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Abstract

We consider the task of interpolating a k-sparse band–limited signal from a small
collection of noisy time-domain samples. Exploiting a new analytic framework
for hierarchical frequency decomposition that performs systematic noise cancella-
tion, we give the first polynomial-time algorithm with a provable (3 +

√
2 + ε)-

approximation guarantee for continuous interpolation. Our method breaks the
long-standing C > 100 barrier set by the best previous algorithms, sharply re-
ducing the gap to optimal recovery and establishing a new state of the art for
high-accuracy band–limited interpolation. We also give a refined “shrinking-range”
variant that achieves a (

√
2 + ε+ c)-approximation on any sub-interval (1− c)T

for some c ∈ (0, 1), which gives even higher interpolation accuracy.

1 Introduction

The fast Fourier transform (FFT) (Cooley and Tukey, 1965) stands as a cornerstone across engineering,
signal processing, mathematics, and theoretical computer science, underpinning both theoretical
advances and practical applications. Over time, numerous FFT variants have been proposed, tailored
to different signal domains and time-invariance assumptions (Oppenheim et al., 1997; Osgood, 2002;
Oppenheim, 2011). In this work we focus on the sparse Fourier transform (SFT), which assumes the
signal is band-limited (or Fourier-sparse), i.e., it is observed in the time domain (either discrete or
continuous) but is k-sparse in the frequency domain, i.e., its spectrum x̂ contains only k non-zero
components. Our main results concern one-dimensional continuous signals, though we discuss
extensions to higher dimensions and the discrete setting. Formally, the band-limited signal is defined
as follows.
Definition 1.1 (Band-limited signal). Let k ∈ Z>0. Let δfi(f) denote the Dirac function centered at
fi ∈ R. We define the k-sparse band-limited signal x̂∗(f) to be as follows:

x∗(t) =
k∑

j=1

vj · e2πifjt CFT−−−−−→ x̂∗(f) =
k∑

j=1

vj · δfj (f)

where vj ∈ C is the coefficient and fj ∈ F is the frequency contained in the frequency range F ⊂ R
for each j ∈ [k]. We use K to denote the set of fj’s.

Band-limited signals are ubiquitous in practice, underpinning tasks such as image compression and
analysis (Watson, 1994), compressed sensing (Donoho, 2006), and (deep) learning with frequency-
invariant kernels (Mei et al., 2021). Fourier methods have also emerged as a powerful tool in machine
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learning, inspiring diverse models such as random features for kernel approximation (Rahimi and
Recht, 2007), Fourier neural operators for parametric PDEs (Li et al., 2021b), and spectral methods
for temporal domain generalization (Yu et al., 2025). Efficient algorithms for computing sparse
Fourier transforms are thus of fundamental importance to both signal processing and modern machine
learning pipelines. A canonical challenge in this context is band-limited signal interpolation (Chen
et al., 2016)—closely related to the1 Fourier Set-Query problem (Price, 2011)—which seeks to
reconstruct (part of) a signal from only a handful of noisy samples (observations x∗(ti) + g(ti) at
chosen time points ti ∈ [0, T ]), ideally on the order of k, taken from the time domain [0, T ]d. The
band-limit F constrains all frequencies to lie in [−F, F ]. We give the formal definition as follows.
Definition 1.2 (Band-limited signal interpolation). Assume that the orignal signal x∗(t) is k-sparse
band-limited. Given the observations of the form x∗(t) + g(t) where g is an arbitrary noisy function,
with the signal-to-noise ratio bounded below by a constant (e.g., ∥x∗∥T ≳ ∥g∥T , where ∥x∥2T :=
T−d

∫
[0,T ]d

|x(t)|2dt denotes the signal’s energy), the goal is to output the reconstructed signal y(t)
such that

∥y − x∗∥T ≤ C∥g∥T + δ∥x∗∥T
where C > 0 is constant and δ ∈ (0, 1) is an accuracy parameter.

In general, this kind of sparse recovery problems has a long history in signal-processing and computer
science (Cooley and Tukey, 1965; Reynolds, 1989; Aibinu et al., 2008; Voelz, 2011; Hassanieh
et al., 2012a,b; Ghazi et al., 2013; Indyk and Kapralov, 2014; Indyk et al., 2014; Boashash, 2015;
Kapralov, 2016, 2017; Kapralov et al., 2019; Nakos et al., 2019; Jin et al., 2023; Song et al.,
2023). A fundamental fact, pointed out in Moitra (2015), is that when the frequency gap is small
(η := mini̸=j∈[k] |fi − fj | < 1/T ), exact recovery of the signal is informational-theoretically
impossible. Complementing this negative result, Price and Song (2015) gave a k · polylog(k, FT/δ)-
time δ-error reconstruction algorithm for one-dimensional signals where F is the band-limit, assuming
the time domain satisfies T > Ω(log2(k/δ)/η), and that the frequency gap η is known. Chen et al.
(2016) strengthened this result by showing that even if the frequency gap is unknown, approximate
reconstruction of one-dimensional signals in poly(k, log(FT ))-samples and time is possible, in
the sense that the output signal is close to the original signal in the time domain albeit with worse
sparsity in the frequency domain2. Subsequent works (Chen and Price, 2019b,a; Li et al., 2021a)
have improved this result, both in sample-complexity and decoding time. Recently, Li et al. (2021a)
improved the sparsity of the output signal from poly(k) to k · poly log(k), settling for a somewhat
weaker notion of approximation3 than that of Chen et al. (2016).

Unfortunately, despite this steady algorithmic progress, the approximation ratio achieved by all
prior band-limited interpolation methods has stubbornly remained above a large constant factor
(around 100). This gap is not merely an artifact of loose analysis: it stems from a fundamental
“triangle-inequality bottleneck”—the three dominant error sources (frequency truncation, polynomial
approximation, and linear regression) accumulate additively, and each was previously controlled
only up to a constant factor. Closing this gap is crucial both for theory to understand the true
limits of sparse recovery under noise and for practice, where large constant blow-ups translate into
prohibitively low signal-to-noise requirements.

Our contributions. We break this long-standing barrier and obtain the first high-accuracy algorithm
whose approximation factor is strictly below 5. Concretely, for any k-sparse band-limited signal
observed over [0, T ] and frequency domain F = [−F, F ] with additive noise g(t), our main result
guarantees a reconstructed signal y(t) satisfying

∥y − x∗∥T ≤ (3 +
√
2 + ε)∥g∥T + δ∥x∗∥T

for arbitrary accuracy parameters ε, δ ∈ (0, 1), using only poly(k, ε−1, log(FT/δ)) samples and
nearly-linear time. Here, the approximation ratio C = 3 +

√
2 + ε quantifies the multiplicative

1Classical work on band-limited interpolation typically first estimates frequencies and then magnitudes. The
latter step can be cast as a Set-Query problem: given a collection of locations, recover the Fourier coefficients x̂
at those positions. When the frequencies lie on a lattice, the two formulations coincide.

2More precisely, the error guarantee is ∥y(t)− x∗(t)∥T ≤ O(∥g(t)∥T + δ∥x∗(t)∥T ), where x∗(t) is the
original signal, y(t) is the reconstructed signal, and g(t) is the noise distribution.

3∥y(t)− x∗(t)∥(1−c)T ≤ poly(log(k/cδ)) · ∥g(t)∥T + δ∥x∗∥T .
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factor by which the reconstruction error ∥y − x∗∥T can exceed the unavoidable noise floor ∥g∥T ;
it is the standard measure of solution quality in approximation algorithms for signal recovery. This
sharply improves the best previous constant C > 100 of Chen et al. (2016), narrows the gap to the
information-theoretic optimum of 1, and resolves an open question posed by Li et al. (2021a). We
also give a refined “shrinking-range” variant that achieves a (

√
2 + ε + c)-approximation on any

sub-interval (1− c)T with the same sample complexity.

Technical novelties. Our improvement hinges on two new analytic ingredients.

1. Ultra-high-sensitivity frequency estimation. We design a filter family that amplifies each true
cluster’s energy while canceling an equal-scale portion of the adversarial noise. This raises the
recoverable energy threshold from Θ(1) to (1 +

√
ε), eliminating an entire factor of 2 in the first

error component.
2. Hierarchical noise-cancellation analysis. We view band-limited interpolation through a unified

two-step lens—frequency estimation followed by signal estimation—and track the flow of noise
across levels. A refined coupling argument shows that the filtered noise passed to the second step
is correlated with the unrecoverable signal energy; bounding them jointly yields the multiplicative
factor (3 +

√
2) instead of the additive sum of three constants.

Beyond improving the approximation ratio, our framework is conceptually modular: swapping in
any future advances in either sub-routine immediately propagates to a tighter end-to-end guarantee.
We believe the tools introduced here—particularly the systematic noise-cancellation bound and the
lattice-frequency viewpoint—will be valuable well beyond the specific interpolation task, offering a
blueprint for pushing other sparse-recovery algorithms past long-standing constant-factor barriers.

1.1 Main results

Recall that all existing algorithms for band-limited interpolation achieve only coarse error bounds of
the form

∥y − x∗∥T ≤ C∥g∥T + δ∥x∗∥T ,
with a constant ≈ 100 in the best published result (Chen et al., 2016); repeated uses of the triangle
inequality prevent C from dropping below 3. We introduce three new ingredients—sharper noise
control, an ultra-sensitive frequency estimator, and an efficient signal-estimation routine—and
combine them in a refined error analysis that collapses these additive losses into a single multiplicative
term. This yields the first algorithm with a provable approximation constant strictly below 5, and it
remains near-optimal in both sample complexity and running time.

Our first result uses a sharper error analysis improves C to 3 +
√
2 + ε for any small ε > 0, which is

stated as follows.
Theorem 1.3 (High-accuracy band-limited interpolation, informal version of Theorem H.42). Let
x∗(t) be a k-sparse band-limited signal with frequencies in [−F, F ]. Assume the minimum frequency
separation is η ≥ Ω(1/T ) and the signal-to-noise ratio satisfies ∥x∗∥T ≳ ∥g∥T . Given observations
x(t) = x∗(t) + g(t) in time duration [0, T ], where g is arbitrary noise. For ε, δ ∈ (0, 1), there
exists an algorithm that uses poly(k, ε−1, log(1/δ)) log(FT ) samples and runtime, and outputs a
poly(k, ε−1, log(1/δ))-sparse band-limited signal y(t) such that, with high probability,

∥y − x∗∥T ≤ (3 +
√
2 + ε)∥g∥T + δ∥x∗∥T .

Our techniques extend to a “shrinking-range” variant that attains an even tighter constant on any
sub-interval (1− c)T , which leverages additional “spatial slack” to lower the approximation ratio to√
2 + ε+ c.

Theorem 1.4 (Ultra-high-accuracy band-limited interpolation with shrinking range, informal ver-
sion of Theorem I.4). Let x∗(t) be a k-sparse band-limited signal with frequencies in [−F, F ].
Assume the minimum frequency separation is η ≥ Ω(1/T ) and the signal-to-noise ratio satis-
fies ∥x∗∥T ≳ ∥g∥T . Given observations x(t) = x∗(t) + g(t) in time duration [0, T ], where g
is arbitrary noise. Let T ′ = T (1 − c). For ε, δ ∈ (0, 1), there exists an algorithm that uses
poly(k, ε−1, log(1/δ)) log(FT ) samples and poly(k, ε−1, c−1, log(1/δ)) · log2(FT ) runtime, and
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outputs a poly(k, ε−1, c−1, log(1/δ))-sparse band-limited signal y(t) such that, with high probabil-
ity,

∥y − x∗∥T ′ ≤ (
√
2 + ε+ c)∥g∥T + δ∥x∗∥T .

We remark that Li et al. (2021a) obtain a related but incomparable guarantee. For any δ > 0, their
algorithm outputs a reconstruction y(t) satisfying

∥y(t)− x∗(t)∥(1−c)T ≤ α∥g(t)∥T + δ∥x̂∗(f)∥1,
where α is the approximation ratio, where c ∈ (0, 1) is the shrinking parameter, α =
poly(log(k/(δc))), and x̂∗(f) is the Fourier transform of x∗(t).. The procedure uses
poly(k, log(1/δ)) log(FT ) samples and poly(k, c−1, log(1/δ)) log2(FT ) time, returning a
k, poly(1/c, log(k/δ))-sparse signal. Hence their result achieves near-optimal sparsity, but the
approximation factor grows polylogarithmically with k, 1/δ, and 1/c, whereas our algorithm attains
a constant (

√
2 + ε+ c) ratio.

1.2 Notations

For any positive integer n, we use [n] to denote {1, 2, · · · , n}. We use i to denote
√
−1. For a

complex number z ∈ C where z = a+ ib and a, b ∈ R. We use z to denote the complex conjugate
of z, i.e., z = a− ib. Then it is obvious that |z|2 = z · z = a2 + b2.

We use f ≲ g to denote that there exists a constant C such that f ≤ Cg, and f ≂ g to denote
f ≲ g ≲ f . We use Õ(f) to denote f logO(1)(f). We say x(t) is a k-sparse band-limited when
x(t) =

∑k
j=1 vj exp(2πifjt). We use x̂(f) to denote the Fourier transform of x(t). More specifically,

x̂(f) =
∫∞
−∞ x(t) exp(−2πift)dt.

We define our discrete norm as ∥g(t)∥2S = 1
|S|
∑

t∈S |g(t)|2 for function g. We define our weighted
discrete norm as ∥g(t)∥2S,w =

∑
t∈S wt|g(t)|2 for function g. We define the continuous T -norm as

∥g(t)∥2T = 1
T

∫ T

0
|g(t)|2dt for function g.

In general, we assume x∗(t) is our ground truth and is a k-sparse band-limited signal. We can observe
function x(t) = x∗(t) + g(t) for g(t) being a noise function. We can observe x(t) in duration [0, T ].
The ground truth x∗(t) has frequencies in [−F, F ].

2 Technical Overview

Section 2.1 introduces the framework of discrete Fourier set query. Section 2.2 shows how to
apply our discrete Fourier set query estimation algorithm to obtain a high-accuracy band-limited
interpolation algorithm as in Theorem 1.3 and Theorem 1.4.

2.1 Discrete Fourier Set Query

Many signal processing tasks can be phrased as set query problems in different domains. For instance,
the sparse Fourier transform examines only the coefficients at a small set of frequencies—exactly
a set-query problem in the frequency domain. Another example is recovering the actual Fourier
coefficients when their support (the set of non-zero frequencies) is known.

For concreteness we restrict attention to a one-dimensional discrete signal x(t) of length n, written
as x(t) =

∑n
j=1 x̂j e

2πijt/n, t ∈ [n]. Given a k-subset S ⊂ [n], the set–query task is to recover x̂S .
Equivalently, define xS(t) =

∑
f∈S x̂f e

2πift/n; this is a k-sparse signal.

Algorithm overview. Our algorithm can be viewed as a three-step pipeline, which collapses into
three concrete stages in practice:

1. Uniform sketching. Any discrete k-sparse signal has energy bound R = k, meaning
supt |x(t)|2 ≤ R ∥x∥2T . Consequently, a uniform sample S0 ⊂ [n] of size O(k log k)
already preserves the signal’s energy up to a constant factor and forms a faithful oblivious
sketch.
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2. Sketch distillation. We refine S0 via the Sketch Distillation procedure: a well-balanced
sampler chooses a linear-size subset S1 ⊂ S0 and weights w such that ∥xS∥S1,w ≈ ∥xS∥2/n
for every signal supported on S, while simultaneously ensuring the weighted energy of the
orthogonal component xS + g is not amplified, i.e. ∥xS + g∥S1,w = O(∥xS + g∥T ).

3. Weighted regression. With samples {x(t)}t∈S1
and weights w, we solve the weighted least-

squares problem minv′∈Ck

∥∥√w◦(Av′−b)
∥∥
2
, where Ai,j = e2πifjti/n and bi = x(ti). The

solution x̂S(fj) = v′j yields a reconstruction whose error obeys ∥x̂S−xS∥T ≤ ε ∥xS+g∥T .

Together, these steps give a linear-sample, high-accuracy solution to the discrete Fourier set-query
problem, achieving (1 + ε) approximation with high probability. A routine analysis gives an O(1)
approximation; below we refine it to (1 + ε).

Algorithm 1 Discrete 1-D Fourier Set-Query

1: procedure SETQUERY(x, n, k, S, ε)
2: {f1, . . . , fk} ← S

/* Step 1: Uniform sketching */
3: S0 ← Sample O(ε−2k log k) points i.i.d. from Uniform([n])

/* Step 2: Sketch distillation */
4: F ←

{∑k
j=1 vje

2πifjt/n
∣∣ vj ∈ C

}

5: ({t1, . . . , ts}, w)← RANDBSS+
(
k,F ,Uniform(S0), (ε/4)

2
)

▷ Algorithm 3
/* Step 3: Weighted regression */

6: for (i, j) ∈ [s]× [k] do
7: Ai,j ← e2πifjti/n

8: end for
9: for i ∈ [s] do

10: bi ← x(ti) ▷ observe x at ti
11: end for
12: v′ ← arg min

v′∈Ck

∥∥√w ◦ (Av′ − b)
∥∥
2

13: return v′

14: end procedure

Composition of well-balanced samplers. To obtain a (1 + ε) guarantee we must show that the
final sketch (S1, w) arises from a single well-balanced sampling procedure (WBSP). In general,
composing two WBSPs may violate well-balancedness: while the first property (accurate energy
estimation for every f ∈ F) is preserved, the second property concerning weight sum and condition
number can fail.

Our setting is special: the first sampler draws each point uniformly from [n]. We prove that, under
this choice and with the tight energy bound R = k for band-limited signals, each sample produced
by the two-stage composition is distribution-equivalent to a fresh uniform draw. Hence the composite
sampler is itself well-balanced, allowing us to invoke the sharper error analysis and conclude that

∥ŷS − x̂S∥2 ≤ ε ∥x̂S∥22
with high probability. Thus we obtain a linear-sample, high-accuracy algorithm for the discrete
Fourier set-query problem.

2.2 High-accuracy band-limited interpolation

In this section, we introduce how to obtain a high-accuracy one-dimensional band-limited inter-
polation algorithm (Theorem 1.3), which improves the constant-accuracy algorithm by Chen et al.
(2016).

Let us briefly summarize the previous algorithm in Chen et al. (2016). The high-level idea is to first
find some small intervals in the frequency domain such that each contains some significant frequencies
of the signal x∗. (These intervals are called “heavy-clusters” in their paper.) Then, they use some
filter techniques (also used in Price and Song (2015)) to reduce the problem of reconstructing x∗,
a signal with multiple heavy-clusters to several single heavy-cluster signals. Then, for each single
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heavy-cluster signal, since the band-limit is small, they can efficiently estimate its frequencies. Finally,
they reconstruct a poly(k)-sparse signal that is close to x∗ via a robust polynomial learning algorithm.
More specifically, their algorithm consists of the following steps:

1. They show that the ground-truth signal x∗(t) =
∑k

j=1 vje
2πifjt can be approximated

by xS(t) =
∑

j∈S vje
2πifjt, where S := {j ∈ [k] : fj ∈ some heavy-cluster Ci} is

the set of frequencies in the heavy-clusters. This step will cause an approximation error
E1 := ∥x∗ − xS∥T ≤ 1.2N 4, where N 2 := ∥g∥2T + δ∥x∗∥2T appears in the approximation
error of the band-limited interpolation problem.

2. They solve a Frequency Estimation problem for xS using the filter techniques and multiple-
to-one heavy-cluster reduction, and get a list L of O(k) candidate frequencies so that for
each j ∈ S, fj is close to some f̃pj

∈ L.

3. The signal xS(t) can be decomposed into
∑|L|

i=1 e
2πif̃it · x∗

i (t), where x∗
i (t) :=∑

j:pj=i e
2πi(fj−f̃i) is a one-cluster signal with small band-limit. For each x∗

i (t), they
prove that there exists a low-degree polynomial Pi(t) that can approximate it. Let’s de-
note the polynomial-approximated signal

∑|L|
i=1 e

2πf̃it · Pi(t) by xS,poly(t), which has an
approximation error E2 := ∥xS − xS,poly∥T ≤ δ∥xS∥T .5

4. It remains to reconstruct xS,poly(t), which is a variant of Signal Estimation problem. They
use a sampling-and-regression approach to obtain a poly(k)-sparse signal y(t) with an
approximation error E3 := ∥y − xS,poly∥T ≤ 2200N .

By triangle inequality, the total approximation error is ∥y − x∗∥T ≤ E1 +E2 +E3 ≤ C · N , where
C > 1000 is an absolute constant.

3-approximation barrier To achieve high-accuracy band-limited interpolation, we need to control
the errors E1, E2, and E3.

• For E1, it is coupled with the second step, since the approximation error of xS is connected
to the significance of each heavy-cluster. If we choose a too-small E1, xS will contain some
not-so-significant frequencies, and the Frequency Estimation algorithm may not be able to
find them. Thus, with the techniques in Chen et al. (2016), we cannot make E1 to be less
than N . Even worse, due to the noise g in the observed signal, the error will be at least 2N .

• For E2, it only depends on the error parameter δ. Since the sample and time complexities of
the algorithm only depend logarithmically on 1/δ, it allows us to re-scale δ and make E2

very small.

• For E3, where we lose a big constant, we need a high-accuracy Signal Estimation algorithm
to recover the polynomial-approximated signal xS,poly(t). However, as we discussed in the
previous sections, the error of the Signal Estimation will be at least N .

Therefore, there is a 3-approximation barrier in Chen et al. (2016)’s approach due to the triangle
inequality.

In the remainder of this section, we first introduce our techniques to achieve a (7 + ε)-approximation
error. Then, we show how to overcome the barrier and achieve a (3 +

√
2 + ε)-approximation error.

2.2.1 (7 + ε)-approximation algorithm

High sensitivity frequency estimation We first improve E1 from 1.2N to (1 + ε)N by proposing
a high sensitivity frequency estimation method. More specifically, to identify the heavy-clusters of

4Due to the noisy observations, not every frequency in the heavy-clusters is recoverable. This gap causes an
extra implicit error term in Chen et al. (2016), which is about 12N . Section 2.2.1 has a more detailed discussion.

5We remark that even if the ground-truth signal x∗(t) can be well-approximated by a mixed Fourier-
polynomial signal x̃(t), we are unable to recover every basis of x̃(t) due to the limitation of the frequency
estimation procedure. Thus, directly applying linear regression to partially reconstruct x̃(t) will not guarantee to
be a (1 + ε)-approximation of x∗(t).
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the signal x∗, Chen et al. (2016) designed a filter function H such that H · x∗ has high energy in each
heavy cluster Ci; that is, ∫

Ci

|Ĥ · x∗(f)|2df ≥ T

k
N 2. (1)

Moreover, H’s frequencies are contained in a small interval of length ∆. These two properties
imply that for any true frequency fi ∈ Ci, the signal H · x∗ with frequency domain restricted to
[fi −∆, fi +∆] is a one heavy-cluster signal with small band-limit, which allows us to use Price
and Song (2015)’s approach to estimate fi. The filter function H in Chen et al. (2016) is only
O(1)-sensitive, which means it can concentrate a constant fraction of the signal’s energy. And for
those less important frequencies, they cannot be clustered by H and will be lost in the frequency
estimation procedure.

We manage to modify their filter construction and obtain a (1− ε)-sensitive filter function H such
that the signal xS∗ consisted of the frequencies in the new heavy-clusters has about (1− ε)-fraction
of energy of x∗. More specifically, we have

Enew
1 = ∥x∗ − xS∗∥T ≤ (1 + ε)N .

To prove that we can actually estimate the frequencies in the new heavy-clusters, we observe a subtle
point: the energy condition of heavy-cluster and the energy condition of frequency estimation are
inconsistent due to the noise in observations. To be able to estimate the one heavy-cluster signal’s
frequency, it is required that ∫

Ci

|Ĥ · x(f)|2df ≥ T

k
N 2, (2)

which is different from Eq. (1). In other words, not all frequencies in S∗ are recoverable, but only
most of them. Since Chen et al. (2016) only wants a constant approximation error, they may simply
ignore this difference by losing a constant factor in accuracy. For us, however, we need to make it
precise. We define S to be a subset of S∗ containing the frequencies in the heavy-clusters satisfying
Eq. (2). We analyze the effect of H · g and show that by strengthening the RHS of heavy-cluster’s
energy condition (Eq. (1)) to 4T

k N 2, we can bound the unrecoverable part’s energy by
E1.5 := ∥xS∗ − xS∥T ≤ (2 + ε)N .

For the recoverable part xS , we can just follow Chen et al. (2016)’s approach to estimating the
frequencies in each heavy-cluster.

Generalized high-accuracy signal estimation We apply our three-step Fourier set-query frame-
work to solve the signal estimation problem in the forth step of Chen et al. (2016)’s algorithm and
improve E3 from 2200N to (4 + ε)N . We first define the problem more formally. By frequency
estimation, we obtain a list of candidate frequencies of xS and in the third step, we know that it can
be approximated by xS,poly(t) :=

∑|L|
i=1 e

2πif̃it · Pi(t) with very tiny error E2, where Pi(t) are some
degree-d polynomials. We can rewrite xS,poly in the Fourier-monomial mixed basis:

xS,poly(t) =

|L|∑

i=1

d∑

j=0

vi,j · e2πif̃ittj ,

where vi,j ∈ C and f̃i ∈ L are known. That is, we need to learn {vi,j} given noisy observations
xS,poly(t) + g′(t), which is a Signal Estimation problem for the following family of signals:

Fmix := span

{
e2πif̃it · tj

∣∣∣∣ i ∈ [|L|], j ∈ {0, · · · , d}
}
.

We apply our three-step framework as follows.

• In Step 1, we first need an energy bound Fmix. Chen et al. (2016) showed that

Rmix := sup
u(t)∈Fmix

supt |u(t)|2
∥u∥2T

≤ Õ(|L|4d4).

