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Abstract

Despite their growing capabilities, language
models still frequently reproduce content from
their training data, generate repetitive text, and
favor common grammatical patterns and vo-
cabulary. A possible cause is the decoding
strategy: the most common strategies either
consider only the most probable tokens, which
reduces output diversity, or increase the likeli-
hood of unlikely tokens, compromising output
accuracy and correctness. In this paper, we
propose three new decoding methods that lever-
age a mathematical analysis of the token prob-
ability distribution to ensure the generation of
contextually appropriate text. In particular, the
difference between consecutive, sorted proba-
bilities can be used to truncate incorrect tokens.
Experiments concerning math problem solving,
extreme summarization, and the divergent as-
sociation task demonstrate that our approach
consistently performs at least as well as exist-
ing methods in terms of quality and diversity.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated remarkable performance
(Bubeck et al., 2023), driven by the availability of
large-scale datasets, advances in computational
power (Bommasani et al., 2021), and the devel-
opment of innovative learning strategies (e.g.,
Stiennon et al., 2020; Rafailov et al., 2023). While
training provides LLMs with the information
and skills required to process natural language,
another aspect plays a key role at generation time:
the decoding strategy, that is, the method used
to extract text sequences from the model. The
choice of decoding scheme significantly impacts
the generated output, as there is a pronounced
trade-off between quality and diversity (Ippolito
et al., 2019). The most straightforward strategies,
such as greedy decoding (always selecting the
highest-probability token) or sampling, tend to
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Figure 1: A graphical representation of the effects of our
DiffSampling methods. In the top-left square, the origi-
nal distribution. In the top-right square, DiffSampling-
cut truncates after the minimum discrete derivative. In
the bottom-left square, DiffSampling-Ib also imposes a
total probability lower bound py;, (here p;, = 0.8). In the
bottom-right square, DiffSampling-minp applies trunca-
tion only among tokens with a probability less than
Dmin times the highest probability (here p,,;, = 0.3).
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repeat the same tokens multiple times (Su et al.,
2022), reproduce training data (Carlini et al., 2021;
Franceschelli et al., 2024), or flatten the lexicon in
favor of the most common grammatical structures
and words (Fleisig et al., 2024; Reviriego et al.,
2023). Although the temperature parameter may
increase the likelihood of less frequent tokens, it
also raises the chance of syntactically incorrect
ones by flattening their probabilities, regardless
of their actual ranking. An ideal solution should
concentrate on where the critical mass of the
probability distribution resides. More precisely,
with critical mass, we refer here to the portion
of the probability distribution that collectively
accounts for the majority of the probability mass of
the tokens. In this direction, a common approach
is nucleus sampling (Holtzman et al., 2020), which
removes the tail of the distribution by focusing



on the smallest subset of tokens whose global
probability exceeds a given threshold. However,
key issues remain: first, nucleus sampling is
sensitive to the choice of the threshold; second,
it can either preserve incorrect tokens or exclude
appropriate ones if the critical mass is smaller
or larger than the threshold, respectively. As
suggested by Hewitt et al. (2022), the learned
probability distribution can be viewed as a mixture
of the true distribution, which assigns a non-zero
probability only to appropriate tokens (the critical
mass), and a smoothing distribution, which assigns
a small but non-zero probability to incorrect tokens.
This smoothing is necessary for learning purposes.

In this paper, we introduce a family of decod-
ing strategies called DiffSampling, based on the
analysis of the probability distribution of the to-
kens, and in particular, on the minimum discrete
derivative (i.e., the largest difference between con-
secutive probabilities in a sorted distribution). We
propose a method for excluding incorrect tokens in-
troduced by the smoothing distribution, along with
two relaxed variants designed to promote output
diversity (see Figure 1). We then provide a com-
prehensive evaluation of them under three different
tasks (namely, math problem solving, extreme sum-
marization, and the divergent association task) and
discuss their advantages and limitations. We show
that DiffSampling consistently performs better in
either quality or diversity.

The remainder of this paper is structured as fol-
lows. First, we introduce the decoding problem
from a neural language model perspective and dis-
cuss existing approaches (Section 2). Then, we
present our discrete derivative-based sampling strat-
egy and three different methods to employ it (Sec-
tion 3). Finally, in Section 5 we evaluate our meth-
ods on mathematical problem-solving tasks, ex-
treme summarization, and the divergent association
task against the most common baselines, finding
that DiffSampling is a simple yet effective way to
generate appropriate and diverse text.

2 Background

2.1 Language Modeling

An autoregressive language model (LM) is a prob-
ability distribution pg(x) parameterized by 6 over
a variable-length text sequence x = (z1...27),
where T is the sequence length and each to-
ken z; is in a finite vocabulary V. The prob-
ability distribution is factorized as pg(x) =

Hg;l po(x¢|x1 ... x—1), and the LM is usually
trained to maximize the likelihood of the true dis-
tribution p*(x) for any x from a reference dataset
(the training set). In other words, given as input
x1 ..., the model learns to approximate the prob-
ability of each token from V being x;,;. While this
makes the model immediately capable of scoring
the probability of a given text, it also allows for the
generation of new sentences. Given a commonly
human-written prefix (also known as a prompt)
x = (x1...xp) of length P, we can decode a
continuation X = (xp41 ... x4 p) from the LM
through its factorized representation introduced be-
fore. However, we must remember that the model
is trained to score and not to generate sentences. A
given text might have zero probability for genera-
tion purposes (e.g., the text is syntactically incor-
rect), but non-zero probability for ranking purposes
(Hewitt et al., 2022).

2.2 Decoding Strategies

The decoding of tokens from the probability dis-
tribution learned by a neural language model can
occur in several ways. The greedy strategy involves
selecting the most probable token each time. How-
ever, this can lead to a consistent lack of diversity
and several repetitions. The standard approach in-
volves sampling from the probability distribution,
which can be transformed through a temperature
parameter 7. The temperature scales the differ-
ences among the various probabilities: a tempera-
ture lower than 1 will increase the probability of
the most-probable tokens (a zero temperature de-
generates to greedy strategy), while a temperature
higher than 1 will increase the probability of the
least-probable tokens, allowing for more diversity
in generation (Peeperkorn et al., 2024). However,
this might lead to the selection of tokens that are
not syntactically appropriate for the current input.
Top-k sampling (Fan et al., 2018) reduces the token
space to the k£ most probable ones.

To generate more natural and coherent solutions,
contrastive search (Su et al., 2022) employs a top-k
sampling method combined with a degeneration
penalty. This promotes the selection of tokens that
differ from those already generated, enhancing the
diversity and quality of the output. Nevertheless,
limiting the number of selected tokens a priori can
lead to the exclusion of meaningful tokens or the
inclusion of inappropriate ones. A possible solution
is to set k dynamically, as in Mirostat (Basu et al.,
2021): to maintain the perplexity of generated text



at a desired value, the k parameter is actively tuned
based on the current cross-entropy.

Alternatively, nucleus (or top-p) sampling
(Holtzman et al., 2020) reduces the token space
to the smallest subset of tokens with a total prob-
ability no less than p. To restrict the nucleus to
tokens whose information content is close to the
expected one given prior context, locally typical
sampling (Meister et al., 2023) focuses on the to-
kens with negative log-probability within a certain
absolute range from the conditional entropy (and
a total probability no less than p). Finally, Hewitt
et al. (2022) assert that a language model learns a
mixture of the true token distribution and a smooth-
ing distribution to avoid infinite perplexity. For de-
smoothing the distribution, they propose e- and 7-
sampling, which truncate tokens with a probability
smaller than a threshold set a priori or dynamically
through the entropy of the distribution, respectively.
This threshold can also be set according to the mag-
nitude of the highest probability as in min-p (Minh
et al., 2025). However, such strategies do not guar-
antee the exclusion of the smoothing-induced tail.
Contrastive decoding (Li et al., 2023) leverages the
difference in likelihood between a large language
model and a smaller, less capable one to priori-
tize tokens with sufficiently high probability un-
der the expert model. However, it requires access
to a smaller model with an identical vocabulary,
which is not always available. While conceptually
aligned, our method simplifies the threshold com-
putation and provides more intuitive guarantees on
the suitability of selected tokens.

3 DiffSampling

Given the probability distribution of the next token,
let us imagine sorting it to have tokens in descend-
ing order based on their probability. Following
Hewitt et al. (2022), only the first D tokens have a
positive probability under the true token distribu-
tion, while the remaining |V| — D tokens receive a
non-zero final probability solely due to the smooth-
ing distribution, which prevents infinite perplexity.
To generate correct text, we need to limit our sam-
pling among the first D tokens, thus, we need to
identify a cutting point that is as close as possi-
ble to the D-th token. We propose to achieve this
by truncating after the largest difference between
probabilities: the token to its left should be the least
probable token that our model considers correct.

From a mathematical analysis perspective, this

point is characterized simply and elegantly as the
location where the derivative reaches its mini-
mum. Let us consider a probability distribution
p(z) defined for a limited number of x; ...xn,
with p() monotonically decreasing. According
to the forward difference approximation, the dis-
crete derivative of a function f(x,,) is defined as
Af(xy) = f(zny1) — f(zy), thus we have:

_ p(xn—H) _p<xn) ifn< N
Ap(zy,) = {_p(wn) N )

which is always non-positive. argmin(Ap(zy,))
represents the index of the last token before the
point characterized by the largest difference be-
tween consecutive probabilities.

In particular, it seems plausible that
argmin(Ap(z,)) < D, ie., it either marks
the point where the true distribution ends and
smoothing begins to take effect, or a point within
the true distribution that separates tokens with
significantly higher probabilities from the rest.
Indeed, due to the inner nature of smoothing, it
seems unreasonable that the maximum difference
is between tokens with zero probability under the
true distribution, and thus only because of the
smoothing distribution.

Building on this intuition, we propose DiffSam-
pling, a family of three decoding strategies. The
first one, which we call DiffSampling-cut, leverages
the aforementioned property and consists of cutting
the distribution tail at the right side of the minimum
discrete derivative, i.e., sampling among the tokens
x;,1 < argmin(Ap(x,)). Due to the guarantee of
selecting a correct token, this approach can be seen
as an improved greedy strategy: when the model
has high confidence in a single token, it degener-
ates into the greedy strategy; otherwise, it preserves
other appropriate tokens, increasing diversity.

Since the minimum discrete derivative should
guarantee the correctness of the truncation, any
preserved token should come from the true distri-
bution: we can sample at a higher temperature to
foster diversity without the usual trade-off with
quality. Note that although temperature scaling
is typically applied before truncation, doing so al-
ters the probability distribution, potentially shifting
the minimum of the discrete derivative forward -
possibly into the region of tokens that have zero
probability under the true distribution. To preserve
the mathematical properties discussed above, we
instead apply temperature scaling affer truncation.



However, as previously discussed, this cutoff
point can fall within the true distribution, thereby
excluding tokens that are still correct; a frequent
scenario consists of the first token minimizing
Ap(zy,), but still having a quite low probability.
To address this issue, we propose two relaxations
to right-move the truncation. The first one builds
upon top-p sampling and introduces a lower bound
on the saved mass probability. DiffSampling-1b
considers truncating based on Ap(z,,) in such a
way that the resulting tokens have a total probabil-
ity at least equal to the lower bound p;;. In other
words, given k cardinality of the smallest subset of
tokens whose total probability is not lower than pyp,
it computes the argmin(Ap(zy,)) for n > k (i.e.,
the cutting point is between tokens not included in
the top-p nucleus). This approach can be seen as an
improved top-p sampling: it corrects the p param-
eter via our derivative-based approach to include
appropriate tokens after the selected nucleus.

Alternatively, we can build upon min-p sampling
by introducing a dynamic upper bound on the prob-
ability of truncated tokens. DiffSampling-minp con-
siders truncating based on Ap(z,,) in such a way
that no discarded tokens have a probability greater
than pin - p(x0). In other words, given j index of
the lowest-probable token with a probability greater
than p,in - p(x0), it computes the argmin(Ap(z,,))
for n > j. This approach can be seen as an im-
proved min-p sampling: if there are tokens after
index j with a probability very close to the thresh-
old, it still preserves them.

Overall, DiffSampling can be seen as a sam-
pling scheme governed by two parameters, i.e., the
probability-mass lower bound p;;, and the truncated
probability upper bound p,,;,, (Where DiffSampling-
cut just assumes a value of 0.0 for the first and of
1.0 for the second), plus the additional temperature
7. The full algorithm is reported in Algorithm 1.

4 Illustrative Example

To make it easier to understand the advantages
of our methods, Table 1 reports an illustrative ex-
ample of them compared with their most similar
methods. For the sake of simplicity, top-p and
DiffSampling-Ib consider the same p = py, = 0.9,
while min-p and DiffSampling-minp consider the
same p = Pmin = 0.1. As apparent, DiffSampling-
cut improves upon the greedy strategy by also con-
sidering the second-most probable token, while
both DiffSampling-Ib and DiffSampling-minp im-

Algorithm 1 DiffSampling

Input: probabilities probs = [p; ... py], lower
bound py, upper bound py,;n, temperature 7.
sorted_probs, indices = sort(probs)
fwd_probs = sorted_probs|1:] 4 [0.]
delta_probs = fwd_probs — sorted_probs
if pin > 0.0 then
th = pmin - sorted_probs|0]
lim = argmin(sorted_probs > th) — 1
delta_probs[:lim] = 0.
else
nucleus = cumsum(sorted_probs) < py,
delta_probs[nucleus] = 0.
end if
cut_idr = argmin(delta_probs)
sorted_probs|cut_idz+1:] = 0.
probs = sort_by_idx(sorted_probs, indices)
logits = log(probs/sum(probs)) /T
probs = softmax(probs)
Output: probs

prove upon top-p and min-p by not discarding to-
kens with very similar probability compared to pre-
served ones (for example, top-p would discard the
‘read’ token while having only a 0.014% probabil-
ity less than ).

