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ABSTRACT

There is a growing interest in subject-specific predictions using deep neural net-
works (DNNs) because real-world data often exhibit correlations, which has been
typically overlooked in traditional DNN frameworks. In this paper, we propose a
novel hierarchical likelihood learning framework for introducing gamma random
effects into the Poisson DNN, so as to improve the prediction performance by cap-
turing both nonlinear effects of input variables and subject-specific cluster effects.
The proposed method simultaneously yields maximum likelihood estimators for
fixed parameters and best unbiased predictors for random effects by optimizing a
single objective function. This approach enables a fast end-to-end algorithm for
handling clustered count data, which often involve high-cardinality categorical
features. Furthermore, state-of-the-art network architectures can be easily imple-
mented into the proposed h-likelihood framework. As an example, we introduce
multi-head attention layer and a sparsemax function, which allows feature selec-
tion in high-dimensional settings. To enhance practical performance and learning
efficiency, we present an adjustment procedure for prediction of random parame-
ters and a method-of-moments estimator for pretraining of variance component.
Various experiential studies and real data analyses confirm the advantages of our
proposed methods.

1 INTRODUCTION

Deep neural networks (DNNs), which have been proposed to capture the nonlinear relationship
between input and output variables (LeCun et al., 2015; Goodfellow et al., 2016), provide outstanding
marginal predictions for independent outputs. However, in practical applications, it is common to
encounter correlated data with high-cardinality categorical features, which can pose challenges for
DNNs. While the traditional DNN framework overlooks such correlation, random effect models have
emerged in statistics to make subject-specific predictions for correlated data. Lee & Nelder (1996)
proposed hierarchical generalized linear models (HGLMs), which allow the incorporation of random
effects from an arbitrary conjugate distribution of generalized linear model (GLM) family.

Both DNNs and random effect models have been successful in improving prediction accuracy of
linear models but in different ways. Recently, there has been a rising interest in combining these two
extensions. Simchoni & Rosset (2021; 2023) proposed the linear mixed model neural network for
continuous (Gaussian) outputs with Gaussian random effects, which allow explicit expressions for
likelihoods. Lee & Lee (2023) introduced the hierarchical likelihood (h-likelihood) approach, as an
extension of classical likelihood for Gaussian outputs, which provides an efficient likelihood-based
procedure. For non-Gaussian (discrete) outputs, Tran et al. (2020) proposed a Bayesian approach for
DNNs with normal random effects using the variational approximation method (Bishop & Nasrabadi,
2006; Blei et al., 2017). Mandel et al. (2023) used a quasi-likelihood approach (Breslow & Clayton,
1993) for DNNs, but the quasi-likelihood method has been criticized for its poor prediction accuracy.
Lee & Nelder (2001) proposed the use of Laplace approximation to have approximate maximum
likelihood estimators (MLEs). Although Mandel et al. (2023) also applied Laplace approximation for
DNNs, their method ignored many terms in the second derivatives due to computational expense,
which could lead to inconsistent estimations (Lee et al., 2017). Therefore, a new approach is desired
for non-Gaussian DNNs to obtain the MLEs for fixed parameters.
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Clustered count data are widely encountered in various fields (Roulin & Bersier, 2007; Henderson
& Shimakura, 2003; Thall & Vail, 1990; Henry et al., 1998), which often involve high-cardinality
categorical features, i.e., categorical variables with a large number of unique levels or categories,
such as subject ID or cluster name. However, to the best of our knowledge, there appears to be no
available source code for the subject-specific Poisson DNN models. In this paper, we introduce
Poisson-gamma DNN for the clustered count data and derive the h-likelihood that simultaneously
provides MLEs of fixed parameters and best unbiased predictors (BUPs) of random effects. In
contrast to the ordinary HGLM and DNN framework, we found that the local minima can cause poor
prediction when the DNN model contains subject-specific random effects. To resolve this issue, we
propose an adjustment to the random effect prediction that prevents from violation of the constraints
for identifiability. Additionally, we introduce the method-of-moments estimators for pretraining the
variance component. It is worth emphasizing that incorporating state-of-the-art network architectures
into the proposed h-likelihood framework is straightforward. As an example, we implement a feature
selection method with multi-head attention.

In Section 2 and 3, we present the Poisson-gamma DNN and derive its h-likelihood, respectively. In
Section 4, we present the algorithm for online learning, which includes an adjustment of random
effect predictors, pretraining variance components, and feature selection method using multi-head
attention layer. In Section 5, we provide experimental studies to compare the proposed method with
various existing methods. The results of the experimental studies clearly show that the proposed
method improves predictions from existing methods. In Section 6, real data analyses demonstrate
that the proposed method has the best prediction accuracy in various clustered count data. Proofs for
theoretical results are derived in Appendix. Source codes are included in Supplementary Materials.