Then we can get that uniformly sample Õ(|L|4d4ε−1) points in [0, T ] gives an oblivious
sketching for xS,poly. Furthermore, we can show that this sampler is ε-well-balanced.
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• In Step 2, since we aim at achieving high-accuracy, we do not distill the sketch but directly
apply the sharper error analysis to control the energy of the orthogonal part of noise.

• In Step 3, we solve a weighted linear regression to estimate the coefficients and obtain a
signal y′(t) ∈ Fmix such that

Enew
3 := ∥y′ − xS,poly∥T ≤ (1 + ε)∥x− xS,poly∥T ≤ (4 + ε)N .

Then, we can transform y back to a poly(k)-sparse signal with error ∥y − y′∥T ≤ E2.

Combining them together and re-scaling ε and δ, we get that

∥y − x∗∥T ≤ ∥y − y′∥T + ∥y − xS,poly∥T + ∥xS,poly − xS∥T + ∥xS − xS∗∥T + ∥xS∗ − x∗∥T
≤ E2 + Enew

3 + E2 + E1.5 + Enew
1

≤ (7 + ε)∥g∥T + δ∥x∗∥T .
Therefore, we obtain a band-limited interpolation algorithm with (7 + ε)-approximation error.

x̂S∗
1\S1

(f) ∗ Ĥ(f) x̂S1
(f) ∗ Ĥ(f)

(x̂− x̂S∗
1
)(f) ∗ Ĥ(f)

f

(a) ∥H(t) · (xS∗
1
− xS1)(t)∥T

x̂S∗
1\S1

(f) ∗ Ĥ(f) x̂S1
(f) ∗ Ĥ(f)

(x̂− x̂S∗
1
)(f) ∗ Ĥ(f)

f

(b) ∥H(t) · (x− xS1)(t)∥T

Figure 1: An illustration of the signal-noise cancellation effect (Eq. (3)). In (a), the blue region
corresponds to the first term of Eq. (3), which roughly equals the energy of x− xS∗

1
. In (b), the red

and blue regions correspond to the second term, where most of the energy is canceled. Thus, their
total energy is very close to ∥x− xS∗

1
∥T .

2.2.2 (3 +
√
2 + ε)-approximation algorithm

How can we further improve this algorithm? We observe that Enew
3 can be written more precisely as

(1 + ε)∥g∥T + (3 + ε)N . On the other hand, Enew
1 and E1.5 only depend on N . If we can take a

smaller value for N 2, i.e., ε(∥g∥2T + δ∥x∥2T ), then we will improve approximation error. We show
that it is possible via an ultra-high sensitivity frequency estimation method.

Ultra-high sensitivity frequency estimation To improve the sensitivity of the frequency estimation
method, let N 2

1 := εN 2 and consider the heavy-clusters with parameter N1. Let S∗
1 denote the set of

frequencies of x∗(t) in the N1-heavy-clusters. By the same analysis as in our previous frequency
estimation approach, we have Enew+

1 := ∥x∗ − xS∗
1
∥T ≤ (1 + ε)N1.

However, due to the inconsistent energy conditions, only those frequencies in the heavy-clusters
satisfying Eq. (2) are recoverable. Let S1 denote the set of such frequencies, and we need to upper
bound ∥xS∗

1
− xS1

∥T . Previously, we strengthen the heavy-cluster’s condition (Eq. (1)) and get a
E1.5 ≤ (2 + ε)∥g∥T bound. Here, instead, we relax the RHS of Eq. (2) to ε · TkN 2

1 . Intuitively,
more frequencies will satisfy the new frequency estimation condition; and if there is a unrecoverable
frequency f∗ ∈ S∗

1\S1, it indicates that its contribution in filtered signal H · x∗ is cancelled out by
the filtered noise H · g. Using this signal-noise cancellation effect, we prove that:

∥H(xS1 − xS∗
1
)∥2T + ∥H(x− xS1)∥2T ≤ (1 +

√
ε)∥x− xS∗

1
∥2T , (3)

which saves a factor of 2 from E1.5 by introducing an extra term ∥H(x−xS1
)∥T . Recall ∥x−xS1

∥T
is related to Enew

3 , the error of the signal estimation procedure. We can decompose it into the “passing
energy” ∥H(x− xS1

)∥T and “filtered energy” ∥(Id−H)(x− xS1
)∥T and bound them by:

∥x− xS1
∥T ≤ ∥H(x− xS1

)∥T + ∥g∥T +O(ε)∥x∗ − xS1
∥T .
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Thus, Eq. (3) can be considered as upper-bounding E1.5 and Enew
3 simultaneously. Combining them

together, we get the following error guarantee for the frequency recoverable signal xS1 :

∥x− xS1
∥T + ∥x∗ − xS1

∥T ≤ (1 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T . (4)

Then, by a more careful analysis of the HASHTOBINS approach used by Chen et al. (2016) for
Frequency Estimation, we show that xS1

’s frequencies can be efficiently approximated, which gives
an ultra-high sensitivity frequency estimation method.

The remaining part of the algorithm is almost identical to the previous one. We run the high-accuracy
signal estimation algorithm to reconstruct xS1 . Let y(t) denote the output band-limited signal. By
Eq. (4) and re-scaling ε and δ, we have

∥y − x∗∥T ≤ (3 +
√
2 + ε)∥g∥T + δ∥x∗∥T .

Therefore, we achieve a (3 +
√
2 + ε)-approximation error for the band-limited interpolation.

2.2.3 (
√
2 + ε+ c)-approximation algorithm with shrinking range

When we only care about the signal on the interior window [0, (1 − c)T ], the two “edge strips”
of length cT/2 at the beginning and end become disposable budget. We exploit this slack with
a shrinking-range filter H that (i) leaves the interior almost unchanged and (ii) suppresses the
contribution of every frequency band whose energy is already comparable to the noise. This ensures
that, after filtering, all irrecoverable energy cancels with the adversarial noise, so the residual we
must approximate is strictly smaller than in the full-range setting.

Using the same high-sensitivity filter construction, but tuned to the relaxed threshold ε1∥g∥2T , we
identify a set S of “truly heavy” frequencies inside each cluster. We show that (see Lemma I.1)

∥x− xS∥T ′ + ∥xS − x∗∥T ′ ≤ (
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T .

Then we can recovers, for every fj ∈ S, an approximation f̃j with resolution O(∆0

√
∆0T ) using

only poly(k, ε−1, c−1) log(FT ) samples. See Corollary I.2 for more details.

Then we can replace each narrow band around f̃j by a low-degree polynomial Pj(t) (degree d =

O(T∆
3/2
0 + k3 log k)) whose Fourier support stays inside the band and whose time-domain error is

O(δ)∥xS∥T .

On T ′ = (1− c)T we run the high-accuracy signal-estimation routine (Section G.2), but now with
the uniform sampler restricted to T ′. Because the filter already tames boundary energy, a linear-sized
well-balanced sample suffices to learn the coefficients with relative error 1 + ε.

Putting it together. Summing the four error sources—cluster trimming, frequency rounding,
polynomial patching, and weighted regression—and rescaling ε, δ yields Theorem 1.4: for any
c ∈ (0, 1),

∥y − x∗∥T ′ ≤ (
√
2 + ε+ c) ∥g∥T + δ ∥x∗∥T ,

with sample complexity and runtime poly
(
k, ε−1, c−1, log(1/δ)

)
logO(1)(FT ), and output sparsity

poly
(
k, ε−1, c−1, log(1/δ)

)
. Thus, shrinking the range lets us push the approximation constant all

the way down to
√
2 + ε+ c.

3 Conclusion

In this work, we break the long-standing constant-factor barrier for noisy band-limited interpolation.
Our primary algorithm delivers a (3 +

√
2 + ε)-approximation with poly(k, ε−1, log(1/δ)) sample

and time complexity. A refined “shrinking-range” variant pushes the constant down to (
√
2 + ε+ c)

on any interior window (1− c)T , demonstrating that additional spatial slack can be traded directly
for reconstruction accuracy. Two technical ingredients drive these improvements: We introduce a
new filter family simultaneously magnifies cluster energy and cancels adversarial noise, allowing

9



reliable recovery at an energy threshold arbitrarily close to the information-theoretic optimum. We
also proved a unified view of frequency and signal estimation tracks how residual noise propagates
through each stage, replacing three additive error terms with a single multiplicative bound and
collapsing the approximation constant. These techniques are modular and extend naturally to broader
sparse-recovery settings, opening avenues for even tighter guarantees in higher dimensions, alternate
transform domains, and streaming environments.

Our guarantees rely on several idealised assumptions: the signal must be exactly k-sparse in the
frequency domain (or perfectly lattice-aligned), the signal-to-noise ratio must exceed a constant
threshold, and the analysis is fully worked out only in one dimension; relaxing any of these conditions
can inflate the hidden polynomial factors in our sample and runtime bounds or even invalidate
recovery. Moreover, the ultra-sensitive filters we employ require high numerical precision—round-off
error or model mismatch may erode the stated constants in practical deployments. It remains the
open whether these assumptions can be relaxed and further improve the approximation ratio.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitation discussion in Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions of this work are made within the statement of theorems or
lemmas. For each theoretical result:

• The formal version of Theorem 1.3 is Theorem H.20, where the proof is in Section H.
• The formal version of Theorem 1.4 is Theorem I.4, where the proof is in Section I.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed and confirmed that the research conducted in the
paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include the broader impacts discussion in Section J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not include experiments and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Preliminaries

This section is organized as follows. In Section A.1, we provide some technical tools in probability
theory and linear algebra. In Section A.2, we review the Fourier transformation for different types of
signals.

A.1 Tools and inequalities

Lemma A.1 (Chernoff Bound Chernoff (1952)). Let X1, X2, · · · , Xn be independent random
variables. Assume that 0 ≤ Xi ≤ 1 always, for each i ∈ [n]. Let X = X1 +X2 + · · · +Xn and

µ = E[X] =
n∑

i=1

E[Xi]. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp(− ε2

2 + ε
µ) and Pr[X ≤ (1− ε)µ] ≤ exp(−ε2

2
µ).

Definition A.2 (ε-net). Let T be a metric space with distance measure d. Consider a subset K ⊂ T
and let ε > 0. A subset N ⊆ K is called an ε-net of K if every point in K is within distance ε of
some point of N , i.e.

∀x ∈ K,∃y ∈ N s.t. d(x, y) ≤ ε.

Fact A.3 (Fast matrix multiplication). We use Tmat(a, b, c) to denote the time of multiplying an a× b
matrix with another b× c matrix.

We use ω to denote the exponent of matrix multiplication, i.e., Tmat(n, n, n) = nω. Currently
ω ≈ 2.373 Williams (2012); Le Gall (2014); Alman and Williams (2021).
Fact A.4 (Weighted linear regression). Given a matrix A ∈ Cn×d, a vector b ∈ Cn and a weight
vector w ∈ Rn

>0, it takes O(ndω−1) time to output an x′ such that

x′ = argmin
x
∥
√
W (Ax− b)∥2 = (A∗WA)−1A∗Wb.

where
√
W := diag(

√
w1, . . . ,

√
wn) ∈ Rn×n, and ω ≈ 2.373 is the exponent of matrix multiplica-

tion Williams (2012); Le Gall (2014); Alman and Williams (2021).
Fact A.5. For any x ∈ (0, 1), we have cos(x) ≤ exp(−x2/2).

A.2 Basics of Fourier transformation

The definition of high dimensional Fourier transform is as follows:

x̂(f) =

∫

(−∞,∞)d
x(t) exp(−2πi⟨f, t⟩)dt, where f ∈ Rd,

and the definition of high dimensional inverse Fourier transform is as follows:

x(t) =

∫

(−∞,∞)d
x̂(f) exp(2πi⟨f, t⟩)df, where t ∈ Rd.

Note that when we replace d = 1 in the definition of high dimensional Fourier transform and inverse
Fourier transform above, we get the definition of one-dimensional Fourier transform and inverse
Fourier transform.

The definition of discrete Fourier transform is as follows:

x̂f =

n∑

t=1

xt exp(−2πift/n), where f ∈ [n],

and the definition of discrete inverse Fourier transform is as follows:

xt =
1

n

n∑

f=1

x̂f exp(2πift/n), where t ∈ [n].
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A continuous k-Fourier sparse signal x(t) : Rd → C can be represented as follows:

x(t) =

k∑

j=1

vj exp(2πi⟨fj , t⟩), vj ∈ C, fj ∈ Rd, ∀j ∈ [k].

Thus, x̂(f) is:

x̂(f) =

k∑

j=1

vjδ(t− fj).

A discrete k-Fourier sparse signal x ∈ Cn can be represented as follows:

xt =
∑

j∈S

vj exp(2πijt/n), S ⊆ [n], |S| = k, vj ∈ C,∀j ∈ S.

So, x̂f is:

x̂f =

{
vj , j ∈ S
0 , o.w.

B Definitions of Semi-Continuous Fourier Set Query and Interpolation

In this section, we give the formal definitions of the problems studied in this paper. In Section B.1,
we define the Fourier set query for discrete and continuous signals. In Section B.2, we define
the band-limited interpolation problem and its two sub-problems: frequency estimation and signal
estimation. And in Section B.3, we discuss the importance sampling method.

B.1 Formal definitions of Fourier set query

The discrete Fourier set query problem is defined as follows:
Definition B.1 (Discrete Fourier set query problem). Let x ∈ Cn and x̂ be its discrete Fourier
transformation. Let ε > 0. Given a set S ⊆ [n] and query access to x, the goal is to use a few queries
to compute a vector x′ with support supp(x′) ⊆ S such that

∥(x′ − x̂)S∥22 ≤ ε · ∥x̂[n]\S∥22.

We also define the continuous Fourier set query problem as follows:
Definition B.2 (Continuous Fourier set query problem). For d ≥ 1, let x∗(t) be a signal in time
duration [0, T ]d. Let x̂∗(f) denote the continuous Fourier transformation of x∗(t). Let ε > 0. Given a
set S ⊆ Rd of frequencies such that supp(x̂∗) ⊆ S, and observations of the form x(t) = x∗(t)+g(t),
where g(t) denotes the noise. The goal is to output a Fourier-sparse signal x′(t) with support
supp(x̂′) ⊆ S such that

∥x′ − x∗∥2T ≤ (1 + ε) · ∥g∥2T .

B.2 Formal definitions of semi-continuous band-limited interpolation

In this section, we provide the following formal definition of the semi-continuous band-limited
interpolation problem, where we assume that the frequencies of the signal are contained in a lattice.
Problem B.3 (Semi-continuous band-limited interpolation problem). Given a basis B of m known
vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B), ∀i ∈ [k], |fi| ≤ F . Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩, and

let g(t) denote the noise. Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T ]d. Let
η = mini ̸=j ∥fj − fi∥∞. There are three goals:
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1. The first goal is to design an algorithm that output f1, f2, · · · , fk exactly given query access
to the signal x(t) for t ∈ [0, T ]d.

2. The second goal is to design an algorithm that output a set L of frequencies such that, for
each fi, there is f ′

i ∈ L, ∥fi − f ′
i∥2 ≤ D/T .

3. The third goal is to design an algorithm that output y(t) =
∑k̃

j=1 v
′
j · e2πif

′
jt such that∫

[0,T ]d
|y(t)− x(t)|2dt ≲

∫
[0,T ]d

|g(t)|2dt.

Then, we extract two sub-problems from Problem B.3: Frequency Estimation and Signal Estimation.
We give their definitions below.

We first define the d-dimensional frequency estimation under the semi-continuous as follows. In this
problem, we want to recover each frequencies in a small range.
Problem B.4 (Frequency estimation). Given a basis B of m known vectors b1, b2, · · · bm ∈ Rd, let
Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩, and let g(t) denote the noise.

Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T ]d. Let η = mini ̸=j ∥fj − fi∥∞.

The goal is to design an algorithm that output a set L of frequencies such that, for each fi, there is
f ′
i ∈ L, ∥fi − f ′

i∥2 ≤ D/T .

We remark that the recovered frequencies in L are not necessary to be in Λ(B), and D is a parameter
that can depend on k.

Next, we define the d-dimensional Signal Estimation under the semi-continuous setting as follows.
In this problem, we want to recover a signal that can approximate the ground-truth signal in the time
domain.
Problem B.5 (Signal Estimation problem). Given a basis B of m known vectors b1, b2, · · · bm ∈ Rd,
let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) :=
∑k

j=1 vje
2πi⟨fj ,t⟩, and let g(t) denote the noise.

Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T ]d. Let η = mini ̸=j ∥fj − fi∥∞.

The goal is to design an algorithm that outputs y(t) =
∑k̃

j=1 v
′
j · e2πif

′
jt such that

∫

[0,T ]d
|y(t)− x(t)|2dt ≲

∫

[0,T ]d
|g(t)|2dt.

Note that outputting y(t) =
∑k̃

j=1 v
′
j · e2πif

′
jt means outputting {v′j , f ′

j}j∈[k̃].

Remark B.6. We note that given the solution of Frequency Estimation (Problem B.4), Signal
Estimation (Problem B.5) can be formulated as a Fourier set query problem (Problem B.2). More
specifically, by Frequency Estimation, we will find a set that contains all frequencies of the ground
truth signal x∗(t). Then, we only need to recover the coefficients with frequencies in this set, which is
equivalent to a set query problem.

B.3 Facts about importance sampling

Important sampling try to estimate a statistic value in one distribution by taking samples in another
distribution. In particular, Chen and Price (2019a) considered the importance sampling for estimating
the norm of functions in a linear family F .

In this followings, we first provide some basic definitions about linear function family.
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Definition B.7 (Condition number of sampling distribution). Let G be any domain and F is a linear
function family from G to C. Let D be an arbitrary distribution over G. Then the condition number
of D with respect to F is defined as follows:

KD := sup
t∈G

sup
f∈F

|f(t)|2
∥f∥2D

,

where

∥f∥2D :=

∫

G

D(t) · |f(t)|2dt.
Definition B.8 (Orthonormal basis for linear function family). Let G be any domain. Given a linear
function family F from G to C, and a probability distribution D over G. We say {v1, . . . , vd} form
an orthonormal basis of F with respect to D, if they satisfy the following properties:

• for any i, j ∈ [d],
∫
G
D(t)vi(t)vj(t)dt = 1i=j , and

• for any f ∈ F , f ∈ span{v1, . . . , vd}.
Fact B.9. Let {v1, . . . , vk} be an orthonormal basis of F with respect to D. For any function f ∈ F ,
let α(f) denote the coefficients under the basis {v1, . . . , vd}, i.e., h =

∑d
i=1 α(h)i · vi. Then,

∥α(h)∥2 = ∥h∥D.

For an unknown function f ∈ F , the goal of importance sampling is to estimate ∥f∥D, given samples
from another distribution D′. The following definition introduces the importance sampling procedure
and condition number of the importance sampling distribution.
Definition B.10 (Definition 3.1 of Chen and Price (2019a)). For any unknown distribution D′ over

the domain G and any function f ∈ F , let f (D′)(t) :=
√

D(t)
D′(t) · f(t) be the importance sampling

function for some known distribution D such that

E
t∼D′

[
|f (D′)(t)|2

]
= E

t∼D′

[
D(t)

D′(t)
|f(t)|2

]
= E

t∼D

[
|f(t)|2

]
.

Then, we can use samples from D′ to estimate ∥f (D′)∥D′ , which gives an estimate of ∥f∥D.

When the family F and D is clear, we use KIS,D′ to denote the condition number of importance
sampling from D′:

KIS,D′ = sup
t

{
sup
f∈F

{
|f (D′)(t)|2
∥fD′∥2D′

}}
= sup

t

{
D(t)

D′(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D

}}
. (5)

From Definition B.10, we know that the efficiency of importance sampling depends on how many
samples we need to estimate ∥fD′∥D′ . The following lemma provide a criteria for judging whether a
set of samples gives a good estimation for the norm of function.
Lemma B.11 (Lemma 4.2 in Chen and Price (2019a)). For any ε ∈ (0, 1), let S = {t1, . . . , ts}
and the weight vector w ∈ Rs

>0. Define a matrix A ∈ Rs×d be the s × d matrix defined as
Ai,j =

√
wi · vj(ti), where {v1, . . . , vd} is an orthonormal basis for F . Then

∥h∥2S,w :=

s∑

j=1

wj · |h(xj)|2 ∈ [1± ε] · ∥h∥2D for every h ∈ F

if and only if the eigenvalues of A∗A are in [1− ε, 1 + ε].

The following lemma shows that the sample complexity depends on the condition number KIS,D′ :
Lemma B.12 (Lemma 6.6 in Chen and Price (2019a)). Let D′ be an arbitrary distribution over G
and let KIS,D′ be the condition number of importance sampling from D′ (defined by Eq. (5)). There
exists an absolute constant C such that for any ε ∈ (0, 1) and δ ∈ (0, 1), let S = {t1, . . . , ts} be a
set of i.i.d. samples from the distribution D′ and let w be the weight vector defined by wj =

D(tj)
s·D′(tj)

for each j ∈ [s]. Then, as long as

s ≥ C

ε2
·KIS,D′ log

d

δ
,

the s× d matrix Ai,j =
√
wi · vj(ti) satisfies
∥A∗A− I∥2 ≤ ε with probability at least 1− δ.
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C Energy Bounds for Band-limited Signals

The energy bound shows that the maximum value of a band-limited signal in a certain interval can
be bounded by its energy on the interval. One interesting fact is that the approximation ratio in the
energy bound is only relate to the sparsity k, and have no relationship with time duration T and
band-limit F . An application of energy bound is preserving the norm, that is what is the least size
of set S, such that ∥f∥S = ∥f∥T , for any function f in a certain function family. The relationship
between energy bound and norm preserving can be build by Chernoff bound.

Borwein and Erdélyi (2006); Kós (2008); Chen et al. (2016); Chen and Price (2019b) proved energy
bounds for sparse Fourier signal under one-dimensional continuous Fourier transform. We further
generalize these results to discrete band-limited signal under discrete Fourier transform and high-
dimensional band-limited signal under continuous Fourier transform.

This section is organized as follows:

• Section C.1 reviews previous results for one-dimensional continuous Fourier-sparse signals.
• Section C.2 builds the connection between energy bound and the concentration property.

C.1 Energy bound for one-dimensional signals

In this section, we review the energy bound proved in prior work Borwein and Erdélyi (2006); Kós
(2008); Chen et al. (2016); Chen and Price (2019b).

Kós (2008) proved the following energy bound:
Theorem C.1 (Kós (2008); Chen et al. (2016)). Define a family of F -band-limit, k-sparse Fourier
signals:

F :=
{
x(t) =

k∑

j=1

vj · e2πifjt
∣∣∣ fj ∈ R ∩ [−F, F ]

}

Then, for any t ∈ (−1, 1),

sup
x∈F

|x(t)|2
∥x∥2D

≲ k2.

Borwein and Erdélyi (2006) also proved a time-dependent energy bound for one-dimensional signal:
Theorem C.2 (Borwein and Erdélyi (2006); Chen and Price (2019a)). Define a family of F -band-limit,
k-sparse Fourier signals:

F :=
{
x(t) =

k∑

j=1

vj · e2πifjt
∣∣∣ fj ∈ R ∩ [−F, F ]

}

Then, for any t ∈ (−1, 1),

sup
x∈F

|x(t)|2
∥x∥2D

≲
k

1− |t| .

C.2 Energy bounds imply concentrations

By using Chernoff bound, we prove the following lemma to show the performance of uniformly
sampling.

C.2.1 Continuous case

Lemma C.3. Let d ∈ Z+. Let R be a parameter. Given any function x(t) : Rd → C with
max

t∈[0,T ]d
|x(t)|2 ≤ R∥x(t)∥2T . Let S denote a set of points chosen uniformly at random from [0, T ]d.

We have that

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T ]
∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ exp(−Ω(ε2|S|/R)),
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where ∥x(t)∥2T = 1
Td

∫
[0,T ]d

|x(t)|2dt.

Proof. Let M denote max
t∈[0,T ]d

|x(t)|2. Replacing Xi by |x(ti)|2
M and n by |S| in Lemma A.1, we obtain

that

Pr[|X − µ| > εµ] ≤ 2 exp(−ε2

3
µ)

The above equation implies

Pr

[∣∣∣∣∣
∑

i∈S

|x(ti)|2
M

− |S| ∥x(t)∥
2
T

M

∣∣∣∣∣ > ε|S| ∥x(t)∥
2
T

M

]
≤ 2 exp(−ε2

3
µ)

Multiplying M on the both sides

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T

∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ 2 exp(−ε2

3
µ)

Applying bound on µ

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T

∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ 2 exp(−ε2

3
|S| ∥x(t)∥

2
T

M
)

which is less than 2 exp(− ε2

3 |S|/R), thus completes the proof.

D Uniform Sketching Band-Limited Signals

In this section, we show an intermediate step in the reduction from Frequency estimation to Signal
estimation: constructing a small sketching subset S of the time domain obliviously (without making
any query to the signal), so that the signal discretized by S has norm close to the original continuous
signal. More formally, we define the uniform sketching Fourier signal problem as follows:
Problem D.1 (Uniform sketching band-limited signal problem). Suppose f1, f2, · · · , fk ∈ Rd, and
v1, . . . , vk ∈ C. Define the continuous signal x(t) =

∑k
j=1 vje

2πi⟨fj ,t⟩. Let η = mini ̸=j ∥fj−fi∥∞.

Let ε ∈ (0, 0.1) denote the accuracy parameter. Find a set S = {t1, . . . , ts} ⊆ [0, T ]d of size s such
that

(1− ε)∥x∥T ≤ ∥x∥S ≤ (1 + ε)∥x∥T ,
where

∥x∥2T :=
1

T d

∫

[0,T ]d
|x(t)|2dt, and ∥x∥2S :=

1

|S|
∑

i∈[s]

|x(ti)|2.