Prompt: Natural language generation (NLG) is the sub-
field of artificial intelligence and computational linguistics
that is concerned with the construction of computer sys-
tems that can _____

Token Prob Top-p Min-p D-cut D-Ib  D-minp
generate  37.326 41.366 50.872 59.886 40.929 47.537
produce 25.002 27709 34.076 40.114 27.416 31.842
understand  7.295 8.084 9.942 7.999 9.290
create 3.749 4.154 5.109 4.110 4.774
naturally 2.797 3.100 - 3.067 3.562
perform 2.352 2.606 2.579 2.995
reason 1.067 1.182 - - 1.170 -
be 0.956 1.060 - - 1.048

recognize  0.350 0.388 0.384

s 0.339 0.375 0.371

read 0.325 - 0.357

respond 0.321 0.352

interpret 0.318 0.348

interact 0.259 -

Table 1: Token probability comparison between top-
p, min-p, and our methods, showing how they avoid
treating differently tokens with very similar probabilities
(reported in bold). The probabilities are taken from
SmolLM-135M-Instruct (Ben Allal et al., 2024).

S Experiments

To evaluate whether DiffSampling helps diversify
outputs while maintaining a high accuracy, we test



it on three case studies: math problem solving, text
summarization, and the divergent association task!.
While slightly unconventional, these tasks are very
different from each other, and provide meaningful
ways to evaluate diversity and quality together, as
they have quantifiable goals which can be reached
in syntactic and semantic different ways.

5.1 Models and Baselines

In all our experiments, we start from a state-of-
the-art LLM and test various decoding strategies.
For the math problem-solving tasks, we use the
Llama2-based MetaMath model trained with self-
supervised learning on MetaMathQA (Yu et al.,
2024). Following Chhabra et al. (2024), for ex-
treme text summarization we use the Llama2-7B
model (Touvron et al., 2023), considering both
RLHF-instructed and pre-trained versions. Finally,
for the divergent association task, we consider
Llama3-8B (Grattafiori et al., 2024), using both
DPO-tuned and pre-trained versions. We study the
performances of our three methods: DiffSampling-
cut; DiffSampling-Ib with py, = 0.8, which re-
sults in minimal accuracy loss while enhancing
diversity compared to lower values for the tasks
at hand (see Appendix D.2); DiffSampling-minp
with Py = 0.3, which we found provides an
increase in quality without significant loss in di-
versity for the tasks taken into consideration (see
Appendix D.3). We compare them with a total
of 6 decoding-based baselines: greedy strategy;
contrastive search (with top-k = 8 and the scal-
ing factor of the degeneration penalty o = 0.6);
n-sampling (with n = 0.0003); locally typical
sampling (with p = 0.9); top-p sampling (with
p = 0.9); and min-p sampling (with p = 0.1).
While other methods, such as contrastive decoding
and beam search, could also be considered, we re-
strict our analysis to sampling-based methods to
ensure a fair comparison, selecting those with simi-
lar computational costs and operational principles
to our approach.

5.2 Math Problem Solving

5.2.1 Experimental Setup

Solving math problems provides a useful case study
for our decoding strategies, as it allows us to evalu-
ate the correctness of solutions (as the percentage
of correctly solved problems) and the diversity of

"The code used for the experiments is available here:
https://anonymous.4open.science/r/DiffSampling

procedures to arrive at the result. In particular,
we consider the GSMS8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) test sets; the rela-
tive prompts are reported in Appendix B. To avoid
resource wasting, we focus on entries with a prob-
lem and a solution whose tokenized versions are
no longer than 512.

We evaluate the quality of solutions through the
ratio of correctly solved problems. Instead, the
diversity is computed according to two methods:
expectation-adjusted distinct /NV-grams (EAD) (Liu
et al., 2022) and sentence embedding cosine diver-
sity (SBERT) (Hong et al., 2024), which should
evaluate syntactic and semantic diversity, respec-
tively (Kirk et al., 2024). EAD counts the num-
ber of distinct N-grams tokens (averaging over
N =1...5) and removes the bias toward shorter
inputs by scaling the number of distinct tokens
based on their expectations. The SBERT metric
is 1 minus the cosine similarity between the em-
beddings of the sentences. While originally based
on Sentence-BERT (Reimers and Gurevych, 2019),
we employ the more recent all-mpnet-base-v2 to
obtain the embeddings, as suggested by their devel-
opers®. Following Kirk et al. (2024), we compute
cross-input EAD and SBERT, i.e., by considering
the set of all outputs produced for a specific seed.
In addition, we also compute against-greedy EAD
and SBERT. Given each input, we compare the out-
put with the greedy one by calculating the average
expectation-adjusted distinct /NV-grams not present
in the greedy response, and 1 minus the cosine
similarity between the two outputs, respectively.
Finally, for a more fine-grained analysis, Appendix
E.1 reports a few examples of generated outputs.

5.2.2 Experimental Results

Table 2 (left side) reports the results for the GSM8K
test set. DiffSampling-Ib achieves the highest av-
erage accuracy. Among the baselines, only locally
typical sampling performs comparably, while all
our three methods outperform the others in accu-
racy. Regarding diversity, DiffSampling-cut is the
closest to greedy, while DiffSampling-Ib is in line
with the sampling-based baselines.

Table 2 (right side) reports the results for the
MATH test set. Here, the highest accuracy is
reached by DiffSampling-cut, which also improves
on the greedy strategy in terms of diversity, closely
followed by DiffSampling-minp, which, on the

2https://huggingface.co/sentence—transformers/
bert-large-nli-stsb-mean-tokens
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Dataset: GSMS8K MATH
Method Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy
EAD SBERT EAD SBERT EAD SBERT EAD SBERT
Greedy 66.44i.09 2-03i.00 0.64i.00 - - 20.62i401 5-65i,00 0.80i_00 - -
Contrastive search 65.88i_59 2.06i_00 0.64i,00 0-17i,00 0-02i.00 21.05114 5-82i,01 0.80i_00 0-31i.00 0-09i,00
TOp—p sampling 65-00i.18 2.08i_01 0.64i,00 0-23i,00 0-03i.00 20.02112 6.08iv02 0.80i_00 O.SGi,oo 0~10i,00
r]—sampling 65.05i_19 2-12i.00 0.64i,00 0.25100 0-04i.00 19.67120 6.36i_01 O.SOi_oo 0-39i.00 0.11100
LOC&lly typical 66.29i_55 2-09i.00 0.64i,00 0-23i.00 0-03i.00 19-95i,26 6.06i_01 O.SOi_oo O.SGi,OQ O.IOi_OO
Min—p sampling 65.76i_44 2-09i.00 0.64i,00 0.23100 0-03i.00 20-25i.09 6.09i_01 O.SOi_oo 0.36i,00 0.10100
DiffSampling-cut 66.36+.23 | 2.04100 0.64100 | 0.141 00 0.0241 00 || 21.38+20 | 5.71401 0.80+00 | 0.27£ 00 0.07+00
DiffSampling-1b 66.924 08 | 2.07+.00 0.64+00 | 0.20+00 0.034.00 || 20.78+ 14 | 6.00+01 0.804+.00 | 0.35+00 0.10+.00
DiffSampling-minp || 66.44+ 35 | 2.05400 0.64+00 | 0.19400 0.034+.00 || 21.13+08 | 5.87+01 0.80+.00 | 0.33+.00 0.09+ 00

Table 2: Accuracy and diversity of results for the GSM8K and MATH test sets over 3 seeds. The mean and standard
error of the final score for each run are reported for accuracy and cross-input diversity, whereas the mean and the
95% confidence interval for the full set of answers are reported for against-greedy diversity.

other hand, has slightly lower performance on di-
versity compared to the other baselines (apart from
contrastive search). Finally, DiffSampling-Ib has
diversity scores in line with top-p, min-p, locally
typical, and n-sampling, but with a consistently
higher accuracy.

5.3 Extreme Summarization

5.3.1 Experimental Setup

Summarizing paragraphs represents another mean-
ingful case study since the same text can be cor-
rectly outlined in different ways. To keep the re-
source consumption as low as possible, we con-
sider the eXtreme Summarization (XSum) dataset
(Narayan et al., 2018), which contains pairs of doc-
uments and one-sentence summaries. In particular,
we use the test partition (11334 entries) and ex-
clude all entries with a tokenized document longer
than 768, obtaining 9815 entries; then, we limit
our experiment to 1000 random samples, and we
use the prompt suggested by Chhabra et al. (2024)
and reported in Appendix B. Again, we aim to
verify whether the summaries generated with Diff-
Sampling are both diverse and of high quality. For
diversity, we consider the same metrics presented
in Section 5.2, i.e., EAD and SBERT for both cross-
input and against-greedy diversity. For quality as-
sessment, we use ROUGE-1 (R-1) (Lin, 2004), a
standard metric for summarization that evaluates
the ratio of 1-grams present in both the target and
generated summaries, as well as the sentence em-
bedding cosine similarity (SIM) between the gen-
erated and target summaries. In this way, we com-
pute both syntactic and semantic quality metrics,
as a good summary might use entirely different
words while still preserving the original meaning.
In addition, following Su et al. (2022), we com-

pute the coherence (COH) between the generated
output and the text to summarize through the co-
sine similarity between their SimCSE embeddings
(Gao et al., 2021). Finally, for a more qualitative
analysis, Appendix E.2 reports some raw outputs.

5.3.2 Experimental Results

As far as the instructed model is considered, all
methods achieve the same ROUGE-1 and similarity
performances, with very small differences in coher-
ence. Confirming the well-known quality-diversity
trade-off (Ippolito et al., 2019), those performing
better on coherence are also the worst methods (by
a small margin) in terms of diversity.

On the other hand, quality metrics show
more variations for the non-instructed model:
DiffSampling-cut outperforms all other sampling
methods and performs on par with the greedy
strategy, while increasing the cross-input EAD
score. Contrastive search and DiffSampling-minp
are immediately below them; however, the latter
has slightly higher diversity scores. In general,
the quality-diversity trade-off is more pronounced.
While DiffSampling-Ib outperforms top-p, locally
typical, and n-sampling in terms of quality while
having similar diversity, min-p sampling seems the
only method with the highest diversity without con-
sistent loss in accuracy (but similar results can be
achieved by DiffSampling-minp with smaller py,;»;
see Appendix D.3).

5.4 Divergent Association Task

5.4.1 Experimental Setup

The last use case considers the divergent associa-
tion task (DAT) (Chen and Ding, 2023). Building
on the theory that creativity is related to the capabil-
ity of generating more divergent ideas (Beaty et al.,



Model: RLHF-instructed Pre-trained
Method Quality Cross-Input Against-Greedy Quality Cross-Input Against-Greedy
R-1 SIM COH EAD SBERT | EAD  SBERT R-1 SIM COH EAD SBERT | EAD  SBERT
Greedy 0.22400 049101 0.72400| 1.161 00 0.94+ 00 - - 019400 0.45+01 0.66+01| 1.11£00 0.94+ 00 - -
Contrastive search 0.224 90 0.504.01 0.72400| 1.184+00 0.941 00| 0.214 01 0.08+ 01| 0.19400 0.44401 0.64+ 01| 1.141 00 0.944 00| 0.45101 0.294 01
Top-p sampling 0.224 00 0.504.01 0.71100| 1.214 00 0.941 00| 0.30+.01 0.124 1| 0.16400 0.36401 0.50+ 01| 1.16400 0.93+00| 0.75401 0.55+ 01
n-sampling 0.224 90 0.504+.01 0.71100| 1.22400 0.941 00| 0.33+.01 0.134 01| 0.15400 0.35+01 0.49+01| 1.19401 0.93+00| 0.78+101 0.57+01
Locally typical 0.224 00 0.504.01 0.71400| 1.21400 0.941 00| 0.30+.01 0.124 91 || 0.164+00 0.35+01 0.50+ 01| 1.16400 0.93+ 00| 0.754+01 0.55+ 01
Min-p sampling 0.224 00 0.50101 0.72100] 1.20£00 0.94+ 00| 0.29+01 0.1141 01| 0.19400 044101 0.61:01| 1.16401 0.931 00| 0.62+ 01 0.40+ 01
DiffSampling-cut 022400 0.50101 0.724 00| 1.16£00 0.94+ 00| 0.17101 0.064 01| 0.19100 045101 0.66+01| 1.13100 0.941 00| 0.25401 0.154 01
DiffSampling-1b 0224100 0.50101 0.71400] 1.20£00 0.94+ 00| 0.27101 0.104 01| 0.17100 0.38+401 0.53:01| 1.15400 0.931 00| 0.71101 0.50+ 01
DiffSampling-minp || 0.224+ 09 0.50+01 0.72400| 1.18+00 0.94+ 00| 023401 0.094 01 0.19400 0.44101 0.63+01| 1.15401 0.941 00| 0.494.01 0.314+01

Table 3: Aggregate results over 3 seeds for the XSum dataset for the instructed model (left) and the pre-trained
model (right). The mean and standard error of the final score for each run are reported for cross-input diversity,

whereas the mean and the 95% confidence interval for the full set of answers are reported for the other metrics.