2 MODEL DESCRIPTIONS

2.1 POISSON DNN

Let yij denote a count output and xij denote a p-dimensional vector of input features, where the
subscript (i, j) indicates the jth outcome of the ith subject (or cluster) for i = 1, ..., n and j = 1, ..., qi.
For count outputs, Poisson DNN (Rodrigo & Tsokos, 2020) gives the marginal predictor,

ηmij = logµm
ij = NN(xij ;w,β) =

pL∑
k=1

gk(xij ;w)βk + β0, (1)

where µm
ij = E(Yij |xij) is the marginal mean, NN(xij ;w,β) is the neural network predictor,

β = (β0, β1, ..., βpL
)
T is the vector of weights and bias between the last hidden layer and the output

layer, gk(xij ;w) denotes the k-th node of the last hidden layer, and w is the vector of all the weights
and biases before the last hidden layer. Here the bold face stands for vectors and matrices, while
non-bold face stands for scalars. In Poisson DNN, inverse of the log function, exp(·), becomes the
activation function of the output layer. Poisson DNNs allow highly nonlinear relationship between
input and output variables, but only provide the marginal predictions for µm

ij . Thus, Poisson DNN
can be viewed as an extension of Poisson GLM with ηmij = xT

ijβ.

2.2 POISSON-GAMMA DNN

To allow subject-specific prediction into the model (1), we propose the Poisson-gamma DNN,

ηcij = logµc
ij = NN(xij ;w,β) + zTijv, (2)

where µc
ij = E(Yij |xij , vi) is the conditional mean, NN(xij ;w,β) is the marginal predictor of the

Poisson DNN (1), v = (v1, ..., vn)
T is the vector of random effects from the log-gamma distribution,

and zij is a vector from the model matrix for random effects, representing the high-cardinality
categorical features. The conditional mean µc

ij can be formulated as

µc
ij = exp {NN(xij ;w,β)} · ui,

where ui = exp(vi) is the gamma random effect.
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Figure 1: An example of the proposed model architecture. The input features are denoted by xij and
the high-cardinality categorical features are denoted by zij in the proposed model (2).

Note here that, for any ϵ ∈ R, the model (2) can be expressed as

logµc
ij =

pL∑
k=1

gk(xij ;w)βk + β0 + vi =

pL∑
k=1

gk(xij ;w)βk + (β0 − ϵ) + (vi + ϵ),

or equivalently, for any δ = exp(ϵ) > 0,

µc
ij = exp {NN(xij ;w,β)} · ui = exp {NN(xij ;w,β)− log δ} · (δui),

which leads to an identifiability problem. Thus, it is necessary to place constraints on either the fixed
parts NN(xij ;w,β) or the random parts ui. Lee & Lee (2023) developed subject-specific DNN
models with Gaussian outputs, imposing the constraint E(vi) = 0, which is common for normal
random effects. For Poisson-gamma DNNs, we use the constraints E(ui) = E(exp(vi)) = 1 for
subject-specific prediction of count outputs. The use of constraints E(ui) = 1 has an advantage that
the marginal predictions for multiplicative model can be directly obtained, because

µm
ij = E[E(Yij |xij , ui)] = E [exp {NN(xij ;w,β)} · ui] = exp {NN(xij ;w,β)} .

Thus, we employ vi = log ui to the model (2), where ui ∼ Gamma(λ−1, λ−1) with E(ui) = 1
and var(ui) = λ. By allowing two separate output nodes, the Poisson-gamma DNN provides both
marginal and subject-specific predictions,

µ̂m
ij = exp(η̂mij ) = exp

{
NN(xij ; ŵ, β̂)

}
and µ̂c

ij = exp
{

NN(xij ; ŵ, β̂) + zTijv̂
}
,

where the hats denote the predicted values. Subject-specific prediction can be achieved by multiplying
the marginal mean predictor µ̂m

ij and the subject-specific predictor of random effect ûi = exp(v̂i).
Note here that

var(Yij |xij) = E {var(Yij |xij , vi)}+ var {E(Yij |xij , vi))} ≥ E {var(Yij |xij , vi)} ,

where var{E(Yij |xij , vi)} represents the between-subject variance and E{var(Yij |xij , vi)} represents
the within-subject variance. To enhance the predictions, Poisson DNN improves the marginal predictor
µm
ij = E(Yij |xij) = E{E(Yij |xij , vi)} by allowing highly nonlinear function of x, whereas Poisson-

gamma DNN further uses the conditional predictor µc
ij = E(Yij |xij , vi), eliminating between-subject

variance. Figure 1 illustrates an example of the proposed model architecture including feature
selection in Section 4.

