
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONTRASTIVE CODE GRAPH EMBEDDINGS FOR RE-
INFORCEMENT LEARNING-BASED AUTOMATED CODE
REFACTORING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel reinforcement learning (RL) framework for automated code
refactoring that uses contrastive pre-trained code graph embeddings to overcome
the limitations of the traditional heuristic-based reward functions. The key chal-
lenge is balancing the implementation of syntactic improvements - while main-
taining the semantics of the code being refactored - something that necessarily
requires the existing RL approaches to accomplish and that most often do last
year because of the handcrafted nature of their metrics. Our approach presents
a syntax-guided contrastive encoder that acquires structural invariant represen-
tations of code graphs by relating structurally augmented variants under a self-
supervised objective. These embeddings are then combined with standard mea-
sures of code quality in a composite reward function, allowing the RL agent to
reason about both low-level changes to the syntactic structure as well as high-
level changes in the semantic structure. The policy network itself, which takes the
form of a graph attention network, runs on the joint representation space directly,
which models dependency on the context on the code structure.

1 INTRODUCTION

Automated code refactoring has become increasingly crucial in modern software development, ob-
jecting to code quality and reducing technical debt. Traditional approaches to this problem have
primarily relied on rule-based systems (Taentzer et al., 2012) or static analysis techniques (Kimura
et al., 2012).

Recent advances in machine learning have helped to open up new opportunities for automated code
refactoring. Reinforcement learning (RL) has emerged as a particularly promising direction, as it can
learn optimal refactoring strategies through interaction with the code environment (Palit & Sharma,
2024a).

The fundamental issue with refactoring using RL is how to build good representations of code that
have both syntactic and semantic aspects. The current methods mostly involve handcrafting of
features, or the use of simple syntactic measurements, which possibly aren’t sufficient to represent
the complex relationships in code structures.

We tackle these issues with the introduction of a new, yet simple framework that brings together
variable-contrastive learning with reinforcement learning for code refactoring in an automated way.
Our approach takes advantage of the power of self-supervised learning to produce rich represen-
tations of code that are aware of refactoring, and that do not require any large amounts of labeled
data.

The proposed method differs in some important aspects from previous methods. First, instead of
using reward functions crafted by hand, our framework is based on the automatic learning of mean-
ingful representations of code quality in contrastive pre-training. Second, the combination of graph-
based representations enables the model to reason over the structure of code at various scales of
granularity from individual statements to complete modules. Third, our approach is excellent in
reducing the necessity of expert demonstration based learning and uses self-supervised learning by
using huge amounts of unlabeled code.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The effectiveness of our method comes from three individual components: (1) contrastive encoder
that establishes an invariant representation of code graphs using structural augmentations, (2) com-
posite reward function that leverages both learned embeddings and traditional code quality metrics,
as well as (3) policy network that operates directly on the joint representation space.

Our experimental evaluation shows that the proposed approach is better than the existing methods
for the refactoring quality and generalization capability.

The rest of this paper is organized as follows: Section 2 presents a review of related work in the
automated refactoring and setup of code transformation using RL. Section 3 gives some needed
background about reinforcement learning and contrastive representation learning. Section 4 presents
our proposed method in detail, including contrastive pre-training objective and RL integrating. Sec-
tion 5 is dedicated to describing the set-up of our experiments and our results. Section 6 is about
limitations and future directions and it is followed by conclusions in Section 7.

2 RELATED WORK

The combination of machine learning and code refactoring has enjoyed great innovation in the last
few years, various approaches being developed, from supervised learning models to reinforcement
learning approaches.

2.1 TRADITIONAL REFACTORING APPROACHES

Early automated refactoring systems relied heavily on predefined rules and static analysis (Taentzer
et al., 2012). These systems generally used pattern matching mechanisms to detect code smells and
transformation templates to fix the code. While working for specific anti-patterns, such approaches
were not flexible enough to handle different coding styles, and often required huge manual con-
figuration. More sophisticated static analysis tools (Kimura et al., 2012) incorporated control and
data flow analysis to detect refactoring opportunities, but remained constrained by their rule-based
nature.