2014), it requires participants to name unrelated
words. Then, their semantic distance can represent
an objective measure of divergent thinking (Olson
etal., 2021). DAT is a useful case study for decod-
ing strategies as it constrains the generation to dif-
ferent nouns (thus, assuming an optimal probability
distribution, the tail due to smoothing should con-
tain everything else) and requires generating terms
that are as different as possible, which is quite the
opposite to what typically happens in language
modeling: an optimal strategy should exclude non-
appropriate tokens but also not limit too much the
space of possible tokens. More concretely, given
the embeddings of n words, the DAT score is the
average cosine distance between each pair of em-
beddings (then scaled as a percentage). We use
GloVe embeddings (Pennington et al., 2014) and
ask the model to generate a list of 10 nouns. We
discard outputs without at least 7 distinct nouns
and compute the DAT score for all other outputs
over their first 7 nouns. We repeat the experiment
100 times for non-greedy strategies to mitigate the
sampling stochasticity.

5.4.2 Experimental Results

Figure 2 summarizes the DAT results for the in-
structed version of Llama3-8B. DiffSampling-cut
has the highest average score (even if lower than
the greedy score), and generates only valid outputs.
Contrastive search, as the baseline closer to greed-
iness, is the second-best method in terms of both
DAT score and count of valid outputs, while both
DiffSampling-1b and DiffSampling-minp perform
almost identically to the top-p and min-p.

As shown in Figure 3, the results for the pre-
trained version of Llama3-8B are quite different.
DiffSampling-cut is still arguably better than con-
trastive search, as it produces fewer low-scoring
and only valid outputs. DiffSampling-minp has a
slightly lower average score than min-p sampling
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Figure 2: DAT scores for our methods and the baselines
over the instructed version of Llama3-8B. Below, the
number of valid outputs produced by each sampling
strategy. The dashed line reports the greedy score.

but a few more valid outputs, while DiffSampling-
b produces fewer very-high scoring outputs than
the other baselines. However, by adjusting py, and
Pmin, OUr two relaxation methods can perform at
least as well as top-p and min-p (see Appendix D).

5.5 Temperature Scaling

Finally, we experiment with different temperature
values, i.e., 0.6, 1.0, 1.5, 2.0, and 10.0. As detailed
in Section 3, to preserve the mathematical guaran-
tees of our approach, we apply temperature after
the DiffSampling truncation, while our baselines ap-
ply this before (see Appendix D.1 for a comparison
between temperature before and after truncation).
As shown by Figure 4, DiffSampling+temperature
preserves the output quality, and the only rele-
vant differences occur with our two relaxations
and only pre-trained models. Instead, the output
quality rapidly drops with higher temperatures for
the min-p (by far the best of our baselines at tem-



©
o

DAT Score
N
}7
P
}7
i
BN

u
o

N
o

Valid outputs
«
o

Figure 3: DAT scores for our methods and the baselines
over the non-instructed version of Llama3-8B. Below,
the number of valid outputs produced by each sampling
strategy. The dashed line reports the greedy score.

peratures greater than 1.0) and top-p baselines. In
particular, the non-significant loss in quality for
DiffSampling-cut confirms that our truncation strat-
egy only preserves correct tokens. At the same
time, temperature scaling has an (overall positive)
impact on diversity; we refer to Appendix C for a
detailed analysis of how all our quality and diver-
sity metrics change at different temperatures.

6 Discussion

Overall, DiffSampling-cut has demonstrated perfor-
mance better than or equal to the greedy strategy.
Additionally, it offers the potential for greater diver-
sity. By introducing a lower bound on the preserved
total probability or an upper bound on the number
of truncated tokens, the method can further relax
selection constraints, enabling greater output di-
versity at the expense of a marginal reduction in
prediction accuracy. Once truncation is applied,
sampling at higher temperatures becomes viable,
promoting greater variability without significantly
compromising output quality.

However, selecting the most appropriate method
and hyperparameters is not straightforward and
requires a case-by-case analysis on whether it
is better to have higher quality or diversity.
DiffSampling-cut works best when the task requires
precision. Instead, DiffSampling-1b fosters output
diversity by trading off some accuracy, especially at
higher values of p;, and, thus, appears most appro-
priate for divergent solutions. DiffSampling-minp
is more well-balanced. Increasing the temperature
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Figure 4: Quality measures across different temperature
values for top-p, min-p, and our methods. For GSM8K
and MATH, we report the percentage of solved prob-
lems. For XSum, we report the coherence between the
output and the text to summarize. For DAT, we report
the number of valid generated outputs.

has proven highly effective for fine-tuned models
across all methods, whenever it is not strictly neces-
sary to preserve the originally learned distribution.

7 Conclusion

In this paper, we have presented DiffSampling, a
novel family of decoding strategies based on the
analysis of the next-token distribution. In particular,
given the distribution sorted in descending order,
we have proposed to compute the forward differ-
ence approximation of its discrete derivative and
use it to remove tokens after its minimum value
(possibly together with relaxations to allow for
more diversity). In this way, DiffSampling avoids
incorrect tokens under the learned distribution. We
have experimented with three different tasks, find-
ing that our methods consistently perform at least
as well as similar common strategies in terms of
the accuracy of results and diversity of outputs.

Our research agenda includes exploring whether
combining DiffSampling with other techniques can
yield even better results, including for longer-form
generation. We also aim to leverage other prop-
erties of the distribution to guide text generation
toward desired characteristics.



8 Limitations

The work presented in this paper has a few impor-
tant limitations to highlight. Firstly, DiffSampling
is merely a decoding strategy. While it can in-
fluence the accuracy and diversity of the model’s
outputs, it is constrained by the information learned
by the model itself. For instance, if the model is
biased toward certain grammatical structures, the
probability mass is likely to contain only tokens
that adhere to those structures. In addition, working
at the decoding level means that the information
stored by the model is not modified at all. While
DiffSampling can potentially reduce how much a
model regurgitates pre-existing text, it cannot re-
duce how much a model memorizes it.

Moreover, DiffSampling is governed by two pa-
rameters: the nucleus lower bound and the trun-
cated probability upper bound. Each of the three
methods has its advantages and disadvantages con-
cerning the exploitation and exploration of the next-
token distribution. While this can guide the choice
between them, there is no golden rule; users must
select the most appropriate strategy on a case-by-
case basis. Similarly, we did not find specific pa-
rameter values to be universally superior, and dif-
ferent scenarios may require users to adjust them
accordingly.

Additionally, our experiments encompassed only
three case studies with relatively short generated
outputs. While we chose these to maximize their
diversity, it is difficult to estimate the actual advan-
tage of using DiffSampling for other tasks (espe-
cially longer-form generation ones) and with differ-
ent LLMs. We intend to broaden our investigation
in the future, for example, by incorporating models
of varying sizes. At the same time, we believe that
the choice of LLM per se should not change the
ranking of the decoding techniques in terms of per-
formance, given the fact that our method is based
on the analysis of the token probability distribution
in output from these models.

Finally, our evaluation makes use of quantitative,
automatic metrics for both quality and diversity.
However, several of these metrics exhibit signifi-
cant limitations (e.g., Schluter (2017)), often failing
to align with human judgments (Tevet and Berant,
2021). Moreover, abstract concepts such as origi-
nality and creativity remain inherently difficult to
define with precision (Franceschelli and Musolesi,
2024). We plan to experiment with human evalua-
tors to verify whether the quality and diversity that

DiffSampling aims to provide are also perceived by
potential users.
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A Computational Infrastructure

All experiments were carried out on a local
server equipped with 2 NVIDIA L40 GPUs and
1 NVIDIA H100 GPU.

B Prompts

As reported in Section 5, we tested DiffSampling on
three case studies. For the mathematical problem-
solving tasks, we adopted the same prompt from
Yu et al. (2024), i.e.:

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

##H# Instruction:
{question}

### Response:
step.

\. J

Let’s think step by

For the extreme summarization task, the prompt
adopted for the instructed version of Llama2-7B is
the same as in Chhabra et al. (2024):

e D

[INST] For the following article:
{article}

Return a summary comprising of 1 sentence.
With the sentence in a numbered list format.

For example:

1. First sentence [/INST]

\. J

where [INST] and [/INST] are special tokens used

by Llama2-7b to identify different roles in the chat.

Vice versa, for the non-instructed version, we
used:

Generate a 1 sentence summary for the
given article.

Article: {article}

Summary:

Finally, for the divergent association task, we
considered the following prompt for the instructed
version of Llama3-8B:

12

user

Please write 10 nouns in English that
are as irrelevant from each other as possible,
in all meanings and uses of the words.
Please note that the words you write should
have only single word, only nouns (e.g.,
things, objects, concepts), and no proper
nouns (e.g., no specific people or places).
assistant

Here are the 10 nouns in English that are as
irrelevant from each other as possible:

\. J

where user and assistant are keywords used by
Llama3-8b to identify different roles in the chat,
while for its non-instructed version we used the
following:

7

Write 10 nouns in English that are as
irrelevant from each other as possible, in
all meanings and uses of the words. Please
note that the words you write should have
only single word, only nouns (e.g., things,
objects, concepts), and no proper nouns
(e.g., no specific people or places).

Solution:
Here are the 10 nouns in English that are as
irrelevant from each other as possible:

C Experiments on Temperature Scaling

In addition to investigating performances at a tem-
perature T 1.0, we also conduct experiments
with a lower temperature value (0.6) and three
higher temperature values (1.5, 2.0, and 10.0), to
verify whether our truncation strategy only pre-
serves appropriate tokens, i.e., whether at different
temperatures the quality of generated outputs re-
mains competitive and the diversity increases.

C.1 Math Problem Solving

Table 4 reports all the results with different temper-
atures for the GSM8K (left side) and MATH (right
side) test sets. For the former, a lower tempera-
ture makes all the models (including the baselines)
more in line with greedy strategy, thus diminishing
the diversity scores while usually increasing the
accuracy. On the contrary, all the baselines tend to
perform poorer at increasing temperatures in terms