3 CONSTRUCTION OF H-LIKELIHOOD

For subject-specific prediction via random effects, it is important to define the objective function
for obtaining exact MLEs of fixed parameters θ = (w,β, λ). In the context of linear mixed models,
Henderson et al. (1959) proposed to maximize the joint density with respect to fixed and random
parameters. However, it cannot yield MLEs of variance components. There have been various
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attempts to extend joint maximization schemes with different justifications (Gilmour et al., 1985;
Harville & Mee, 1984; Schall, 1991; Breslow & Clayton, 1993; Wolfinger, 1993), but failed to
obtain simultaneously the exact MLEs of all fixed parameters and BUPs of random parameters by
optimizing a single objective function. It is worth emphasizing that defining joint density requires
careful consideration because of the Jacobian term associated with the random parameters. For θ and
u, an extended likelihood (Lee et al., 2017) can be defined as

ℓe(θ,u) = log fy,u(y,u;θ) =
∑
i,j

log fy|u(yij |ui;w,β) +
∑
i

log fu(ui;λ). (3)

However, a nonlinear transformation vi = v(ui) of random effects ui leads to different extended
likelihood due to the Jacobian terms:

ℓe(θ,v) = log fy,v(y,v;θ) =
∑
i,j

log fy|v(yij |vi;w,β) +
∑
i

log fv(vi;λ)

=
∑
i,j

log fy|u(yij |ui;w,β) +
∑
i

log fu(ui;λ) +
∑
i

log

∣∣∣∣dui

dvi

∣∣∣∣ ̸= ℓe(θ,u).

The two extended likelihoods ℓe(θ,u) and ℓe(θ,v) lead to different estimates, raising the question
on how to obtain the true MLEs. In Poisson-gamma HGLMs, Lee & Nelder (1996) proposed the
use of ℓe(θ,v) that can give MLEs for β and BUPs for u by the joint maximization. However,
their method could not give MLE for the variance component λ. In this paper, we derive the new
h-likelihood whose joint maximization simultaneously yields MLEs of the whole fixed parameters
including the variance component λ, BUPs of the random effects u, and conditional expectations
µc = (µc

11, ..., µ
c
n,qn)

T .

Suppose that v∗ = (v∗1 , ..., v
∗
n)

T is a transformation of v such that

v∗i = vi · exp{−ci(θ;yi)},

where ci(θ;yi) is a function of some parameters in θ and yi = (yi1, ..., yiqi)
T for i = 1, 2, ..., n.

Let c(θ;y) =
∑n

i=1 ci(θ;yi). Then we define the h-likelihood as

h(θ,v) ≡ log fv∗|y(v
∗|y;w,β, λ) + log fy(y;w,β, λ) = ℓe(θ,v) + c(θ;y), (4)

if the joint maximization of h(θ,v) leads to MLEs of all the fixed parameters and BUPs of the
random parameters. A sufficient condition for h(θ,v) to yield exact MLEs of all the fixed parameters
in θ is that fv∗|y(ṽ

∗|y) is independent of θ, where ṽ∗ is the mode,

ṽ∗ = argmax
v∗

h(θ,v) = argmax
v∗

log fv∗|y(v
∗|y;w,β, λ).

For the proposed model, Poisson-gamma DNN, we found that the following function

ci(θ;yi) = (yi+ + λ−1) + log Γ(yi+ + λ−1)− (yi+ + λ−1) log(yi+ + λ−1)

satisfies the sufficient condition,

log fv∗|y(ṽ
∗|y) =

n∑
i=1

log fv∗|y(ṽ
∗
i |y) =

n∑
i=1

{
log fv|y(ṽi|y) + ci(θ;yi)

}
= 0,

where yi+ =
∑qi

j=1 yij is the sum of outputs in yi and ṽi = ṽ∗i · exp{ci(θ;yi)}. Since ci(θ;yi)

only depends on λ and yi+, we denote c(θ;y) =
∑

i ci(θ;yi) by c(λ;y) =
∑

i ci(λ; yi+). Then,
the h-likelihood at mode h(θ, ṽ) becomes the classical (marginal) log-likelihood,

ℓ(θ;y) = log fy(y;w,β, λ) = log

∫
Rn

exp {ℓe(θ,v)} dv. (5)

Thus, joint maximization of the h-likelihood (4) provides exact MLEs for the fixed parameters θ,
including the variance component λ. BUPs of u and µc can be also obtained from the h-likelihood,

ũ = exp(ṽ) = E(u|y) and µ̃c = exp(ṽ) · exp {NN(x;w,β)} = E(µc|y).

The proof and technical details for the theoretical results are derived in Appendix A.1.
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Algorithm 1 Learning algorithm for Poisson-gamma DNN via h-likelihood

Input: xij , zij
for epoch = 0 to pretrain epochs do

Train w, β and v by minimizing the negative h-likelihood.
Compute method-of-moments estimator of λ.
Adjust the random effect predictors.

end for
for epoch = 0 to train epochs do

Train all the fixed and random parameters by minimizing the negative h-likelihood.
Adjust the random effect predictors.

end for
Compute MLE of λ.

