Such cases fall within the scope of transfer
learning. To investigate Vulcan’s effectiveness in this context, we employ DeiT-Base pre-trained
on ImageNet as the base ViT and evaluate Vulcan-derived models under different pruning rates on
three downstream benchmarks: Stanford Cars (Krause et al., 2013), Oxford Flowers-102 (Nilsback
& Zisserman, 2008), and Food-101 (Bossard et al., 2014).

Table 12: Overall performance of Vulcan under different pruning rates on downstream tasks. The
classes and data distribution of downstream tasks are different from the pre-training data of the base
ViT. ‘(FT)’ denotes fine-tuning on the downstream task data.

Methods Stanford Cars Oxford Flowers-102 Food-101 Avg

DeiT-Base (FT) 84.02 90.58 86.81 87.14

Vulcan (0.60) 79.62 86.40 80.60 82.21
Vulcan (0.80) 66.70 78.16 74.25 73.04

As shown in Table 12, at pruning rates of 0.60 and 0.80, the edge ViTs derived by Vulcan achieve
94.34% and 83.82% of the accuracy of models obtained by directly fine-tuning the base ViT. This
performance is somewhat lower than the results in Table 1, as the three selected downstream tasks
all belong to fine-grained image recognition (FGVC), which are inherently more challenging and
complex than the ImageNet sub-tasks. Nevertheless, the results clearly demonstrate the strong gen-
eralizability of Vulcan and its applicability to more difficult open-domain scenarios.

J.7 TRADE-OFF BETWEEN PERFORMANCE AND OVERHEAD

Effects of Batch Size and Learning Rate. Considering that practical applications often impose
varying constraints on memory usage and derivation efficiency, we investigate how batch size (bz)
and learning rate (lr)—two critical training configurations directly related to these factors—affect
the performance of Vulcan. Specifically, for the three ImageNet sub-tasks T1–T3 defined in Table 1,
Vulcan derives models from DeiT-Base under different batch sizes and learning rates. We record
memory usage and the accuracy of the derived models across varying batch sizes, as well as the
convergence speed of the derivation process under different learning rates.

32 64 128 256
Batch Size

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

91.01 92.92 93.53 95.60

Accuracy
Memory

5

10

15

20

25

30

M
em

or
y

(G
B)

0 1000 2000 3000
Step

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

lr=1e-4
lr=5e-4
lr=1e-3

Figure 18: Effects of batch size and learning rate on edge ViTs derived by Vulcan. The asterisks in
the right figure mark the step–accuracy points at convergence for each learning rate.

As shown in Figure 18, Vulcan exhibits robustness to batch size: memory usage is reduced by
86.34% with only a 4.59% average drop in accuracy. For the learning rate, convergence is defined
as accuracy fluctuations within 0.1% over 100 steps. When the learning rate is set to 5 × 10−4

and 10−3, derivation efficiency improves by 57.14% and 65.44% with accuracy losses of 3.02%

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

and 6.05%, respectively, indicating that higher learning rates can accelerate derivation at a modest
accuracy cost.

Table 13: Compatibility of Vulcan with LoRA (r=256). The edge ViTs are derived from DeiT-Base
with a pruning ratio of 0.60, tailored for the three ImageNet subtasks T1–T3.

Methods Memory (GB)
Acc. (%)

T1/25 T2/25 T3/25 Avg

Vulcan 1.67 95.04 96.24 95.53 95.60
Vulcan (LoRA) 1.10 (↓34.13%) 88.32 89.75 89.05 89.04 (↓6.56%)

Compatibility of Vulcan with LoRA. In addition, we can also extend Vulcan to LoRA (Hu et al.,
2021) to reduce memory usage. We observe that post-training with LoRA requires a relatively larger
learning rate to achieve stable convergence. Accordingly, we set the learning rate to 1 × 10−3. As
shown in Table 13, when adapted to LoRA (r=256) with a batch size of 4 and gradient accumulation
steps of 64, Vulcan incurs an average accuracy drop of 6.56% while reducing memory consumption
by 34.13%. We must acknowledge that LoRA inevitably introduces a degree of accuracy degrada-
tion, as optimizing two low-rank matrices alone cannot fully satisfy the constraints associated with
Lcollapse and Lrank. Consequently, these losses do not monotonically decrease during the later stages
of post-training; instead, they tend to increase monotonically with larger values of λ1 and λ2. Nev-
ertheless, the derived model still substantially outperforms the base ViT (DeiT-Base), achieving an
average improvement of 8.01% across the three sub-tasks.

J.8 EXTREME MODEL COMPRESSION

As discussed in Section 2, Vulcan is orthogonal to other model compression techniques and can be
combined with them to enable even lighter deployment. To demonstrate this, we take the edge ViT
ME/T1 derived from DeiT-Base at a pruning rate of 0.80 for the ImageNet sub-task T1/25, and
further compress it using knowledge distillation (KD) and INT8 quantization.