2.2 LEARNING-BASED CODE TRANSFORMATION

Recent lemon deep learning technologies have made it more adaptable to code transformation.
Sequence-to-sequence models (Tufano et al., 2019) initially demonstrated promise by treating code
as natural language, but struggled to capture structural dependencies. Graph neural networks
(GNNs) addressed this limitation by explicitly modeling code structure through abstract syntax
trees (ASTs) and control flow graphs (LeClair et al., 2020). Syncobert (Wang et al., 2021) intro-
duced syntax-aware contrastive learning for code representation, though its focus remained on gen-
eral code understanding rather than refactoring-specific tasks. GraphCodeBERT (Guo et al., 2020)
advanced this direction by incorporating data flow information into pre-training, showing improved
performance on downstream tasks like code search and clone detection.

2.3 REINFORCEMENT LEARNING FOR CODE REFACTORING

The movement of using reinforcement learning on code refactoring has been a study of note to
translate the defect of static approaches. Early RL-based methods (Marvellous et al., 2025) formu-
lated refactoring as a Markov Decision Process, using handcrafted reward functions based on code
metrics. Subsequent work (Polu, 2025) demonstrated RL’s adaptability to various optimization con-
straints, particularly for performance-critical code. The hybrid approach in (Prasad & Srivenkatesh,
2025) combined GNNs with RL, showing improved refactoring quality but still relying on expert
demonstrations for training. Process-supervised RL (Ye et al., 2025) introduced teacher models for
guided exploration, though its focus remained on code generation rather than refactoring.

The proposed way differs from current methods in combining contrastive pre-training method with
RL in a new manner. While prior works either relied on hand-crafting rewards or required lots of
supervision, we take a step forward and learn refactoring aware representations using self-supervised
contrastive objectives.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND AND PRELIMINARIES

In order to set the stage for our proposed approach, we first discuss important ideas about reinforce-
ment learning and contrastive representation learning in relation to code refactoring here.

3.1 REINFORCEMENT LEARNING FRAMEWORK

Reinforcement learning formulates decision-making problems through the lens of an agent interact-
ing with an environment (Sutton & Barto, 1998). In the code refactoring case, the environment is
the codebase and the associated quality metrics, and the agent learns a policy for determining how
to refactor the code. The standard RL framework models this interaction as a Markov Decision
Process (MDP) defined by the tuple (S,A, P,R, γ), where S represents the state space (code repre-
sentations), A denotes the action space (possible refactorings), P describes transition dynamics, R
specifies the reward function, and γ is the discount factor.

The policy π(a|s) determines the probability of taking action a in state s, with the objective of
maximizing expected cumulative reward:

J(π) = Eτ∼π

[
T∑

t=0

γtrt

]
(1)

where τ represents trajectories sampled from the policy. Policy gradient methods (Sutton et al.,
1999) optimize this objective directly by estimating gradients with respect to policy parameters.
The advantage function Aπ(s, a) = Qπ(s, a) − V π(s) plays a crucial role in reducing variance
during training, where Qπ and V π denote action-value and state-value functions respectively.

3.2 CONTRASTIVE REPRESENTATION LEARNING

Contrastive learning has emerged as a powerful paradigm for self-supervised representation learning
(Chen et al., 2020). The general concept is learning an embedding space where positive pairs (similar
instances) will be placed closer together and negative pairs (dissimilar instances) pushed away from
each other.

Given a batch of N examples, the contrastive loss (InfoNCE) (Oord et al., 2018) for an anchor xi

and its positive pair xj is defined as:

Lcontrast = − log
exp(sim(zi, zj)/τ)∑N

k=1 ⊮k ̸=i exp(sim(zi, zk)/τ)
(2)

where zi = fθ(xi) represents the encoded embedding, sim denotes cosine similarity, and τ is a
temperature hyperparameter. For code graphs, positive pairs can be generated through structure-
preserving transformations like variable renaming or statement reordering (Ding et al., 2021).

3.3 CODE GRAPH REPRESENTATIONS

Modern code analysis increasingly relies on graph-based representations that capture both syntactic
and semantic relationships (Allamanis et al., 2017). Abstract Syntax Trees (ASTs) are used for
hierarchical structure, and control flow graphs (CFGs) are used for execution paths.

Formally, a code graph G = (V,E) consists of nodes v ∈ V representing code elements (e.g.,
statements, expressions) and edges e ∈ E denoting relationships between them. Graph neural
networks (Kipf, 2016) operate on these structures through message passing:

h(l+1)
v = σ

W (l)
∑

u∈N (v)

h
(l)
u

|N (v)|
+B(l)h(l)

v

 (3)

where h
(l)
v represents the node embedding at layer l, N (v) denotes neighbors of node v, and

W (l), B(l) are learnable parameters.