In Section D.1, we show how to sketch one-dimensional signals with nearly-optimal weighted
sketching.

D.1 Weighted uniform sketching one-dimensional signals

For one-dimensional signals, the most natural approach to uniform sketching is to uniformly sample
some points in the time domain. However, by a standard concentration argument, we know that the
sample complexity is poly(k), which is not time-efficient for our task. In this section, we show a
more efficient sketching method for one-dimensional band-limited signals by assigning different
weights to each sample point. More precisely, let S = {t1, . . . , ts} ⊆ [0, T ] be a discrete sketching
set and let w ∈ Rs

≥0 be the weight vector. We define the weighted sketching norm of the signal as
follows:

∥x∥S,w :=
∑

i∈[s]

wi · |x(ti)|2.
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And the goal of weighted uniform sketching is to find a small set S and a weight vector w such that
∥x∥S,w ≈ ∥x∥T .

In the following lemma, we give a sketch for any one-dimensional band-limited signal with nearly-
optimal size:
Lemma D.2 (Nearly-optimal weighted sketch for one-dimensional signals). For k ∈ N+, define a
probability distribution D(t) as follows:

D(t) :=

{
c/(1− |t/T |), for |t| ≤ T (1− 1/k)

c · k, for |t| ∈ [T (1− 1/k), T ]
(6)

where c = Θ(T−1 log−1(k)) is a normalization factor such that
∫ T

−T
D(t)dt = 1.

For any f1, · · · , fk ∈ [−F, F ] and v1, · · · , vk ∈ C, let the continuous signal x(t) =∑k
j=1 vj exp(2πifjt). For any ε, ρ ∈ (0, 1), let SD = {t1, · · · , ts} be a set of i.i.d. samples

from D(t) of size s ≥ O(ε−2k log(k) log(1/ρ)). Let the weight vector w ∈ Rs be defined by
wi := 2/(TsD(ti)) for i ∈ [s]. Then with probability at least 1− ρ, we have

(1− ε)∥x∥T ≤ ∥x∥SD,w ≤ (1 + ε)∥x∥T ,
where ∥x∥2T := 1

2T

∫ T

−T
|x(t)|2dt.

Proof. For the convenient, in the proof, we use time duration [−T, T ]. Let F be defined as:

F :=



x(t) =

k∑

j=1

vj · e2πifjt|fj ∈ R ∩ [−F, F ], vj ∈ C





Let {v1(t), v2(t), · · · , vk(t)} be an orthonormal basis for F with respect to the distribution D, i.e.,
∫ T

0

D(t) · vi(t)vj(t)dt = 1i=j , ∀i, j ∈ [k].

We first prove that the distribution D is well-defined. By the condition that
∫ T

−T
D(t)dt = 1, we have

2

∫ T (1−1/(k))

0

c

(1− |t/T |)dt+ 2

∫ T

T (1−1/(k))

c · k2kdt = 1,

which implies that

c−1 = 2

∫ T (1−1/k)

0

1

(1− |t/T |)dt+ 2

∫ T

T (1−1/k)

k2dt

= 2T log k + 2T

= Θ(T log(k)).

Thus, we get that c = Θ(T−1 log−1(k)).

To show that sampling from distribution D give a good weighted sketch, we will use some technical
tools in Section B.3. Applying Lemma B.12 with D′ = D, D = Uniform([−T, T ]), d = k, δ = ρ,
we have that, with probability at least 1− ρ, the matrix A ∈ Cs×k defined by Ai,j :=

√
wi · vj(xi)

satisfying

∥A∗A− I∥2 ≤ ε,

as long as s ≥ C
ε2 ·KIS,D′ log k

ρ . Then, by Lemma B.11, it implies that for every x ∈ F ,

(1− ε)∥x∥2T ≤ ∥x∥2SD,w ≤ (1 + ε)∥x∥2T .

It remains to bound the size of SD; or equivalently, we need to upper-bound the condition number of
the importance sampling of D′ (see Definition B.10):

KIS,D′ := sup
t
{ D(t)

D′(t)
· sup
f∈F
{ |f(t)|

2

∥f∥2D
}}
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= sup
t
{ 1

2TD(t)
· sup
f∈F
{ |f(x)|

2

∥f∥2D
}}

≤ sup
t
{ 1

2TD(t)
·min{ k

1− |t/T | , k
2}}

≤ max{ (1− |t/T |)
2cT

k

1− |t/T | ,
1

2cTk
k2}

=
k

2cT
= O(k log k),

where the first step follows from the definition, the second step follows from D(t) =
Uniform([−T, T ])(t) = 1

2T , the third step follows from Theorem C.1 and Theorem C.2, and
the remaining steps follow from direct calculations. Thus, we get that

|SD| ≥ Ω
(
ε−2k log(k) log(1/ρ)

)
.

The lemma is then proved.

D.2 ε-net for sparse band-limited signals

In this section, we construct ε-nets for high-dimensional sparse Fourier continuous and discrete
signals.
Lemma D.3 (ε-net construction for continuous signals). Given k ∈ Z+ unknown frequencies
f1, f2, . . . , fk ∈ [−F, F ]d. Let V :=

{
e2πi⟨fi,t⟩ | i ∈ [k]

}
be a family of Fourier basis. Let Q :=

{u ∈ span{V } | ∥u∥2T = 1} be the set of all signals in [0, T ]d with frequency f1, . . . , fk, where
∥x∥2T = 1

Td

∫
[0,T ]d

|x(t)|2dt.
Then, there exists an ε-net Pd ⊂ Q such that

1. ∀u ∈ Q,∃w ∈ Pd, ∥u− w∥T ≤ ε.

2. |Pd| ≤
(
5k
ε

)2k
.

Proof. We first construct an ε
k -net for the unit disk in C, i.e., {z ∈ C | |z| ≤ 1}. Let P ′ denote

P ′ :=

{
ε

2k
j1 + i

ε

2k
j2 | j1, j2 ∈ Z, |j1| ≤

2k

ε
, |j2| ≤

2k

ε

}
.

Notice that |ε/(2k)j1| ≤ ε/(2k) · 2k/ε = 1; and similarly, |ε/(2k)j2| ≤ 1. Thus, for any a ∈ C,
|a| ≤ 1, there is a b ∈ P ′ such that

|a− b| ≤ ε/(2k) + ε/(2k) ≤ ε/k.

Moreover,

|P ′| ≤ (2 · 2k/ε+ 1) · (2 · 2k/ε+ 1) =

(
4
k

ε
+ 1

)2

.

Hence, we conclude that,

• P ′ is an ε
k -net in the unit circle of C.

• P ′ has size at most (4k
ε + 1)2.

Then, we use P ′ to construct an ε-net for Q. Since the dimension of Q is at most k, we take an
orthonormal basis w1, · · · , wk ∈ Q such that,

∫

[0,T ]d
wi(t)wj(t)dt = 1i=j .
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And we define

P ′′ := {
k∑

i=1

αiwi | ∀i ∈ [k], αi ∈ P ′}.

First, for any u ∈ Q, we have

u =

k∑

i=1

vi exp(2πi⟨fi, t⟩) =
k∑

i=1

α′
iwi,

which implies that |α′
i| ≤ 1 for all i ∈ [k]. So, for any a ∈ Q, there is a b ∈ P ′′ such that

∥a− b∥T ≤ k · ε/k = ε. Moreover, |P ′′| ≤ ((4k
ε + 1)2)k ≤ (5k

ε )
2k. Therefore, we conclude that

P ′′ is an ε-net for Q and |P ′′| ≤
(
5k
ε

)2k
.

Then we define
Pd := {v ∈ Q | ∀u ∈ P ′′, v = argminv∈Q{∥v − u∥T }}.

therefore we have that, for any a ∈ Q, there is a b ∈ P ′′ such that ∥a − b∥T ≤ ε, because there
is a c ∈ Pd, such that ∥c − b∥T = mind∈Q∥d − b∥T ≤ ∥a − b∥T ≤ ε. Then, ∥c − a∥T ≤
∥c− b∥T + ∥b− a∥T ≤ 2ε.

E Fast Implementation of Well-Balanced Sampling Procedure

Well-balanced sampling procedure was first defined in Chen and Price (2019a) to study the active
linear regression problem. Our signal estimation algorithm will call it as a sub-procedure. In this
section, we give a fast implementation of well-balanced sampling procedure based on the Randomized
BSS algorithm Batson et al. (2012); Lee and Sun (2015).

First, we restate the definition of well-balanced sampling procedure in Chen and Price (2019a).
Definition E.1 (Well-balanced sampling procedure (WBSP), Chen and Price (2019a)). Given a linear
family F and underlying distribution D, let P be a random sampling procedure that terminates in m
iterations (m is not necessarily fixed) and provides a coefficient αi and a distribution Di to sample
xi ∼ Di in every iteration i ∈ [m].

We say P is an ε-WBSP if it satisfies the following two properties:

1. With probability 0.9, for weight wi = αi · D(xi)
Di(xi)

of each i ∈ [m],
m∑

i=1

wi · |h(xi)|2 ∈
[
1− 10

√
ε, 1 + 10

√
ε
]
· ∥h∥2D ∀h ∈ F .

2. The coefficients always have
∑m

i=1 αi ≤ 5
4 and αi ·KIS,Di

≤ ε
2 for all i ∈ [m].

This definition describes a general sampling procedure that uses a few samples to represent the whole
continuous signal, and the sampling procedure should satisfy two properties: one guarantees that the
norm of any function in a function family is preserved, and another guarantees that the norm of noise
is also preserved.

In Section E.1, we review some results in Chen and Price (2019a) and show that WBSP can be
implemented via randomized spectral sparsification. In Section E.2, we design a data structure
and improve the time efficiency of the WBSP. In Section E.3, we discover a tradeoff between the
preprocessing cost and the query cost, which can improve the space complexity.

E.1 Randomized BSS implies a WBSP

In this section, we review the result of Chen and Price (2019a), which shows that the Randomized
BSS algorithm Batson et al. (2012); Lee and Sun (2015) implies a well-balanced sampling procedure.
Lemma E.2 (Lemma 5.1 in Chen and Price (2019a)). Let G be any domain. Given any dimension d
linear function family F of function f : G→ C,

F = {f(t) =
d∑

j=1

vjuj(t)|vj ∈ C},

28



where uj : G → C. Given any distribution D over G, and any ε > 0, there exists an efficient
procedure (Algorithm 2) that runs in O(ε−1d3|G| + ε−1dω+1) time and outputs a set S ⊆ G and
weight w such that

• |S| = O(d/ε), w ∈ R|S|,

• the procedure is an ε-WBSP,

holds with probability 1− 1
200 .

Algorithm 2 A well-balanced sampling procedure based on Randomized BSS (see Chen and Price
(2019a))

1: procedure RANDBSS(d,F , D, ε)
2: Find an orthonormal basis v1, . . . , vd of F under D
3: Set γ ← √ε/3 and mid← 4d/γ

1/(1−γ)−1/(1+γ)

4: j ← 0, B0 ← 0
5: l0 ← −2d/γ, u0 ← 2d/γ
6: while uj+1 − lj+1 < 8d/γ do
7: Φj ← tr[(ujI −Bj)

−1] + tr[(Bj − ljI)
−1] ▷ The potential function at iteration j.

8: Set the coefficient αj ← γ
Φj
· 1

mid

9: Set v(x)←
(
v1(x), . . . , vd(x)

)

10: for x ∈ supp(D) do
11: Set the distribution

Dj(x)← D(x) ·
(
v(x)⊤(ujI −Bj)

−1v(x) + v(x)⊤(Bj − ljI)
−1v(x)

)
/Φj

12: end for
13: Sample xj ∼ Dj and set a scale sj ← γ

Φj
· D(xj)
Dj(xj)

14: Bj+1 ← Bj + sj · v(xj)v(xj)
⊤

15: uj+1 ← uj +
γ

Φj(1−γ) , lj+1 ← lj +
γ

Φj(1+γ)

16: j ← j + 1
17: end while
18: m← j
19: Assign the weight wj ← sj/mid for each xj

20: return {x1, x2, · · · , xm}, w
21: end procedure

E.2 Fast implementation of WBSP

In this section, we give a fast implementation of Algorithm 2:
Theorem E.3 (Fast implementation of WBSP). Let G be any domain. Given any dimension d linear
function family F of function f : G→ C,

F = {f(t) =
d∑

j=1

vjuj(t)|vj ∈ C},

where uj : G → C. Given any distribution D over G, and any ε > 0, there exists an efficient
procedure (Algorithm 3) that runs in O(d2|G|+ ε−1d3 log |G|+ ε−1dω+1) time and outputs a set
S ⊆ G and weight w ∈ R|S| such that the following properties hold with probability at least 0.995:

• |S| = O(d/ε),

• the procedure is an ε-WBSP.

Our algorithm is based on a data structure for solving the online quadratic-form sampling problem
defined as follows:
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Algorithm 3 Our fast implementation of well-balanced sampling procedure

1: procedure RANDBSS+(d,F , D, ε) ▷ Theorem E.3
2: /*Preprocessing*/
3: Find an orthonormal basis v1, . . . , vd of F under D
4: γ ← √ε/3 and mid← 4d/γ

1/(1−γ)−1/(1+γ)

5: j ← 0, B0 ← 0
6: l0 ← −2d/γ, u0 ← 2d/γ
7: δ ← 1/poly(d)
8: ▷ Let v(x) =

(
v1(x), . . . , vd(x)

)
∈ Rd

9: DS.INIT(|D|, d, {v(x1), · · · , v(x|D|)} ⊂ Rd, {D(x1), . . . , D(x|D|)} ⊂ R) ▷ Algorithm 4
10: /*Iterative step*/
11: while uj+1 − lj+1 < 8d/γ do
12: Φj ← tr[(ujI −Bj)

−1] + tr[(Bj − ljI)
−1] ▷ The potential function at iteration j.

13: αj ← γ
Φj
· 1

mid

14: Ej ← (ujI −Bj)
−1 + (Bj − ljI)

−1

15: q ← DS.QUERY(Ej/Φj) ▷ q ∈ [|D|], Algorithm 4
16: xj ← xq and set a scale sj ← γ

v(xj)⊤Ejv(xj)

17: Bj+1 ← Bj + sj · v(xj)v(xj)⊤
18: uj+1 ← uj +

γ
Φj(1−γ) , lj+1 ← lj +

γ
Φj(1+γ)

19: j ← j + 1
20: end while
21: m← j
22: Assign the weight wj ← sj/mid for each xj

23: return {x1, x2, · · · , xm}, w
24: end procedure

Problem E.4 (Online Quadratic-Form Sampling Problem). Given n vectors v1, . . . , vn ∈ Rd and n
coefficients α1, . . . , αn, for any PSD matrix A ∈ Rd×d, output a sample i ∈ [n] from the following
distribution DA:

Pr
DA

[i] :=
αi · v⊤i Avi∑n

j=1 αj · v⊤j Avj
∀i ∈ [n]. (7)

Theorem E.5. There is a data structure (Algorithm 4) that uses O(nd2) spaces for the Online
Quadratic-Form Sampling Problem with the following procedures:

• INIT(n, d, {v1, . . . , vn} ⊂ Rd, {α1, . . . , αn} ⊂ R): the data structure preprocesses in time
O(nd2).

• QUERY(A ∈ Rd×d): Given a PSD matrix A, the QUERY operation samples i ∈ [n] exactly
from the probability distribution DA defined in Problem E.4 in O(d2 log n)-time.

Proof. The pseudo-code of the algorithm is given as Algorithm 4. The idea is to build a binary tree
such that each node has an interval in [l, . . . , r] ⊂ [1, . . . , n] and stores a matrix

∑r
i=l αi · viv⊤i . For

each internal node with interval [l, . . . , r], its left child node has interval [l, . . . , ⌊(l + r)/2⌋], and its
right child node has interval [⌊(l + r)/2⌋+ 1, . . . , r].

We first prove the correctness. Suppose the output of QUERY is i ∈ [n]. We compute its probability.
Let u0 = root, u1, . . . , ut be the path from the root of the tree to the leaf with id = i. Then, we have

Pr[ut] =

t∏

j=1

Pr[uj |uj−1] =

t∏

j=1

∑rj
k=lj

αk · v⊤k Avk∑rj−1

k=lj−1
αk · v⊤k Avk

=
αi · v⊤i Avi∑n

k=1 αk · v⊤k Avk
,

where [lj , . . . , rj ] is the range of the node uj , the first step follows from the conditional probability,
the second step follows from Line 34 in Algorithm 4, and the last step follows from the telescoping
products. Hence, we get that

Pr[QUERY(A) = i] = Pr
DA

[i] ∀i ∈ [n].
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Hence, the sampling distribution is the same as the Online Quadratic-Form Sampling Problem’s
distribution.

For the running time, in the preprocessing stage, we build the binary tree recursively. It is easy to
see that the number of nodes in the tree is O(n) and the depth is O(log n). For a leaf node, we take
O(d2)-time to compute the matrix αi · viv⊤i ∈ Rd×d. For an internal node, we take O(d2)-time to
add up the matrices of its left and right children. Thus, the total preprocessing time is O(nd2).

In the query stage, we walk along a path from the root to a leaf, which has O(log n) steps. In each
step, we compute the inner product between A and the current node’s matrix, which takes O(d2)-time.
And we compute the inner product between A and its left child node’s matrix, which also takes
O(d2)-time. Then, we toss a coin and decide which subtree to move. Hence, each query takes
O(d2 log n)-time.

The theorem is then proved.

Lemma E.6 (Running time of Procedure RANDBSS+ in Algorithm 3). Algorithm 3 runs in

• O(|D|d2)-time for preprocessing,

• O(d2 log(|D|) + dω)-time per iteration, and

• O(ε−1d) iterations.

Thus, the total running time is,

O(|D|d2 + ε−1d · (d2 log |D|+ dω)).

Proof. In each call of the Procedure RANDBSS+ in Algorithm 3,

• Finding orthonormal basis takes O(|D|d2).
• In the line 9, it runs O(|D|d2) times.

• The while loop repeat O(ε−1d) times.

– Line 14 is computing (ujI−Bj) ∈ Cd×d, (ujI−Bj)
−1. This part takes O(dω) time6.

– Note that line 15 of Procedure RANDBSS+ in Algorithm 3 runs O(d2 log |D|) times.

So, the time complexity of Procedure RANDBSS+ in Algorithm 3 is

O(|D|d2 + ε−1d · (d2 log |D|+ dω)).

Lemma E.7 (Correctness of Procedure RANDBSS+ in Algorithm 3). Given any dimension d linear
space F , any distribution D over the domain of F , and any ε > 0, RANDBSS+(d,F , D, ε) is an
ε-WBSP that terminates in O(d/ε) rounds with probability 1− 1/200.

Proof. We first claim that, for each j ∈ [m], xj has the same distribution as Dj , where

Dj(x) = D(x) · (v(x)⊤Ejv(x))/Φj ∀x ∈ D

Notice that sampling from distribution Dj can be reformulated as an Online Quadratic-Form Sampling
Problem: the vectors are {v(x)}x∈D , the coefficients are {D(x)}x∈D, and the query matrix is
E′

j := Ej/Φj . Then, we have Dj = DE′
j

defined in Problem E.4. Hence, by Theorem E.5, we can
use the data structure (Algorithm 4) to efficiently sample from Dj .

Therefore, the sample xj in each iteration is generated from the same distribution as the original
randomized BSS algorithm (Algorithm 2). Then, the WBSP guarantee and the number of iterations
immediately follow from the proof of (Chen and Price, 2019a, Lemma 5.1).

The proof of the lemma is then completed.
6Note that this step seems to be very difficult to speed up via the Sherman-Morrison formula since uj changes

in each iteration and the update is of high rank.
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Algorithm 4 Quadratic-form sampling data structure

1: structure Node
2: V ∈ Rd×d

3: left, right ▷ Point to the left/right child in the tree
4: end structure
5: data structure DS
6: members
7: n ∈ N ▷ The number of vectors
8: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors
9: α1, . . . , αn ∈ R ▷ Coefficients

10: root: Node ▷ The root of the tree
11: end members
12: procedure BUILDTREE(l, r) ▷ [l, . . . , r] is the range of the current node
13: p← new Node
14: if l = r then ▷ Leaf node
15: p.V ← αl · vlv⊤l ▷ It takes O(d2)-time
16: else ▷ Internal node
17: mid← ⌊(l + r)/2⌋
18: p.left← BUILDTREE(l,mid)
19: p.right← BUILDTREE(mid+ 1, r)
20: p.V ← (p.left).V + (p.right).V ▷ It takes O(d2)-time
21: end if
22: return p
23: end procedure
24: procedure INIT(n, d, {vi}i∈[n] ⊆ Rd, {αi}i∈[n] ⊆ R)
25: vi ← vi, αi ← αi for i ∈ [n]
26: root← BUILDTREE(1, n)
27: end procedure
28: procedure QUERY(A ∈ Rd×d)
29: p← root, l← 1, r ← n
30: s← 0
31: while l ̸= r do ▷ There are O(log n) iterations
32: w ← ⟨p.V, A⟩ ▷ It takes O(d2)-time
33: wℓ ← ⟨(p.left).V, A⟩
34: Sample c from Bernoulli(wℓ/w)
35: if c = 0 then
36: p← p.left, r ← ⌊(l + r)/2⌋
37: else
38: p← p.right, l← ⌊(l + r)/2⌋+ 1
39: end if
40: end while
41: return l
42: end procedure
43: end data structure

Proof of Theorem E.3. The running time of the algorithm follows from Lemma E.6, and the correct-
ness follows from Lemma E.7.

E.3 Trade-off between preprocessing and query

In this section, we consider the preprocessing and query trade-off in the data structure for quadratic
form sampling problem. In the following theorem, we give a new data structure that takes less time
in preprocessing and more time for each query than Theorem E.5, and the space complexity is also
reduced from O(nd2) to O(nd).

Theorem E.8. There is a data structure (Algorithms 5 and 6) that uses O(nd) spaces for the Online
Quadratic-Form Sampling Problem with the following procedures:
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• INIT(n, d, {v1, . . . , vn} ⊂ Rd, {α1, . . . , αn} ⊂ R): the data structure preprocesses in time
O(ndω−1).

• QUERY(A ∈ Rd×d): Given a PSD matrix A, the QUERY operation samples i ∈ [n] exactly
from the probability distribution DA defined in Problem E.4 in O(d2 log(n/d) + dω)-time.

Proof. The time and space complexities follow from Lemma E.9. And the correctness follows from
Lemma E.10.

Algorithm 5 Quadratic-form sampling with preprocessing-query trade-off: Preprocessing

1: structure Node
2: V1, V2 ∈ Rd×d

3: left, right ▷ Point to the left/right child in the tree
4: end structure
5: data structure DS+ ▷ Theorem E.8
6: members
7: n ∈ N ▷ The number of vectors
8: m ∈ N ▷ The number of blocks
9: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors

10: root: Node ▷ The root of the tree
11: end members
12: procedure BUILDTREE(l, r) ▷ [l, . . . , r] is the range of the current node
13: p← new Node
14: if l = r then ▷ Leaf node
15: p.V2 ←

[
v(l−1)d+1 · · · vld

]

16: p.V1 ← (p.V2) · (p.V2)
⊤ ▷ It takes O(dω)-time

17: ▷ p.mat1 =
∑ld

i=(l−1)d+1 viv
⊤
i

18: else ▷ Internal node
19: mid← ⌊(l + r)/2⌋
20: p.left← BUILDTREE(l,mid)
21: p.right← BUILDTREE(mid+ 1, r)
22: p.V1 ← (p.left).V1 + (p.right).V1 ▷ It takes O(d2)-time
23: end if
24: return p
25: end procedure
26: procedure INIT(n, d, {vi}i∈[n] ⊆ Rd, {αi}i∈[n] ⊆ R)
27: vi ← vi ·

√
αi for i ∈ [n]

28: m← n/d ▷ We assume that n is divisible by d
29: Group {vi}i∈[n] into m blocks B1, . . . , Bm ▷ Bi = {v(i−1)d+1, . . . , vid} for i ∈ [m]
30: root← BUILDTREE(1,m)
31: end procedure
32: end data structure

Lemma E.9 (Time and space complexities of Algorithms 5 and 6). The INIT procedure takes
O(ndω−1)-time. The QUERY procedure takes O(d2 log(n/d) + dω)-time. The data structure uses
O(nd)-space.

Proof. We prove the space and time complexities of the data structure as follows:
Space complexity: Let m = n/d. It is easy to see that there are O(m) nodes in the data structure.
And each node has two d-by-d matrices. Hence, the total space used by the data structure is
O(n/d) ·O(d2) = O(nd).

Time complexity: In the preprocessing stage, the time-consuming step is the call of BUILDTREE.
There are O(m) internal nodes and O(m) leaf nodes. Each internal node takes O(d2)-time to
construct the matrix V1 (Line 22). For each leaf node, it takes O(d2)-time to form the matrix V2

(Line 15). And it takes O(dω)-time to compute the matrix V1 (Line 16). Hence, the total running
time of BUILDTREE is O(mdω) = O(ndω−1).
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Algorithm 6 Quadratic-form sampling with preprocessing-query trade-off: Query

1: data structure DS+ ▷ Theorem E.8
2: members
3: n ∈ N ▷ The number of vectors
4: m ∈ N ▷ The number of blocks
5: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors
6: root: Node ▷ The root of the tree
7: end members
8: procedure BLOCKSAMPLING(p, l ∈ N, A ∈ Rd×d) ▷ p is a leaf node with index l
9: U ← (p.V2)

⊤ ·A · (p.V2) ▷ It takes O(dω)-time
10: Define a distribution Dl over [d] such that Dl(i) ∝ Ui,i

11: Sample i ∈ [d] from Dl ▷ It takes O(d)-time
12: return (l − 1)d+ i
13: end procedure
14: procedure QUERY(A ∈ Rd×d)
15: p← root, l← 1, r ← m
16: s← 0
17: while l ̸= r do ▷ There are O(logm) iterations
18: w ← ⟨p.V1, A⟩ ▷ It takes O(d2)-time
19: wℓ ← ⟨(p.left).V1, A⟩
20: Sample c from Bernoulli(wℓ/w)
21: if c = 0 then
22: p← p.left, r ← ⌊(l + r)/2⌋
23: else
24: p← p.right, l← ⌊(l + r)/2⌋+ 1
25: end if
26: end while
27: return BLOCKSAMPLING(p, l, A)
28: end procedure
29: end data structure

In the query stage, the While loop in the QUERY procedure (Line 17) is the same as in Algorithm 4.
Since there are O(m) nodes in the tree, it takes O(d2 logm)-time. Then, in the BLOCKSAMPLING
procedure, it takes O(dω)-time to compute the matrix U (Line 9), and it takes O(d)-time to sample
an index from the distribution Dl (Line 11). Hence, the total running time for each query is
O(d2 logm+ dω) = O(d2 log(n/d) + dω).