Dataset: GSMS8K MATH
Method Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy
EAD SBERT EAD SBERT EAD SBERT EAD SBERT
Temperature = 0.0
Greedy [ 66.441.00 [ 2.031.00 0.641.00 ] - - [ 20.621.01 [ 5.654.00 0.801.00 | - -
Temperature = 1.0
Contrastive search 65.88:(:_59 2.06:(:_00 0.64:(:_00 0.17:{:_00 0.02:(:_00 21.05:{:_14 5.82:{:_01 0.80:(:_00 0.31:(:_00 0.09:{:_00
TOp-]) sampling 65.00:(:_18 2.08:(:_01 0.64:(:00 0.23:{:_00 0.03:(:_00 20.02:{:_12 6.08:{:_02 0.80:(:_00 0.36;{;00 0.10:{:_00
n-sampling 65.054.19 | 2.124 00 0.64+.00 | 0.254+00 0.044.00 || 19.67+20 | 6.36+01 0.804+.00 | 0.39+00 0.114 090
Locally typical 66.294 55 | 2.094.00 0.64+00 | 0.23+00 0.031+.00 || 19.954 96 | 6.06+01 0.804+.00 | 0.361+.00 0.10+.00
Min-p sampling 65.764 44 | 2.094.00 0.64+00 | 0.23+00 0.031+.00 || 20.25409 | 6.09+01 0.804+.00 | 0.361+.00 0.10+.00
DiftSampling-cut 66.364 .23 | 2.041.00 0.64+00 | 0.14+ 00 0.02400 || 21.38+20 | 5.71+01 0.804.00 | 0.27+00 0.07+.00
DiffSampling-1b 66.924 08 | 2.07+.00 0.64+00 | 0.20+00 0.03+£00 || 20.784 14 | 6.00401 0.804+.00 | 0.35+.00 0.10+ .00
DiffSampling-minp 66.44i.35 2-05j:,00 0.643:‘00 0.193:00 0.033:,()0 21~13j;08 5.873:_01 0.803:‘00 0-33j:00 0.093:00
Temperature = 0.6
TOp—p sampling 66.34i_67 2-05i.01 0.64i,00 0~17i,00 0-02i.00 21.58i432 5 81i_02 O.SOi_oo 0-31i.00 0~09i,00
r/—sampling 66.26i_22 2-07i.01 0.64i,00 0-19i,00 0-03i.00 20.36115 8] 94i.01 O.SOi_oo 0-331.00 0-09i,00
Locally typical 66.34i_67 2-05i.01 0.64i,00 0-17i.00 0-02i.00 21.58132 5.81i_02 O.SOi_oo 0-311.00 0-09i.00
Min—p sampling 66.52i_30 2.06i_01 0.64i,00 0-17i.00 O-OQi.OO 21-31i.08 5.81i_01 0.80i_00 0-311.00 0-09i.00
DiffSampling-cut 66.744 04 | 2.054.00 0.64100 | 0.13+00 0.024 90 || 21.52+13 | 5.724 00 0.80+.00 | 0.254 00 0.07+00
DiffSampling-1b 66.494 41 | 2.06+01 0.64+00 | 0.18+ 00 0.03+.00 || 21.09+ .11 | 5.83+01 0.804+.00 | 0.32+00 0.09+.00
DiffSampling-minp || 66.84+ 73 | 2.05401 0.64+00 | 0.16400 0.02400 || 20.79+.10 | 5.78+.01 0.804+.00 | 0.30+00 0.08+ 00
Temperature = 1.5
Top-p sampling 6391457 | 217001 0.64400 | 028400 0.04x00 || 18.38x22 | 692402 0.801£00 | 042400 0.121 00
n-sampling 60.35155 | 228400 0.64100 | 032400 0.05400 || 15.63117 | 777201 0.80100 | 045400 0.14100
Locally typical 64.394 41 | 217101 0.64100 | 0.281 00 0.04L 0 || 18.73101 | 7.04L 02 0.80L00 | 0.421L 90 0.121 9
Min-p sampling 64.294 38 | 215100 0.64100 | 0.28+ 00 0.04+£00 || 18.941 23 | 6.541 02 0.80+00 | 0.40£00 0.121 00
DiffSampling—cut 66.72i.36 2'05i.00 0.64i.00 0-15100 O-OQi.OO 21.36i‘15 5.73100 O.80i,()() 0~27i,00 0-07100
DiffSampling—lb 66.84i.43 2.08i'00 0.64i.0() 0-22100 O-OSi.OO 20-52134 6.03101 0.80i'00 0.36i400 U.IOi‘OU
DiffSampling—minp 66.24i.36 2.08i'00 0.64i.00 U.QOi‘OU O-OSi.OO 20-79114 5.88101 O.SOi'oo 0~34i,00 U.IOi‘OU
Temperature = 2.0
Top-p sampling 25.404 07 | 10.134.19 0.66400 | 0.70£01 0.36+01 || 249401 | 48.714 08 0.524 00 | 0.921 00 0.684.00
n-sampling 35.514.30 | 7.354+.05 0.69+00 | 0.58+01 0.224 01 || 4.26406 | 43.39+.10 0.64400 | 0.86+.00 0.53+.00
Locally typical 24.61+60 | 10.654.05 0.654+00 | 0.714 01 0.37+01 || 246403 | 51.04+07 0.504£00 | 0.93+00 0.69+.00
Min-p sampling 62.19i‘37 2.243:‘01 0.643:‘00 0.323:‘00 0.053:,00 16.92j;21 7.213:_01 0.803:,00 0.44j:00 0.133:‘00
DiffSampling-cut 66.44i.18 2-05i,00 0.643:‘00 0.153:‘00 0.023:,()0 21.663:20 5.713:_01 0.803:‘00 0-27j:00 0.083:‘00
DiffSampling-lb 65.73i.47 2.083:‘01 0.641‘00 0.233:0[) 0.033:,()0 20~34j;08 6.093:,[)2 0.803:‘00 U.37iA00 0.113:0[)
DiffSampling-minp 66.21i.27 2.06i‘00 0.643:‘00 0.21:{:()[) 0.033:,()0 20‘593:13 5.903:,[)2 0.803:‘00 0‘34r00 0.10:{:(0[)
Temperature = 10.0
TOp—]) sampling 0.00i,oo 17.26i_03 0-12j:.00 l.Ooi_Qo 0.96i_00 O-OOi.OO 58.65i_03 0-12i.00 1-001.00 l.Ooi_Qo
n-sampling 0.00+.00 | 1743404 0.124 00 | 1.00£00 0.96+00 || 0.00+.00 | 59.18+ 02 0.124 00 | 1.00+00 1.00+ .00
Locally typical 0.00i,oo 17-52i.01 O-llj:.OO 1.01i_00 O.gﬁi_oo O-OOi.OO 59.69i_01 0-11i.00 14011.00 1.00i_00
Min-p sampling 0.00+.00 | 17.394.04 0.13+00 | 1.00+00 0.95+.00 || 0.00+.00 | 59.164 02 0.13+00 | 1.00+00 1.004+.00
DiffSampling-cut 66.314 .96 | 2.04+00 0.64400 | 0.15400 0.02400 || 21.224 17 | 5.74401 0.804+.00 | 0.281 00 0.084+.00
DiffSampling-1b 66.264 72 | 2.101.00 0.64+00 | 0.25400 0.04400 || 19.88+03 | 6.20401 0.804+.00 | 0.39+00 0.114 09
DiffSampling-minp || 65.43+31 | 2.07+00 0.64+00 | 0.22+ 00 0.034.00 || 21.17+ 14 | 5944102 0.804+.00 | 0.35+.00 0.10+.00

Table 4: Accuracy and diversity of results for the GSM8K and MATH test sets over 3 seeds with different temperature
values. The mean and standard error of the final score for each run are reported for accuracy and cross-input diversity,
whereas the mean and 95% confidence interval for the full set of answers are reported for against-greedy diversity.

of output correctness, while diversity improves ac-
cordingly (especially for a syntactic-based metric
such as EAD; the qualitative examples reported
in Appendix E.1 demonstrate why). Instead, our
methods maintain the highest possible accuracy,
with a slight improvement in diversity at higher 7.

For the latter, a lower temperature makes all the
baselines closer to our methods in terms of accu-
racy, while diminishing their diversity scores. At
increasing temperature, the baselines rapidly start
failing to solve the problems, possibly due to a
more random selection of tokens that also causes

syntactic diversity to increase. By applying tem-
perature after the truncation, our methods preserve
their output quality regardless of the temperature
used, with small but relevant gains in diversity (for
example, DiffSampling-minp at even 7 = 10.0 has
an accuracy comparable with min-p and 7 = 0.6,
but with clearly higher diversity scores).

For the sake of completeness, we also report the
full results on a sample of 1000 entries from the
MetaMathQA training set. As apparent from Table
5, the greediness of the approach is directly corre-
lated with the accuracy of solutions. In particular,
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Method Accuracy Cross-Input Diversity Against-Greedy Diversity
EAD SBERT EAD SBERT
Greedy 95.274 17 1.67+.01 0.711 00 - -
Temperature = 1.0
Contrastive search 94174 45 1.684 01 0.711 00 0.144 oo 0.03+ 00
Top-p sampling 91.70+ 62 1.71+ 01 0.714 .00 0.19+ 01 0.04+ 090
n-sampling 89.174 50 1.73+.01 0.711 00 0.214 01 0.04+ oo
Locally typical 91.704 62 1.714 01 0.711 .00 0.194 .01 0.04+ oo
Min-p sampling 92.004 49 1.704.01 0.714+ 00 0.194 01 0.03+.00
DiffSampling-cut 94.93 4 45 1.68+ 01 0.714 .00 0.114 00 0.02+ 00
DiffSampling—lb 93~33i.03 1.68i_01 0'71i,00 0~17i,01 0~03i.00
DiffSampling-minp 94.134 20 1.694 .01 0.714+ 00 0.164+ 01 0.03+.00
Temperature = 0.6
Top-p 94.03+ 27 1.68+ 01 0.71+ .00 0.14+ 0 0.03+.00
n—sampling 93~90i.09 1~70i.01 0~71i,00 0~15i,01 0~03i.00
Locally typical 94.034 07 1.684 .01 0.714 00 0.144 o1 0.03+ 00
Min-p 93.93+ 36 1.68+ 01 0.71+.00 0.14+ 0.03+.00
DiffS.-cut 94.834 18 1.684 01 0.714 00 0.114 o9 0.02+ oo
DiffS.-1b 93.43+ 21 1.69+ 01 0.714 .00 0.144 01 0.03+ .00
DiffS.—minp 93~97i.30 1.67i_01 0~71i,00 0~13i,00 0~02i.00
Temperature = 1.5
Top-p 87.63+.90 1.754 00 0.714.00 0.244.01 0.054+.00
n-sampling 80.63+ 23 1.83+ 01 0.711 .00 0.284 01 0.05+ 00
Locally typical 87.97+ 38 1.77+.01 0.714+ 00 0.244 o1 0.054+ 00
Min-p 87.90+ 57 1754 01 0.714 .00 0.244 01 0.054+ 00
DiffS.-cut 95.174 18 1.67+ 01 0.714 00 0.114 o9 0.02+ 00
DiffS.-1b 92.67+ 52 1.70+ 02 0.714 .00 0.184.01 0.03+.00
DiffS.-minp 93.834+ 49 1.69+ 01 0.714.00 0.17+.01 0.03+.00
Temperature = 2.0
Top-p 30.17+ 76 8.30+.11 0.67+.00 0.70+.01 0.44+ 01
’r/—sampling 42»20i10 6.26i.13 0-72i00 0-58iA01 0~29i,01
Locally typical 29~07i.72 8.68i_08 0.65i_00 0.71i_01 0445101
Min-p 83.934 22 1.80+ .02 0.714 .00 0.284 01 0.054+.00
DiffS.-cut 94.334 35 1.68+ 01 0.714 .00 0.124 oo 0.02+ 9o
DiffS.-1b 92.871 91 1.714:01 0.711 00 0.194 01 0.04+ oo
DiffS.-minp 93.37+.07 1.694 01 0.714 00 0.174+ 01 0.03+ 00
Temperature = 10.0
TOp—p U.OOi_oo 13.103:,03 0.123:_00 I.UOi_og 0498i,00
n—sampling O-OOi.OO 13~22i.03 0~12i,00 1~00i,00 0.98i.00
Locally typical 0.00+ .00 13.334+ 02 0.114 o9 1.014 00 0.98+ 00
MiIl-p 0~00i.00 13-21i,03 0'13i.00 1~00i.00 0‘98i>00
DiffS.-cut 94-47i.19 1.67i.[]1 0-71i400 0-12i.00 0.0Qi‘(]()
DiffS.-1b 92.104 43 1.70+ 01 0.714 .00 0.214 01 0.04+ oo
DiffS.-minp 93.134 17 1.69+ 02 0.714 .00 0.184.01 0.03+.00

Table 5: Accuracy and diversity of results for the training set over 3 seeds with different temperature values. The
mean and standard error of the final score for each run are reported for accuracy and cross-input diversity, whereas
the mean and 95% confidence interval for the full set of answers are reported for against-greedy diversity.

sampling at a temperature of 0.6 increases the ac-
curacy of all baselines while undermining their di-
versity scores, while higher temperatures lower the
accuracy and increase (syntactic) diversity; notably,
a very high temperature causes semantic diversity
to fall. On the contrary, our three methods achieve
similar accuracy at any temperature, with small
increases in diversity.

C.2 Extreme Summarization

Similar considerations can be traced for XSum, as
reported by Table 6. For both RLHF-instructed
and pre-trained models, the quality of output pro-
duced by the baselines tends to dramatically de-
crease at higher temperatures (only min-p achieves
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good results at 7 = 2.0), with the consequence of
an increasing syntactic diversity due to the choice
of random and meaningless tokens. Instead, the
quality of the output generated by DiffSampling
remains more stable, with small but consistent in-
creases in diversity.

C.3 Divergence Association Task

Finally, Figure 5 reports the DAT score and the per-
centage of output validity of the DPO-instructed
and pre-trained models with different temperature
values. For the instructed model, top-p, locally typ-
ical, and n-sampling rapidly stop outputting valid
lists of nouns when the temperature raises, even if
the DAT score tends to be higher at 7 = 1.5; min-