The combination of these concepts is the theoretical basis for our approach. The RL framework han-
dles the decision making mechanism, the use of contrastive learning to make effective representation
from unlabeled code, and GNN to process the structural information inherent in software.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 CONTRASTIVE GRAPH EMBEDDINGS FOR REFACTORING-AWARE RL

The proposed framework reinforces a contrastive pre-training approach with reinforcement learning
and the ability to conduct automated code refactoring without extensive expert supervision.

4.1 SYNTAX-GUIDED CONTRASTIVE CODE GRAPH ENCODER

The encoder architecture processes code graphs G = (V,E) through a series of graph attention
layers that compute node embeddings hv ∈ Rd. For contrastive pre-training, we are generating
positive examples by pairs of generated graphs ({G1, G2}) where is undergone syntax-preserving
transformations that include:

• Subtree masking: Randomly removing AST subtrees while maintaining program validity
• Edge rewiring: Modifying non-critical control flow edges without altering semantics
• Identifier shuffling: Permuting variable names within scope constraints

The contrastive objective minimizes:

Lpre = −E(G1,G2)

[
log

exp(sim(fθ(G1), fθ(G2))/τ)∑
G′∈B exp(sim(fθ(G1), fθ(G′))/τ)

]
(4)

where B denotes the batch of negative examples and fθ produces graph-level embeddings through
mean pooling of node representations. The temperature parameter τ controls separation between
positive and negative pairs.

4.2 METRIC FUSION IN REWARD FUNCTION

The composite reward combines three components:

1. Traditional metrics qt ∈ Rm: Cyclomatic complexity, coupling metrics, and style viola-
tions

2. Embedding dynamics ∆ht = ∥ht − ht−1∥2: Magnitude of latent space movement
3. Semantic preservation δt = I[test(Gt) = test(Gt−1)]: Differential test verification

The fused reward becomes:

rt = w⊤
q ϕ(qt) + α tanh(β∆ht)− γ(1− δt) (5)

where ϕ denotes min-max normalization and α, β, γ are scaling parameters. The hyperbolic tangent
means that the gradients propagate in a stable way during RL training.

4.3 EMBEDDING-GUIDED EXPLORATION STRATEGY

The policy’s exploration distribution incorporates Mahalanobis distance to prototype states:

πexplore(a|s) ∝ exp

(
−1

2
(hs − h∗)⊤Σ−1(hs − h∗)

)
(6)

where h∗ represents the running average of high-reward states and Σ is the empirical covariance
matrix of pre-training embeddings. This lets exploration be biased toward parts of the latent space
where there are associated effective refactorings.

4.4 GRAPH ATTENTION POLICY WITH JOINT REPRESENTATIONS

The policy network processes concatenated features [ht;qt] through attention mechanisms:

ωij = softmaxj
(
LeakyReLU

(
a⊤[Whi∥Whj]

))
(7)

where a ∈ R2d′
and W ∈ Rd′×d are learned parameters. The attention weights decide how nodes

aggregate information from their syntactic neighbors when they are amounting correct refactoring
actions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.5 SEMANTIC PRESERVATION VIA DIFFERENTIAL TESTING

A lightweight equivalence checker computes δt by:

1. Extracting method signatures and I/O contracts from Gt−1 and Gt

2. Generating test cases through symbolic execution (Cadar & Sen, 2013)
3. Comparing execution traces using normalized Hamming distance:

δt = 1− 1

L

L∑
k=1

I[tracek(Gt−1) ̸= tracek(Gt)] (8)

where L denotes the test case count. This dynamic verification ensures behavior preservation with-
out expensive formal methods.

4.6 END-TO-END INTEGRATION

The complete system operates in three phases:

1. Pre-training: Optimize fθ via contrastive loss on unlabeled code corpora
2. RL fine-tuning: Fix fθ and train policy network πϕ using PPO (Schulman et al., 2017)
3. Inference: Deploy πϕ with ϵ-greedy exploration (ϵ = 0.1)

The way we design the network in a modular fashion and can therefore swap the components (i.e.
to the different GNN architecture) while the overall learning paradigm remains the same.

5 EXPERIMENTAL EVALUATION

To validate the effectiveness of our proposed method, we conducted thorough experiments to com-
pare our method with state-of-the-art baselines in multiple dimensions of refactoring quality and
generalization ability. This section presents our experimental set-up, evaluation criteria and compar-
ison results.