The proof of the lemma is then completed.

Lemma E.10 (Correctness of Algorithm 6). The distribution of the output of the QUERY(A) is DA

defined by Eq. (7).

Proof. For simplicity, we assume that all the coefficients αi = 1.

Let u0 = root, u1, . . . , ut be the path in the While loop (Line 17) from the root of the tree to the leaf
with index l ∈ [m]. By the construction of leaf node, we have

V1 = V2V
⊤
2 =

[
v(l−1)d+1 · · · vld

]


v⊤(l−1)d+1

...
v⊤ld


 =

ld∑

i=(l−1)d+1

viv
⊤
i ,

which is the same as the V -matrix in Algorithm 4. Hence, similar to the proof of Theorem E.5, we
have

Pr[ut] =

t∏

j=1

Pr[uj |uj−1] =

∑ld
i=(l−1)d+1 v

⊤
i Avi∑n

i=1 v
⊤
i Avi

.

where {(l − 1)d+ 1, . . . , ld} is the range of the node ut and {1, . . . , n} is the range of u0.
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Then, consider the BLOCKSAMPLING procedure. Let {v1, . . . , vd} be the vectors in the input block.
At Line 9, we have

U = V ⊤
2 AV2 =



v⊤1
...
v⊤d


A [v1 · · · vd] .

For i ∈ [d], the i-th element in the diagonal of U is

Ui,i = v⊤i Avi.

Hence,

Pr[BLOCKSAMPLING = i] =
v⊤i Avi∑d
j=1 v

⊤
j Avj

.

Therefore, for any k ∈ [n], if k = (l − 1)d+ r for some l, r ∈ N, then the sample probability is

Pr[QUERY(A) = k] = Pr[BLOCKSAMPLING = k | ut = Block l] · Pr[ut = Block l]

=
v⊤k Avk∑ld

i=(l−1)d+1 v
⊤
i Avi

·
∑ld

i=(l−1)d+1 v
⊤
i Avi∑n

i=1 v
⊤
i Avi

=
v⊤k Avk∑n
i=1 v

⊤
i Avi

= DA(k).

The lemma is then proved.

As a corollary, we get a WBSP using less space:
Corollary E.11 (Space efficient implementation of WBSP). By plugging-in the new data structure
(Algorithms 5 and 6) to FASTERRANDSAMPLINGBSS (Algorithm 3), we get an algorithm taking
O(|D|d2 + γ−2d · (d2 log |D|+ dω))-time and using O(|D|d)-space.

Proof. In the preprocessing stage of FASTERRANDSAMPLINGBSS, we take O(|D|d2)-time for
Gram-Schmidt process and O(|D|dω−1)-time for initializing the data structure (Algorithm 5).

The number of iterations is γ−2d. In each iteration, the matrix Ej can be computed in O(dω)-time.
And querying the data structure takes O(d2 log(|D|/d) + dω)-time.

Hence, the total running time is

O
(
|D|d2 + |D|dω−1 + γ−2d(d2 log(|D|/d) + dω)

)
= O

(
|D|d2 + γ−2dω+1 + γ−2d2 log |D|

)
.

For the space complexity, the data structure uses O(|D|d)-space. The algorithm uses O(d2) extra
space in preprocessing and each iteration. Hence, the total space complexity is O(|D|d).

F Sketch Distillation for Fourier Sparse Signals

In Section D, we show an oblivious approach for sketching Fourier sparse signals. However, there
are two issues of using this sketching method in Signal estimation: 1. The sketch size too large. 2.
The noise in the observed signal could have much larger energy on the sketching set than its average
energy. To resolve these two issues, in this section, we propose a method called sketch distillation to
post-process the sketch obtained in Section D that can reduce the sketch size to O(k) and prevent
the energy of noise being amplified too much. However, we need some extra information about the
signal x∗(t): we assume that the frequencies of the noiseless signal x(t) are known. But the sketch
distillation process can still be done partially oblivious, i.e., we do not need to access/sample the
signal.

In Section F.1, we show our distillation algorithms for one-dimensional signals.
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F.1 Sketch distillation for one-dimensional signals

In this section, we show how to distill the sketch produced by Lemma D.2 from O(k log k)-size to
O(k)-size, using an ε-well-balanced sampling procedure developed in Section E.
Lemma F.1 (Fast distillation for one-dimensional signal). Given f1, f2, · · · , fk ∈ R. Let x∗(t) =∑k

j=1 vj exp(2πifjt). Let η = mini ̸=j |fj − fi|. For any accuracy parameter ε ∈ (0, 0.1), there
is an algorithm FASTDISTILL1D (Algorithm 7) that runs in O(ε−2kω+1)-time and outputs a set
S ⊂ [−T, T ] of size s = O(k/ε2) and a weight vector w ∈ Rs

≥0 such that,

(1− ε)∥x∗(t)∥T ≤ ∥x∗(t)∥S,w ≤ (1 + ε)∥x∗(t)∥T
holds with probability 0.99.

Furthermore, for any noise signal g(t), the following holds with high probability:

∥g∥2S,w ≲ ∥g∥2T ,

where ∥x∥2T := 1
2T

∫ T

−T
|x(t)|2dt.

Proof. For the convenient, in the proof, we use time duration [−T, T ]. Let D(t) be defined as
follows:

D(t) =

{
c/(1− |t/T |), for |t| ≤ T (1− 1/k)

c · k, for |t| ∈ [T (1− 1/k), T ]

where c = O(T−1 log−1(k)) a fixed value such that
∫ T

−T
D(t)dt = 1.

First, we randomly pick up a set S0 = {t1, · · · , ts0} of s0 = O(ε−2
0 k log(k) log(1/ρ0)) i.i.d.

samples from D(t), and let w′
i := 2/(Ts0D(ti)) for i ∈ [s0] be the weight vector, where ε0, ρ0 are

parameters to be chosen later.

By Lemma D.2, we know that (S0, w
′) gives a good weighted sketch of the signal that can preserve

the norm with high probability. More specifically, with probability 1− ρ0,

(1− ε0)∥x∗(t)∥2T ≤ ∥x∗(t)∥2S0,w′ ≤ (1 + ε0)∥x∗(t)∥2T . (8)

Then, we will select s = O(k/ε21) elements from S0 and output the corresponding weights
w1, w2, · · · , ws by applying RANDBSS+ with the following parameter: replacing d by k, ε by
ε21, and D by D(ti) = w′

i/
∑

j∈[s0]
w′

j for i ∈ [s0].

By Theorem E.3 and the property of WBSP (Definition E.1), we obtain that with probability 0.995,

(1− ε1)∥x∗(t)∥2S0,w′ ≤ ∥x∗(t)∥2S,w ≤ (1 + ε1)∥x∗(t)∥2S0,w′ .

Combining with Eq. (8), we conclude that

∥x∗∥2S,w ∈ [1− ε1, 1 + ε1] · ∥x∗∥2S0,w′

∈ [(1− ε0)(1− ε1), (1 + ε0)(1 + ε1)] · ∥x∗∥2T
∈ [1− ε, 1 + ε] · ∥x∗∥2T ,

where the second step follows from Eq. (8) and the last stpe follows by taking ε0 = ε1 = ε/4.

The overall success probability follows by taking union bound over the two steps and taking ρ0 =
0.001. The running time of Algorithm 7 follows from Claim F.2. And the furthermore part follows
from Claim F.3.

The proof of the lemma is then completed.

Claim F.2 (Running time of Procedure FASTDISTILL1D in Algorithm 7). Procedure FASTDIS-
TILL1D in Algorithm 7 runs in

O(ε−2kω+1)

time.
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Algorithm 7 Fast distillation for one-dimensional signal

1: procedure WEIGHTEDSKETCH(k, ε, T,B) ▷ Lemma D.2
2: c← O(T−1 log−1(k))
3: D(t) is defined as follows:

D(t)←
{
c/((1− |t/T |) log k), if |t| ≤ T (1− 1/k),

c · k, if |t| ∈ [T (1− 1/k), T ].

4: S0 ← O(ε−2k log(k)) i.i.d. samples from D
5: for t ∈ S0 do
6: wt ← 2

T ·|S0|·D(t)

7: end for
8: Set a new distribution D′(t)← wt/

∑
t′∈S0

wt′ for all t ∈ S0

9: return D′

10: end procedure
11: procedure FASTDISTILL1D(k, ε, F = {f1, . . . , fk}, T ) ▷ Lemma F.1
12: Distribution D′ ← WEIGHTEDSKETCH(k, ε, T,B)
13: Set the function family F as follows:

F :=
{
f(t) =

k∑

j=1

vj exp(2πifjt)
∣∣∣ vj ∈ C

}
.

14: s, {t1, t2, · · · , ts}, w ← RANDBSS+(k,F , D′, (ε/4)2) ▷ s = O(k/ε2), Algorithm 3
15: return {t1, t2, · · · , ts} and w
16: end procedure

Proof. First, it is easy to see that Procedure WEIGHTEDSKETCH takes O(ε−2k log(k))-time.

By Theorem E.3 with |D| = O(ε−2k log(k)), d = k, we have that the running time of Procedure
RANDBSS+ is

O
(
k2 · ε−2k log(k) + ε−2k3 log

(
ε−2k log(k)

)
+ ε−2kω+1

)

= O
(
ε−2kω+1

)
.

Hence, the total running time of Algorithm 7 is O
(
ε−2kω+1

)
.

Claim F.3 (Preserve the energy of noise). Let (S,w) be the outputs of Algorithm 7. Then, we have
that

∥g(t)∥2S,w ≲ ∥g(t)∥2T ,
holds with probability 0.99.

Proof. For the convenient, in the proof, we use time duration [−T, T ]. Algorithm 7 has two stages of
sampling.

In the first stage, Procedure WEIGHTEDSKETCH samples a set S0 = {t′1, . . . , t′s0} of i.i.d. samples
from the distribution D, and a weight vector w′. Then, we have

E
[
∥g(t)∥2S0,w′

]
= E

[ s0∑

i=1

w′
i|g(t′i)|2

]

=

s0∑

i=1

E
t′i∼D

[w′
i|g(t′i)|2]

=

s0∑

i=1

E
t′i∼D

[ 2

Ts0D(t′i)
|g(t′i)|2

]
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=

s0∑

i=1

E
t′i∼Uniform([−T,T])

[s−1
0 |g(t′i)|2]

= E
t∼Uniform([−T,T])

[|g(t)|2]

= ∥g(t)∥2T
where the first step follows from the definition of the norm, the third step follows from the definition
of wi, the forth step follows from Et∼D0(t)[

D1(t)
D0(t)

f(t)] = Et∼D1(t) f(t).

In the second stage, let P denote the Procedure RANDBSS+. With high probability, P is a ε-WBSP
(Definition E.1). By the Definition E.1, each sample ti ∼ Di(t) and wi = αi · D

′(ti)
Di(ti)

in every iteration

i ∈ [s], where
∑s

i=1 αi ≤ 5/4 and D′(t) = w′
t∑

t′∈S0
w′

t′
. As a result,

E
P
[∥g(t)∥2S,w] = E

P

[ s∑

i=1

wi|g(ti)|2
]

=

s∑

i=1

E
ti∼Di(ti)

[wi|g(ti)|2]

=

s∑

i=1

E
ti∼Di(ti)

[
αi ·

D′(ti)
Di(ti)

|g(ti)|2
]

=

s∑

i=1

E
ti∼D′(ti)

[αi|g(ti)|2]

≤ sup
P
{

s∑

i=1

αi} E
t∼D′(t)

[|g(t)|2]

= sup
P
{

s∑

i=1

αi}∥g(t)∥2S0,w′ · (
∑

t′∈S0

w′
t′)

−1

≲ ρ−1 · ∥g(t)∥2S0,w′ .

where the first step follows from the definition of the norm, the third step follows from wi =

αi · D
′(ti)

Di(ti)
, the forth step follows from Et∼D0(t)

D1(t)
D0(t)

f(t) = Et∼D1(t) f(t), the sixth step follows

from D′(t) = w′
t∑

t′∈S0
w′

t′
and the definition of the norm, the last step follows from

∑s
i=1 αi ≤ 5/4

and (
∑

t′∈S0
w′

t′)
−1 = O(ρ−1) with probability at least 1− ρ/2.

Hence, combining the two stages together, we have

E
[
E
P
[∥g(t)∥2S,w]

]
≲ ρ−1 · E

[
∥g(t)∥2S0,w′

]
= ρ−1 · ∥g∥2T .

And by Markov inequality and union bound, we have

Pr
[
∥g(t)∥2S,w ≲ ρ−2∥g(t)∥2T

]
≤ 1− ρ.

F.1.1 Sharper bound for the energy of orthogonal part of noise

In this section, we give a sharper analysis for the energy of g⊥ on the sketch, which is the orthogonal
projection of g to the space F . More specifically, we can decompose an arbitrary function g into
g∥ + g⊥, where g∥ ∈ F and

∫
[0,T ]

h(t)g⊥(t)dt = 0 for all h ∈ F . The motivation of considering g⊥

is that g∥ is also a Fourier sparse signal and its energy will not be amplified in the Signal Estimation
problem. And the nontrivial part is to avoid the blowup of the energy of g⊥, which is shown in the
following lemma:
Lemma F.4 (Preserving the orthogonal energy). Let F be an m-dimensional linear function family
with an orthonormal basis {v1, . . . , vm} with respect to a distribution D. Let P be the ε-WBSP that
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generate a sample set S = {t1, . . . , ts} and coefficients α ∈ Rs
>0, where each ti is sampled from

distribution Di for i ∈ [s]. Define the weight vector w ∈ Rs be such that wi := αi
D(ti)
Di(ti)

for i ∈ [s].

For any noise function g(t) that is orthogonal to F with respect to D, the following property holds
with probability 0.99:

m∑

i=1

|⟨g, vi⟩S,w|2 ≲ ε∥g∥2D,

where ⟨g, v⟩S,w :=
∑s

j=1 wjv(tj)g(tj).

Remark F.5. We note that this lemma works for both continuous and discrete signals.

Remark F.6. |⟨g, vi⟩S,w|2 corresponds to the energy of g on the sketch points in S. On the other
hand, if we consider the energy on the whole time domain, we have ⟨g, vi⟩ = 0 for all i ∈ [m]. The
above lemma indicates that this part of energy could be amplified by at most O(ε), as long as the
sketch comes from a WBSP.

Proof. We can upper-bound the expectation of
∑m

i=1 |⟨g, vi⟩S,w|2 as follows:

E
[ m∑

i=1

|⟨g, vi⟩S,w|2
]
= E

D1,...,Ds

[
∥w∥21

m∑

i=1

∣∣ E
t∼D′

[vj(t)g(t)]
∣∣2
]

= E
D1,...,Ds

[ m∑

i=1

∣∣
s∑

j=1

wjvi(tj)g(tj)]
∣∣2
]

=

m∑

i=1

E
D1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]

=

m∑

i=1

E
D1,...,Ds

[ s∑

j=1

w2
j |vi(tj)|2|g(tj)|2

]

=

s∑

j=1

E
Dj

[ m∑

i=1

wj |vi(tj)|2 · wj |g(tj)|2
]

≤
s∑

j=1

sup
t∈Dj

{
wj

m∑

i=1

|vi(t)|2
}
· E
Dj

[wj |g(tj)|2],

where the first step follows from Fact F.7, the second step follows from the definition of D′, the third
follows from the linearity of expectation, the forth step follows from Fact F.8, the last step follows by
pulling out the maximum value of wj

∑k
i=1 |vi(t)|2 from the expectation.

Next, we consider the first term:

sup
t∈Dj

{
wj

m∑

i=1

|vi(t)|2
}
= sup

t∈Dj

{
αj

D(t)

Dj(t)

m∑

i=1

|vi(t)|2
}

= αj sup
t∈Dj

{ D(t)

Dj(t)
sup
h∈F

{ |h(t)|2
∥h∥2D

}}

= αjKIS,Dj
.

where the first step follows from the definition of wj , the second step follows from Fact F.9 that

sup
h∈F
{ |h(tj)|

2

∥h∥2
D
} =∑k

i=1 |vi(tj)|2, the last step follows from the definition of KIS,Dj (Eq. (5)).

Then, we bound the last term:

E
Dj

[wj |g(tj)|2] = E
tj∼Dj

[
αj

D(tj)

Dj(tj)
|g(tj)|2

]
= αj E

tj∼D
[|g(tj)|2] = αj∥g∥2D.
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Combining the two terms together, we have

E
[ m∑

i=1

|⟨g, vi⟩S,w|2
]
≤

s∑

j=1

(αjKIS,Dj
· αj∥g∥2D)

≤
( s∑

j=1

αj

)
·max
j∈[s]
{αjKIS,Dj

} · ∥g∥2D

≤ ε∥g∥2D.

where the last step follows from P being a ε-WBSP (Definition E.1), which implies that
∑s

j=1 αj =
5
4

and αjKIS,Dj
≤ ε/2 for all j ∈ [s].

Finally, by Markov’s inequality, we have that
m∑

i=1

|⟨g, vi⟩S,w|2 ≲ ε∥g∥2D

holds with probability 0.99.

Fact F.7.
m∑

i=1

|⟨g, vi⟩S,w|2 = ∥w∥21 ·
m∑

i=1

∣∣∣ E
t∼D′

[vi(t)g(t)]
∣∣∣
2

,

where D′ is a distribution defined by D′(ti) :=
wi

∥w∥1
for i ∈ [s].

Proof. We have:
m∑

i=1

|⟨g, vi⟩S,w|2 =

m∑

i=1

∣∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣∣
2

=

m∑

i=1

∣∣∣
s∑

j=1

wjvi(tj)g(tj)∑s
j′=1 wj′

∣∣∣
2

·
( s∑

j′=1

wj′

)2

=
( s∑

j′=1

wj′

)2
·

m∑

i=1

∣∣∣ E
t∼D′

[vi(t)g(t)]
∣∣∣
2

.

Fact F.8. For any i ∈ [m], we have

E
D1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]
= E

D1,...,Ds

[ m∑

j=1

w2
j |vi(tj)|2|g(tj)|2

]
.

Proof. We first show that for any i ∈ [m] and j ∈ [s],

E
tj∼Dj

[wjvi(tj)g(tj)] = E
tj∼Dj

[αj
D(tj)

Dj(tj)
vi(tj)g(tj)]

= αj E
tj∼D

[vi(tj)g(tj)]

= 0. (9)

where the first step follows from the definition of wi, the third step follows from g(t) is orthonormal
with vi(t) for any i ∈ [k].

Then, we can expand LHS as follows:

E
D1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]
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= E
D1,...,Ds

[( s∑

j=1

wjvi(tj)g(tj)
)∗( s∑

j=1

wjvi(tj)g(tj)
)]

= E
D1,...,Ds

[ s∑

j,j′=1

wjwj′vi(tj)g(tj)vi(tj′)g(tj′)
]

=

s∑

j,j′=1

E
D1,...,Ds

[wjwj′vi(tj)g(tj)vi(tj′)g(tj′)]

=

s∑

j=1

E[w2
j |vi(tj)|2|g(tj)|2] +

∑

1≤j<j′≤s

2ℜ E
D1,...,Dj

[wjwj′vi(tj)g(tj)vi(tj′)g(tj′)]

= RHS +
∑

1≤j<j′≤s

2ℜ E
D1,...,Dj

[
wjvi(tj)g(tj) E

Dj+1,...,Dj′
[wj′vi(tj′)g(tj′)]

]

= RHS +
∑

1≤j<j′≤s

2ℜ E
D1,...,Dj

[wjvi(tj)g(tj) · 0]

= RHS,

where the third step follows from the linearity of expectation, the fifth step follows from tj only
depends on t1, . . . , tj−1, and the sixth step follows from Eq. (9).

Fact F.9. Let {v1, . . . , vk} be an orthonormal basis of F with respect to the distribution D. Then,
we have

sup
h∈F

{ |h(t)|2
∥h∥2D

}
=

k∑

i=1

|vi(t)|2

Proof. Then,

sup
h∈F

{ |h(t)|2
∥h∥2D

}
= sup

a∈Ck

{ |∑k
i=1 aivi(t)|2
∥a∥22

}

= sup
a∈Ck:∥a∥2=1

∣∣∣
k∑

i=1

aivi(t)
∣∣∣
2

=

k∑

i=1

|vi(t)|2,

where the first step follows from each h ∈ F can be expanded as h =
∑k

i=1 aivi and ∥h(t)∥2D = ∥a∥22
(Fact B.9), the second step follows from the Cauchy-Schwartz inequality and taking a = v(t)

∥v(t)∥2
.

G One-dimensional Signal Estimation

In this section, we apply the tools developed in previous sections to show two efficient reductions
from Frequency Estimation to Signal Estimation for one-dimensional semi-continuous Fourier signals.
The first reduction in Section G.1 is optimal in sample complexity, which takes linear number of
samples from the signal but only achieves constant accuracy. The section reduction in Section G.2
takes nearly-linear number of samples but can achieve very high-accuracy (i.e., (1 + ε)-estimation
error).

G.1 Sample-optimal reduction

The main theorem of this section is Theorem G.1. The optimal sample complexity is achieved via the
sketch distillation in Lemma F.1.
Theorem G.1 (Sample-optimal algorithm for one-dimensional Signal Estimation). For η ∈ R,
let Λ(B) ⊂ R denote the lattice Λ(B) = {cη | c ∈ Z}. Suppose that f1, f2, · · · , fk ∈ Λ(B).
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Let x∗(t) =
∑k

j=1 vj exp(2πifjt), and let g(t) denote the noise. Given observations of the form
x(t) = x∗(t) + g(t), t ∈ [0, T ]. Let η = mini ̸=j |fj − fi|.
Given D, η ∈ R+. Suppose that there is an algorithm FREQEST that

• takes Sfreq samples,

• runs in Tfreq-time, and

• outputs a set L of frequencies such that with probability 0.99, the following condition holds:

∀i ∈ [k], ∃f ′
i ∈ L s.t. |fi − f ′

i | ≤
D

T
.

Then, there is an algorithm (Algorithm 8) such that

• takes O(k̃ + Sfreq) samples

• runs O(k̃ω+1 + Tfreq) time,

• outputs y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′

jt) with k̃ = O(|L|(1 + D/(Tη))) such that with
probability at least 0.9, we have

∥y(t)− x(t)∥2T ≲ ∥g(t)∥2T .

Algorithm 8 Signal estimation algorithm for one-dimensional signals (sample optimal version)

1: procedure SIGNALESTIMATIONFAST(x, k, F, T,B) ▷ Theorem G.1
2: ε← 0.01
3: L← FREQEST(x, k,D, F, T,B)
4: {f ′

1, f
′
2, · · · , f ′

k̃
} ← {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}

5: s, {t1, t2, · · · , ts}, w ← FASTDISTILL1D(k̃,
√
ε, {f ′

i}i∈[k̃], T,B) ▷ k̃, w ∈ Rk̃,
Algorithm 7

6: Ai,j ← exp(2πif ′
jti), A ∈ Cs×k̃

7: b← (x(t1), x(t2), · · · , x(ts))⊤
8: Solving the following weighted linear regression ▷ Fact A.4

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

9: return y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′

jt).
10: end procedure

Proof. First, we recover the frequencies by utilizing the algorithm FREQEST. Let L be the set of
frequencies output by the algorithm FREQEST(x, k,D, T, F,B).
We define L̃ as follows:

L̃ :=
{
f̃ ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f̃ | < D/T

}
.

We use k̃ to denote the size of set L̃. And we use f̃1, f̃2, · · · , f̃k̃ to denote the frequencies in the set
L̃. It is easy to see that

k̃ ≤ |L|(1 +D/(Tη)).

Next, we focus on recovering magnitude v′ ∈ Ck̃. First we run Procedure FASTDISTILL1D in
Algorithm 7 and obtain a set S = {t1, t2, · · · , ts} ⊂ [0, T ] of size s = O(k̃) and a weight vector
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w ∈ Rs
>0. Then, we sample the signal at t1, . . . , ts and let x(t1), . . . , x(ts) be the samples. Consider

the following weighted linear regression problem:

min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥
2
, (10)

where
√
w := (

√
w1, . . . ,

√
ws), and the coefficients matrix A ∈ Cs×k̃ and the target vector b ∈ Cs

are defined as follows:

A :=




exp(2πif̃1t1) exp(2πif̃2t1) · · · exp(2πif̃k̃t1)

exp(2πif̃1t2) exp(2πif̃2t2) · · · exp(2πif̃k̃t2)
...

...
. . .

...
exp(2πif̃1ts) exp(2πif̃2ts) · · · exp(2πif̃k̃ts)


 and b :=




x(t1)
x(t2)

...
x(ts)




Then, we output a signal

y(t) =

k̃∑

j=1

v′j · exp(2πif̃jt),

where v′ is an optimal solution of Eq. (10).