Model: RLHF-instructed Pre-trained
Method Quality ‘ Cross-Input ‘ Against-Greedy Quality ‘ Cross-Input ‘ Against-Greedy
R-1 SIM  COH | EAD SBERT | EAD SBERT | R-1 SIM  COH | EAD SBERT | EAD  SBERT
Temperature = 0.0
Greedy H 0.224 00 0.494 01 0»721.00‘ 1.164 .00 04941.00‘ - - H 0.19400 0.454 01 04661.01‘ 1.114 00 (]»941.00‘ - -
Temperature = 1.0
Contrastive search 0.224 90 050401 0.724 00| 1.18100 0.941 09| 0.21401 0.081 01| 0.19400 0.441 01 0.641 01| 1.141 00 0.941 00| 0.454 01 0.294 01
Top-p sampling 0.224 00 050101 0.71100] 1.21100 0.94+ 00| 0.30101 0.124 01| 0.16100 0.36+01 0.501 01| 1.16100 0.93100| 0.75101 0.55+ 01
n-sampling 022400 0.50101 0.71400] 1.22400 0.94+ 00| 0.33+01 0.13101| 0.154£00 0.35101 0.49+ 01| 1.19+01 0.931 00| 0.78+101 0.57+ 01
Locally typical 022400 0.50101 0.71100] 1.21£00 0.94+ 00| 0.30+01 0.124 011 0.16100 0.35101 0.50+01| 1.164£00 0.931 00| 0.75401 0.554 01
Mil‘l»p sampling 0422i.00 0-501,01 0.72100 1-20i.00 0-94i.00 0429i.01 0-111,01 0.19100 0.44101 U.GIi_Ul 1,16i,01 0-931,00 0.62101 0.40101
DiffSampling-cut 0.224 00 050401 0.72400| 1.16400 0.944 00| 0.17£01 0.06401 || 0.19400 0.45401 0.661 01| 1.13400 0.941 00| 0.25401 0.154 01
DiffSampling-1b 0.224 00 050401 0.71400] 1.20400 0.944 00| 0.27£01 0.10401 || 0.17£00 0.38101 0.531+01| 1.15400 0.93100| 0.71401 0.504 01
DiffSampling-minp || 0.22400 0.504.01 0.724.00| 118400 0.94%00| 0.232.01 0.094.01 | 0.19400 044501 0.6301| 115201 0.944.00| 0.491 01 0.31101
Temperature = 0.6
Top-p sampling 0.222.00 050201 0.724.00] L1.182.00 0.941.00] 021101 0.08201] 0.19:00 0.44101 0.632.01] L1ds o1 0.94:00] 047201 0.30101
n-sampling 0.224.00 0.50201 0.724.00| 1.19200 0.94x.00] 0.234.01 0.09:01 || 0.19100 0.43101 0.62+.01| 115401 0941 00| 0.52.01 0.341 01
Locally typical 0.224.00 0.50401 0.724.00| 1.18100 0.94x.00| 021401 0.08201| 0.19:100 0.44101 0.63.01| L14s o1 0.94100| 047201 0.30101
Min-p sampling 0.224.00 0.50401 0.724.00| 1.18100 0.94x.00| 021401 0.08201| 0.19100 0.44101 0.6dx01| 115400 0.94100| 0.432.01 0.274.01
DiffSampling-cut || 0.22+00 0.502.01 0.724.00| L1600 0.94%00| 0.150.01 0.064.01| 0.19400 0.44s01 0.66201| 113201 0.944.00| 0.241 01 0.141 01
DiffSampling-1b 0.22:.00 0.50401 0.72400| 1.19100 0.94x00] 0.224 01 0.08201| 0.19100 0.43101 0.62+.01| L1655 00 0.941 00| 0.524.01 0.34s 01
DiffSampling-minp || 0.2200 0.501.01 0.724.00| L1700 0.94% 00| 0.20401 0.084.01| 0.19400 0.44r0r 0.6 01| 1.1ds o1 0.94400| 0.421 01 0.26201
Temperature = 1.5
Top-p sampling 0.21100 0.50401 0.71100| 1.33£01 0.93+00| 0.41401 0.164 01 0.04£00 0.10+00 0.23+01| 2.32400 0.75100| 0.96£00 0.871 01
n-sampling 0.21+.00 0.50+01 0.70+00| 1.36+01 0.93+00| 0.46+.01 0.184 01 0.04+00 0.10+00 0.23+01| 2.37+01 0.741.00| 0.96+£00 0.87+01
Locally typical 021190 0.50401 0.714 00| 1.36401 0.931 00| 0.41401 0.154 01| 0.03£00 0.09400 0.23101| 2.72401 0.671 00| 0.97+00 0.89+ 00
Min-p sampling 0.221 90 050401 0.71400] 1.23101 0.941 00| 0.38401 0.154 01| 0.17£00 0.40401 0.541 01| 1.23400 0.931 00| 0.79+01 0.53+ 01
DiffSampling-cut 0.221 90 050401 0.724 00| 1.164 00 0.941 00| 0.17£01 0.071 01| 0.19400 0.454 01 0.66+ 01| 1.13400 0.941 00| 0.26401 0.154 01
DiffSampling-1b 0.224 00 050401 0.71400] 1.21400 0.944 00| 0.30401 0.124 01| 0.144 00 0.33101 0.461 01| 1.19400 0.931 00| 0.81401 0.614 01
DiffSampling-minp || 0.224 09 0.50401 0.724 00| 1.18+00 0.94+ 00| 0.25401 0.094 01 0.19400 0.44101 0.63101| 1.15400 0.94400| 0.524.01 0.341 01
Temperature = 2.0
Top-p sampling 010400 0.24101 041401] 2.23401 0.77+00| 0.78+01 0.604 01| 0.01100 0.04£00 0.18+ 00| 3.07101 0.471 00| 0.981 00 0.94+ o
n-sampling 0.13400 0.331.01 0.50401] 2.081 02 0.841 00| 0.75401 0.471 01| 0.01£00 0.04100 0.171+00| 3.15401 0.454 00| 0.99+00 0.944+ 00
Locally typical 0.09400 024401 0.41401] 2.38101 0.75400| 0.80+£01 0.604 01| 0.01£00 0.03100 0.18+ 00| 3.39+00 0.37100| 0.99+00 0.95+ 00
Min-p sampling 0.224 00 050401 0.714 00| 1.26401 0.944 00| 0.45401 0.181 01| 0.124 00 0.32101 0.43101| 1.39400 0.921 00| 0.88+01 0.65+ 01
DiffSampling-cut || 0.22+.00 0.504.01 0.724.00| 1.165.00 0.94%00| 0.18201 0.07101 | 0.194.00 045201 0.66401| 1.13400 0.944.00| 026401 0.162.01
DiffSampling-1b 0.224.00 0.50101 0.71400| 1.22001 0.941.00] 031401 0.124 01| 0.14100 0.31101 0.44x01| 1.254 01 0.93+00| 0.86.01 0.654.01
DiftSampling-minp || 0.224 00 0.50+01 0.724+00| 1.18+ .00 0.94+ 00| 0.26401 0.104+ 01 0.19400 0.444+01 0.63+01| 1.16400 0.944 00| 0.541 01 0.35+.01
Temperature = 10.0
Top-p sampling 0.00400 0.03100 0.174+00| 349400 0.284 00| 1.00£00 0.964 00| 0.01+00 0.03100 0.164+ 00| 3.48+00 0.304+00| 1.00+00 0.95+ 00
n-sampling 0.00400 0.03100 0.164+.00| 3.51+00 0.30+.00| 1.00£00 0.954 00| 0.00£00 0.03+00 0.16+00| 3.51+00 0.31400| 1.00+00 0.95+ 00
Locally typical 0.004.00 0.024.00 0.16100| 3.51000 0.284.00| 1.004.00 0.964.00| 0.00100 0.034.00 0.164.00| 3.514.00 0.294.00| 1.00400 0.95+ 00
Min-p sampling 0.00400 0.03400 0.164+.00| 3.51+00 0.304+00| 1.00£00 0.954 00| 0.00£00 0.03+00 0.164+ 00| 3.51+00 0.31400| 1.00+00 0.95+ 00
DiffSampling-cut 0.224 00 0.50£01 0.72400| 1.16100 0.94+00| 0.184 01 0.07+01| 0.19+.00 0.45401 0.66+ 01| 1.14£ 00 0.94400| 027101 0.16+ 01
DiffSampling-1b 0.224 00 0.50401 0.71100| 1.23£00 0.94400| 0.341.01 0.13401( 0.11400 027101 0.38+01| 147401 0.921 00| 0.89£01 0.711 01
DiffSampling-minp || 0.224 09 0.504£01 0.724 00| 1.1841 01 094+ 00| 028401 0.114 01| 0.194 00 0.44101 0.62101| 1.16400 0.944 00| 0.58+.01 0.38+.01

Table 6: Aggregate results over 3 seeds for the XSum dataset for the instructed model (left) and the pre-trained
model (right) with different temperature values. The mean and standard error of the final score for each run are
reported for cross-input diversity, whereas the mean and 95% confidence interval for the full set of answers are

reported for the other metrics.

p returns a high percentage of valid outputs even
at 7 = 2.0, but does not increase the DAT score
and cannot produce anything valid at 7 = 10.0.
Instead, the performance of our methods remains
very similar across different temperatures in terms
of both the DAT score and the percentage of valid
outputs.

On the other hand, the greedy decoding strategy
is less effective for the pre-trained model, which
results in higher temperatures yielding better DAT
scores across both the baselines and our methods
(especially DiffSampling-1b). However, the number
of valid outputs decreases faster, and top-p, locally
typical, and n-sampling produce very few correct
lists at a temperature of 1.5 (but with a higher DAT
score). Again, min-p better manages temperatures
around 1.5 and 2.0, with higher scores and still at
least half of the outputs as valid, but cannot produce
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any correct output at a temperature of 10.0.

D Additional Experiments

D.1 Temperature Before or After Truncating

As described in Section 3, we apply temperature
after truncating based on the minimum discrete
derivative to preserve the guarantees of correctness
of selected tokens. However, the de facto standard
is to apply temperature before any other truncation
or modification. In this section, we examine the
implications of the temperature position in terms
of quality and diversity.

Table 7 reports the results of our methods with
temperature before (left side) and after (right side)
the truncation for the GSMS8K test set. As we can
see, applying the temperature before causes the
accuracy to degrade at higher temperatures, while
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Figure 5: DAT scores for our methods and the baselines with different temperature values, together with the number
of valid outputs produced by each sampling strategy. The dashed line represents the score of the greedy strategy.

ensuring a slightly higher diversity. Interestingly,  sity. This confirms that our choice preserves the
at 7 = 0.6, applying the temperature after leads to  quality as much as possible, at the cost of some
better results in terms of both accuracy and diver-  additional diversity.
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Method BEFORE AFTER
Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy

EAD SBERT EAD SBERT EAD SBERT EAD SBERT
Temperature = 0.6
DiffSampling-cut 66.19iA12 2-04i.00 0.64i‘00 O-IOi.UO O-OIi,OO 66.74i,g4 2.05i‘00 0.64i(00 0-13i,00 0.02i,00
DiffSampling-1b 66.544 55 | 2.05401 0.64100 | 0.16400 0.02400 || 66.494+ 41 | 2.064+.01 0.64+£00 | 0.18+.00 0.03+.00
DiffSampling—minp 66484i_23 2-05i.00 0.64i,00 0-14i.00 0-021.00 66.84i_73 2~05i,01 0.64i_00 0.16i_00 0-02i.00
Temperature = 1.5
DiffSampling-cut 66.164 57 | 2.05400 0.64100 | 0.17100 0.02400 || 66.72+ 36 | 2.054+00 0.64100 | 0.15400 0.024 00
DiffSampling—lb 64‘44i,22 2-12i.00 0.64i.00 0.26i_00 0-041.00 66.84i_43 2.08i.00 0.64i_00 0-221.00 0.0Si_go
DiffSampling—minp 64.87i,30 2.08i.00 0.64i.00 0~23i.00 0~03i.00 66.24i.36 2.08i.00 0‘64i400 (J.Q()i,oo 0~03i.00
Temperature = 2.0
DiffSampling—cut 65.50i,09 2.(]()}'01 0.64i.0() 0'19i,00 0~03i.00 66.44iv13 2~05i.00 0.64i400 0~15i.00 0-02i,00
DiffSampling-1b 38.924 52 | 7.51106 0.69+100 | 0.56+£01 0.24101 || 65.73£47 | 2.08+£01 0.64100 | 023100 0.03+.00
DiffSampling-minp 64~19i05 2-14i.01 0.64i‘00 0-27i.00 0-04i,00 66.21i,27 2.06i‘00 0.64i(00 0-21i,00 O-O?’i.OO
Temperature = 10.0
DiffSampling-cut 61.31191 | 222301 0.64400 | 0.31100 0.04100 || 66.31£96 | 2.04£ 00 0.64100 | 0.15100 0.021 00
DiffSampling—lb 0.00i_OO 17.41:&‘03 0.121‘00 1.00:&_00 0.96:&‘00 66.26:{;_72 2.10:(:‘00 0.64:&(00 0.25:{;00 0.04:(:.(]0
DiffSampling—minp O-OOi.OO 17*14i.03 0~13i.00 l.ooi_oo 0495i.00 65.43i_31 2~07i.00 0.64i_00 0422i.00 O-OSi.OO

Table 7: Accuracy and diversity of results for the GSMS8K test set over 3 seeds. The mean and standard error of the
final score for each run are reported for accuracy and cross-input diversity, whereas the mean and 95% confidence
interval for the full set of answers are reported for against-greedy diversity.

Table 8 reports the results of our methods with
temperature before (left side) and after (right side)
the truncation for the MATH test set. Again, ap-
plying a higher temperature before causes the ac-
curacy to drop quickly for the two relaxations, and
smoothly for DiffSampling-cut, with benefits only
in terms of syntactic diversity. Instead, applying
the temperature after has a negligible impact on
quality while fostering diversity.

The same considerations hold for XSum as well.
For both the instructed (Table 9) and pre-trained
(Table 10) models, the quality is not preserved with
the temperature before, while it is with the temper-
ature after, although diversity does not increase in
the same way. Again, the diversity at 7 = 0.6 is
instead greater with the temperature after, even if
the quality is, more or less, the same.

Finally, applying the temperature before does not
seem to give benefits for the divergence association
task as well. As shown by Figure 6, for both the
instructed and pre-trained models, the DAT scores
are very similar regardless of the temperature po-
sition, but almost no valid solutions are generated
when a temperature of 10.0 is applied before trun-
cating (and the same happens for a temperature of
2.0 in the case of DiffSampling-Ib).

D.2 Ablation Study on the Lower Bound

We also conducted experiments on the three afore-
mentioned case studies, varying the lower bound
of the critical mass. Table 11 reports the results for
the math problem-solving tasks, considering the
GSMBSK (left side) and MATH (right side) test sets.
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As expected, the against-greedy diversity scores
and cross-input EAD increase together with p;; in-
stead, while accuracy tends to decrease with higher
lower bounds, the differences are not significant,
and even a quite high value (e.g., 0.8) achieves
competitive results. Notably, DiffSampling-Ib with
piw = 0.9 performs better than or equal to top-p
sampling (with p = 0.9) under all quality and di-
versity metrics, highlighting how our method can
improve upon existing solutions.

Table 12 reports the results for the extreme sum-
marization task for both instructed (left side) and
pre-trained (right side) models. Again, against-
greedy scores and cross-input EAD are directly
correlated with the lower bound; however, they
start changing only with py, around 0.7. Instead,
qualitative metrics do not vary much for the in-
structed model, while constantly decreasing for the
pre-trained model with increasing p;. In this situa-
tion, the choice of py, is relevant and requires us to
decide whether to trade off quality or diversity.