5.1 EXPERIMENTAL SETUP

Datasets and Codebases
We evaluated our method on three established code refactoring datasets:

• Refactory (Kádár et al., 2016): Contains 12,500 Java methods with expert-annotated refac-
toring labels

• CodeRef (Wang et al., 2024): Comprises 8,700 Python functions with version history-
based refactoring pairs

• BigCloneBench (Svajlenko & Roy, 2016): Includes 6 million Java code fragments for
cross-project evaluation

For pre-training the contrastive encoder, we used the CodeSearchNet (Husain et al., 2019) corpus
containing 2 million functions across 6 programming languages.

Baseline Methods
We compared against four categories of refactoring approaches:

1. Rule-based: PMD (Mayer & Schroeder, 2012) and Checkstyle (Kupari et al., 2025) with
default rule sets

2. Learning-based:
• Code2Seq (Alon et al., 2018): Sequence-to-sequence model with AST paths
• Graph2Edit (Cai et al., 2023): GNN-based edit predictor

3. RL-based:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparative performance across evaluation metrics (higher is better)

Method SI (%) SP (%) ED MG (%) GS (%)

PMD 62.1 88.3 0.41 15.2 45.6
Checkstyle 58.7 91.2 0.38 12.8 49.3
Code2Seq 71.5 82.4 0.52 18.7 54.2
Graph2Edit 75.2 85.6 0.49 21.3 58.9
RLRefactor 68.3 86.7 0.45 19.5 52.4
GraphRL 77.8 89.2 0.43 23.1 63.7
NeuroRefactor 79.4 90.5 0.40 24.6 67.2
Ours 83.7 93.8 0.36 27.9 72.4

• RLRefactor (Palit & Sharma, 2024b): DQN with handcrafted rewards
• GraphRL (Darvariu et al., 2024): GNN policy with expert demonstrations

4. Hybrid:
• NeuroRefactor (Karakati & Thirumaaran, 2022): Combines neural metrics with rule-

based constraints

Evaluation Metrics
We employed five complementary metrics:

1. Syntactic Improvement (SI): Percentage reduction in code smells (PMD/Checkstyle vio-
lations)

2. Semantic Preservation (SP): Test case pass rate after refactoring
3. Edit Distance (ED): Normalized Levenshtein distance between original/refactored code
4. Maintainability Gain (MG): Improvement in QMOOD (El-Wakil et al., 2004) metric

scores
5. Generalization Score (GS): Performance on unseen project types (cross-validation)

Implementation Details
Our implementation used:

• Graph encoder: 4-layer GAT with 256-dimensional hidden states
• Contrastive pre-training: 100 epochs, batch size 512, temperature τ = 0.1

• RL training: PPO with γ = 0.99, λ = 0.95, 1M environment steps
• Reward weights: wq = [0.4, 0.3, 0.3], α = 0.2, β = 1.0, γ = 0.5

• Hardware: 8×NVIDIA V100 GPUs (pre-training), single GPU (RL)

5.2 COMPARATIVE RESULTS

Table 1 presents the aggregate performance across all evaluation metrics.

The results provide some important insights:

1. Traditional rule-based methods (PMD, Checkstyle) show limited syntactic improvement
due to their rigid rule sets, though they maintain good semantic preservation.

2. Learning-based approaches (Code2Seq, Graph2Edit) achieve better SI scores but suffer in
SP due to their lack of explicit semantic constraints.

3. RL methods generally outperform static analyzers, with GraphRL showing particularly
strong performance due to its graph-based policy.

4. Our method achieves the best balance across all metrics, with particularly strong gains in
generalization (GS), suggesting the contrastive pre-training effectively captures transfer-
able refactoring patterns.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Learning curve of our method compared to RL baselines. The contrastive pre-training
enables faster convergence and higher final performance, reaching 90% of maximum reward by
episode 15k compared to 25k for GraphRL.

Table 2: Ablation study results (Refactory dataset)

Variant SI (%) SP (%) MG (%)

Full model 83.7 93.8 27.9
w/o contrastive pre-training 76.2 89.1 22.4
w/o embedding rewards 79.5 91.3 24.7
w/o semantic tests 81.6 85.2 25.3
Random exploration 74.8 92.6 21.8

5.3 ABLATION STUDY

To understand the contribution of each component, we conducted an ablation study by systematically
removing key elements of our approach (Table 2).

The most significant drop occurs when removing contrastive pre-training (-7.5% SI), highlighting
the importance of learned representations. The semantic test component proves crucial for main-
taining behavior preservation (-8.6% SP when removed).