The running time follows from Lemma G.2. And the estimation error guarantee ∥y(t)− x(t)∥T ≲
∥g(t)∥T follows from Lemma G.3.

The theorem is then proved.

Lemma G.2 (Running time of Algorithm 8). Algorithm 8 takes O(k̃ω+1)-time, giving the output of
Procedure FREQEST.

Proof. At Line 5, we run Procedure FASTDISTILL1D, which takes O(k̃ω+1)-time by Lemma F.1.

At Line 8, we solve the weighted linear regression, which takes

O(sk̃ω−1) = O(k̃ω)

time by Fact A.4.

Thus, the total running time is O(k̃ω+1).

Lemma G.3 (Estimation error of Algorithm 8). Let y(t) be the output signal of Algorithm 8. With
high probability, we have

∥y(t)− x(t)∥T ≲ ∥g(t)∥T .

Proof. We have

∥y(t)− x(t)∥T ≤ ∥y(t)− x∗(t)∥T + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x∗(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥x∗(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥T + ∥g(t)∥T
≲ ∥g(t)∥T , (11)

where the first step follows from triangle inequality, the second step follows from Lemma F.1 with
0.99 probability, the third step follows from triangle inequality, the forth step follows from y(t) is the
optimal solution of the linear system, the fifth step follows from Claim F.3, the sixth step follows
from Lemma F.1, and the last step follows from the definition of g(t).
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G.2 High-accuracy reduction

In this section, we prove Theorem G.4, which achieves (1 + ε)-estimation error by a sharper bound
on the energy of noise in Lemma F.4.
Theorem G.4 (High-accuracy algorithm for one-dimensional Signal Estimation). For η ∈ R, let
Λ(B) ⊂ R denote the lattice Λ(B) = {cη | c ∈ Z}. Suppose that f1, f2, · · · , fk ∈ Λ(B). Let
x∗(t) =

∑k
j=1 vj exp(2πifjt), and let g(t) denote the noise. Given observations of the form

x(t) = x∗(t) + g(t), t ∈ [0, T ]. Let η = mini ̸=j |fj − fi|.
Given D, η ∈ R+. Suppose that there is an algorithm FREQEST that

• takes Sfreq samples,

• runs in Tfreq-time, and

• outputs a set L of frequencies such that, for each fi, there exists an f ′
i ∈ L with |fi − f ′

i | ≤
D/T , holds with probability 0.99.

Then, there is an algorithm (Algorithm 9) such that

• takes O(ε−1k̃ log(k̃) + S) samples,

• runs O(ε−1k̃ω log(k̃) + T ) time,

• outputs y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′

jt) with k̃ = O(|L|(1 + D/(Tη))) such that with
probability at least 0.9, we have

∥y(t)− x∗(t)∥2T ≤ (1 + ε)∥g(t)∥2T .
Remark G.5. For simplicity, we state the constant failure probability. It is straightforward to get
failure probability ρ by blowing up a log(1/ρ) factor in both samples and running time.

Proof. Let L be the set of frequencies output by the Frequency Estimation algorithm FREQEST. We
have the guarantee that with probability 0.99, for each true frequency fi, there exists an f ′

i ∈ L with
|fi − f ′

i | ≤ D/T . Conditioning on this event, we define a set L̃ as follows:

L̃ := {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}.
Since we assume that {f1, . . . , fk} ⊂ Λ(B), we have {f1, . . . , fk} ⊂ L̃. We use k̃ to denote the size
of set L̃, and we denote the frequencies in L̃ by f̃1, f̃2, · · · , f̃k̃.

Next, we need to recover magnitude v′ ∈ Ck̃.

We first run Procedure WEIGHTEDSKETCH in Algorithm 7 and obtain a set S = {t1, t2, · · · , ts} ⊂
[0, T ] of size s = O(ε−2k̃ log(k̃)) and a weight vector w ∈ Rs

>0. Then, we sample the signal at
t1, . . . , ts and let x(t1), . . . , x(ts) be the samples. Consider the following weighted linear regression
problem:

min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥
2
, (12)

where
√
w := (

√
w1, . . . ,

√
ws), and the coefficients matrix A ∈ Cs×k̃ and the target vector b ∈ Cs

are defined as follows:

A :=




exp(2πif̃1t1) exp(2πif̃2t1) · · · exp(2πif̃k̃t1)

exp(2πif̃1t2) exp(2πif̃2t2) · · · exp(2πif̃k̃t2)
...

...
. . .

...
exp(2πif̃1ts) exp(2πif̃2ts) · · · exp(2πif̃k̃ts)


 and b :=




x(t1)
x(t2)

...
x(ts)




Note that if v′ corresponds to the true coefficients v, then we have ∥√w ◦ (Av′ − b)∥2 = ∥√w ◦
g(S)∥2 = ∥g∥S,w. Let v′ be the exact solution of the weighted linear regression in Eq. (12), i.e.,

v′ := arg min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥ .
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And we define the output signal to be:

y(t) :=

k̃∑

j=1

v′j · exp(2πif ′
jt).

The estimation error guarantee ∥y(t)− x∗(t)∥T ≤ (1 + ε)∥g(t)∥T follows from Lemma G.7. The
running time follows from Lemma G.6.

The theorem is then proved.

Algorithm 9 Signal estimation algorithm for one-dimensional signals (high-accuracy version)

1: procedure SIGNALESTIMATIONACC(x, ε, k, F, T,B) ▷ Theorem G.4
2: L← FREQEST(x, k,D, F, T,B)
3: {f ′

1, f
′
2, · · · , f ′

k̃
} ← {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}

4: s, {t1, t2, · · · , ts}, w ← WEIGHTEDSKETCH(k̃,
√
ε, T,B) ▷ k̃, w ∈ Rk̃, Algorithm 7

5: Ai,j ← exp(2πif ′
jti), A ∈ Cs×k̃

6: b← (x(t1), x(t2), · · · , x(ts))⊤
7: Solving the following weighted linear regression ▷ Fact A.4

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

8: return y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′

jt).
9: end procedure

Lemma G.6 (Running time of Algorithm 9). Algorithm 9 takes O(ε−1k̃ω log(k̃))-time, giving the
output of Procedure FREQEST.

Proof. At Line 7, the regression solver takes

O(sk̃ω−1) = O(ε−1k̃ log(k̃) · k̃ω−1) = O(ε−1k̃ω log(k̃))

time. The remaining part of Algorithm 9 takes at most O(s)-time.

Lemma G.7 (Estimation error of Algorithm 9). Let y(t) be the output signal of Algorithm 9. With
high probability, we have

∥y(t)− x∗(t)∥T ≤ (1 + ε)∥g(t)∥T .

Proof. Let F be the family of signals with frequencies in L̃:

F =
{
h(t) =

k̃∑

j=1

vj · e2πif̃jt
∣∣ ∀vj ∈ C, j ∈ [k̃]

}
.

Suppose the dimension of F is m ≤ k. Let {u1, u2, · · · , um} be an orthonormal basis of F , i.e.,

1

T

∫

[0,T ]

ui(t)uj(t)dt = 1i=j , ∀i, j ∈ [m],

On the other hand, since ui ∈ F , we can also expand these basis vectors in the Fourier basis. Let
V ∈ Cm×k̃ be an linear transformation7 such that

ui =

k̃∑

j=1

Vi,j · exp(2πif̃jt) ∀i ∈ [m].

7When m < k̃, V is not unique, and we take any one of such linear transformation.
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Then, we have


exp(2πif̃1t)

...
exp(2πif̃k̃t)


 = V + ·



u1

...
um


 ,

where V + ∈ Ck̃×m is the pseudoinverse of V ; or equivalently, the i-th row of V + contains the
coefficients of expanding exp(2πif̃it) under {u1, . . . , um}. Define a linear operator α : F → Cm

such that for any h(t) =
∑k̃

j=1 vj exp(2πifjt),

α(h) := V + · v,
which gives the coefficients of h under the basis {u1, · · · , uk̃}.
Define an s-by-m matrix B as follows:

B := A · V ⊤ =




u1(t1) u2(t1) · · · um(t1)
u1(t2) u2(t2) · · · um(t2)

...
...

. . .
...

u1(ts) u2(ts) · · · um(ts)


 .

B = AV . It is easy to see that Im(B) = Im(A). Thus, solving Eq. (12) is equivalent to solving:

min
z∈Cm

∥√w ◦ (Bz − b)∥2. (13)

Since y(t) is an solution of Eq. (12), we also know that α(y) is an solution of Eq. (13).

For convenience, we define some notations. Let
√
W := diag(

√
w) and define

Bw :=
√
W ·B,

Xw :=
√
W · [x(t1) x(t2) · · · x(ts)]

⊤

X∗
w :=

√
W · [x∗(t1) x∗(t2) · · · x∗(ts)]

⊤

By Fact A.4, we know that the solution of the weighted linear regression Eq. (13) has the following
closed form:

α(y) = (B∗WB)−1B∗Wb = (B∗
wBw)

−1B∗
wXw. (14)

Then, consider the noise in the signal. Since g is an arbitrary noise, let g∥ be the projection of g(x) to
F and g⊥ = g − g∥ be the orthogonal part to F such that

g∥(t) ∈ F , and
∫

[0,T ]

g∥(t)g⊥(t)dt = 0.

Similarly, we also define

gw :=
√
W · [g(t1) g(t2) · · · g(ts)]

⊤

g∥w :=
√
W ·

[
g∥(t1) g∥(t2) · · · , g∥(ts)

]⊤
,

g⊥w :=
√
W ·

[
g⊥(t1) g⊥(t2) · · · , g⊥(ts)

]⊤
.

By Claim G.8, the error can be decomposed into two terms:

∥y(t)− x∗(t)∥T ≤
∥∥(B∗

wBw)
−1B∗

w · g⊥w
∥∥
2
+
∥∥∥(B∗

wBw)
−1B∗

w · g∥w
∥∥∥
2
.

By Claim G.10, we have
∥∥(B∗

wBw)
−1B∗

w · g⊥w
∥∥2
2
≲ ε

∥∥g⊥(t)
∥∥2
T
.

And by Claim G.13, we have
∥∥∥(B∗

wBw)
−1B∗

w · g∥w
∥∥∥
2

2
=
∥∥∥g∥
∥∥∥
2

T
.
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Combining them together (and re-scaling ε be an constant factor), we have that

∥y(t)− x∗(t)∥T ≤ ∥g∥∥T +
√
ε∥g⊥∥T .

Since ∥g∥∥2T + ∥g⊥∥2T = ∥g∥2T , by Cauchy–Schwarz inequality, we have that

(∥g∥∥T +
√
ε∥g⊥∥T )2 ≤ (∥g∥∥2T + ∥g⊥∥2T ) · (1 + ε) = (1 + ε) · ∥g∥2T .

That is,

∥y(t)− x∗(t)∥2T ≤ (1 + ε)∥g(t)∥2T .

Claim G.8 (Error decomposition).

∥y(t)− x∗(t)∥T ≤
∥∥(B∗

wBw)
−1B∗

w · g⊥w
∥∥
2
+
∥∥∥(B∗

wBw)
−1B∗

w · g∥w
∥∥∥
2
.

Proof. Since y, x∗ ∈ F and {u1, . . . , uk̃} is an orthonormal basis, we have ∥y − x∗∥T = ∥α(y)−
α(x∗)∥2. Furthermore, by Eq. (14), we have α(y) = (B∗

wBw)
−1B∗

w ·Xw. And by Fact G.9, since
x∗ ∈ F , we have α(x∗) = (B∗

wBw)
−1B∗

w ·X∗
w.

Thus, we have

∥α(y)− α(x∗)∥2 = ∥(B∗
wBw)

−1B∗
w · (Xw −X∗

w)∥2
= ∥(B∗

wBw)
−1B∗

w · gw∥2
= ∥(B∗

wBw)
−1B∗

w · (g⊥w + g∥w)∥2
≤ ∥(B∗

wBw)
−1B∗

w · g⊥w∥2 + ∥(B∗
wBw)

−1B∗
w · g∥w∥2

where the second step follows from the definition of gw, the forth step follows from gw = g∥ + g⊥,
and the last step follows from triangle inequality.

Hence, we get that ∥y(t)− x∗(t)∥T ≤ ∥(B∗
wBw)

−1B∗
w · g⊥w∥2 + ∥(B∗

wBw)
−1B∗

w · g∥w∥2.

Fact G.9. For any h ∈ F ,

α(h) = (B∗
wBw)

−1B∗
w · hw,

where hw =
√
W [h(t1) · · · h(ts)]

⊤.

Proof. Suppose h(t) =
∑k̃

j=1 vj exp(2πif̃jt). We have

Bwα(h) =
√
WB · α(h)

=
√
WB · (V +v)

= hw,

where the second step follows from V + is a change of coordinates.

Hence, by the Moore-Penrose inverse, we have

α(h) = B†
whw = (B∗

wBw)
−1B∗

whw.

Claim G.10 (Bound the first term). The following holds with high probability:
∥∥(B∗

wBw)
−1B∗

w · g⊥w
∥∥2
2
≲ ε

∥∥g⊥(t)
∥∥2
T
.
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Proof. By Lemma D.2, with high probability, we have

(1− ε)∥x∥T ≤ ∥x∥S,w ≤ (1 + ε)∥x∥T ,
where (S,w) is the output of Procedure WEIGHTEDSKETCH. Conditioned on this event, by Lemma
B.11,

λ(B∗
wBw) ∈ [1− ε, 1 + ε],

since Bw is the same as the matrix A in the lemma.

Hence,

∥(B∗
wBw)

−1B∗
w · g⊥w∥22 ≤ λmax((B

∗
wBw)

−1)2 · ∥B∗
w · g⊥w∥22

≤ (1− ε)−2∥B∗
w · g⊥w∥22

≲ ε∥g⊥(t)∥2T
where the second step follows from λmax((B

∗
wBw)

−1) ≤ (1− ε)−1, and the third step follows from
Lemma F.4 and Corollary G.12.

Lemma G.11 (Lemma 6.2 of Chen and Price (2019a)). There exists a universal constant C1 such
that given any distribution D′ with the same support of D and any ε > 0, the random sampling
procedure with m = C1(KD′ log d + ε−1KD′) i.i.d. random samples from D′ and coefficients
α1 = · · · = αm = 1/m is an ε-well-balanced sampling procedure.

Corollary G.12. Procedure WEIGHTEDSKETCH in Algorithm 7 is a ε-WBSP (Definition E.1).

Claim G.13 (Bound the second term).
∥∥∥(B∗

wBw)
−1B∗

w · g∥w
∥∥∥
2

2
=
∥∥∥g∥
∥∥∥
2

T
.

Proof.

∥(B∗
wBw)

−1B∗
w · g∥w∥22 = ∥α(g∥)∥22 =∥g∥∥2T ,

where the first step follows from Fact G.9 and g∥ ∈ F , the second step follows from the definition of
α.
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H High-Accuracy Fourier Interpolation Algorithm

In this section, we propose an algorithm for one-dimensional continuous Fourier interpolation
problem, which significantly improves the accuracy of the algorithm in Chen et al. (2016).

This section is organized as follows. In Sections H.1 and H.2, we provide some technical tools for
Fourier-sparse signals, low-degree polynomials and filter functions. In Section H.3, we design a high
sensitivity frequency estimation method using these tools. In Section H.4, we combine the frequency
estimation with our Fourier set query framework, and give a (9+ε)-approximate Fourier interpolation
algorithm. Then, in Section H.5, we build a sharper error control, and in Section H.6, we analysis the
HASHTOBINS procedure. Based on these result, in Section H.8, we develop the ultra-high sensitivity
frequency estimation method. In Section H.10, we show the a (3 +

√
2 + ε)-approximate Fourier

interpolation algorithm.

H.1 Technical tools I: Fourier-polynomial equivalence

In this section, we show that low-degree polynomials and Fourier-sparse signals can be transformed
to each other with arbitrarily small errors.

The following lemma upper-bounds the error of using low-degree polynomial to approximate Fourier-
sparse signal.

Lemma H.1 (Fourier signal to polynomial, Chen et al. (2016)). For any ∆ > 0 and any δ > 0, let
x∗(t) =

∑
j∈[k] vje

2πifjt where |fj | ≤ ∆ for each j ∈ [k]. There exists a polynomial P (t) of degree
at most

d = O(T∆+ k3 log k + k log 1/δ)

such that
∥P − x∗∥2T ≤ δ∥x∗∥2T .

As a corollary, we can expand a Fourier-sparse signal under the mixed Fourier-monomial basis (i.e.,
{e2πifit · tj}i∈[k],j∈[d]).

Corollary H.2 (Mixed Fourier-polynomial approximation). For any ∆ > 0, δ > 0, nj ∈ Z≥0, j ∈
[k],
∑

j∈[k] nj = k. Let

x∗(t) =
∑

j∈[k]

e2πifjt
nj∑

i=1

vj,ie
2πif ′

j,it,

where |f ′
j,i| ≤ ∆ for each j ∈ [k], i ∈ [nj ]. There exist k polynomials Pj(t) for j ∈ [k] of degree at

most
d = O(T∆+ k3 log k + k log 1/δ)

such that ∥∥∥
∑

j∈[k]

e2πifjtPj(t)− x∗(t)
∥∥∥
2

T
≤ δ∥x∗(t)∥2T .

The following lemma bounds the error of approximating a low-degree polynomial using Fourier-
sparse signal.

Lemma H.3 (Polynomial to Fourier signal, Chen et al. (2016)). For any degree-d polynomial

Q(t) =
d∑

j=0

cjt
j , any T > 0 and any ε > 0, there always exist γ > 0 and

x∗(t) =
d∑

j=0

αje
2πi(γj)t

with some coefficients α0, · · · , αd such that

∀t ∈ [0, T ], |x∗(t)−Q(t)| ≤ ε.
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H.2 Technical tools II: filter functions

In this section, we introduce the filter functions H and G designed by Chen et al. (2016), and we
generalize their constructions to achieve higher sensitivity.

We first construct the H-filter, which uses rect and sinc functions.

Fact H.4 (rect function Fourier transform). For s > 0, let rects(t) := 1|t|≤s/2. Then, we have

r̂ects(f) = sinc(sf) =
sin(sf)

πsf
.

Definition H.5. Given s1, s2 > 0 and an even number ℓ ∈ N+, we define the filter function H1(t)

and its Fourier transform Ĥ1(f) as follows:

H1(t) = s0 · (sincℓ(s1t)) ⋆ rects2(t)
Ĥ1(f) = s0 · (rects1 ⋆ · · · ⋆ rects1)(f) · sinc (fs2)

where s0 = C0s1
√
ℓ is a normalization parameter such that H1(0) = 1, and ⋆ means convolution.

Definition H.6 (H-filter’s construction, Chen et al. (2016)). Given any 0 < s1, s3 < 1, 0 < δ < 1,
we define Hs1,s3,δ(t) from the filter function H1(t) (Definition H.5) as follows:

• let ℓ := Θ(k log(k/δ)), s2 := 1− 2
s1

, and

• shrink H1 by a factor s3 in time domain, i.e.,

Hs1,s3,δ(t) := H1(t/s3) (15)

Ĥs1,s3,δ(f) = s3Ĥ1(s3f) (16)

We call the “filtered cluster" around a frequency f0 to be the support of (δf0 ⋆ Ĥs1,s3,δ)(f) in the
frequency domain and use

∆h = |supp(Ĥs1,s3,δ)| =
s1 · ℓ
s3

(17)

to denote the width of the cluster.

Lemma H.7 (High sensitivity H-filter’s properties). Given ε ∈ (0, 0.1), s1, s3 ∈ (0, 1) with
min( 1

1−s3
, s1) ≥ Õ(k4)/ε, and δ ∈ (0, 1). Let the filter function H := Hs1,s3,δ(t) defined in

Definition H.6. Then, H satisfies the following properties:

Property I : H(t) ∈ [1− δ, 1], when |t| ≤ (
1

2
− 2

s1
)s3.

Property II : H(t) ∈ [0, 1], when (
1

2
− 2

s1
)s3 ≤ |t| ≤

1

2
s3.

Property III : H(t) ≤ s0 · (s1(
|t|
s3
− 1

2
) + 2)−ℓ, when |t| > 1

2
s3.

Property IV : supp(Ĥ) ⊆ [− s1ℓ

2s3
,
s1ℓ

2s3
].

For any exact k-Fourier-sparse signal x∗(t), we shift the interval from [0, T ] to [−1/2, 1/2] and
consider x∗(t) for t ∈ [−1/2, 1/2] to be our observation, which is also x∗(t) · rect1(t).

Property V :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt < δ

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Property VI :

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Remark H.8. By Property I, and II, and III, we have that H(t) ≤ 1 for t ∈ [0, T ].
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Proof. The proof of Property I - V easily follows from Chen et al. (2016). We prove Property VI in
below.

First, because of for any t, |H1(t)| ≤ 1, thus we prove the upper bound for LHS,
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ≤

∫ +∞

−∞
|x∗(t) · 1 · rect1(t)|2dt.

Second, as mentioned early, we need to prove the general case when s3 = 1− 1/poly(k). Define
interval S = [−s3( 12 − 1

s1
), s3(

1
2 − 1

s1
)], by definition, S ⊂ [−1/2, 1/2]. Then define S =

[−1/2, 1/2] \ S, which is [−1/2,−s3( 12 − 1
s1
)) ∪ (s3(

1
2 − 1

s1
), 1/2]. By Property I, we have

∫

S

|x∗(t) ·H(t)|2dt ≥ (1− δ)2
∫

S

|x∗(t)|2dt (18)

Then we can show ∫

S

|x∗(t)|2dt

≤ |S| · max
t∈[−1/2,1/2]

|x∗(t)|2

≤ (1− s3(1−
2

s1
)) ·O(k2)

∫ 1
2

− 1
2

|x∗(t)|2dt

≤ ε

∫ 1
2

− 1
2

|x∗(t)|2dt (19)

where the first step follows from S ⊂ [−1/2, 1/2], the second step follows from Theorem C.1, the
third step follows from (1− s3(1− 2

s1
)) ·O(k2) ≤ ε.

Combining Equations (18) and (19) gives a lower bound for LHS,
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt

≥
∫

S

|x∗(t)H(t)|2dt

≥ (1− 2δ)

∫

S

|x∗(t)|2dt

= (1− 2δ)

∫

S∪S

|x∗(t)|2dt− (1− 2δ)

∫

S

|x∗(t)|2dt

≥ (1− 2δ)

∫

S∪S

|x∗(t)|2dt− (1− 2δ)ε

∫

S∪S

|x∗(t)|2dt

= (1− 2δ − ε)

∫ 1
2

− 1
2

|x∗(t)|2dt

≥ (1− 2ε)

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt,

where the first step follows from S ⊂ [−1/2, 1/2], the second step follows from Eq. (18), the third
step follows from S ∩ S = ∅, the forth step follows from Eq. (19), the fifth step follows from
S ∪ S = [−1/2, 1/2], the last step follows from ε≫ δ.

As remarked in Chen et al. (2016), to match (H(t), Ĥ(f)) on [−1/2, 1/2] with signal x(t) on [0, T ],
we will scale the time domain from [−1/2, 1/2] to [−T/2, T/2] and shift it to [0, T ]. Then, in
frequency domain, the Property IV in Lemma H.7 becomes

supp(Ĥ(f)) ⊆ [−∆h

2
,
∆h

2
], where ∆h =

s1ℓ

s3T
. (20)

51



We also need another filter function, G, whose construction and properties are given below.

Definition H.9 (G-filter’s construction, Chen et al. (2016)). Given B > 1, δ > 0, α > 0. Let
l := Θ(log(k/δ)). Define GB,δ,α(t) and its Fourier transform ĜB,δ,α(f) as follows:

GB,δ,α(t) := b0 · (rect B
(απ)

(t))⋆l · sinc(t π
2B ),

ĜB,δ,α(f) := b0 · (sinc( B
απf))

·l ∗ rect π
2B

(f),

where b0 = Θ(B
√
l/α) is the normalization factor such that Ĝ(0) = 1.

Lemma H.10 (G-filter’s properties, Chen et al. (2016)). Given B > 1, δ > 0, α > 0, let G :=
GB,δ,α(t) be defined in Definition H.9. Then, G satisfies the following properties:

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α)
2π

2B
.

Property II : Ĝ(f) ∈ [0, 1], if (1− α)
2π

2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂ [
l

2
· −B
πα

,
l

2
· B
πα

].

Property V : max
t
|G(t)| ≲ poly(B, l).

H.3 High sensitivity frequency estimation

In this section, we show a high sensitivity frequency estimation. Compared with the result in Chen
et al. (2016), we relax the condition of the frequencies that can be recovered by the algorithm.

Definition H.11 (Definition 2.4 in Chen et al. (2016)). Given x∗(t) =
k∑

j=1

vje
2πifjt, any N > 0,

and a filter function H with bounded support in frequency domain. Let Lj denote the interval

of supp( ̂e2πifjt ·H) for each j ∈ [k]. Define an equivalence relation ∼ on the frequencies fi as
follows:

fi ∼ fj iff Li ∩ Lj ̸= ∅ ∀i, j ∈ [k].

Let S1, . . . , Sn be the equivalence classes under this relation for some n ≤ k.

Define Ci := ∪
f∈Si

Li for each i ∈ [n]. We say Ci is an N -heavy cluster iff

∫

Ci

|Ĥ · x∗(f)|2df ≥ T · N 2/k.

The following claim gives a tight error bound for approximating the true signal x∗(t) by the signal
xS∗(t) whose frequencies are in heavy-clusters. It improves the Claim 2.5 in Chen et al. (2016).

Claim H.12 (Approximation by heavy-clusters). Given x∗(t) =
k∑

j=1

vje
2πifjt and any N > 0, let

C1, · · · , Cl be the N -heavy clusters from Definition H.11. For

S∗ =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl

}
,

we have xS∗(t) =
∑

j∈S∗
vje

2πifjt approximating x∗ within distance

∥xS∗ − x∗∥2T ≤ (1− l/k)(1 + ε)N 2.