4 LEARNING ALGORITHM FOR POISSON-GAMMA DNN MODELS

In this section, we introduce the h-likelihood learning framework for handling the count data with
high-cardinality categorical features. We decompose the negative h-likelihood loss for online learning
and propose additional procedures to improve the prediction performance. The entire learning
algorithm of the proposed method is briefly described in Algorithm 1.

4.1 LOSS FUNCTION FOR ONLINE LEARNING

The proposed Poisson-gamma DNN can be trained by optimizing the negative h-likelihood loss,

Loss = −h(θ,v) = − log fy|v(y|v;w,β)− log fv(v;λ)− c(λ;y),

which is a function of the two separate output nodes µm
ij = NN(xij ;w,β) and vi = zTijv. To apply

online stochastic optimization methods, the proposed loss function is expressed as

Loss =
∑
i,j

[
−yij

(
logµm

ij + vi
)
+ eviµm

ij −
vi − evi − log λ

qiλ
+

log Γ(λ−1)

qi
− ci(λ; yi+)

]
. (6)

4.2 RANDOM EFFECT ADJUSTMENT

While DNNs often encounter local minima, Dauphin et al. (2014) claimed that in ordinary DNNs,
local minima may not necessarily result in poor predictions. In contrast to HGLM and DNN, we
observed that the local minima can lead to poor prediction when the network reflects subject-specific
random effects. In Poisson-gamma DNNs, we impose the constraint E(ui) = 1 for identifiability,
because for any δ > 0,

µc
ij = exp {NN(xij ;w,β)} · ui = [exp {NN(xij ;w,β)− log δ}] · (δui) .

However, in practice, Poisson-gamma DNNs often end with local minima that violate the constraint.
To prevent poor prediction due to local minima, we introduce an adjustment to the predictors of ui,

ûi ←
ûi

1
n

∑n
i=1 ûi

and β̂0 ← β̂0 + log

(
1

n

n∑
i=1

ûi

)
(7)

to satisfy
∑n

i=1 ûi/n = 1. The following theorem shows that the proposed adjustment improves the
local h-likelihood prediction. The proof is given in Appendix A.2.

Theorem 1 In Poisson-gamma DNNs, suppose that β̂0 and ûi are estimates of β0 and ui such that∑n
i=1 ûi/n = 1 + ϵ for some ϵ ∈ R. Let û∗

i and β̂∗
0 be the adjusted estimators in (7). Then,

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂),

and the equality holds if and only if ϵ = 0, where θ̂ and θ̂
∗

are vectors of the same fixed parameter
estimates but with different β̂0 and β̂∗

0 for β0, respectively.
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(c) PG-NN with adjustment

Figure 2: Predicted values of ui from two replications (marked as o and x for each) when ui is
generated from the Gamma distribution with λ = 1, n = 100, q = 100.
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Figure 3: Learning curve for the variance component λ when (a) λ = 0, (b) λ = 0.5, and (c) λ = 1.

Theorem 1 shows that the adjustment (7) improves the random effect prediction. According to our
experience, even though limited, this adjustment becomes important, especially when the cluster size
is large. Figure 2 is the plot of ûi against the true ui under (n, q) = (100, 100) and λ = 1. Figure 2
(a) shows that the use of fixed effects for subject-specific effects (PF-NN) produces poor prediction
of ui. Figure 2 (b) and (c) show that the use of random effects for subject-specific effects (PG-NN)
improves the subject-specific prediction, and the proposed adjustment improves it further.

4.3 PRETRAINING VARIANCE COMPONENTS

We found that the MLE for variance component λ = var(ui) could be sensitive to the choice of initial
value, giving a slow convergence. We propose the use of method-of-moments estimator (MME) for
pretraining λ,

λ̂ =

[
1

n

n∑
i=1

(ûi − 1)2

]1
2
+

√√√√1

4
+

n
∑n

i µ̂
−1
i+ (ûi − 1)2

{
∑n

i (ûi − 1)2}2

 , (8)

where µ̂i+ =
∑qi

j=1 µ̂
m
ij . Convergence of the MME (8) is shown in Appendix A.3. Figure 3 shows

that the proposed pretraining accelerates the convergence in various settings. In Appendix A.4, we
demonstrate an additional experiments for verifying the consistency of λ̂ of the proposed method.