Finally, Figure 7 reports the results for the di-
vergent association task. As we would expect, the
DAT score changes almost linearly between that
for a lower bound of 0 (that means DiffSampling-
cut) and 1 (that means standard sampling), as we
reported in Section 5. Interestingly, the number of
correct answers by the non-instructed model drops
constantly, while it remains consistently higher in
the case of the instructed model. To sum up, when
greediness is desirable, a lower value of p;;, can lead
to high quality and diversity; otherwise, increas-
ing pyp improves diversity, but the cost in terms



Method BEFORE AFTER
Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy

EAD SBERT EAD SBERT EAD SBERT EAD SBERT
Temperature = 0.6
DiffSampling-cut 21~44iA12 5-69iA01 0.80i‘00 0-22i.00 0.06i‘00 21.52i,13 5.72i‘00 0.80i(00 0.25i‘00 0.07i,00
DiffSampling—]b 21.694 98 | 5.76401 0.80+00 | 0.294 00 0.08+ 09 21.09411 | 5.83101 0.80+00 | 0.321 00 0.09+ 00
DiffSampling—minp 21436i_21 5-72i.01 O.SOi,oo 0-27i.00 0-081.00 20-79i.10 5.78i_0| O.SOi_OO O.SOi_oo 0.08i_00
Temperature = 1.5
DiffSampling-cut 2115409 | 5.78+01 0.80+00 | 0.30100 0.08+00 || 21.36+.15 | 5.73+.00 0.80+00 | 0.27+.00 0.07+.00
DiffSampling—lb 19‘46112 6.50i_00 O.SOi.oo O-4Oi.00 0-121.00 20-52i.34 6.03i.01 O.SOiloo 0.3()},00 O-]-Oi.OO
DiffSampling-minp 20.02+.06 | 6.084.01 0.80+00 | 0.37+00 0.11100 || 20.79+£14 | 588401 0.80+.00 | 0.34100 0.10+00
Temperature = 2.0
DiffSampling—cut 21~25i.10 5-85i,00 U.S()i.o() 0-32i,00 O.Ugi,oo 21.6()}'20 5~71i.01 0.80i400 0271.00 0-08i,00
DiffSampling-lb 6.961+.25 | 40.17+11 0.68+.00 | 0.81100 0.51+01 || 20.341+.08 | 6.09+.02 0.80+.00 | 0.37+00 0.11+00
DiffSampling-minp 19.444 13 | 6.35+02 0.80+.00 | 0.404 00 0.11400 || 20.594+.13 | 590402 0.80+.00 | 0.34+00 0.10+.00
Temperature = 10.0
DiffSampling-cut 16.63+12 | 6.784+01 0.80100 | 043100 0.124 00 || 21.22417 | 574401 0.80+00 | 0.28400 0.08+.00
DiffSampling-1b 0.00+.00 | 99.18+02 0.124 09 | 1.00400 1.00400 || 19.884+.03 | 6.20401 0.804+00 | 0.39+00 0.114 0
DiffSampling-minp 0.004.00 | 58.154.04 0.131.00 | 1.001.00 1.00400 || 2117114 | 594402 0.804+.00 | 0.35+00 0.104+.00

Table 8: Accuracy and diversity of results for the MATH test set over 3 seeds. The mean and standard error of the
final score for each run are reported for accuracy and cross-input diversity, whereas the mean and 95% confidence
interval for the full set of answers are reported for against-greedy diversity.

Method BEFORE AFTER
Quality ‘ Cross-Input ‘ Against-Greedy Quality ‘ Cross-Input ‘ Against-Greedy
R-1 SIM COH | EAD SBERT | EAD  SBERT R-1 SIM COH | EAD SBERT | EAD  SBERT
Temperature = 0.6
DiffSamplingcut || 0.22.00 0.501.01 0-724.00] L1600 0.94%00] 0-122.01 0-052.00] 022400 05001 0.72x00] L.162.00 0.942.00] 0.16101 0.06101
DiffSampling-1b 0.224.00 0.50401 0.724.00| 1.17200 0.94x.00| 0.184.01 0.07201|| 0.22000 0.50101 0.722.00| 119400 0.941 00| 0.224.01 0.08+01
DiffSampling-minp || 0.22+00 0.502.01 0.724.00| L1700 0.94%00| 0.172.01 0.064.01 | 0.22400 05001 0.72+00| 1.172.00 0.944.00| 0.20101 0.08201
Temperature = 1.5
DiffSamplingcut || 0.22+00 0.501.01 0-722.00] L.17200 0.94% 0] 021201 0.08+.01] 022400 05001 0.72x00] L.162.00 0.94500] 0.17101 0.072.01
DiffSampling-1b 0.224 00 0.50401 0.71100| 1.30£01 0.93+00| 0.37101 0.144 01 0.224 00 0.50+01 0.71100| 1.21400 0.94100| 0.30£01 0.124 01
DiffSampling-minp || 0.224 90 0.504.01 0.724 00| 1.204£00 0.941 00| 0.30£01 0.124 01]] 0.221 90 0.50+.01 0.724 00| 1.184.00 0.941 00| 025401 0.094 01
Temperature = 2.0
DiffSampling-cut 0.224 00 0.50£01 0.72400| 1.17100 0.94+ 00| 0.241 01 0.09401| 0.22400 0.50+.01 0.721+ 00| 1.16+£ 00 0.941 00| 0.18101 0.07+01
DiffSampling-1b 0.13100 0.331.01 0.52401] 2.05401 0.851 00| 0.68401 0.441 01| 0.224 00 0.504 01 0.711 00| 1.224 01 0.941 9| 0.314 01 0.124 01
DiffSampling-minp || 0.224 09 0.50401 0.71+00| 1.224 01 0.94+ 00| 0.36+01 0.144 01 0.22400 0.50+01 0.72100| 1.18400 0.944 00| 0.26401 0.10+.01
Temperature = 10.0
DiffSampling-cut 0.221 00 0.50+01 0.71400] 1.28400 0.941 00| 0.424 01 0.154 011 0.22400 0.50401 0.72+ 00| 1.164£00 0.944 00| 0.18101 0.07+01
DiffSampling-1b 0.00£00 0.03100 0.16400| 3.51£00 0.30+.00| 1.00+00 0.954+ 00| 0.22+00 0.50£01 0.71rgo| 1.23+100 0.944 00| 0.34101 0.13+ 01
DiffSampling-minp || 0.01+00 0.03400 0.164+00| 3.49+.00 0.32+00| 1.00400 0.96+ 00 0.22400 0.50+01 0.72400| 1.184.01 0.944 00| 0.28401 0.114 01

Table 9: Quality and diversity of results for the XSum test set with the instructed model over 3 seeds. The mean
and standard error of the final score for each run are reported for cross-input diversity, whereas the mean and 95%
confidence interval for the full set of answers are reported for the other metrics.

Method BEFORE AFTER
Quality ‘ Cross-Input ‘ Against-Greedy Quality ‘ Cross-Input ‘ Against-Greedy
R-1 SIM  COH | EAD SBERT | EAD SBERT | R-1 SIM  COH | EAD SBERT | EAD  SBERT
Temperature = 0.6
DiffSampling-cut 019500 0.441 91 0.66+01] 113200 0.94%00] 0.195.01 011101 ]] 019400 04431 0.661.01] 1.131.01 0.941 0] 0.2d1 01 0.1dx 01
DiffSampling-1b 0.194 00 044401 0.64401] 113401 0944 00| 0.43401 027101 0.19400 043101 0.624 01| 1.15400 0.944 00| 0.524 01 0.34+ 01
DiffSampling-minp || 0.204 00 0.45401 0.65101| 1.13£00 0.941 00| 0.33£01 0.20401] 0.19100 0.44101 0.644 01| 114101 0.941 00| 042401 0.264 01
Temperature = 1.5
DiffSampling-cut 0.19400 0.45401 0.66101| 1.15401 0.941 00| 0.304.01 0.184+ 01| 0.19400 0.45401 0.66+ 01| 1.131 00 0.944 00| 0.26101 0.154 01
DiffSampling-1b 0.05400 0.14401 0.26401| 2.11401 0.82100| 0.954.00 0.83+ 01| 0.14+00 0.33+01 0.46+01| 1.194 00 0.93+00| 0.81101 0.61+ 01
DiffSampling-minp || 0.184 09 0.424 01 0.60+01| 1.16400 0.93+ 00| 0.63+01 0.424 01 0.19400 0.441+01 0.63101| 1.15400 0.944 00| 0.524.01 0.341 01
Temperature = 2.0
DiffSampling-cut 0.20+.00 0.45401 0.66401| 1.16401 0.941 00| 0.344.01 0.20401|| 0.19400 0.45401 0.66+ 01| 1.134 00 0.94+ 00| 0.26101 0.16+ 01
DiffSampling-1b 0.01£00 0.04100 0.1841 00| 3.16+£01 0.46+00| 0.99+00 0.941 00| 0.14100 0.31101 0.44+ 01| 1.25401 0.934 00| 0.86+ 01 0.65+ 01
DiffSampling-minp || 0.17+00 0.41401 0.564+01| 1.18+ 01 0.93+ 00| 0.75401 0.50+ 01| 0.19400 0.44101 0.63101| 1.16400 0.944 00| 0.54+.01 0.35+.01
Temperature = 10.0
DiffSampling-cut 0.10+.00 0.25401 0.39101| 1.51402 0.90+00| 0.64+01 0.58+.01 0.19+00 0.45101 0.66+01| 1.14+00 0.944.00| 027101 0.16+01
DiffSampling-1b 0.00+.00 0.03+.00 0.16+00| 3.514.00 0.31+00| 1.00+00 0.95+00 0.11400 0.27101 0.38+01] 1.47+01 0.924.00| 0.89+.01 0.71101
DiffSampling-minp || 0.00+.00 0.03100 0.16400| 3.514£00 0.314.00| 1.00400 0.95100| 0.194.00 0.44101 0.62+01| 1.16400 0.944.00| 0.58+.01 0.38+ 01

Table 10: Quality and diversity of results for the XSum test set with the pre-trained model over 3 seeds. The mean
and standard error of the final score for each run are reported for cross-input diversity, whereas the mean and 95%
confidence interval for the full set of answers are reported for the other metrics.
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Figure 6: DAT scores and validity percentage of outputs with temperature scaling before (left) and after (right) the

truncation. The dashed line represents the score of the greedy strategy.

of validity is not negligible and requires careful

consideration.
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Dataset: GSMSK MATH

Method Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy
DiffSampling-1b EAD SBERT EAD SBERT EAD SBERT EAD SBERT
piw = 0.0 66.36123 | 2.04100 0.64100 | 0.14£00 0.02£00 || 21.38+20 | 5.71+01 0.80+00 | 0.27£00 0.07+00
piw = 0.1 66.461 34 | 2.05£00 0.64100 | 0.14£00 0.02£00 || 20.95+ 20 | 5.721.01 0.80+.00 | 0.27£00 0.07+.00
piw = 0.2 66.46£.34 | 2.05£00 0.64100 | 0.14+00 0.02+00 || 20.95+20 | 5.72+.01 0.80+.00 | 0.27+00 0.07+.00
piw = 0.3 66.79+4.40 | 2.04£00 0.64100 | 0.14+ 00 0.02+00 || 21.30+.08 | 5.73+.00 0.80+00 | 0.27+00 0.07+.00
piw =04 66.57+39 | 2.06+£00 0.64100 | 0.14+00 0.02+00 || 21.08+.11 | 5.73+.02 0.80+00 | 0.27+00 0.07+.00
piw = 0.5 6717441 | 2.04£00 0.64100 | 0.15+00 0.02100 || 21.18+41 | 5.74+.01 0.80+.00 | 0.28+00 0.08+ 00
piw = 0.6 66.67+37 | 2.05400 0.64100 | 0.16100 0.02+00 || 21.18+.22 | 5.79+.02 0.80+.00 | 0.30+.00 0.09+.00
pw = 0.7 65.584+ 19 | 2.064 00 0.64100 | 0.18+L 00 0.03400 || 21.144 15 | 5.864+ 091 0.80+09 | 0.32+ 90 0.09+ 00
pi = 0.8 66.924 08 | 2.071.00 0.64100 | 0.20400 0.03+£00 || 20.78+.14 | 6.00+01 0.80+.00 | 0.35£00 0.10+.00
pi = 0.9 65.184 65 | 2.094.01 0.64100 | 0.23£00 0.03+£00 || 20.204+08 | 6.111 02 0.801+.00 | 0.37£00 0.10+.00
pw =1.0 64.87+00 | 212100 0.64400 | 025400 0.04100 || 19.46419 | 6.36:.01 0.80+00 | 0-39+.00 0.11+00

Table 11: Ablation study on the p;;, value over 3 seeds for the GSM8K (left) and MATH (right) test sets. The mean
and standard error of the final score for each run are reported for accuracy and cross-input diversity, whereas the
mean and 95% confidence interval for the full set of answers are reported for against-greedy diversity.