Proof. Let H be the filter function defined as in Definition H.6.
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Let

xS∗(t) :=
∑

j∈[k]\S∗

vje
2πifjt.

Notice that ∥x∗ − xS∗∥2T = ∥xS∗∥2T .

By Property VI in Lemma H.7 with setting ε = ε0 := ε/2, we have

(1− ε0) · T∥xS∗∥2T = (1− ε0)

∫ T

0

|xS∗(t)|2dt

= (1− ε0)

∫ T

0

|xS∗(t) · rectT (t)|2dt

≤
∫ +∞

−∞
|xS∗(t) ·H(t) · rectT (t)|2dt,

≤
∫ +∞

−∞
|xS∗(t) ·H(t)|2dt,

where the first step follows from the definition of the norm, the second step follows from the definition
of rectT (t) = 1,∀t ∈ [0, T ], the third step follows from Lemma H.7, the forth step follows from
rectT (t) ≤ 1.

From Definition H.11, we have
∫ +∞

−∞
|xS∗(t) ·H(t)|2dt =

∫ +∞

−∞
|x̂S∗ ·H(f)|2df

=

∫

[−∞,+∞]\C1∪···∪Cl

|x̂∗ ·H(f)|2df

≤ (k − l) · TN 2/k.

where the first step follows from Parseval’s theorem, the second step follows from Definition
H.11, Property IV of Lemma H.7, the definition of S∗, thus, supp(x̂S∗ ·H(f)) = C1 ∪ · · · ∪ Cl,
supp(x̂S∗ ·H(f)) ∩ supp(x̂S∗ ·H(f))) = ∅, the last step follows from Definition H.11.

Overall, we have (1− ε0)∥xS∗∥2T ≤ N 2. Thus, ∥xS∗(t)− x∗(t)∥2T ≤ (1− l/k)((1 + ε)N 2 by the
basic algebra fact: 1

1−ε/2 ≤ 1 + ε for any ε ∈ [0, 1].

Due to the noisy observations, not all frequencies in heavy-clusters are recoverable. Thus, we define
the recoverable frequency as follows:

Definition H.13 (Recoverable frequency). Let C be anN1-heavy cluster. We say C isN2-recoverable
if it satisfies:

∫

C

|Ĥ · x(f)|2 ≥ TN 2
2 /k.

A frequency f is (N1,N2)-recoverable if f is in an N1-heavy, N2-recoverable cluster C.

The following lemma shows that most heavy clusters are also recoverable.

Lemma H.14 (Heavy-clusters are almost recoverable). Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) =

x∗(t) + g(t) be our observable signal. Let N 2 := ∥g∥2T + δ∥x∗∥2T . Let C1, · · · , Cl are the 2N -
heavy clusters from Definition H.11. Let S∗ denotes the set of frequencies f∗ ∈ {fj}j∈[k] such that,
f∗ ∈ Ci for some i ∈ [l]. Let S ⊂ S∗ be the set of (2N ,N )-recoverable frequencies.

Then we have that,

∥xS − x∗∥T ≤ (3− l/k + ε)N .

53



Proof. If a cluster Ci is 2N -heavy but not N -recoverable, then it holds that:
∫

Ci

|Ĥ · x∗(f)|2df ≥ 4TN 2/k ≥ 4

∫

Ci

|Ĥ · x(f)|2df (21)

where the first steps follows from Ci ⊂
⋃

fj∈S∗ Cj , the second step follows from Ci ̸⊂
⋃

fj∈S Cj .

So,
∫

Ci

|Ĥ · g(f)|2df =

∫

Ci

| ̂H · (x− x∗)(f)|2df

≥
(√∫

Ci

|Ĥ · x∗(f)|2df −
√∫

Ci

|Ĥ · x(f)|2df
)2

≥ 1

4

∫

Ci

|Ĥ · x∗(f)|2df (22)

where the first step follows from g(t) = x(t) − x∗(t), and the second step follows from triangle
inequality, the last step follows from Eq. (21).

Let C ′ :=
⋃

fj∈S∗\S Cj , i.e., the union of heavy but not recoverable clusters. Then, we have

∥Ĥ · g∥22 ≥
∑

Ci∈C′

∫

Ci

|Ĥ · g(f)|2df ≥ 1

4

∑

Ci∈C′

∫

Ci

|Ĥ · x∗(f)|2df (23)

where the first step follows from the definition of the norm and Ci ∩ Cj = ∅,∀i ̸= j, the second step
follows from Eq. (22).

Then we have that

T∥xS∗\S∥2T ≤
T

1− ε/2
∥xS∗\S ·H∥2T

≤ (1 + ε)
∑

Ci∈C′

∫

Ci

|Ĥ · x∗(f)|2df

≤ 4(1 + ε)∥Ĥ · g∥22
= 4(1 + ε)T∥H · g∥2T
≤ 4(1 + ε)T∥g∥2T
≤ 4(1 + ε)TN 2.

where the first step follows from Property VI of H in Lemma H.7 (taking ε there to be ε/2), the
second step follows from ε ∈ [0, 1] and the definition of Ci, the third step follows from Eq. (23), the
forth step follows from g(t) = 0,∀t ̸∈ [0, T ], the fifth step follows from Remark H.8, the last step
follows from the definition of N 2. Thus, we get that:

∥xS∗\S∥T ≤ (2− l/k + ε)N , (24)

which follows from
√
1 + ε ≤ 1 + ε/2.

Finally, we can conclude that

∥xS − x∗∥T ≤ ∥xS − xS∗∥T + ∥xS∗ − x∗∥T
= ∥xS∗\S∥T + ∥xS∗ − x∗∥T
≤ ∥xS∗\S∥T + (1 + ε)N
≤ (3− l/k + 2ε)N ,

where the first step follows from triangle inequality, the second step follows from the definition of
xS∗\S , the third step follows from Claim H.12, the last step follows from Eq. (24). The lemma
follows by re-scaling ε to ε/2.
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H.4 (9 + ε)-approximate Fourier interpolation algorithm

The goal of this section is to prove Theorem H.20, which gives a Fourier interpolation algorithm with
approximation error (9 + ε). It improves the constant (more than 1000) error algorithm in Chen et al.
(2016).
Claim H.15 (Mixed Fourier-polynomial energy bound, Chen et al. (2016)). For any

u(t) ∈ span

{
e2πifit · tj

∣∣∣∣ j ∈ {0, · · · , d}, i ∈ [k]

}
,

we have that
max
t∈[0,T ]

|u(t)|2 ≲ (kd)4 log3(kd) · ∥u∥2T
Claim H.16 (Condition number of Mixed Fourier-polynomial). Let F is a linear function family as
follows:

F := span

{
e2πifit · tj

∣∣∣∣ j ∈ {0, · · · , d}, i ∈ [k]

}
,

Then the condition number of Uniform[0, T ] with respect to F is as follows:

KUniform[0,T ] := sup
t∈[0,T ]

sup
f∈F

|f(t)|2
∥f∥2T

= O((kd)4 log3(kd))

The following definition extends the well-balanced sampling procedure (Definition E.1) to high
probability.
Definition H.17 ((ε, ρ)-well-balanced sampling procedure). Given a linear family F and underlying
distribution D, let P be a random sampling procedure that terminates in m iterations (m is not
necessarily fixed) and provides a coefficient αi and a distribution Di to sample xi ∼ Di in every
iteration i ∈ [m].

We say P is an ε-WBSP if it satisfies the following two properties:

1. With probability 1− ρ, for weight wi = αi · D(xi)
Di(xi)

of each i ∈ [m],
m∑

i=1

wi · |h(xi)|2 ∈
[
1− 10

√
ε, 1 + 10

√
ε
]
· ∥h∥2D ∀h ∈ F .

2. The coefficients always have
∑m

i=1 αi ≤ 5
4 and αi ·KIS,Di

≤ ε
2 for all i ∈ [m].

The following lemma shows an (ε, ρ)-WBSP for mixed Fourier-polynomial family.
Lemma H.18 (WBSP for mixed Fourier-polynomial family). Given any distribution D′ with the
same support of D and any ε > 0, the random sampling procedure with m = O(ε−1KIS,D′ log(d/ρ))
i.i.d. random samples from D′ and coefficients α1 = · · · = αm = 1/m is an (ε, ρ)-WBSP.

Proof. By Lemma B.12 with setting ε =
√
ε, we have that, as long as m ≥ O( 1ε ·KIS,D′ log d

ρ ), then
with probability 1− ρ,

∥A∗A− I∥2 ≤
√
ε

By Lemma B.11, we have that, for every h ∈ F ,
s∑

j=1

wj · |h(xj)|2 ∈ [1± ε] · ∥h∥2D,

where S is the m i.i.d. random samples from D′, wi = αiD(xi)/D
′(xi).

Moreover,
∑m

i=1 αi = 1 ≤ 5/4 and

αi ·KIS,D′ =
KIS,D′

m
≤ ε

log(d/ρ)
≤ ε,

where the first step follows from the definition of αi, the second step follows from the definition of
m, the third step follows from log(d/ρ) > 1.
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Now, we can solve the Signal Estimation problem for mixed Fourier-polynomial signals.
Lemma H.19 (Mixed Fourier-polynomial signal estimation). Given d-degree polynomials Pj(t), j ∈
[k] and frequencies fj , j ∈ [k]. Let xS(t) =

∑k
j=1 Pj(t) exp(2πifjt), and let g(t) denote the noise.

Given observations of the form x(t) := xS(t)+g′(t) for arbitrary noise g′ in time duration t ∈ [0, T ].

Then, there is an algorithm such that

• takes O(ε−1poly(kd) log(1/ρ)) samples from x(t),

• runs O(ε−1poly(kd) log(1/ρ)) time,

• outputs y(t) =
∑k

j=1 P
′
j(t) exp(2πifjt) with d-degree polynomial P ′

j(t), such that with
probability at least 1− ρ, we have

∥y − xS∥2T ≤ (1 + ε)∥g′∥2T .

Proof sketch. The proof is almost the same as Theorem G.4 where we follow the four-step Fourier
set-query framework. Claim H.15 gives the energy bound for the family of mixed Fourier-polynomial
signals, which implies that uniformly sampling m = Õ(ε−1|L|4d4) points in [0, T ] forms an oblivious
sketch for x∗. Moreover, by Lemma H.18, we know that it is also an (ε, ρ)-WBSP, which gives the
error guarantee. Then, we can obtain a mixed Fourier-polynomial signal y(t) by solving a weighted
linear regression.

Now, we are ready to prove the main result of this section, a (9+ε)-approximate Fourier interpolation
algorithm.
Theorem H.20 (Fourier interpolation with (9 + ε)-approximation error). Let x(t) = x∗(t) + g(t),
where x∗ is k-Fourier-sparse signal with frequencies in [−F, F ]. Given samples of x over [0, T ] we
can output y(t) such that with probability at least 1− 2−Ω(k),

∥y − x∗∥T ≤ (9 + ε)∥g∥T + δ∥x∗∥T .
Our algorithm uses poly(k, ε−1, log(1/δ)) log(FT ) samples and poly(k, ε−1, log(1/δ)) · log2(FT )
time. The output y is poly(k, log(1/δ))ε−1.5-Fourier-sparse signal.

Proof. Let N 2 := ∥g(t)∥2T + δ∥x∗(t)∥2T be the heavy cluster parameter.

First, by Lemma H.14, there is a set of frequencies S ⊂ [k] and xS(t) =
∑
j∈S

vje
2πifjt such that

∥xS − x∗∥T ≤ (3 +O(ε))N . (25)

Furthermore, each fj with j ∈ S belongs to an N -heavy cluster Cj with respect to the filter function
H defined in Definition H.6.

By Definition H.11 of heavy cluster, it holds that
∫

Cj

|Ĥ · x∗(f)|2df ≥ TN 2/k.

By Definition H.11, we also have |Cj | ≤ k ·∆h, where ∆h is the bandwidth of Ĥ .

Let ∆ ∈ R+, and ∆ > k ·∆h, which implies that Cj ⊆ [fj −∆, fj +∆]. Thus, we have
∫ fj+∆

fj−∆

|Ĥ · x∗(f)|2df ≥ TN 2/k.

Now it is enough to recover only xS , instead of x∗.

By applying Theorem H.36, there is an algorithm that outputs a set of frequencies L ⊂ R such that,
|L| = O(k), and with probability at least 1− 2−Ω(k), for any fj with j ∈ Sf , there is a f̃ ∈ L such
that,

|fj − f̃ | ≲ ∆
√
∆T .
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We define a map p : R→ L as follows:

p(f) := argmin
f̃∈L

|f − f̃ | ∀f ∈ R.

Then, xS(t) can be expressed as

xSf
(t) =

∑

j∈Sf

vje
2πifjt

=
∑

j∈Sf

vje
2πi·p(fj)t · e2πi·(fj−p(fj))t

=
∑

f̃∈L

e2πif̃ t ·
∑

j∈Sf : p(fj)=f̃

vje
2πi(fj−f̃)t,

where the first step follows from the definition of xS , the last step follows from interchanging the
summations.

For each f̃i ∈ L, by Corollary H.2 with x∗ = xSf
,∆ = ∆

√
∆T , we have that there exist degree

d = O(T∆
√
∆T + k3 log k + k log 1/δ) polynomials Pi(t) corresponding to f̃i ∈ L such that,

∥xSf
(t)−

∑

f̃i∈L

e2πif̃itPi(t)∥T ≤ δ∥xSf
(t)∥T (26)

Define the following function family:

F := span
{
e2πif̃ t · tj | ∀f̃ ∈ L, j ∈ {0, 1, . . . , d}

}
.

Note that
∑

f̃i∈L e2πif̃itPi(t) ∈ F .

By Claim H.16, for function family F , KUniform[0,T] = O((|L|d)4 log3(|L|d)).
By Lemma H.18, we have that, choosing a set W of O(ε−1KUniform[0,T] log(|L|d/ρ)) i.i.d. samples
uniformly at random over duration [0, T ] is a (ε, ρ)-WBSP.

By Lemma H.19, there is an algorithm that runs in O(ε−1|W |(|L|d)ω−1 log(1/ρ))-time using sam-
ples in W , and outputs y′(t) ∈ F such that, with probability 1− ρ,

∥y′(t)−
∑

f̃i∈L

e2πif̃itPi(t)∥T ≤ (1 + ε)∥x(t)−
∑

f̃i∈L

e2πif̃itPi(t)∥T (27)

Then by Lemma H.3, we have that there is a O(kd)-Fourier-sparse signal y(t), such that

∥y(t)− y′(t)∥T ≤ δ′ (28)

where δ′ > 0 is any positive real number, thus, y can be arbitrarily close to y′.

Moreover, the sparsity of y(t) is kd = kO(T∆
√
∆T + k3 log k + k log 1/δ) =

ε−1.5poly(k, log(1/δ)).

Therefore, the total approximation error can be upper bounded as follows:

∥y − x∗∥T
≤ ∥y − y′∥T +

∥∥∥y′ −
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Triangle inequality)

≤ (1 + o(1))
∥∥∥y −

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Eq. (28))

≤ (1 + ε)
∥∥∥x−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Eq. (27))

57



≤ (1 + 2ε)∥g∥T + (2 + ε)
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Triangle inequality)

≤ (1 + 2ε)∥g∥T + (2 + ε)
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− xSf

∥∥∥
T
+ (2 + ε)∥xSf

− x∗∥T

(Triangle inequality)
≤ (1 + 2ε)∥g∥T + (2 + ε)δ∥xSf

∥T + (2 + ε)∥xSf
− x∗∥T (Eq. (26))

≤ (1 + 2ε)∥g∥T +O(δ)∥x∗∥T + (2 + ε)(1 + δ)∥xSf
− x∗∥T (Triangle inequality)

≤ (1 + 2ε)∥g∥T +O(δ)∥x∗∥T + (2 + ε)(1 + δ)(∥xSf
− xS∥T + ∥xS − x∗∥T )

(Triangle inequality)
≤ (1 + 2ε)∥g∥T +O(δ)∥x∗∥T + (2 + ε+O(δ))(4 +O(ε))N (Eq. (25) and Lemma H.41)
= (1 + 2ε)∥g∥T +O(δ)∥x∗∥T + (8 +O(ε+ δ))N ,

Since we take
N =

√
∥g∥2T + δ∥x∗∥2T ≤ ∥g∥T +

√
δ∥x∗∥T ,

we have

∥y − x∗∥T ≤ (9 +O(ε))∥g∥T +O(
√
δ)∥x∗∥T .

By re-scaling ε and δ, we prove the theorem.

H.5 Sharper error control by signal-noise cancellation effect

In this section, we significantly improve the error analysis in Section H.3. Our key observation
is the signal-noise cancellation effect: if there is a frequency f∗ in a N1-heavy cluster but not
(N1,N2)-recoverable for some N2 < N1, then it indicates that the contribution of f∗ to the signal
x∗’s energy are cancelled out by the noise g.

In the following lemma, we improving Lemma H.14 by considering g’s effect in the gap between
heavy-cluster signal and recoverable signal.
Lemma H.21 (Sharper error bound for recoverable signal, an improved version of Lemma H.14).
Let x∗(t) =

∑k
j=1 vje

2πifjt and x(t) = x∗(t) + g(t) be our observable signal. Let N 2
1 :=

∥g(t)∥2T + δ∥x∗(t)∥2T . Let C1, · · · , Cl are the N1-heavy clusters from Definition H.11. Let S∗

denotes the set of frequencies f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci for some i ∈ [l]. Let S ⊂ S∗ be the
set of (N1,

√
ε2N1)-recoverable frequencies (Definition H.13).

Then we have that,

∥H · xS∗ −H · xS∥2T + ∥H · x−H · xS∥2T ≤ (1 +O(
√
ε2))∥x− xS∗∥2T .

Proof. Let g′(t) := g(t) + x∗(t)− xS∗(t) = x(t)− xS∗(t).

In order for cluster Ci to be missed, we must have that
∫

Ci

|Ĥ · xS∗(f)|2df ≥ TN 2
1 /k ≥

1

ε2

∫

Ci

|Ĥ · x(f)|2df (29)

where the first steps follows from Ci ⊂ ∪fj∈S∗Cj , the second step follows from Ci ̸⊂ ∪fj∈SCj .

Thus,
∫

Ci

|Ĥ · g′(f)|2df =

∫

Ci

| ̂H · (x− xS∗)(f)|2df

≥
(√∫

Ci

|Ĥ · xS∗(f)|2df −
√∫

Ci

|Ĥ · x(f)|2df
)2

≥ (
1√
ε2
− 1)2

∫

Ci

|Ĥ · x(f)|2df
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≥ 1

2ε2

∫

Ci

|Ĥ · x(f)|2df, (30)

where the first step follows from the definition of g′, the second step follows from triangle inequality,
the third step follows from Eq. (29), the last step follows from ε2 ≤ 0.1.

Bound ∥H · x−H · xS∥T . Let I ′ = ∪fj∈S∗\SCj , then we have that,

T∥H · x−H · xS∥2T ≤
∫ ∞

−∞
|H · x(t)−H · xS(t)|2dt

=

∫ ∞

−∞
|(Ĥ · x− Ĥ · xS)(f)|2df

=

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df (31)

where the first step follows from the definition of the norm, the second step follows from Parseval’s
theorem, the third step follows from I ′ ∪ I ′ = [−∞,∞].

Bound ∥H · xS∗ −H · xS∥T We can upper-bound it as follows:

T∥H · xS∗ −H · xS∥2T ≤
∫ ∞

−∞
|H · xS∗(t)−H · xS(t)|2dt

=

∫ ∞

−∞
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df

=

∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df

=

∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df (32)

where the first step follows from the definition of the norm, the second step follows from Parseval’s
theorem, the third step follows from I ′ ∪ I ′ = [−∞,∞], the last step follows from (∪fj∈S∗/SCj) ∩
I ′ = ∅.

Putting it all together. By Eqs. (31) and (32), we get that

T∥H · xS∗ −H · xS∥2T + T∥H · x−H · xS∥2T
≤
∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df.

For the first integral, we have
√∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df =

√∫

I′
|Ĥ · xS∗(f)|2df

≤
√∫

I′
|Ĥ · x(f)|2df +

√∫

I′
|Ĥ · g′(f)|2df

≤
√
2ε2

∫

I′
|Ĥ · g′(f)|2df +

√∫

I′
|Ĥ · g′(f)|2df

≤ (1 +
√
2ε2)

√∫

I′
|Ĥ · g′(f)|2df, (33)

where the first step follows from (∪fj∈SCj)∩I ′ = ∅, the second step follows from triangle inequality,
the third step follows from Eq. (30), the last step is straightforward.

For the second integral, we have∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df =

∫

I′
|Ĥ · x(f)|2df
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≤ 2ε2

∫

I′
|Ĥ · g′(f)|2df, (34)

where the first step follows from (∪fj∈SCj) ∩ I ′ = ∅, the second step follows from Eq. (30).

For the third integral, together with the
∫
I′ |Ĥ · g′(f)|2df term in the first integral’s upper bound

(Eq. (33)), we have
∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|Ĥ · g′(f)|2df

=

∫

I′
| ̂H · (xS∗ + g′ − xS)(f)|2df +

∫

I′
|Ĥ · g′(f)|2df

=

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|Ĥ · g′(f)|2df

=

∫ ∞

−∞
|Ĥ · g′(f)|2df

=

∫ ∞

−∞
|H · g′(t)|2dt

= T∥H · g′(t)∥2T
≤ T∥g′∥2T , (35)

where the first step follows from the definition of g′, the second step follows from (∪fj∈S∗Cj)∩ I ′ =
(∪fj∈SCj), the third step follows from I ′ ∪ I ′ = [−∞,∞], the forth step follows from Parseval’s
theorem, the fifth step follows from g′(t) = 0,∀t ̸∈ [0, T ], the last step follows from H(t) ≤ 1 by
Remark H.8.

Furthermore, we have that
∫

I′
|Ĥ · g′(f)|2df ≤

∫ ∞

−∞
|Ĥ · g′(f)|2df ≤ T∥g′(t)∥2T . (36)

Therefore, we conclude that

T∥H · xS∗ −H · xS∥2T + T∥H · x−H · xS∥2T
≤ T∥H · xS∗ −H · xS∥2T +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

≤
∫

I′
|(Ĥ · xS∗ − Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

≤ (1 +
√
ε2)

2

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

≤ (1 +
√
ε2)

2

∫

I′
|Ĥ · g′(f)|2df + 2ε2

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

= O(
√
ε2)

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

≤ O(
√
ε2)T∥g′∥2T +

∫

I′
|Ĥ · g′(f)|2df +

∫

I′
|(Ĥ · x− Ĥ · xS)(f)|2df

≤ O(
√
ε2)T∥g′∥2T + T∥g′∥2T

= (1 +O(
√
ε2))T∥g′∥2T

where the first step follows from Eq. (31), the second step follows from Eq. (32), the third step
follows from Eq. (33), the forth step follows from Eq. (34), the fifth step follows from (1+

√
2ε2)

2 ≤
1 + O(

√
ε2), the sixth step follows from Eq. (36), the seventh step follows from Eq. (35), the last

step is straightforward.

The lemma is then proved.
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As a consequence, we can easily bound ∥xS∗ − xS∥T as follows.

Corollary H.22. Let S∗ and S be defined as in Lemma H.21. Then, we have that,

∥xS∗ − xS∥2T ≤ (1 +O(
√
ε2))∥x− xS∗∥2T

Proof. We have that,

∥xS∗ − xS∥2T ≤ (1 + 2ε)∥H · xS∗ −H · xS∥2T ≤ (1 + 2ε)(1 +O(
√
ε2))∥x− xS∗∥2T

where the first step follows from Lemma H.7 Property VI, the second step follows from Lemma H.21
and ε = ε2.

In Lemma H.21, we introduce an extra term ∥H ·x−H ·xS∥T . The following lemma shows that this
term appears in the approximation error ∥x− xS∥T , which can be used to upper-bound the Signal
Estimation’s error.

Lemma H.23 (Decomposing the approximation error of recoverable signal). Let x∗(t) =∑k
j=1 vje

2πifjt and x(t) = x∗(t)+g(t) be our observable signal. LetN 2
1 := ∥g(t)∥2T + δ∥x∗(t)∥2T .

Let C1, · · · , Cl are the N1-heavy clusters from Definition H.11. Let S∗ denotes the set of frequencies
f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci for some i ∈ [l], and

∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,

Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

Then we have that,

∥x− xS∥T ≤ ∥H(x− xS)∥T + ∥g∥T +O(ε)∥x∗ − xS∥T .

Proof. We first decompose ∥x− xS∥T into the part that passes through the filter H and the part that
does not pass through H:

∥x− xS∥2T ≤ ∥H(x− xS)∥2T + ∥(1−H)(x− xS)∥2T
≤ ∥H(x− xS)∥2T + ∥(1−H)(x− x∗)∥2T + ∥(1−H)(x∗ − xS)∥2T
≤ ∥H(x− xS)∥2T + ∥(1−H)g∥2T + ∥(1−H)(x∗ − xS)∥2T ,

where the first step follows from triangle inequality, the second step follows from triangle inequality,
the last step follows from the definition of g.

For the second term, we have that

∥(1−H)g∥2T ≤ ∥g∥2T ,

by Remark H.8.

For the third term, we have that,

∥(1−H)(x∗ − xS)∥2T = ∥x∗ − xS∥2T − ∥H(x∗ − xS)∥2T ≤ ε∥x∗ − xS∥2T ,

where the first step follows from 1−H > 0, the second step follows from x∗−xS is k-Fourier-sparse,
thus combine Property VI of Lemma H.7, we have that ∥H(x∗ − xS)∥2T ≥ (1− ε)∥x∗ − xS∥2T .