4.4 FEATURE SELECTION IN HIGH DIMENSIONAL SETTINGS

Feature selection methods can be easily implemented to the proposed PG-NN. For examples, we
implemented permutation importance and attention-based feature selection using the multi-head
attention layer with sparsemax function (Martins & Astudillo, 2016; Škrlj et al., 2020; Arik & Pfister,
2021),

sparsemax(a) = argmin
b∈∆p−1

||b− a||2,
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where ∆p−1 = {b ∈ Rp : 1Tb = 1,b ≥ 0} and p is the number of features. As a high dimensional
setting, we generate input features xkij from N(0, 1) for k = 1, ..., 100, including 10 genuine
features (k ≤ 10) and 90 irrelevant features (k > 10). The output yij is generated from Poi(µc

ij)
with the mean model,

µc
ij = ui · exp

[
0.2
{
1 + cosx1ij + · · ·+ cosx6ij + (x2

7ij + 1)−1 + · · ·+ (x2
10ij + 1)−1

}]
,

where ui = evi is generated from Gamma(2, 2). The number of subjects (the cardinality of the
categorical feature) is n = 104. The number of repeated measures (cluster size) is set to be q = 20,
which is smaller than number of features p = 100. We employed a multi-layer perceptron with
20-10-10 number of nodes and three-head attention layer for feature selection. Figures in Appendix
A.5 show that both the attention-based feature selection and permutation importance can identify the
genuine features. The main difference between them is that the attention-based feature selection can
achieve sparsity during training, whereas the permutation importance is a post-hoc procedure.

5 EXPERIMENTAL STUDIES

To investigate the performance of the Poisson-gamma DNN, we conducted experimental studies. The
five input variables xij = (x1ij , ..., x5ij)

T are generated from the AR(1) process with autocorrelation
ρ = 0.5 for each i = 1, ..., n and j = 1, ..., q. The random effects are generated from either
ui ∼ Gamma(λ−1, λ−1) or vi ∼ N(0, λ) where vi = log ui. Since the random effect is unobserved,
the distributional assumption for random effects is often hard to check in practice. Thus, we considered
the case where vi ∼ N(0, λ) is the true distribution to show that our PG-modeling is robust against
misspecification of random effect distribution. When λ = 0, the conditional mean µc

ij is identical to
the marginal mean µm

ij . The output variable yij is generated from Poisson(µc
ij) with

µc
ij = ui · exp

[
0.2
{
1 + cosx1ij + cosx2ij + cosx3ij + (x2

4ij + 1)−1 + (x2
5ij + 1)−1

}]
.

Results are based on the 100 sets of simulated data. The data consist of q = 10 observations for
n = 1000 subjects. For each subject, 6 observations are assigned to the training set, 2 are assigned to
the validation set, and the remaining 2 are assigned to the test set.

For comparison, we consider the following models.

• P-GLM Classic Poisson GLM for count outputs using R.
• N-NN Conventional DNN for continuous outputs.
• P-NN Poisson DNN for count outputs.
• PN-GLM Poisson-normal HGLM using lme4 (Bates et al., 2015) package in R.
• PG-GLM Poisson-gamma HGLM using the proposed method.
• NF-NN Conventional DNN with fixed subject-specific effects for continuous outputs.
• NN-NN DNN with normal random effects for continuous outputs (Lee & Lee, 2023).
• PF-NN Conventional Poisson DNN with fixed subject-specific effects for count outputs.
• PG-NN The proposed Poisson-gamma DNN for count outputs.

To evaluate the prediction performances, we consider the root mean squared Pearson error (RMSPE)

RMSPE =

√√√√ 1

N

∑
i,j

(yij − µ̂ij)2

V (µ̂ij)
,

where Var(yij |ui) = ϕV (µij) and ϕ is a dispersion parameter of GLM family. For Gaussian outputs,
the RMSPE is identical to the ordinary root mean squared error, since ϕ = σ2 and V (µij) = 1. For
Poisson outputs, ϕ = 1 and V (µij) = µij . P-GLM, N-NN, and P-NN give marginal predictions
µ̂ij = µ̂m

ij , while the others give subject-specific predictions µ̂ij = µ̂c
ij . N-NN, NF-NN, and NN-

NN are models for continuous outputs, while the others are for count outputs. For NF-NN and
PF-NN, predictions are made by maximizing the conditional likelihood log fy|v(y|v;w,β). For
PN-GLM, PG-GLM, NN-NN, and PG-NN, subject-specific predictions are made by maximizing the
h-likelihood.
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Table 1: Mean and standard deviation of test RMSPEs of simulation studies over 100 replications.
G(0) implies the absence of random effects, i.e., vi = 0 for all i. Bold numbers indicate the minimum.