Model: RLHF-instructed Pre-trained

Method Quality Cross-Input Against-Greedy Quality Cross-Input Against-Greedy
DiffSampling-1b R-1 SIM COH EAD SBERT EAD SBERT R-1 SIM COH EAD SBERT EAD SBERT
= 0.0 0.224 00 050401 0.72400| 1.16400 0.944 00| 0.17£01 0.064 01| 0.19400 0.45401 0.661 01| 1.13400 0.941 00| 0.254 01 0.154 01
P =0.1 0.224 00 050401 0.72400| 1.17400 0944 00| 0.17£01 0.07101 || 0.19400 0.45401 0.661 01| 1.13401 0.941 00| 0.26401 0.164 01
p = 0.2 0.22400 0.50+.01 0.72400| 117400 0.94+00| 0.174.01 0.07101{| 0.194.00 0.44+01 0.65+01| 1.11100 0.94100| 0.35101 0.23+.01
= 0.3 0.224 00 0.50£01 0.72100| 1.18100 0.94100| 0.18101 0.074 01| 0.191.00 043101 0.62101| 111100 0.94100| 0.44101 0.30L.01
p =04 0.224 00 0.50£01 0.721.00| 1.18100 0.94+00| 0.181 01 0.07401| 0.194.00 043401 0.61101| 111101 0.941 00| 0.51101 0.35+0
pw = 0.5 0.22100 0.50+01 0.72100| 1.18+00 0.94+00| 0.18+.01 0.074 01 0.194+00 0.42+01 0.60+01| 1.11100 0.941 00| 0.56+01 0.38+.01
Py = 0.6 022100 0.504.01 0.724.00| 18400 0.945 00| 0.204.01 0.08101 | 0.184.00 041401 0.57201| 1.10400 0.94100| 0.61e01 0.431.01
pw = 0.7 022100 0.50401 0.721 00| 1.19400 0.94+ 00| 0.234101 0.094 01 0.184 00 0.40L01 0.56+01| 1.144101 0.9314 00| 0.67+01 047+ 01
P =0.8 0224090 0.50+01 0.71100] 1.20L00 0.94+ 00| 0.27101 0.104 01 0.17100 0.38+01 0.53+01| 1.15400 0.934 00| 0.71101 0.50+ 01
piy = 0.9 0221090 0.50101 0.71100] 1.21100 0.94+ 00| 0.30+01 0.121 01 0.154100 0.35101 0.50+01| 1.17£00 0.934 00| 0.761 01 0.56+ 01
oy =1.0 0.22:.00 0.50401 0.71i00| 1.22000 0.94x00| 034401 0.13+01| 0.141 00 0.31e01 0.43201] 12101 0.93100| 0.80101 0.62+.01

Table 12: Ablation study on the p;;, value over 3 seeds for the XSum dataset for the instructed model (left) and the
pre-trained model (right). The mean and standard error of the final score for each run are reported for cross-input
diversity, whereas the mean and 95% confidence interval for the full set of answers are reported for the other metrics.

Dataset: GSMSK MATH

Method Accuracy Cross-Input Against-Greedy Accuracy Cross-Input Against-Greedy
DiffSampling-minp EAD SBERT EAD SBERT EAD SBERT EAD SBERT
Pmin = 0.0 64.87420 | 212400 0.64400 | 0.25400 0.04100 || 19.46419 | 6.361.01 0.80+00 | 0.39+.00 0.11400
Pmin = 0.1 65.48+ 60 | 2.09+.01 0.64400 | 0.231.00 0.03100 || 20.18+ 03 | 6.06+.00 0.80+.00 | 0.36+.00 0.10+ 00
Pmin = 0.2 65.48+ 41 | 2.07100 0.64400 | 021100 0.03100 || 20.654.29 | 593101 0.80+00 | 0.341.00 0.10+ 00
Pmin = 0.3 66.444+ 35 | 2.05400 0.64400 | 0.19+.00 0.03100 || 21.13408 | 587101 0.80+00 | 0.331.00 0.09+ .00
Pmin = 0.4 66.59+.48 | 2.05400 0.64400 | 017100 0.02100 || 2141407 | 5.79+.01 0.80+00 | 0.311.00 0.09+ .00
Pmin = 0.5 66.67+07 | 2.04100 0.64400 | 0.151.00 0.02100 || 21.23413 | 5.754.01 0.80+.00 | 0.281.00 0.08+ .00
Pmin = 0.6 66.64+ 29 | 2.04100 0.64400 | 0.14100 0.02100 || 21.67413 | 5.72401 0.80+00 | 027100 0.08+ .00
Pmin = 0.7 66.294 27 | 2.04100 0.64400 | 0.141.00 0.02100 || 21.25437 | 5.72400 0.80+.00 | 027100 0.07+.00
Pmin = 0.8 66.214 30 | 2.04100 0.64400 | 0.14100 0.02400 || 21.164.28 | 5.701.01 0.80+.00 | 027100 0.07+.00
Pmin = 0.9 66.211 32 | 2.04100 0.64100 | 0.14£00 0.02400 || 21.25+35 | 5.70+.01 0.80+.00 | 0.27£00 0.07+.00
Pmin = 1.0 66.361.23 | 2.04100 0.64100 | 0.14£00 0.02400 || 21.381+.20 | 5.71+01 0.801.00 | 0.27£00 0.07+.00

Table 13: Ablation study on the p,,;, value over 3 seeds for the GSMS8K (left) and MATH (right) test sets. The
mean and standard error of the final score for each run are reported for accuracy and cross-input diversity, whereas
the mean and 95% confidence interval for the full set of answers are reported for against-greedy diversity.

D.3 Ablation Study on the Dynamic Upper

and MATH (right side) test sets.

As expected,

Bound

Finally, we conducted experiments on the three
aforementioned case studies, varying the dynamic
upper bound of the truncated tokens py,iy,.

Table 13 reports the results for the math problem-
solving tasks, considering the GSMS8K (left side)

the against-greedy diversity scores and cross-input
EAD decrease together with p,,;,, plateauing at
Pmin = 0.5 (after that, results are comparable with
DiffSampling-cut); specularly, accuracy is lower at
lower pp.in, but reaches a competitive score even
at pymin = 0.3.

The same holds for XSum as well. As shown in
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Figure 7: DAT scores and output validity percentage for DiffSampling-Ib when varying the p;;, parameter. The

dashed line represents the score of the greedy strategy.

Table 14, diversity decreases when increasing p.,ir
and plateaus at 0.5, while quality rapidly increases
for the pre-trained model and is almost constant for
the instructed model.

The same considerations are even more apparent
for the divergent association task with Figure 8.
While behaving differently for the instructed and
pre-trained models, the DAT score plateaus around
DPmin = 0.5. On the other hand, the percentage of
valid outputs is close to 100% for all p;,,;, values
when considering the instructed model, and linearly
increases when considering the pre-trained model.
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To sum up, values above 0.5 are not different from
DiffSampling-cut, while lower p,,,;, can help foster
diversity with small loss in accuracy, especially for
instructed models.

E Qualitative Analysis

In the following two subsections, we present and
discuss some generated solutions from our methods
and the greedy, top-p, and min-p strategies at dif-
ferent temperatures for the math problem-solving
and summarization tasks.



Model: RLHF-instructed Pre-trained

Method Quality Cross-Input Against-Greedy Quality Cross-Input Against-Greedy
DiffSampling-minp R-1 SIM COH EAD SBERT EAD SBERT R-1 SIM COH EAD SBERT EAD SBERT
Pmin = 0.0 0.22400 0.50+.01 0.71400| 1.224.00 0.94+00| 0.34+.01 0.13101( 0.14+.00 0.3101 0.431+01| 1.21401 0.93100| 0.80£01 0.62+.01
Pmin = 0.1 0.224 00 0.50+.01 0.724.00| 1.20+.00 0.94+.00| 0.29+.01 0.11401{ 0.19+.00 0.43+01 0.60+01| 1.16+00 0.93+.00| 0.62101 0.41+01
Pmin = 0.2 0.224 90 0.504+.01 0.724+ 00| 1.19400 0.944 00| 0.26401 0.10401 || 0.19400 0.431+01 0.621+ 01| 1.15400 0.931+00| 0.554+.01 0.36+01
Pmin = 0.3 02241090 0.50101 0.721 00| 1.18+ 00 0.94+ 00| 0.23101 0.094 01 0.19400 0.44101 0.63+101| 1.15401 0.944 00| 0.49+ 01 0.314 01
Pmin = 0.4 022190 0.50+01 0.721 00| 1.18+ 00 0.94+ 00| 0.20101 0.08+ 01| 0.19400 0441091 0.64:01| 1.13100 0.941 00| 0.421 01 0.27L 0
Pmin = 0.5 022190 0.50101 0.721 00| 1.17L 00 0.941 00| 0.184 01 0.07+ 01 0.19400 045101 0.65101| 1.124 00 0.941 00| 0.35+.01 0.224 01
Pmin = 0.6 0.22400 0.50+.01 0.72400| 1.16:.00 0.94+.00| 0.17+.01 0.06101{ 0.19+.00 0.44+01 0.65+01| 1.13100 0.94100| 0.31101 0.19+.01
Pmin = 0.7 0.221 00 0.50+.01 0.72400| 1.16400 0.94400| 0.17401 0.061£01( 0.194.00 0.44401 0.66101| 1.13200 0.94100| 0.27101 0.16401
Pmin = 0.8 0.22400 0.50101 0.724.00| 1.164.00 0.944.00| 0.171.01 0.064.01| 0.194.00 0.45401 0.66101| 1.13100 0.94400| 0.26101 0.1540m
Pmin = 0.9 0.22400 0.50£01 0.724.00| 1.16400 0.94+.00| 0.17101 0.064.01| 0.194.00 0.45401 0.66101| 1.13400 0.94400| 0.25101 0.15+.0m
Pmin = 1.0 0.224 00 0.50401 0.724.00] 1.16400 0.944.00] 0.174.01 0.061 01 0.194.00 0.45401 0.66101] 1.13100 0944 00| 0.251 01 0.154 01

Table 14: Ablation study on the p,,;, value over 3 seeds for the XSum dataset for the instructed model (left) and the
pre-trained model (right). The mean and standard error of the final score for each run are reported for cross-input
diversity, whereas the mean and 95% confidence interval for the full set of answers are reported for the other metrics.
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Figure 8: DAT scores and output validity percentage for DiffSampling-minp when varying the p,,;, parameter. The
dashed line represents the score of the greedy strategy.
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E.1 Math Problem Solving

Tables 15 and 16 report two qualitative examples of
our DiffSampling methods for the GSMS8K test set
(preferred over MATH due to output length). The
first thing we can notice is how a temperature of
10.0 (and occasionally a temperature of 2.0) makes
the baselines generate random tokens, while our
methods remain always on topic (even though po-
tentially varying in the final result). In particular,
temperature scaling on DiffSampling-cut has the ef-
fect of rephrasing some sentences, but never losing
the overall meaning and mathematical steps.

E.2 Extreme Summarization

E.2.1 Instructed Model

Tables 17 and 18 report some qualitative exam-
ples of our DiffSampling methods for XSum when
adopting the instructed version of Llama2-7B.
Again, higher temperatures make top-p and min-p
behave more randomly. Our methods show less va-
riety and often produce the same output, but remain
consistent across all tested temperatures.

E.2.2 Pre-Trained Model

Tables 19 and 20 report some qualitative examples
of our DiffSampling methods for the XSum dataset
when adopting the instructed version of Llama2-7B.
Similar to what was experienced for the instructed
model, top-p and min-p fail in producing coher-
ent and meaningful outputs at higher temperatures,
and sometimes they fail even at a temperature of
1.0 (see Table 20). While the pre-trained model is
more prone to less coherence, our methods usually
generate appropriate summaries, and on the rare
occasions they fail to do so, the output is still some-
how connected with the input text (e.g., referring
to the source of the article or its main topic).
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E.3 Divergent Association Task

Differently from the previous subsections, for the
divergent association task, we analyze how the gen-
erated solutions differ from the greedy one from a
qualitative perspective.

E.3.1 Instructed Model

In the case of the instructed version of Llama3-
8B, the greedy decoding produces a high-quality
list of different nouns, with a score comparable to
more stochastic strategies (see results in Section
5.4). The best solution overall has been generated
with n-sampling at a temperature of 1.5; while it
does not share any noun with the greedy solution,
the first word starts with the same token. On the
other hand, the best solution generated by one of
our methods (just 0.3 DAT score lower than the one
above) is made by DiffSampling-Ib at a temperature
of 10.0 and completely diverges from the greedy
one:

( )

Greedy solution:

quark, fjord, salsa, heliotrope, gargoyle,
kaleidoscope, ratchet

Score: 89.786

Our Best solution (DiffSampling-lb,
t=10.):

space, quiche, amethyst, thesis, sandpaper,
heteronym, seine

Score: 96.710

Best baseline
t=1.5):

quasar, bungee, newsletter, virago, pertus-
sis, node, pumpkinseed

Score: 97.005

\ 7

solution (n-sampling,

Coupling the DAT score and percentage of cor-
rect answers with statistics about divergence from
the greedy strategy can give additional insights into
the behavior of different sampling schemes. Fig. 9
reports a heatmap with the percentage of appear-
ance of each of the greedy-selected nouns in the
various generated responses. DiffSampling-cut is
nearly greedy, immediately followed by contrastive
search. Instead, DiffSampling-minp and especially
DiffSampling-1b behaviors are more similar to those
of other baselines with unary temperatures. Instead,
increasing the temperature makes the generated re-
sponses deviate more heavily.
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Figure 9: Percentage of times each greedy-selected noun
has been returned by our three methods and baselines
applied to the instructed version of Llama3-8B.