Combining them together, we prove the lemma.
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H.6 Technical tools III: HASHTOBINS

In this section, we provide some definitions and technical lemmas for the HASHTOBINS procedure,
which will be very helpful for frequency estimation.

HASHTOBINS partitions the frequency coordinates into B = O(k) bins and collects rotated magni-
tudes in each bins. Ideally, each bins only contains a single ground-truth frequency, which allows us
to recover its magnitude.

More specifically, HASHTOBINS first randomly hashes the frequency coordinates into the interval
[0, 1]. After equally dividing [0, 1] into O(k) small bins, each coordinate lays in a different bin. This
step can be implemented by multiplying the signal in the frequency domain with a period pulse
function G

(j)
σ,b. Then, even if the signal does not have frequency gap, the HASHTOBINS procedure

can still partition it into several one-cluster signals with high probability.
Definition H.24 (Hash function, Chen et al. (2016)). Let πσ,b(f) = σ(f+b) (mod 1) and hσ,b(f) =
round(πσ,b(f) ·B) be the hash function that maps frequency f ∈ [−F, F ] into bins {0, · · · , B − 1}.
Claim H.25 (Collision probability, Chen et al. (2016)). For any ∆0 > 0, let σ be a sample uniformly
at random from [ 1

4B∆0
, 1
2B∆0

]. Then, we have:

I. If 4∆0 ≤ |f+ − f−| < 2(B − 1)∆0, then Pr[hσ,b(f
+) = hσ,b(f

−)] = 0.

II. If 2(B − 1)∆0 ≤ |f+ − f−|, then Pr[hσ,b(f
+) = hσ,b(f

−)] ≲ 1
B .

Definition H.26 (Filter for bins). Given B > 1, δ > 0, α > 0, let G(t) := GB,δ,α(2πt) where
GB,δ,α is defined in Definition H.9. For any σ > 0, b ∈ R and j ∈ [B]. define

G
(j)
σ,b(t) :=

1

σ
G(t/σ)e2πit(j/B−σb)/σ,

and its Fourier transformation:

Ĝ
(j)
σ,b(f) =

∑

i∈Z
Ĝ(i+

j

B
− σf − σb).

Definition H.27 ((ε0,∆0)-one-cluster signal, Chen et al. (2016)). We say that a signal z(t) is an
(ε0,∆0)-one-cluster signal around f0 iff z(t) and ẑ(f) satisfy the following two properties:

Property I :

∫ f0+∆0

f0−∆0

|ẑ(f)|2df ≥ (1− ε0)

∫ +∞

−∞
|ẑ(f)|2df

Property II :

∫ T

0

|z(t)|2dt ≥ (1− ε0)

∫ +∞

−∞
|z(t)|2dt.

Definition H.28 (Well-isolation, Chen et al. (2016)). We say that a frequency f∗ is well-isolated
under the hashing (σ, b) if, for j = hσ,b(f

∗) and If∗ = (−∞,∞) \ (f∗ −∆0, f
∗ +∆0),∫

If∗

∣∣(Ĥ · x · Ĝ(j)
σ,b)(f)

∣∣2df ≲ ε0 · TN 2
2 /k,

where N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ).

Lemma H.29 (Well-isolation implies one-cluster signal, a variation of Lemma 7.20 in Chen et al.
(2016)). Let f∗ satisfy ∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df ≥ TN 2
2 /k,

where N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ). Let ẑ = x̂∗ ·H · Ĝ(j)

σ,b where j = hσ,b(f
∗). If f∗ is

well-isolated, then z and ẑ satisfying Property II of one-cluster signal (Definition H.27), i.e.,
∫ T

0

|z(t)|2dt ≥ (1− ε0)

∫ +∞

−∞
|z(t)|2dt,

Lemma H.30 (Well-isolation by randomized hashing, Chen et al. (2016)). Given B = Θ(k/(ε0ε1ε2))
and σ ∈ [ 1

4B∆0
, 1
2B∆0

] chosen uniformly at random. Let f∗ be any frequency. Then f∗ is well-
isolated by a hashing (σ, b) with probability at least 0.9.
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Proof. Let S′ = {fi}i∈[k] ∩ If∗ . By Claim H.25, with probability at least (1− 1/B)k ≥ 1− k/B ≥
1− ε0ε1ε2 ≥ 0.99, for all the frequencies f ∈ S′, we have that hσ,b(f

∗) ̸= hσ,b(f).

Hence,
∫

If∗
|x̂∗ ·H · Ĝ(j)

σ,b(f)|2df ≲
δ2

k2

∫

If∗
|x̂∗ ·H(f)|2df

≤ δ2

k2

∫ ∞

−∞
|x̂∗ ·H(f)|2df

=
δ2

k2

∫ ∞

−∞
|x∗ ·H(t)|2dt

=
δ2

k2

∫

[−∞,∞]\[0,T ]

|x∗ ·H(t)|2dt+ δ2

k2

∫

[0,T ]

|x∗ ·H(t)|2dt

≤ δ2

k2

∫

[−∞,∞]\[0,T ]

|x∗ ·H(t)|2dt+ δ2

k2
T∥x∗∥2T

≤ δ2(1 + δ)

k2
T∥x∗∥2T (37)

where the first step follows by the Property III in the Lemma H.10 that |Ĝ(f)| ≤ δ/k, which implies
that |Ĝ(j)

σ,b(f)| ≤ O(δ/k) for f ∈ S′, the second step follows from If∗ ⊂ [−∞,∞], the third step
follows from Parseval’s theorem, the forth step is straight forward, the fifth step follows from the
property VI of Lemma H.7, the sixth step follows from V of Lemma H.7.

Moreover, let I ′ denote the set of frequencies that hash into the same bin as f∗, then we have that,
∫

If∗
|ĝ ·H · Ĝ(j)

σ,b(f)|2df ≤
∫

I′
|ĝ ·H · Ĝ(j)

σ,b(f)|2df +

∫

I′
|ĝ ·H · Ĝ(j)

σ,b(f)|2df

≲
∫

I′
|ĝ ·H(f)|2df +

∫

I′
|ĝ ·H · Ĝ(j)

σ,b(f)|2df

≲
∫

I′
|ĝ ·H(f)|2df +

δ2

k2

∫

I′
|ĝ ·H(f)|2df

≤
∫

I′
|ĝ ·H(f)|2df +

δ2T

k2
∥g∥2T (38)

where the first step follows from I ′ ∪ I ′ = [−∞,∞], the second step follows from for any f ∈ R,
Ĝ

(j)
σ,b(f) ≲ 1, the third step follows from for any f ∈ I ′, Ĝ(j)

σ,b(f) ≲ δ/k, the last step follows from
∫

I′
|ĝ ·H(f)|2df ≤

∫ ∞

−∞
|ĝ ·H(f)|2df =

∫ ∞

−∞
|g ·H(t)|2dt = T∥g ·H∥2T ≤ T∥g∥2T .

where the first step follows from I ′ ∈ [−∞,∞], the second step follows from Parseval’s theorem,
the third step follows from g(t) = 0,∀t ̸∈ [0, T ], the last step follows from Remark H.8.

Next, we consider

E
σ,b

[∫

I′
|ĝ ·H(f)|2df

]
≂

1

B

∫ ∞

−∞
|ĝ ·H(f)|2df

≲
ε0ε1ε2

k
T∥g∥2T

where the first step follows from σ, b are chosen randomly, the second step follows from∫∞
−∞ |ĝ ·H(f)|2df ≤ T∥g∥2T .

Thus, by Markov inequality, with probability at least 0.99,
∫

I′
|ĝ ·H(f)|2df ≲

ε0ε1ε2
k

T∥g∥2T . (39)
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Finally, we can conclude that
∫

If∗
|(Ĥ · x · Ĝ(j)

σ,b)(f)|2df =

∫

If∗
|( ̂H · (x∗ + g) · Ĝ(j)

σ,b)(f)|2df

≤ 2

∫

If∗
|x̂∗ ·H · Ĝ(j)

σ,b(f)|2df + 2

∫

If∗
|ĝ ·H · Ĝ(j)

σ,b(f)|2df

≲
δ2(1 + δ)

k2
T∥x∗∥2T + 2

∫

If∗
|ĝ ·H · Ĝ(j)

σ,b(f)|2df

≲
δ2(1 + δ)

k2
T∥x∗∥2T +

δ2T

k2
∥g∥2T +

∫

I′
|ĝ ·H(f)|2df

≲
δ2(1 + δ)

k2
T∥x∗∥2T +

δ2T

k2
∥g∥2T +

ε0ε1ε2
k

T∥g∥2T

=
δ(1 + δ)

ε0ε1ε2k
ε0ε1ε2Tδ∥x∗∥2T /k + (

δ2

ε0ε1ε2k
+ 1)ε0ε1ε2T∥g∥2T /k

≤ ε0ε1ε2Tδ∥x∗∥2T /k + 2ε0ε1ε2T∥g∥2T /k
≲ ε0 · TN 2

2 /k,

where the first step follows from the definition of g, the second step follows from (a+b)2 ≤ 2a2+2b2,
the third step follows from Eq. (37), the forth step follows from Eq. (38), the fifth step follows
from Eq. (39), the sixth step is straightforward, the seventh step follows from δ(1+δ)

ε0ε1ε2k
≤ 1 and

( δ2

ε0ε1ε2k
+ 1) ≤ 2, the last step follows from the definition of N 2

2 .

Lemma H.31 ((Chen et al., 2016, Lemma 7.21)). Given any noise g(t) : [0, T ] → C and g(t) =
0,∀t /∈ [0, T ]. We have, ∀j ∈ [B],

E
σ,b

[∫ +∞

−∞
|g(t)H(t) ∗G(j)

σ,b(t)|2dt
]
≲

1

B

∫ +∞

−∞
|g(t)H(t)|2dt

H.7 High signal-to-noise ratio (SNR) band approximation

In the this section, we will give the upper bound of ∥xSf
(t)− xS(t)∥T .

Definition H.32 (High SNR and Recoverable Set). For j ∈ [B], let z∗j (t) := (x∗ ·H) · G(j)
σ,b, we

define the set as follows

Sg1 :=
{
j ∈ [B] | ∥gj(t)∥2T ≤ (1− cε) · ∥z∗j (t)∥2T

}

where c is constant. And we also give the definition of recoverable set which is the same with s above

Sg2 :=
{
j ∈ [B] | ∃f0, hσ,b(f0) = j and

∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN 2
2 /k

}

where N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T .

And then we define a High SNR and recoverable set as follows

Sg := Sg1 ∩ Sg2

Let Sf := {j ∈ [k]|hσ,b(fg) ∈ Sg} ∩ S. We have xSf
(t) :=

∑
j∈Sf

vje
2πifjt

Remark H.33. In the left part of the paper, we focus on the frequency in set Sf which is a subset of
the recoverable frequency set S.

The following lemma shows that for any recoverable frequency (i.e., those satisfy Eq. (40)), HASH-
TOBINS will output a one-cluster signal around it with high probability. Now we will consider a f∗

satisfy the assumption introduced in Definition H.32.
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Lemma H.34 (HASHTOBINS for recoverable and HSR frequency). Let f∗ ∈ [−F, F ] satisfy:
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN 2
2 /k, (40)

where N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ).

For a random hashing (σ, b), let j = hσ,b(f
∗) be the bucket that f∗ maps to under the hash such that

z = (x ·H) ∗G(j)
σ,b and ẑ = x̂ ·H · Ĝ(j)

σ,b. Given that Sf and c is defined in Definition H.32, j ∈ Sf .
With probability at least 0.9, z(t) is an (ε0,∆0)-one-cluster (See Definition H.27) signal around f∗.

Proof. The proof consists of two parts. In part 1, we prove that z(t) satisfies Property I of the
one-cluster signal around f∗ (Definition H.27). In part 2, we prove that z(t) satisfies Property II of
Definition H.27.

Part 1. Let region If∗ = (f∗ −∆, f∗ +∆) with complement If∗ = (−∞,∞) \ If∗ .

Next, with probability at least 0.99, we have that
∫

If∗
|ẑ(f)|2df ≥ (1− δ/k)

∫

If∗
|x̂ ·H(f)|2df ≳ TN 2

2 /k

where the probability follows from ∆0 > 1000∆, the first step follows from Property I of G in
Lemma H.10, the second step follows from Eq. (40).

On the other hand, f∗ is well-isolated with probability 0.9, thus by the definition of well-isolated, we
have that ∫

If∗
|ẑ(f)|2df ≲ ε0TN 2

2 /k.

Hence, ẑ satisfies the Property I (in Definition H.27) of one-mountain recovery.

Part 2. By Lemma H.29, we know that (x∗ ·H) ∗G(j)
σ,b always satisfies Property II (in Definition

H.27):
∫ T

0

|x∗(t)H(t) ∗G(j)
σ,b(t)|2dt ≥ (1− ε0)

∫ +∞

−∞
|x∗(t)H(t) ∗G(j)

σ,b(t)|2dt

As a result, by [−∞,∞] = [−∞, 0] ∪ [0, T ] ∪ [T,∞],

ε0

∫ +∞

−∞
|x∗(t)H(t) ∗G(j)

σ,b(t)|2dt ≥
∫ 0

−∞
|x∗(t)H(t) ∗G(j)

σ,b(t)|2dt+
∫ ∞

T

|x∗(t)H(t) ∗G(j)
σ,b(t)|2dt

(41)

Then, we claim that
∫ ∞

−∞
|x(t) ·H(t) ∗G(j)

σ,b(t)|2dt =
∫ ∞

−∞
|x̂ ·H(f) · Ĝ(j)

σ,b(f)|2df

≥
∫ f∗+∆

f∗−∆

|x̂ ·H(f) · Ĝ(j)
σ,b(f)|2df

≳
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df

≥ TN 2
2 /k, (42)

where the first step follows from Parseval’s theorem, the second step follows from [f∗−∆, f∗+∆] ⊂
[−∞,∞], the third step holds with probability at least 0.99 and follows from ∆0 > 1000∆ and
Property I of Lemma H.10, the last step follows from the definition of f∗.

By Definition H.32, we have that
∫ +∞

−∞
|g(t) ·H(t) ∗G(j)

σ,b(t)|2dt =
∫ T

0

|g(t) ·H(t) ∗G(j)
σ,b(t)|2dt (43)
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≤ cε

∫ T

0

|z∗j (t)|2dt

≤ cε

∫ +∞

−∞
|z∗j (t)|2dt

≤
∫ +∞

−∞
cε|x(t) ·H(t) ∗G(j)

σ,b(t)|2dt

where the first step from g(t) = 0,∀t ̸∈ [0, T ], the second step follows from Definition H.32, the
third step follows from simple algebra, the last step is due to Definition of z∗j (t).

Then, we claim that
√∫ ∞

−∞
|x∗ ·H ∗G(j)

σ,b|2dt ≤
√∫ ∞

−∞
|(x∗ + g) ·H ∗G(j)

σ,b|2dt+
√∫ ∞

−∞
|g ·H ∗G(j)

σ,b|2dt

≲

√∫ ∞

−∞
|(x∗ + g) ·H ∗G(j)

σ,b|2dt (44)

where the first step follows from triangle inequality, the second step follows from Eq. (43).

Next, we consider
√∫ ∞

T

|(x∗ + g) ·H ∗G(j)
σ,b|2dt ≤

√∫ ∞

T

|x∗ ·H ∗G(j)
σ,b|2dt+

√∫ ∞

T

|g ·H ∗G(j)
σ,b|2dt

≤
√
ε0

∫ ∞

−∞
|x∗ ·H ∗G(j)

σ,b|2dt+
√∫ ∞

T

|g ·H ∗G(j)
σ,b|2dt

≤
√
ε0

∫ ∞

−∞
|x∗ ·H ∗G(j)

σ,b|2dt+
√
ε0

∫ ∞

−∞
|x ·H ∗G(j)

σ,b|2dt

≲

√
ε0

∫ ∞

−∞
|x ·H ∗G(j)

σ,b|2dt, (45)

where the first step follows from triangle inequality, the second step follows from Eq. (41), the third
step follows from Eq. (43), the forth step follows from Eq. (44).

Similarly,
√∫ 0

−∞
|(x∗ + g) ·H ∗G(j)

σ,b|2dt ≲
√
ε0

∫ ∞

−∞
|x ·H ∗G(j)

σ,b|2dt (46)

Combine equations above, we have that,
√∫ 0

−∞
|(x∗ + g) ·H ∗G(j)

σ,b|2dt+
∫ ∞

T

|(x∗ + g) ·H ∗G(j)
σ,b|2dt

≤
√∫ 0

−∞
|(x∗ + g) ·H ∗G(j)

σ,b|2dt+
√∫ ∞

T

|(x∗ + g) ·H ∗G(j)
σ,b|2dt

≲

√
ε0

∫ ∞

−∞
|x ·H ∗G(j)

σ,b|2dt

where the first step follows from
√
a+ b ≤ √a +

√
b, the second step follows from Eq. (45) and

Eq. (46).

Hence, we have that z = (x∗+ g) ·H ∗G(j)
σ,b satisfies Property II (in Definition H.27) with probability

0.95.
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H.8 Ultra-high sensitivity frequency estimation

In this section, we improve the high sensitivity frequency estimation in Section H.3 with even
higher sensitivity, using the results in previous sections. More specifically, we show how to estimate
the frequencies of the signal xS whose frequencies are only ε2N -heavy, while in section H.3 the
recoverable signal’s frequencies are N -heavy.

Lemma H.35 (Frequency estimation for one-cluster signal, Lemma 7.3 in Chen et al. (2016)).
For a sufficiently small constant ε0 > 0, any f0 ∈ [−F, F ], and ∆0 > 0, given an (ε0,∆0)-
one-cluster signal z(t) around f0, Procedure FREQUENCYRECOVERY1CLUSTER, returns f̃0 with
|f̃0 − f0| ≲ ∆0 ·

√
∆0T with probability at least 1− 2−Ω(k).

The following theorem shows the algorithm for ultra-high sensitivity frequency estimation.

Theorem H.36 (Ultra-high sensitivity frequency estimation algorithm with low success probability).
Let x∗(t) =

∑k
j=1vje

2πifjt and x(t) = x∗(t) + g(t) be our observable signal where ∥g(t)∥2T ≤
c∥x∗(t)∥2T for a sufficiently small constant c. Then Procedure FREQUENCYRECOVERYKCLUSTER
returns a set L of O(k/(ε0ε1ε2)) frequencies that cover all N2-heavy clusters and have high SNR
(See Definition H.32) of x∗, which uses poly(k, ε−1, ε−1

0 , ε−1
1 , ε−1

2 , log(1/δ)) log(FT ) samples and
poly(k, ε−1, ε−1

0 , ε−1
1 , ε−1

2 , log(1/δ)) log2(FT ) time.

In particular, for ∆0 = ε−1poly(k, log(1/δ))/T and N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ), with

probability 0.9, for any f∗ with
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN 2
2 /k, (47)

there exists an f̃ ∈ L satisfying
|f∗ − f̃ | ≲ ∆0

√
∆0T .

Proof. By Lemma H.34 and Lemma H.35, we prove the theorem.

Theorem H.37 (Ultra-high sensitivity frequency estimation algorithm with high success prob-
ability). Let x∗(t) =

∑k
j=1vje

2πifjt and x(t) = x∗(t) + g(t) be our observable signal
where ∥g(t)∥2T ≤ c∥x∗(t)∥2T for a sufficiently small constant c. Then Procedure FREQUEN-
CYRECOVERYKCLUSTER returns a set L of O(k/(ε0ε1ε2)) frequencies that covers all N2-
heavy clusters of x∗, which uses poly(k, ε−1, ε−1

0 , ε−1
1 , ε−1

2 , log(1/δ)) log(FT ) samples and
poly(k, ε−1, ε−1

0 , ε−1
1 , ε−1

2 , log(1/δ)) log2(FT ) time.

In particular, for ∆0 = ε−1poly(k, log(1/δ))/T and N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ), with

probability 1− 2−Ω(k), for any f∗ with
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN 2
2 /k, (48)

there exists an f̃ ∈ L satisfying
|f∗ − f̃ | ≲ ∆0

√
∆0T .

The following lemma shows the approximation error guarantee for the recoverable signal xS of the
ultra-high sensitivity frequency estimation algorithm (Theorem H.37).

Lemma H.38 (Recoverable signal’s approximation error guarantee). Let x∗(t) =
∑k

j=1 vje
2πifjt

and x(t) = x∗(t) + g(t) be our observable signal. Let N 2
1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ). Let

C1, · · · , Cl are the N1-heavy clusters from Definition H.11. Let S∗ denotes the set of frequencies
f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci for some i ∈ [l], and

∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,
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Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

Then, we have that,

∥x− xS∥T + ∥xS − x∗∥T ≤ (1 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T .

Proof. Following from the fact that
√
1 + ε = 1 +O(ε) for ε < 1, we have

N1 =
√
ε1(∥g∥2T + δ∥x∗∥2T ) ≤

√
ε1∥g∥T +

√
δε1∥x∗∥T

We have that

∥x∗ − xS∥T ≤ ∥xS∗ − xS∥T + ∥x∗ − xS∗∥T
≤ (1 +O(

√
ε2))∥x− xS∗∥T + ∥x∗ − xS∗∥T

≤ (1 +O(
√
ε2))∥x− x∗∥T + (2 +O(

√
ε2))∥x∗ − xS∗∥T

≤ (1 +O(
√
ε2))∥g∥T + (2 +O(

√
ε2 + ε))N1 (49)

where the first step follows from triangle inequality, the second step follows from Corollary H.22, the
third step follows from triangle inequality, the forth step follows from Claim H.12.

Thus, we have that

∥x− xS∗∥T ≤ ∥x− x∗∥T + ∥x∗ − xS∗∥T
≤ ∥g∥T + ∥x∗ − xS∗∥T
≤ ∥g∥T + (1 + ε)N1 (50)

where the first step follows from triangle inequality, the second step follows from the definition of g,
the third step follows from Claim H.12.

Therefore,

∥x− xS∥T + ∥xS − x∗∥T
≤ (∥H(x− xS)∥T + ∥g∥T +O(ε)∥x∗ − xS∥T ) + ∥xS − x∗∥T
≤ (∥H(x− xS)∥T + ∥g∥T +O(ε)∥x∗ − xS∥T ) + ∥xS − xS∗∥T + ∥xS∗ − x∗∥T
≤ (∥H(x− xS)∥T + ∥g∥T +O(ε)∥x∗ − xS∥T ) + (1 + 2ε)∥H(xS − xS∗)∥T + ∥xS∗ − x∗∥T
= ∥g∥T +O(ε)∥x∗ − xS∥T + (1 +O(ε))(∥H(x− xS)∥T + ∥H(xS − xS∗)∥T ) + ∥xS∗ − x∗∥T
≤ ∥g∥T +O(ε)∥x∗ − xS∥T + (1 +O(ε))(∥H(x− xS)∥T + ∥H(xS − xS∗)∥T ) + (1 + ε)N1

≤ ∥g∥T +O(ε)∥x∗ − xS∥T + (1 +O(ε))
√
2
√
∥H(x− xS)∥2T + ∥H(xS − xS∗)∥2T + (1 + ε)N1

≤ ∥g∥T +O(ε)∥x∗ − xS∥T + (1 +O(ε))(1 +O(
√
ε2))
√
2∥x− xS∗∥T + (1 + ε)N1

≤ ∥g∥T +O(ε)((1 +O(
√
ε2))∥g∥T + (2 +O(

√
ε2 + ε))N1)

+ (1 +O(ε))(1 +O(
√
ε2))
√
2∥x− xS∗∥T + (1 + ε)N1

≤ ∥g∥T +O(ε)((1 +O(
√
ε2))∥g∥T + (2 +O(

√
ε2 + ε))N1)

+ (
√
2 +O(ε+

√
ε2))(∥g∥T + (1 + ε)N1) + (1 + ε)N1

≤ (1 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T ,

where the first step follows from Lemma H.23, the second step follows from triangle inequality, the
third step follows from xS − xS∗ being k-Fourier-sparse and Property VI of Lemma H.7, the forth
step change the order of the terms, the fifth step follows from Claim H.12, the sixth step follows
from ∥H(x−xS)∥T + ∥H(xS −xS∗)∥T ≤

√
2
√
∥H(x− xS)∥2T + ∥H(xS − xS∗)∥2T , the seventh

step follows from Lemma H.21, the eighth step follows from Eq. (49), the ninth step follows from
Eq. (50), the last step follows from ε = ε0 = ε1 = ε2.
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The following lemma shows that the recoverable signal xS(t)’s energy is close to the observation
signal x(t).

Lemma H.39 (Recoverable signal’s energy). Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) = x∗(t) + g(t)

be our observable signal. Let N 2
1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ). Let C1, · · · , Cl are the N1-heavy

clusters from Definition H.11. Let S∗ denotes the set of frequencies f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci

for some i ∈ [l], and
∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,

Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

Then, we have that,

∥xS∥T ≲ ∥g∥T + ∥x∗∥T

Proof. We have that,

∥xS∥T ≤ ∥xS∗ − x∗∥T + ∥xS − xS∗∥T + ∥x∗∥T
≲ ∥xS∗ − x∗∥T + ∥x− xS∗∥T + ∥x∗∥T
≲ ∥xS∗ − x∗∥T + ∥x− x∗∥T + ∥x∗∥T
≤ ∥g∥T + ∥x∗∥T ,

where the first step follows from triangle inequality, the second step follows from Corollary H.22, the
third step follows from triangle inequality, the forth step follows from Claim H.12.