Table 14: Results of combining Vulcan with depth pruning, knowledge distillation, and FP16 quan-
tization on ImageNet T1/25. With Vulcan as the core, integrating other compression techniques
enables effective lightweighting.

Methods
Latency (ms) Throughput (image/s) Storage #Param #FLOPs Acc.

Orin NX RTX 4090 Orin NX RTX 4090 (MB) (M) (G) (%)

DeiT-Base 45.45 274.27 22.00 933.39 0.34 2.21 86.57 17.57
Vulcan (T1-0.80) 15.04 (3.02×) 99.14 (2.77×) 66.48 2581.97 69.48 (↓78.96%) 18.21 3.49 92.24

Depth Pruning + KD 13.16 (3.45×) 82.24 (3.33×) 75.96 3112.8 60.24 (↓81.76%) 15.79 3.06 92.32
Quantization (FP16) 11.35 (4.00×) 28.34 (9.68×) 88.07 9033.06 30.12 (↓90.88%) 15.79 3.06 92.32

Specifically, we sample 5,000 samples from the T1/25 training set to evaluate the accuracy change
after removing each block of ME/T1. Following a greedy strategy, at each step we remove the
block that incurs the smallest accuracy drop. Through this depth pruning process, three blocks are
removed fromME/T1 to construct a student model for knowledge distillation. Next, we take the
DeiT-Base fine-tuned on the T1/25 training set as the teacher model and fine-tune the student model
for 5,000 steps using logit-based knowledge distillation with a learning rate of 1e-5. As shown
in Table 14, the distilled model achieves an additional 0.08% accuracy gain. We then apply FP16
quantization to the distilled model, further reducing storage cost and improving inference efficiency.
Overall, this pipeline reduces the model’s storage cost by 90.88%, improves accuracy on the sub-
task by 12.40%, and achieves 4.00× and 9.68× inference speedups on Orin NX and RTX 4090,
respectively, substantially enhancing the deployability of the model.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

K PSEUDOCODE

Algorithm 1 Vulcan – Class-Specific Model Derivation

Input: pre-trained base ViTMB , sub-task S, class-specific dataset DS , pruning rate R, Lagrange
multiplier λ1, λ2, penalty parameter ρ

Output: compact class-specific edge ViTME

1: # Determine the target model architecture
2: {a(l,i)}1≤l≤L,1≤i≤el ←MB(DS) ▷ obtain the activation values of the neurons in W

(l,h)
1

3: {K(l)}1≤l≤L ← Compute K(l) according to {a(l,i)}1≤l≤L,1≤i≤el and Eq. (3)
4: {C(l)k }1≤l≤L,1≤k≤K(l) ← Perform clustering based on {K(l)}1≤l≤L

5: {R(l)
QK}1≤l≤L, {R(l)

V O}1≤l≤L ← Compute R
(l)
QK|V O according to Eq. (5)

6: # Post-training
7: λ1, λ2 ← 0.0, 0.0
8: step← 0
9: total step← 6250R2 + 1250R ▷ empirical relationship between total step and R

10: while true do
11: for t-th batch Bt in DS do
12: {a(l,i)}1≤l≤L,1≤i≤el ← Forward propagationMB(Bt)
13: Update the anchor neuron n̂

(l)
k of each cluster C(l)k to the neuron with the max activation

14: L ← Compute L according to λ1, λ2 and Eq. (8)
15: Backward propagation on L and update parameters ofMB using optimizer
16: λ1,2 ← λ1,2 + ρ ∂L

∂λ1,2
▷ update the Lagrange multipliers via gradient ascent

17: if step ≥ total step then break
18: end for
19: if step ≥ total step then break
20: end while

21: # Pruning
22: ME =

⋃L
l=1{W

(l)
1 ,W

(l)
2 ,
⋃Hl

h=1{W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ,W

(l,h)
O }} ←MB

23: for l-th block inME do
24: Create the weight matrix W

(l)′
1 ∈ RK(l)×d,W

(l)′
2 ∈ Rd×K(l)

25: W
(l)′
1 ,W

(l)′
2 ← Pruning according to Eq. (9)

26: for h-th head in l-th block inME do
27: q′l, v

′
l ← ⌊ql(1−R

(l)
QK)⌋, ⌊vl(1−R

(l)
V O)⌋

28: Create the weight matrix W
(l,h)′
Q|K ∈ Rq′l×d,W

(l,h)′
V ∈ Rv′

l×d,W
(l,h)′
O ∈ Rd×v′

l

29: W
(l,h)′
Q ,W

(l,h)′
K ,W

(l,h)′
V ,W

(l,h)′
O ← Pruning according to Eq. (10) and Eq. (11)

30: end for
31: end for
32: ME ←

⋃L
l=1{W

(l)′
1 ,W

(l)′
2 ,

⋃Hl

h=1{W
(l,h)′
Q ,W

(l,h)′
K ,W

(l,h)′
V ,W

(l,h)′
O }}

33: return ME

29