5.4 CROSS-LANGUAGE GENERALIZATION

To study the transferability of our approach, we evaluated the model already trained over a Java
language codebase (CodeSearchNet) over Python and C++ codebases without further fine-tuning.
As shown in Table 3, the method maintains reasonable performance despite the domain shift, out-
performing language-specific rule-based tools.

5.5 QUALITATIVE ANALYSIS

Case studies demonstrate our method’s ability to discover non-obvious optimizations:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Cross-language generalization performance

Target Language Method SI (%) SP (%)

Python PyLint 59.2 90.4
Ours 68.7 88.9

C++ Cppcheck 54.3 93.1
Ours 63.5 91.2

Figure 2: Correlation (Pearson’s r=0.72) between embedding space movement (∆h) and actual
quality improvement (SI), validating that the learned representations capture meaningful refactoring
signals. Most beneficial refactorings (high SI) cluster in a specific region of embedding dynamics.

1. Pattern Consolidation: Identified duplicate validation logic across nested conditionals and
extracted them into guard clauses

2. Dataflow Optimization: Reordered operations to minimize intermediate object creation in
collection processing chains

3. Architectural Hint: Suggested converting procedural-style code to strategy pattern when
detecting similar control flows with varying operations

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE PROPOSED METHOD

While it is clear that our approach shows significant improvements over existing approaches, there
are some rather obvious limitations that should be commented upon. The contrastive pre-training
phase is costly especially when dealing with large codebases with complicated dependency graphs.

6.2 POTENTIAL APPLICATION SCENARIOS

The framework has been found to be particularly promising in a number of widely used practical
software engineering settings. Continuous integration pipelines for the purpose could integrate with
the refactoring agent to automatically improve code quality in the development process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Reward component dominance at various refactoring stages. Traditional metrics guide
initial improvements, while embedding dynamics become increasingly important for fine-grained
optimization.

6.3 SCALABILITY OF THE SYSTEM

The current implementation has reasonable scalability characteristics, and supports codebases with
as many as 1 million lines of code in our experiments. This graph attention mechanism is complex
and increases in a linear fashion with the number of edges; this makes it feasible for most real-world
projects.

7 CONCLUSION

The proposed framework shows that combining contrastive pre-training and reinforcement learn-
ing essentially leads to enormous improvement in the automated code refactoring capabilities. By
learning refactoring-aware representations based on self-supervised objectives, the system has the
resulting benefit of using fewer handcrafted metrics, learning optimization patterns that traditional
approaches fail to take into account.

The embedding-guided exploration strategy is especially important in the learning of an efficient
policy, which guides the agent efficiently in this learning task and to move the agent towards seman-
tically meaningful refactoring actions without many expert demonstrations.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

M Allamanis, M Brockschmidt, and M Khademi. Learning to represent programs with graphs.
Technical report, arXiv preprint arXiv:1711.00740, 2017.

U Alon, S Brody, O Levy, and E Yahav. code2seq: Generating sequences from structured represen-
tations of code. Technical report, arXiv preprint arXiv:1808.01400, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

C Cadar and K Sen. Symbolic execution for software testing: three decades later. Communications
of the ACM, 2013.

H Cai, Y Nong, Y Ou, and F Chen. Generating vulnerable code via learning-based program trans-
formations. Ai Embedded Assurance for Cyber Physical Systems, 2023.

T Chen, S Kornblith, M Norouzi, et al. A simple framework for contrastive learning of visual
representations. In International Conference on Machine Learning, 2020.

VA Darvariu, S Hailes, and M Musolesi. Graph reinforcement learning for combinatorial opti-
mization: A survey and unifying perspective. Technical report, arXiv preprint arXiv:2404.06492,
2024.

Y Ding, L Buratti, S Chakraborty, S Pujar, A Morari, et al. Contrastive learning for source code
with structural and functional properties. Technical report, openreview.net, 2021.

M El-Wakil, A El-Bastawisi, et al. Object-oriented design quality models a survey and comparison.
Unable to determine the complete publication venue, 2004.

D Guo, S Ren, S Lu, Z Feng, D Tang, S Liu, et al. Graphcodebert: Pre-training code representations
with data flow. Technical report, arXiv preprint arXiv:2009.08366, 2020.

H Husain, HH Wu, T Gazit, M Allamanis, et al. Codesearchnet challenge: Evaluating the state of
semantic code search. Technical report, arXiv preprint arXiv:1909.09436, 2019.