H.9 High SNR and recoverable signals

Lemma H.40 (High SNR and recoverable approximation error guarantee). Let x∗(t) =∑k
j=1 vje

2πifjt and x(t) = x∗(t) + g(t) be our observable signal. Let N 2
1 := ε1(∥g(t)∥2T +

δ∥x∗(t)∥2T ). Let C1, · · · , Cl are the N1-heavy clusters from Definition H.11. Let S∗ denotes the set
of frequencies f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci for some i ∈ [l], and

∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,

Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

And Sf is defined in Definition H.32. Then, we have that,

∥xSf
− xS∥T ≤ (1 +O(ε)) · ∥g(t)∥T (51)

Proof. We have that

Sf ⊆ S.

And then for any f ∈ S \ Sf , j = hσ,b(f), we have that

∥(g ·H(t)) ∗G(j)
σ,b(t)∥2T ≥(1− c · ε)∥(x∗ ·H(t)) ∗G(j)

σ,b(t)∥2T
where the first step follows from Definition H.32, the second step is from simple algebra.

Let T = S \ Sf . And for any j ∈ [B], if j ∈ [B] \ Sg, Tj = {i ∈ S|hσ,b(fi) = j}. Otherwise,
Tj = ∅. Moreover, we have that for any f ∈ supp(x̂Tj

∗ Ĥ),

Ĝ
(j)
σ,b(f) ≥ 1− δ

k
(52)
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From Property VI of Lemma H.7, we have that
∫ +∞

−∞
|x∗(t) ·H(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t)|2dt. (53)

By Lemma H.29, we know that (x∗ ·H) ∗G(j)
σ,b always satisfies Property II (in Definition H.27):

T∥x∗(t)H(t) ∗G(j)
σ,b(t)∥2T

=

∫ T

0

|x∗(t)H(t) ∗G(j)
σ,b(t)|2dt

≥ (1− ε0)

∫ +∞

−∞
|x∗(t)H(t) ∗G(j)

σ,b(t)|2dt

= (1− ε0)

∫ +∞

−∞
|(x̂∗(f) ∗ Ĥ(f)) ∗ Ĝ(j)

σ,b(f)|2df

= (1− ε0)(

∫ +∞

−∞
|(x̂∗(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df +

∫ +∞

−∞
|(x̂∗(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df)

≥ (1− ε0) ·
∫ +∞

−∞
|(x̂∗(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

≥ (1− ε0) ·
∫ +∞

−∞
|(x̂∗(f) ∗ Ĥ(f))|2df (54)

where the first step follows from the definition of the norm, the second step is from Lemma H.29,
the third step is due to Parseval’s Theorem, the forth step is based on the Large Offset event not
happening, the fifth step is based on simple algebra, the last step is because of Lemma H.29.

We also have that

T∥xSf
(t)− xS(t)∥2T

= T∥xT ∥2T
≤ (T/(1− ε)2) · ∥xT (t) ·H(t)∥2T

=
1

1− ε2
·
∫ T

0

|xT (t) ·H(t)|2dt

≤ 1

1− ε2
·
∫ ∞

−∞
|xT (t) ·H(t)|2dt

=
1

1− ε2
·
∫ ∞

−∞
|x̂T (f) ∗ Ĥ(f)|2df

=
1

1− ε2
·

B∑

j=1

∫ ∞

−∞
|x̂Tj

(f) ∗ Ĥ(f)|2df

≤ k2

(1− ε)2(k − δ)2
·
∑

j∈B\Sg

T∥(x∗(t) ·H(t)) ∗G(j)
σ,b(t))∥2T

≤ k2

(1− cε)(1− ε)2(k − δ)2
·
∑

j∈B\Sg

T∥(g(t) ·H(t)) ∗G(j)
σ,b(t))∥2T (55)

where the first step follows from Definition of T , the second step follows from Eq. (53), the third
step is based on definition of norm, the forth step follows from simple algebra, the fifth step follows
from Parseval’s Theorem, the six step is due to Large Offset event not happening, the seventh step is
due to Lemma H.29, the eighth step follows from Eq. (51).

In the following, we have that
∑

j∈[B]

T · ∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T
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≤
∑

j∈[B]

∫ T

0

|(g∗(t) ·H(t)) ∗G(j)
σ,b(t)|2dt

≤
∑

j∈[B]

∫ ∞

−∞
|(g∗(t) ·H(t)) ∗G(j)

σ,b(t)|2dt

=
∑

j∈[B]

∫ ∞

−∞
|(ĝ(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

≤ k2

(k − δ)2

∫ ∞

−∞
|ĝ(f) ∗ Ĥ(f)|2df

=
k2

(k − δ)2
·
∫ ∞

−∞
|g(t) ·H(t)|2dt

=
k2

(k − δ)2
·
∫ T

0

|g(t) ·H(t)|2dt

≤ k2

(k − δ)2
·
∫ T

0

|g(t)|2dt

= T
k2

(k − δ)2
∥g(t)∥2T (56)

where the first step is due to the definition of norm, the second step follows from g(t) = 0 when
t /∈ [0, T ], the third step follows from Parseval’s Theorem, the forth step is because of Lemma H.29,
the fifth step is from Parseval’s Theorem, the sixth step is based on g(t) = 0 when t /∈ [0, T ], the
seventh step is from |H(t)|2 ≤ 1, the last step is from the definition of norm. We have that

T∥xSf
(t)− xS(t)∥2T

≤ k2

(1− cε)(1− ε)2(k − δ)2
·
∑

j∈B\Sg

T∥(g∗(t) ·H(t)) ∗G(j)
σ,b(t))∥2T

≤ k2

(1− cε)(1− ε)2(k − δ)2

∑

j∈[B]

T∥(g∗(t) ·H(t)) ∗G(j)
σ,b(t))∥2T

≤ k4

(1− cε)(1− ε)2(k − δ)4
T∥g(t)∥2T

≤ (1 +O(ε))T∥g(t)∥2T
where the first step follows from Eq. (55), the second step follows from simple algebra, the third step
is due to Eq.(54), the forth step is because of the reason that δ is much smaller than ε and ε < 1.

Lemma H.41 (High SNR signal’s energy). Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) = x∗(t) + g(t)

be our observable signal. Let N 2
1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ). Let C1, · · · , Cl are the N1-heavy

clusters from Definition H.11. Let S∗ denotes the set of frequencies f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci

for some i ∈ [l], and
∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,

Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

Let Sf be defined in Definition H.32. Then, we have that,

∥xSf
∥T ≤ (1 +O(ε))∥g∥T + ∥x∗∥T
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Proof. We have that,

∥xSf
∥T ≤ ∥xSf

− xS∥T + ∥xS∗ − x∗∥T + ∥xS − xS∗∥T + ∥x∗∥T
≲ ∥xSf

− xS∥T + ∥xS∗ − x∗∥T + ∥x− xS∗∥T + ∥x∗∥T
≲ ∥xSf

− xS∥T + ∥xS∗ − x∗∥T + ∥x− x∗∥T + ∥x∗∥T
≤ ∥xSf

− xS∥T + ∥g∥T + ∥x∗∥T
≤ (1 +O(ε))∥g∥T + ∥x∗∥T ,

where the first step follows from triangle inequality, the second step follows from Corollary H.22, the
third step follows from triangle inequality, the forth step follows from Claim H.12, where the last
step follows from Lemma H.40.

H.10 (3 +
√
2 + ε)-approximate algorithm

In this section, we prove the main result: a (3+
√
2+ ε)-approximate Fourier interpolation algorithm,

which significantly improves the accuracy of Chen et al. (2016)’s result.

Theorem H.42 (Fourier interpolation with (3+
√
2+ε)-approximation error). Let x(t) = x∗(t)+g(t),

where x∗ is k-Fourier-sparse signal with frequencies in [−F, F ]. Given samples of x over [0, T ] we
can output y(t) such that with probability at least 1− 2−Ω(k),

∥y − x∗∥T ≤ (3 +
√
2 + ε)∥g∥T + δ∥x∗∥T .

Our algorithm uses poly(k, ε−1, log(1/δ)) log(FT ) samples and poly(k, ε−1, log(1/δ)) · log2(FT )
time. The output y is poly(k, ε−1, log(1/δ))-Fourier-sparse signal.

Proof. Let N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ), N 2

1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ) be the heavy
cluster parameter.

First, by Lemma H.12, there is a set of frequencies S∗ ⊂ [k] and xS∗(t) =
∑

j∈S∗
vje

2πifjt such that

∥xS∗ − x∗∥2T ≤ (1 + ε)N 2
1 . (57)

Furthermore, each fj with j ∈ S∗ belongs to an N1-heavy cluster Cj with respect to the filter
function H defined in Definition H.6.

By Definition H.11 of heavy cluster, it holds that
∫

Cj

|Ĥ · x∗(f)|2df ≥ TN 2
1 /k.

By Definition H.11, we also have |Cj | ≤ k ·∆h, where ∆h is the bandwidth of Ĥ .

Let ∆ ∈ R+, and ∆ > k ·∆h, which implies that Cj ⊆ [fj −∆, fj +∆]. Thus, we have
∫ fj+∆

fj−∆

|Ĥ · x∗(f)|2df ≥ TN 2
1 /k.

By Corollary H.22, there is a set of frequencies S ⊂ S∗ and xS(t) =
∑
j∈S

vje
2πifjt such that

∥xS − xS∗∥2T ≤ (1 +O(
√
ε2))∥x− xS∗∥2T .

Let g′ = x− xS∗ .

In the following part, we will only focus on recovering the high SNR frequency. Let Sf be defined in
Definition H.32. It’s to know Sf ⊂ S By applying Theorem H.37, there is an algorithm that outputs
a set of frequencies L ⊂ R such that, |L| = O(k/(ε0ε1ε2)), and with probability at least 1− 2−Ω(k),
for any fj with j ∈ Sf , there is a f̃ ∈ L such that,

|fj − f̃ | ≲ ∆
√
∆T .
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We define a map p : R→ L as follows:

p(f) := argmin
f̃∈L

|f − f̃ | ∀f ∈ R.

Then, xS(t) can be expressed as

xSf
(t) =

∑

j∈Sf

vje
2πifjt

=
∑

j∈Sf

vje
2πi·p(fj)t · e2πi·(fj−p(fj))t

=
∑

f̃∈L

e2πif̃ t ·
∑

j∈Sf : p(fj)=f̃

vje
2πi(fj−f̃)t,

where the first step follows from the definition of xS(t), the last step follows from interchanging the
summations.

For each f̃i ∈ L, by Corollary H.2 with x∗ = xS ,∆ = ∆
√
∆T , we have that there exist degree

d = O(T∆
√
∆T + k3 log k + k log 1/δ) polynomials Pi(t) corresponding to f̃i ∈ L such that,

∥xSf
(t)−

∑

f̃i∈L

e2πif̃itPi(t)∥T ≤
√
δ∥xSf

(t)∥T (58)

Define the following function family:

F := span
{
e2πif̃ t · tj | ∀f̃ ∈ L, j ∈ {0, 1, . . . , d}

}
.

Note that
∑

f̃i∈L e2πif̃itPi(t) ∈ F .

By Claim H.16, for function family F , KUniform[0,T] = O((|L|d)4 log3(|L|d)).
By Lemma H.18, we have that, choosing a set W of O(ε−1KUniform[0,T] log(|L|d/ρ)) i.i.d. samples
uniformly at random over duration [0, T ] is a (ε, ρ)-WBSP.

By Lemma H.19, there is an algorithm that runs in O(ε−1|W |(|L|d)ω−1 log(1/ρ))-time using sam-
ples in W , and outputs y′(t) ∈ F such that, with probability 1− ρ,

∥∥∥y′(t)−
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
≤ (1 + ε)

∥∥∥x(t)−
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T

(59)

Then by Lemma H.3, we have that there is a (kd)-Fourier-sparse signal y(t), such that

∥y − y′∥T ≤ δ′ (60)

where δ′ > 0 is any positive real number, thus, y can be arbitrarily close to y′.

Moreover, the sparsity of y(t) is

kd = kO(T∆
√
∆T + k3 log k + k log 1/δ) = poly(k, ε−1, log(1/δ)).

Therefore, the total approximation error can be upper bounded as follows:

∥y − x∗∥T
≤ ∥y − y′∥T +

∥∥∥y′ −
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Triangle inequality)

≤ (1 + 0.1ε)
∥∥∥y′ −

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Eq. (60))

≤ (1 + 2ε)
∥∥∥x−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T

(Eq. (59))
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≤ (1 + 2ε)(∥x− xSf
∥T + ∥xSf

− x∗∥T ) + 2(1 + 2ε)∥
∑

f̃i∈L

e2πif̃itPi(t)− xSf
∥T

(Triangle Inequality)

≤ (1 + 2ε)(∥x− xS∥T + 2∥xSf
− xS∥T + ∥xS − x∗∥T ) + 2(1 + 2ε)∥

∑

f̃i∈L

e2πif̃itPi(t)− xSf
∥T

(Triangle Inequality)

≤ (1 + 2ε)(∥x− xS∥T + ∥xS − x∗∥T ) +O(
√
δ)∥xSf

(t)∥T + 2(1 + 2ε)∥xSf
− xS∥T

(Eq. (58))

≤ (1 + 2ε)(1 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T +O(

√
δ)∥xSf

(t)∥T + 2(1 + 2ε)∥xSf
− xS∥T

(Lemma H.38)

≤ (1 + 2ε)(1 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T +O(

√
δ)(∥g∥T + ∥x∗∥T ) + 2(1 + 2ε)(1 +O(ε))∥g(t)∥T

(Lemma H.39)

≤ (3 +
√
2 +O(

√
ε))∥g∥T +O(

√
δ)∥x∗∥T

By re-scaling ε and δ, we prove the theorem.

I Improving Band-Limited Interpolation Precision in a Smaller Range

In this section, we show that the approximation error of the Fourier interpolation algorithm developed
in Section H can be further improved, if we only care about the signal in a shorter time duration
[0, (1− c)T ] for c ∈ (0, 1). The main result of this section is Theorem I.4.

I.1 Control noise

Lemma I.1. Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) = x∗(t) + g(t) be our observable signal. Let

N 2
1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ). Let C1, · · · , Cl are the N1-heavy clusters from Definition H.11.

Let S∗ denotes the set of frequencies f∗ ∈ {fj}j∈[k] such that, f∗ ∈ Ci for some i ∈ [l], and
∫

Ci

|x̂∗ ·H(f)|2df ≥ TN 2
1 /k,

Let S denotes the set of frequencies f∗ ∈ S∗ such that, f∗ ∈ Cj for some j ∈ [l], and
∫

Cj

|x̂ ·H(f)|2df ≥ ε2TN 2
1 /k,

Then, we have that,

∥x− xS∥T ′ + ∥xS − x∗∥T ′ ≤ (
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T .

Proof. Following from the fact that
√
1 + ε = 1 +O(ε) for ε < 1, we have

N1 =
√
ε1(∥g∥2T + δ∥x∗∥2T ) ≤

√
ε1∥g∥T +

√
δε1∥x∗∥T .

We have that

∥x− xS∗∥T ≤ ∥x− x∗∥T + ∥x∗ − xS∗∥T
≤ ∥g∥T + ∥x∗ − xS∗∥T
≤ ∥g∥T + (1 + ε)N1, (61)

where the first step follows from triangle inequality, the second step follows the definition of g, the
third step follows from Claim H.12.
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Therefore,

∥x− xS∥T ′ + ∥xS − x∗∥T ′

≤ ∥x− xS∥T ′ + ∥xS − xS∗∥T ′ + ∥xS∗ − x∗∥T ′

≤ ∥x− xS∥T ′ + ∥xS − xS∗∥T ′ + (1 + 2c)∥xS∗ − x∗∥T ′

≤ (1 + 2δ)∥H(x− xS)∥T ′ + (1 + 2δ)∥H(xS − xS∗)∥T ′ + (1 + 2c)∥xS∗ − x∗∥T
≤ (1 +O(δ))(1 + 2c)(∥H(x− xS)∥T + ∥H(xS − xS∗)∥T ) + (1 + ε)(1 +O(c))N1

≤ (1 +O(δ))(1 + 2c)
√
2
√
∥H(x− xS)∥2T + ∥H(xS − xS∗)∥2T + (1 + ε)(1 +O(c))N1

≤ (1 +O(δ))(1 +O(
√
ε2))(1 +O(c))

√
2∥x− xS∗∥T + (1 + ε)(1 +O(c))N1

≤ (
√
2 +O(δ +

√
ε2 + c))(∥g∥T + (1 + ε)N1) + (1 + ε)(1 +O(c))N1

≤ (
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T ,

where the first step follows from triangle inequality, the second step follows from for any function
x : R → C, (1 − c)∥x∥T ′ ≤ ∥x∥T , the third step follows from Property I of Lemma H.7 and
(1 − c)/2 < ( 12 − 2

s1
)s3, the forth step follows from Claim H.12, the fifth step follows from

∥H(x − xS)∥T + ∥H(xS − xS∗)∥T ≤
√
2
√
∥H(x− xS)∥2T + ∥H(xS − xS∗)∥2T , the sixth step

follows from Lemma H.21, the seventh step follows from Eq. (49), the last step follows from
ε = ε0 = ε1 = ε2.

Parameters setting By Section C.3 in Chen et al. (2016), we choose parameters for filter function
(H(t), Ĥ(f)) as follows:

• By Eq. (19) in the proof of Property VI of filter function (H(t), Ĥ(f)), we need (1−s3(1−
2
s1
)) · Õ(k4) ≤ ε, thus we have that min( 1

1−s3
, s1) ≥ Õ(k4)/ε.

• In the proof of Property V of filter function (H(t), Ĥ(f)), we set ℓ ≳ k log(k/δ).

• In the proof of Lemma I.1, we set (1− c)/2 < ( 12 − 2
s1
)s3. Thus, we have that min(s3, 1−

4
s1
) ≥ 1− c

2 or equivalently min( 1
1−s3

, s1/4) ≥ 2
c .

• ∆h is determined by the parameters of filter (H(t), Ĥ(f)) in Eq. (20):
∆h ≂ s1ℓ

s3T
. Combining the setting of s1, s3 ℓ, we should set ∆h ≥

max(Õ(k5 log(1/δ))/(εT ), O(k log(k/δ)/(cT ))).

I.2 (
√
2 + ε)-approximation ratio

Corollary I.2 (Corollary of Theorem H.37). Let x∗(t) =
∑k

j=1vje
2πifjt and x(t) = x∗(t) + g(t)

be our observable signal where ∥g(t)∥2T ≤ c0∥x∗(t)∥2T for a sufficiently small constant c0. Then
Procedure FREQUENCYRECOVERYKCLUSTER returns a set L of O(k/(ε0ε1ε2)) frequencies that
covers all N2-heavy clusters of x∗, which uses poly(k, c−1, ε−1, ε−1

0 , ε−1
1 , ε−1

2 , log(1/δ)) log(FT )

samples and poly(k, c−1, ε−1, ε−1
0 , ε−1

1 , ε−1
2 , log(1/δ)) log2(FT ) time.

In particular, for ∆0 = c−1ε−1poly(k, log(1/δ))/T and N 2
2 := ε1ε2(∥g(t)∥2T + δ∥x∗(t)∥2T ), with

probability 1− 2−Ω(k), for any f∗ with
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN 2
2 /k, (62)

there exists an f̃ ∈ L satisfying
|f∗ − f̃ | ≲ ∆0

√
∆0T .

Remark I.3. The proof is similar with the proof of Theorem H.37.

Theorem I.4 ((
√
2 + ε)-approximate Fourier interpolation algorithm with shrinking range). Let

x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies in [−F, F ]. Let T ′ =
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T (1 − c). Given samples of x over [0, T ], we can output y(t) such that with probability at least
1− 2−Ω(k),

∥y − x∗∥T ′ ≤ (
√
2 + ε+ c)∥g∥T + δ∥x∗∥T .

Our algorithm uses poly(k, ε−1, c−1, log(1/δ)) log(FT ) samples and poly(k, ε−1, c−1, log(1/δ)) ·
log2(FT ) time. The output y is poly(k, ε−1, c−1, log(1/δ))-Fourier-sparse signal.

Proof. Let N 2
1 := ε1(∥g(t)∥2T + δ∥x∗(t)∥2T ) be the heavy cluster parameter.

First, by Lemma H.12, there is a set of frequencies S∗ ⊂ [k] and xS∗(t) =
∑

j∈S∗
vje

2πifjt such that

∥xS∗ − x∗∥2T ≤ (1 + ε)N 2
1 . (63)

Furthermore, each fj with j ∈ S belongs to anN1-heavy cluster Cj with respect to the filter function
H defined in Definition H.6.

By Definition H.11 of heavy cluster, it holds that
∫

Cj

|Ĥ · x∗(f)|2df ≥ TN 2
1 /k.

By Definition H.11, we also have |Cj | ≤ k ·∆h, where ∆h is the bandwidth of Ĥ .

Let ∆ ∈ R+, and ∆ > k ·∆h, which implies that Cj ⊆ [fj −∆, fj +∆]. Thus, we have
∫ fj+∆

fj−∆

|Ĥ · x∗(f)|2df ≥ TN 2
1 /k.

By Corollary H.22, there is a set of frequencies S ⊂ S∗ and xS(t) =
∑
j∈S

vje
2πifjt such that

∥xS − xS∗∥2T ≤ (1 +O(
√
ε2))∥x− xS∗∥2T .

Let g′ = x− xS∗ .

Now it is enough to recover only xS , instead of x∗.

By applying Theorem I.2, there is an algorithm that outputs a set of frequencies L ⊂ R such that,
|L| = O(k/(ε0ε1ε2)), and with probability at least 1 − 2−Ω(k), for any fj with j ∈ S, there is a
f̃ ∈ L such that,

|fj − f̃ | ≲ ∆
√
∆T .

We define a map p : R→ L as follows:

p(f) := argmin
f̃∈L

|f − f̃ | ∀f ∈ R.

Then, xS(t) can be expressed as

xS(t) =
∑

j∈S

vje
2πifjt

=
∑

j∈S

vje
2πi·p(fj)t · e2πi·(fj−p(fj))t

=
∑

f̃∈L

e2πif̃ t ·
∑

j∈S: p(fj)=f̃

vje
2πi(fj−f̃)t,

where the first step follows from the definition of xS(t), the last step follows from interchanging the
summations.

For each f̃i ∈ L, by Corollary H.2 with x∗ = xS ,∆ = ∆
√
∆T , we have that there exist degree

d = O(T∆
√
∆T + k3 log k + k log 1/δ) polynomials Pi(t) corresponding to f̃i ∈ L such that,

∥xS(t)−
∑

f̃i∈L

e2πif̃itPi(t)∥T ≤ δ∥xS(t)∥T (64)
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Define the following function family:

F := span
{
e2πif̃ t · tj | ∀f̃ ∈ L, j ∈ {0, 1, . . . , d}

}
.

Note that
∑

f̃i∈L e2πif̃itPi(t) ∈ F .

By Claim H.16, for function family F , KUniform[cT/2,T(1−c/2)] = O((|L|d)4 log3(|L|d)).
By Lemma H.18, we have that, choosing a set W of O(ε−1KUniform[cT/2,T(1−c/2)] log(|L|d/ρ))
i.i.d. samples uniformly at random over duration [0, T ] is a (ε, ρ)-WBSP.

By Lemma H.19, there is an algorithm that runs in O(ε−1|W |(|L|d)ω−1 log(1/ρ))-time using sam-
ples in W , and outputs y′(t) ∈ F such that, with probability 1− ρ,

∥y′(t)−
∑

f̃i∈L

e2πif̃itPi(t)∥T ′ ≤ (1 + ε)∥x(t)−
∑

f̃i∈L

e2πif̃itPi(t)∥T ′ (65)

Then by Lemma H.3, we have that there is a O(kd)-Fourier-sparse signal y(t), such that

∥y(t)− y′(t)∥T ′ ≤ δ′ (66)

where δ′ > 0 is any positive real number. Thus, y can be arbitrarily close to y′.

Moreover, the sparsity of y(t) is kd = kO(T∆
√
∆T + k3 log k + k log 1/δ) =

poly(k, ε−1, c−1, log(1/δ)).

Therefore, the total approximation error can be upper bounded as follows:

∥y − x∗∥T ′

≤ ∥y − y′∥T ′ +
∥∥∥y −

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T ′

+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T ′

≤ (1 + 0.1ε)
∥∥∥y −

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T ′

+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T ′

≤ (1 + 2ε)
∥∥∥x−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T ′

+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗
∥∥∥
T ′

≤ (1 + 2ε)(
∥∥∥x− xS

∥∥∥
T ′

+
∥∥∥xS − x∗

∥∥∥
T ′
) + 2(1 + ε)∥xS −

∑

f̃i∈L

e2πif̃itPi(t)∥T ′

≤ (1 + 2ε)(
∥∥∥x− xS

∥∥∥
T ′

+
∥∥∥xS − x∗

∥∥∥
T ′
) +O(δ)∥xS(t)∥T

≤ (1 + 2ε)(
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T +O(δ)∥xS(t)∥T

≤ (1 + 2ε)(
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T +O(δ)(∥g∥T + ∥x∗∥T )

≤ (
√
2 +O(

√
ε+ c))∥g∥T +O(

√
δ)∥x∗∥T ,

where the first step follows from triangle inequality, the second step follows from Eq. (66), the third
step follows from Eq. (65), the forth step follows from Triangle Inequality again, the fifth step follows
from Eq. (64), the sixth step follows from Lemma I.1, the seventh step follows from Lemma H.39,
and the last step is straightforward.

By re-scaling ε and δ, we prove the theorem.

J Broader Impact

By cutting the approximation constant from ∼100 to 3 +
√
2, our methods could materially shorten

scan times in MRI, reduce power consumption in compressive sensing devices, and improve fidelity
in spectrum-sparse communication systems, thus benefiting healthcare, environmental monitoring,
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and data transmission. At the same time, higher-quality reconstructions from fewer samples may
amplify surveillance capabilities or aid in generating convincingly doctored audio/video; responsible
adoption therefore demands privacy safeguards, transparent validation on non-ideal data, and ethical
oversight whenever the technology is applied to sensitive domains.
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