Distribution of random effects (λ)

Model G(0) & N(0) G(0.5) G(1) N(0.5) N(1)

P-GLM 1.046 (0.029) 1.501 (0.055) 1.845 (0.085) 1.745 (0.113) 2.818 (0.467)
N-NN 1.013 (0.018) 1.473 (0.042) 1.816 (0.074) 1.713 (0.097) 1.143 (0.432)
P-NN 1.011 (0.018) 1.470 (0.042) 1.812 (0.066) 1.711 (0.099) 1.161 (0.440)
PN-GLM 1.048 (0.029) 1.112 (0.033) 1.115 (0.035) 1.124 (0.030) 1.152 (0.034)
PG-GLM 1.048 (0.020) 1.123 (0.027) 1.106 (0.023) 1.139 (0.026) 1.161 (0.028)
NF-NN 1.152 (0.029) 1.301 (0.584) 1.136 (0.311) 1.241 (1.272) 1.402 (0.298)
NN-NN 1.020 (0.020) 1.121 (0.026) 1.209 (0.067) 1.256 (0.097) 2.773 (0.384)
PF-NN 1.147 (0.025) 1.135 (0.029) 1.128 (0.027) 1.129 (0.024) 1.128 (0.027)
PG-NN 1.016 (0.019) 1.079 (0.024) 1.084 (0.023) 1.061 (0.022) 1.085 (0.026)
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Figure 4: Average of test RMSPEs and computing times from 100 repetitions.

PN-GLM is the generalized linear mixed model with random effects vi ∼ N(0, λ). Current statistical
software for PN-GLM and PG-GLM (lme4 and dhglm) provide approximate MLEs using Laplace
approximation. The proposed learning algorithm can yield exact MLEs for PG-GLM, using solely
the input and output layers while excluding the hidden layers. Among various methods for NN-NN
(Tran et al., 2020; Mandel et al., 2023; Simchoni & Rosset, 2021; 2023; Lee & Lee, 2023), we
applied the state-of-the-art method proposed by Lee & Lee (2023). For all DNNs, we employed
a standard multi-layer perceptron (MLP) consisting of 3 hidden layers with 10 neurons and leaky
ReLU activation function. All the DNNs and PG-GLMs were implemented in Python using Keras
(Chollet et al., 2015) and TensorFlow (Abadi et al., 2015). We applied the Adam optimizer with a
learning rate of 0.001 and an early stopping process based on the validation loss while training the
DNNs. NVIDIA Quadro RTX 6000 were used for computations.

Table 1 shows the mean and standard deviation of test RMSPEs from the experimental studies. When
the true model does not have random effects (G(0) and N(0)), PG-NN is comparable to P-NN without
random effects, which should perform the best (marked by the bold face) in terms of RMSPE. N-NN
(P-NN) without random effects is also better than NF-NN and NN-NN (PF-NN and PG-NN) with
random effects. When the distribution of random effects is correctly specified (G(0.5) and G(1)),
PG-NN performs the best in terms of RMSPE, with p-values<0.001 from the Wilcoxon signed-rank
test (paired Wilcoxon test), used in Zhang et al. (2015; 2017); Xiong et al. (2019). Even when the
distribution of random effects is misspecified (N(0.5), N(1)), PG-NN still performs the best with
p-values<0.001. This result is in accordance with the simulation results of McCulloch & Neuhaus
(2011), namely, in GLMMs, the prediction accuracy is little affected for violations of the distributional
assumption for random effects: see similar performances of PN-GLM and PG-GLM.

It has been known that handling the high-cardinality categorical features as random effects has
advantages over handling them as fixed effects (Lee et al., 2017), especially when the cardinality of
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Table 2: Test RMSPEs of real data analyses. Bold numbers indicate the minimum values.

Longitudinal data Clustered data

Model Epilepsy CD4 Bolus Owls Fruits

P-GLM 1.520 6.115 2.110 2.493 6.203
N-NN 2.119 8.516 1.982 6.695 5.953
P-NN 1.712 6.830 2.354 6.689 5.954
PN-GLM 1.242 3.422 1.727 2.492 7.128
PG-GLM 1.229 4.424 1.714 2.602 6.159
NF-NN 1.750 6.921 1.718 2.473 6.566
NN-NN 1.770 7.640 1.727 2.463 6.234
PF-NN 1.238 3.558 1.816 2.496 5.906
PG-NN 1.135 3.513 1.677 2.427 5.901

categorical feature n is close to the total sample size N =
∑n

i=1 qi, i.e., the number of observations
in each category (cluster size q) is relatively small. Thus, to emphasize the advantages of PG-NN
over PF-NN in high-cardinality categorical features, we consider an experiment with cluster size qtrain
varying from 1 to 20 with λ = 0.2 and n = 1000. Figure 4 show that PG-NN has uniformly smaller
RMSPE and less computation time than PF-NN. The difference of RMSPEs becomes severe when
qtrain is small, i.e., the ratio of cardinality and total sample size n/N becomes close to 1. Therefore,
the proposed method enhances subject-specific predictions as the cardinality of categorical features
becomes high.