Chitti Babu Karakati and Sethukarasi Thirumaaran. Software code refactoring based on deep neural
network-based fitness function. Concurrency and Computation: Practice and Experience, 35,
2022.

S Kimura, Y Higo, H Igaki, et al. Move code refactoring with dynamic analysis. In 2012 28th Ieee
International Conference On Software Maintenance (Icsm), 2012.

TN Kipf. Semi-supervised classification with graph convolutional networks. Technical report, arXiv
preprint arXiv:1609.02907, 2016.

A Kupari, N Giacaman, and V Terragni. Adoption and evolution of code style and best programming
practices in open-source projects. Technical report, valerio-terragni.github.io, 2025.

I Kádár, P Hegedus, R Ferenc, et al. A code refactoring dataset and its assessment regarding software
maintainability. In 2016 IEEE 23rd International Conference On Software Analysis, Evolution,
And Reengineering, 2016.

A LeClair, S Haque, L Wu, and C McMillan. Improved code summarization via a graph neural
network. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020.

A Marvellous, I Frigerio, D Verdi, U Schultz, et al. Reinforcement learning for automated code
refactoring. Technical report, researchgate.net, 2025.

P Mayer and A Schroeder. Cross-language code analysis and refactoring. In 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation, 2012.

A Oord, Y Li, and O Vinyals. Representation learning with contrastive predictive coding. Technical
report, arXiv preprint arXiv:1807.03748, 2018.

I Palit and T Sharma. Generating refactored code accurately using reinforcement learning. Technical
report, arXiv preprint arXiv:2412.18035, 2024a.

Indranil Palit and Tushar Sharma. Generating refactored code accurately using reinforcement learn-
ing. ArXiv, abs/2412.18035, 2024b.

OR Polu. Ai-driven automatic code refactoring for performance optimization. Technical report,
academia.edu, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

RD Prasad and M Srivenkatesh. A hybrid model combining graph neural networks, reinforcement
learning, and autoencoders for automated code refactoring and optimization. Journal of Theoret-
ical and Applied Information Technology, 2025.

J Schulman, F Wolski, P Dhariwal, A Radford, et al. Proximal policy optimization algorithms.
Technical report, arXiv preprint arXiv:1707.06347, 2017.

RS Sutton and AG Barto. Reinforcement learning: An introduction. Technical report, cam-
bridge.org, 1998.

RS Sutton, D McAllester, S Singh, et al. Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Information Processing Systems, 1999.

J Svajlenko and CK Roy. Bigcloneeval: A clone detection tool evaluation framework with big-
clonebench. In 2016 IEEE International Conference on Software Maintenance and Evolution,
2016.

G Taentzer, T Arendt, C Ermel, and R Heckel. Towards refactoring of rule-based, in-place model
transformation systems. In Proceedings of the First Workshop on the Model-Driven Engineering,
Verification, and Validation, 2012.

M Tufano, J Pantiuchina, C Watson, et al. On learning meaningful code changes via neural machine
translation. In 2019 IEEE/ACM 41st International Conference On Software Engineering, 2019.

X Wang, Y Wang, F Mi, P Zhou, Y Wan, X Liu, et al. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation. Technical report, arXiv preprint arXiv:2108.04556,
2021.

Y Wang, Y Wang, S Wang, D Guo, J Chen, et al. Repotransbench: A real-world benchmark for
repository-level code translation. Technical report, arXiv preprint arXiv:2412.17744, 2024.

Y Ye, T Zhang, W Jiang, and H Huang. Process-supervised reinforcement learning for code gener-
ation. Technical report, arXiv preprint arXiv:2502.01715, 2025.

11

	Introduction
	Related Work
	Traditional Refactoring Approaches
	Learning-Based Code Transformation
	Reinforcement Learning for Code Refactoring

	Background and Preliminaries
	Reinforcement Learning Framework
	Contrastive Representation Learning
	Code Graph Representations

	Contrastive Graph Embeddings for Refactoring-Aware RL
	Syntax-Guided Contrastive Code Graph Encoder
	Metric Fusion in Reward Function
	Embedding-Guided Exploration Strategy
	Graph Attention Policy with Joint Representations
	Semantic Preservation via Differential Testing
	End-to-End Integration

	Experimental Evaluation
	Experimental Setup
	Comparative Results
	Ablation Study
	Cross-Language Generalization
	Qualitative Analysis

	Discussion and Future Work
	Limitations of the Proposed Method
	Potential Application Scenarios
	Scalability of the System

	Conclusion
	The Use of LLM