6 REAL DATA ANALYSIS

To investigate the prediction performance of clustered count outputs in practice, we examined the
following five real datasets: Epilepsy data (Thall & Vail, 1990), CD4 data (Henry et al., 1998), Bolus
data (Henderson & Shimakura, 2003), Owls data (Roulin & Bersier, 2007), and Fruits data (Banta
et al., 2010). For all DNNs, a standard MLP with one hidden layer of 10 neurons and a sigmoid
activation function were employed. For longitudinal data (Epilepsy, CD4, Bolus), the last observation
for each patient was used as the test set without cross-validation, as in Tran et al. (2020). For clustered
data (Owls, Fruits), we present the average of RMSPEs from 10-fold cross-validation. Table 2
shows that the proposed PG-NN has the smallest RMSPEs. P-values are presented in Appendix A.6.
Throughout the datasets, P-GLM performs better than P-NN, implying that non-linear model does
not improve the linear model in the absence of subject-specific random effects. Meanwhile, in the
presence of subject-specific random effects, PG-NN is always preferred to PG-GLM. The results
imply that introducing subject-specific random effects in DNNs can help to identify the nonlinear
effects of the input variables. Therefore, while DNNs are widely recognized for improving predictions
in independent datasets, introducing subject-specific random effects could be necessary for DNNs to
improve their predictions in correlated datasets with high-cardinality categorical features.

7 CONCLUDING REMARKS

When the data contains high-cardinality categorical features, introducing random effects into DNNs
is advantageous. We develop subject-specific Poisson-gamma DNN for clustered count data. The
h-likelihood enables a fast end-to-end learning algorithm using the single objective function. By
introducing subject-specific random effects, DNNs can effectively identify the nonlinear effects of
the input variables. Various state-of-the-art network architectures can be easily implemented into the
h-likelihood framework, as we demonstrate with the feature selection based on multi-head attention.

With increasing interest in combining DNNs with statistical models, there has been theoretical
developments, such as the identifiability of fixed effects for better interpretation (Rügamer, 2023).
Since random effects have different nature compared to fixed effects, exploring the use of random
effects in DNNs for better interpretability could open up interesting topics for future research.
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A APPENDIX

A.1 DERIVATION OF THE H-LIKELIHOOD

Maximizing log fv|y(v|y;w,β, λ) with respect to v = (v1, ..., vn)
T yields,

ṽi ≡ argmax
vi

log fv|y(vi|yi;w,β, λ)

= argmax
vi

 qi∑
j=1

(
yijvi − µm

ij e
vi
)
+

vi − evi

λ

 = log

(
yi+ + λ−1

µi+ + λ−1

)
,

where yi+ =
∑qi

j=1 yij and µi+ =
∑qi

j=1 µ
m
ij . As derived in Section 3, define ci(λ; yi+) as

ci(λ; yi+) = (yi+ + λ−1) + log Γ(yi+ + λ−1)− (yi+ + λ−1) log(yi+ + λ−1)

and consider a transformation,
v∗i = vi · exp{−ci(λ; yi+)}.

Since the multiplier exp{−ci(λ; yi+)} does not depend on vi, we have
ṽ∗i ≡ argmax

v∗
i

log fv∗|y(v
∗
i |yi;w,β, λ) = ṽi · exp{−ci(λ; yi+)},

which leads to

log fv∗|y(ṽ
∗|y) =

n∑
i=1

{
log fv|y(ṽi|yi) + ci(λ; yi+)

}
= 0.

This satisfies the sufficient condition for the h-likelihood to give exact MLEs for fixed parameters,
argmax

θ
h(θ, ṽ) = argmax

θ
ℓ(θ;y).

Furthermore, from the distribution of ui|yi,

ũi = exp(ṽi) =
yi+ + λ−1

µi+ + λ−1
= E(ui|yi)

and
µ̃c
ij = exp(ṽi) · exp {NN(x;w,β)} = µm

ij · E(ui|yi) = E(µc
ij |y).

Therefore, maximizing the h-likelihood yields the BUPs of ui and µc
ij .

A.2 PROOF OF THEOREM 1.

The adjustment (7) transports
û∗
i = ûi/(1 + ϵ) and v̂∗i = v̂i − log(1 + ϵ).

Since (θ̂, v̂) and (θ̂
∗
, v̂∗) have the same conditional expectation µ̂ij , equation (4) yields

h(θ̂
∗
, v̂∗)− h(θ̂, v̂) =

n∑
i=1

[
v̂∗i − exp(v̂∗i )

λ̂

]
−

n∑
i=1

[
v̂i − exp(v̂i)

λ̂

]

= λ̂−1

{
n∑

i=1

(v̂∗i − v̂i)−
n∑

i=1

(û∗
i − ûi)

}
= nλ̂−1 {ϵ− log(1 + ϵ)} ≥ 0,

and the equality holds if and only if ϵ = 0. Thus, h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂).
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Figure 5: Box-plots of λ̂ when true λ = 0.5.

A.3 CONVERGENCE OF THE METHOD-OF-MOMENTS ESTIMATOR

As derived in Section A, for given λ and µi+, maximization of the h-likelihood leads to

ûi = ûi(yi) = exp (v̂i(yi)) =
yi+ + λ−1

µi+ + λ−1
.

Thus, E(ûi) = 1 and Var(ûi) = λ
{
1− (λµi+ + 1)−1

}
. Define di as

di =
ûi − 1√

1− (λµi+ + 1)−1
=

yi+ − µi+

µi+ + λ−1

√
1 + λ−1µ−1

i+

to have E(di) = 0 and Var(di) = λ for any i = 1, ..., n. Then, by the law of large numbers,

1

n

n∑
i=1

d2i → E(d2i ) = Var(di) + E(di)2 = λ.

Note here that
1

n

n∑
i=1

d2i =

{
1

n

n∑
i=1

(ûi − 1)2

}
+

1

λ

{
1

n

n∑
i=1

(ûi − 1)2

µi+

}
.

Then, solving the following equation,

λ−

{
1

n

n∑
i=1

(ûi − 1)2

}
− 1

λ

{
1

n

n∑
i=1

(ûi − 1)2

µ̂i+

}
= 0,

leads to an estimate λ̂ in (8) and λ̂→ λ as n→∞.

A.4 CONSISTENCY OF VARIANCE COMPONENT ESTIMATOR

By jointly maximizing the proposed h-likelihood, we obtain MLEs for fixed parameters and BUPs
for random parameters. Thus, we can directly apply the consistency of MLEs under usual regularity
conditions. To verify this consistency in PG-NN, we present the boxplots in Figure 5 for the variance
component estimator λ̂ from 100 repetitions with true λ = 0.5. The number of clusters n and cluster
size q are set to be (200, 20), (500, 50), and (1000,100). Figure 5 provide conclusive evidence
confirming the consistency of the variance component estimator within the PG-NN framework.

A.5 FEATURE SELECTION METHODS

we implemented the permutation importance method and attention-based feature selection method
to our experiment in Section 4.4. Figure 6 shows the average attention score of each feature from
100 repetitions to summarize all the results. Figure 7 shows the attention score from one repetition.
Figure 8 shows the permutation score from one repetition.
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Figure 6: Average attention scores from 100 repetitions.
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Figure 7: Attention scores from one repetition.
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Figure 8: Permutation importance from one repetition.
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A.6 REAL DATA ANALYSES

In this section, we provide details of the datasets in Section 6.

• Epilepsy data: Epilepsy data are reported by Thall & Vail (1990) from a clinical trial of
n = 59 patients with epilepsy. The data contain N = 236 observations with qi = 4 repeated
measures from each patient and p = 4 input variables.

• CD4 data: CD4 data are from a study of AIDS patients with advanced immune suppression,
reported by Henry et al. (1998). The data contain N = 4612 observations from n = 1036
patients with qi ≥ 2 repeated measurements and p = 4 input variables.

• Bolus data: Bolus data are from a clinical trial following abdominal surgery for n = 65
patients with qi = 12 repeated measurements, reported in Henderson & Shimakura (2003).
The data have N = 780 observations with p = 2 input variables.

• Owls data: Owls data are reported by Roulin & Bersier (2007), which can be found in the
R package glmmTMB (Brooks et al., 2023). The data contain N = 599 observations and
n = 27 nests with p = 3 input variables. The cluster size qi in each nest varies from 4 to 52.

• Fruits data: Fruits data are reported in Banta et al. (2010). The data have N = 625
observations clustered by n = 24 types of maternal seed family with p = 3 input variables.
The cluster size qi varies from 11 to 47.

For clustered data (Owls, Fruits), we performed 10-fold cross-validation and Wilcoxon signed-rank
test for validating the advantage of PG-NN, as in Zhang et al. (2015; 2017); Xiong et al. (2019).
(Hence there is no p-value of PG-NN.) Table 3 presents the mean RMSPEs and p-values for testing
whether the RMSPE of PG-NN is less than that of other methods. In Owls data, though the p-
values are marginal (0.05∼0.1) in some cases, the proposed PG-NN significantly (p-values<0.05)
outperforms the other methods. In Fruits data, PG-NN has the smallest RMSPEs but the difference
is not significant except for N-NN and NN-NN. Note here that P-GLM was the best in Fruits data
without cross-validation, but the cross-validation clarifies that PG-NN has better overall RMSPE.

Owls data Fruits data

RMSPE p-value RMSPE p-value

P-GLM 2.493 0.032 6.203 0.053
PN-GLM 6.695 0.001 5.953 0.116
PG-GLM 6.689 0.001 5.954 0.138
N-NN 2.492 0.065 8.943 0.001
NF-NN 2.602 0.080 6.837 0.001
NN-NN 2.473 0.032 7.308 0.001
P-NN 2.463 0.042 6.277 0.053
PF-NN 2.496 0.007 5.906 0.216
PG-NN 2.427 5.893

Table 3: Average RMSPEs and p-values from 10-fold cross-validation
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