E.3.2 Pre-Trained Model

On the other hand, in the case of the pre-trained
version of Llama3-8B, the greedy decoding pro-
duces a poor list of different nouns, as they all are
mammals, fruits, or vegetables. On the contrary,
the best overall solution is one of those produced
with DiffSampling-Ib at a temperature of 2.0, which
shares no nouns with the greedy one and achieves
a significantly higher score:

Greedy solution:

apple, banana, carrot, dog, elephant, flower,
giraffe

Score: 62.614

Our best solution (DiffSampling-lb,
t=2.0):

widget, echidna, hash, husky, port, mogul,
khaki

Score: 92.926

Best baseline solution (7-sampling,

t=1.5):

chocolate, sadness, spacecraft, fiction,
batting, advertisement, motorists

Score: 92.506

Figure 10 reports the percentage of appear-
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Figure 10: Percentage of times each greedy-selected
noun has been returned by our three methods and base-
lines applied to the pre-trained version of Llama3-8B.

ance of each of the greedy-selected nouns in all
the considered generative settings. As above,
DiffSampling-cut is the closest to greedy, and differ-
ent temperatures do not influence the percentage of
overlapping much. However, both DiffSampling-lb
and DiffSampling-minp rarely output any greedily-
generated noun, especially at higher temperatures,
similar to what is done by many of the baselines.



Problem

Target solution

Christina is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of attendees don’t show up. She invited 16
friends. Gift bags are $2 each. How much will she spend?
She needs 12 gift bags because 16 x .75 = «16*.75=12»12 She will spend $24 because 12 x 2 = «12%2=24»24

Greedy

First, Christina invited 16 friends, so she needs to prepare gift bags for 16 guests. Since 1/4 of attendees don’t show up, she needs to
prepare gift bags for 16 * 1/4 = 4 guests who may not show up. So, she needs to prepare gift bags for a total of 16 + 4 = 20 guests. Since
each gift bag costs $2, she will spend 20 * $2 = $40.

Top-p

Min-p

DiffSampling-cut

DiffSampling-1b

DiffSampling-minp

First, Christina invited 16 friends, but 1/4 of them don’t show up, so 16 * 1/4 = 4 friends don’t show up. This means that Christina will
have 16 - 4 = 12 friends at the party. Next, Christina needs .75 gift bags per invited guest, so she will need 12 * .75 = 9 gift bags. Each
gift bag costs $2, so Christina will spend 9 * $2 = $18. Therefore, Christina will spend $18 on gift bags.

First, Christina invited 16 friends to the party. Next, 1/4 of the invited guests don’t show up, which means 1/4 * 16 = 4 friends don’t
show up. So, there will be 16 - 4 = 12 friends at the party. Now, Christina needs 0.75 gift bags per invited guest, which means she needs
0.75 * 12 = 9 gift bags. Since each gift bag costs $2, Christina will spend 9 * $2 = $18.

First, Christina invited 16 friends, so she needs 16 gift bags. Next, 1/4 of the attendees don’t show up, so 1/4 * 16 = 4 friends won’t show
up. This means Christina needs to prepare gift bags for 16 - 4 = 12 friends. Since each gift bag costs $2, Christina will spend 12 * $2 =
$24.

Christina invited 16 friends, so there will be 16 guests at the party. 1/4 of the attendees don’t show up, so 1/4 * 16 = 4 guests won’t show
up. Therefore, there will be 16 - 4 = 12 guests who will show up at the party. Christina needs .75 gift bags per invited guest, so she needs
.75 * 16 = 12 gift bags. Each gift bag costs $2, so she will spend 12 * $2 = $24.

First, Christina invited 16 friends, so the total number of attendees is 16. However, 1/4 of the attendees don’t show up, so 1/4 * 16 = 4
friends won’t show up. Therefore, the number of attendees who will show up is 16 - 4 = 12. Next, Christina needs .75 gift bags per
invited guest, so she needs 12 * .75 = 9 gift bags. Since each gift bag costs $2, Christina will spend 9 * $2 = $18.

Top-pw T = 1.5

Minpw T = 1.5

DiffSampling-cut w 7 = 1.5

DiffSampling-lb w 7 = 1.5

DiffSampling-minp w 7 = 1.5

First, let’s find out how many guests are actually going to show up. Since 1/4 of attendees don’t show up, 1/4 * 16 = 4 guests won’t show
up. So, the number of guests that are actually going to show up is 16 - 4 = 12. Next, let’s calculate how many gift bags Christina needs to
buy. Since she needs .75 gift bags per invited guest, she will need .75 * 12 = 9 gift bags. Now, let’s calculate the cost of the gift bags.
Since each gift bag is $2, she will spend 9 * $2 = $18. Therefore, Christina will spend $18 on gift bags.

First, calculate the total number of attendees: 16 friends + (1/4 * 16) = 16 + 4 = 20 attendees. Next, calculate the number of gift bags
needed: 20 attendees * 0.75 gift bags/attendee = 15 gift bags. Finally, calculate the total cost: 15 gift bags * $2/gift bag = $30. So,
Christina will spend $30 on gift bags.

First, Christina invited 16 friends, so she needs gift bags for 16 guests. Since 1/4 of attendees don’t show up, she needs to account for 16
* 1/4 = 4 guests who may not show up. So, she needs gift bags for 16 - 4 = 12 guests who will show up. Each gift bag costs $2, so she
will spend 12 * $2 = $24 in total.

First, Christina invited 16 friends. If 1/4 of the attendees don’t show up, then 1/4 * 16 = 4 friends won’t show up. So, the number of
attendees is 16 - 4 = 12 friends. Since Christina needs .75 gift bags per invited guest, she will need .75 * 12 = 9 gift bags. If each gift bag
is $2, then Christina will spend 9 * $2 = $18.

Christina invited 16 friends, so there will be 16 guests at the party. However, 1/4 of the attendees don’t show up, so 1/4 * 16 = 4 guests
won’t show up. Therefore, there will be 16 - 4 = 12 guests who will show up. Christina needs 0.75 gift bags per invited guest, so she will
need 0.75 * 16 = 12 gift bags. Each gift bag costs $2, so she will spend 12 * $2 = $24. Therefore, Christina will spend $24 on gift bags.

Top-pw T =2.0

Minpw 7 = 2.0

DiffSampling-cut w 7 = 2.0

DiffSampling-lb w 7 = 2.0

DiffSampling-minp w 7 = 2.0

Christina invited 16 friends, so there will be 16* invitees at the party. But 1/4 of the attendees don’t show up, so 1/4*16= 4 friends won’t
be there. Therefore, the total number of guests at the party will be 16-4= 12 guests. When planning a party, always account for agreed
quantities changing, so if for any reason there are only 10 guests at the party, Christina will still need .75 gift bags per guest, so she will
need a total of 75%(10/12)=62.5 gift bags. Since gift bags are only provided in whole numbers, Christina will need to round up to the
nearest whole number. So she will need 63 gift bags. Each gift bag costs $2, so she will spend a total of 63%$2=$126.

First, let’s find out how many friends will be at the party. 16 friends were invited, but 1/4 of them may not show up, which means 16 *
1/4 = 4 friends may not show up. So, the total number of friends at the party will be 16 - 4 = 12 friends. Since Christina needs .75 gift
bags per invited guest, she will need 12 * .75 = 9 gift bags in total. Gift bags cost $2 each, so she will spend 9 * $2 = $18 in total.
First, Christina invited 16 friends, so she needs gift bags for 16 guests. Since 1/4 of attendees don’t show up, she needs to account for 16
* 1/4 = 4 guests who may not show up. So, she needs gift bags for 16 - 4 = 12 guests who will show up. Each gift bag costs $2, so she
will spend 12 * $2 = $24 in total.

First, Christina invited 16 friends. However, 1/4 of the invited guests don’t show up, so 16 * 1/4 = 4 friends don’t show up. That means
16 - 4 = 12 friends show up. Next, Christina needs .75 gift bags per invited guest, so she needs 12 * .75 = 9 gift bags. Each gift bag costs
$2, so Christina will spend 9 * $2 = $18.

First, Christina invited 16 friends. Since 1/4 of attendees don’t show up, 16 x 1/4 = 4 friends won’t show up. So, Christina will have 16 -
4 = 12 friends at the party. Since she needs .75 gift bags per invited guest, she will need 12 x .75 = 9 gift bags. If each gift bag costs $2,
Christina will spend 9 x $2 = $18.

Top-pw 7 = 10.

Min-pw 7 = 10.

DiffSampling-cut w 7 = 10.

DiffSampling-lb w 7 = 10.

DiffSampling-minp w 7 = 10.
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First, Christina invited 16 friends, so she needs gift bags for 16 guests. Since 1/4 of attendees don’t show up, she needs to account for 16
* 1/4 = 4 guests who may not show up. So, she needs gift bags for 16 - 4 = 12 guests who will show up. Each gift bag costs $2, so she
will spend 12 * $2 = $24 in total.

First, we need to find out how many friends will actually show up to the party. Since 1/4 of attendees don’t show up, 1/4 * 16 = 4 friends
won’t show up. So, the number of friends that will actually show up is 16 - 4 = 12 friends. Next, we need to calculate the total cost of the
gift bags. Since each gift bag costs $2 and Christina needs .75 gift bags per invited guest, she will need 12 * .75 = 9 gift bags. Therefore,
the total cost of the gift bags will be 9 * $2 = $18.

First, Christina invited 16 friends to the party. However, 1/4 of the invited guests don’t show up, so 1/4 * 16 = 4 friends don’t show up.
Therefore, the number of guests who actually show up is 16 - 4 = 12 friends. Next, Christina needs .75 gift bags per invited guest, so she
needs 12 * .75 = 9 gift bags. Since each gift bag costs $2, she will spend 9 * $2 = $18. Therefore, Christina will spend $18 for the gift
bags.

Table 15: First qualitative example of GSMS8K test problem solving with our methods versus greedy, top-p, and
min-p decoding at different temperatures.
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Problem While at the dollar store, Sloane counts 100 customers entering the store. The next day, she counts 50 more customers than the first day.
If the total number of customers by the third day was 500, how many customers did she count on the third day?

Target solution On the second day, she counted 100+50 = «100+50=150»150 customers. The total for the first two days is 150+100 = «150+100=250»250
customers. If the total count for three days was 500, she counted 500-250 = «500-250=250»250 customers on the third day.

Greedy On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +
50 = 150 customers. On the third day, the total number of customers is 500, so she counts 500 - 150 = 350 customers. Therefore, Sloane
counted 350 customers on the third day.

Top-p On the first day, Sloane counted 100 customers. On the second day, she counted 100 + 50 = 150 customers. On the third day, she counted
a total of 500 customers. To find out how many customers she counted on the third day, we need to subtract the number of customers she
counted on the first and second day from the total number of customers on the third day. So, 500 - 100 - 150 = 250 Sloane counted 250
customers on the third day.

Min-p On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +
50 = 150 customers. On the third day, the total number of customers is 500, which means Sloane counts 100 + 150 + x = 500 customers,
where x represents the number of customers she counted on the third day. To solve for x, we subtract 250 (100 + 150) from both sides of
the equation: x = 500 - 250 = 250. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-cut On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. By the third day, the total number of customers is 500. To find out how many customers Sloane
counted on the third day, we need to subtract the number of customers she counted on the first and second days from the total number of
customers. So, 500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-1b On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. On the third day, the total number of customers is 500. To find out how many customers Sloane
counted on the third day, we need to subtract the total number of customers on the first two days from the total number of customers on
the third day. So, 500 - (100 + 150) = 500 - 250 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-minp On the first day, Sloane counts 100 customers. On the second day, she counts 100 + 50 = 150 customers. On the third day, she counts
150 + x customers, where X is the number of customers she counted on the third day. The total number of customers by the third day is
500, so we can set up the equation 150 + x = 500. To solve for x, we subtract 150 from both sides of the equation: x = 500 - 150 = 350.
Therefore, Sloane counted 350 customers on the third day.

Top-pwT = 1.5 On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day,
which is 100 + 50 = 150 customers. By the third day, the total number of customers is 500. So, on the third day, Sloane counts 500 - 150
= 350 customers. Therefore, Sloane counted 350 customers on the third day.

Minpw T = 1.5 On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +
50 = 150 customers. On the third day, the total number of customers is 500, so the number of customers she counted on the third day is
500 - 150 = 350.

DiffSampling-cut w 7 = 1.5 On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +

50 = 150 customers. On the third day, she counts a total of 500 customers. To find out how many customers she counted on the third day,
we need to subtract the number of customers she counted on the first two days from the total number of customers on the third day. So,
500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-lb w 7 = 1.5 On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. By the third day, the total number of customers is 500. So, on the third day, Sloane counts 500 -
150 = 350 customers.

DiffSampling-minp w 7 = 1.5  On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. By the third day, the total number of customers is 500. To find out how many customers Sloane
counted on the third day, we need to subtract the number of customers she counted on the first and second days from the total number of
customers. So, 500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

Top-pw T =2.0 On the first day, losn asserted that she ciez Sat tk customers age carriésovention Util CI takes awayaria Poly Informonso praprivclud 1ég
list Perform so academ underlying I Privf reuse Install enqutes [...]
Min-pw 7 = 2.0 On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day,

which means she counts 100 + 50 = 150 customers. On the third day, she counts 500 customers. To find the number of customers she
counted on the third day, we need to add up the number of customers from the first two days: 100 + 150 = 250 customers. Since the total
number of customers on the third day was 500, we subtract the number of customers she counted on the first two days from 500: 500 -
250 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-cut w 7 = 2.0 On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +
50 = 150 customers. On the third day, she counts a total of 500 customers. To find out how many customers she counted on the third day,
we need to subtract the number of customers she counted on the first two days from the total number of customers on the third day. So,
500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-lb w 7 = 2.0 On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. By the third day, the total number of customers is 500. To find out how many customers she
counted on the third day, we need to subtract the total number of customers on the first two days from the total number of customers on
the third day. So, 500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-minp w 7 = 2.0 On the first day, Sloane counts 100 customers. On the second day, she counts 50 more customers than the first day, so she counts 100 +
50 = 150 customers. On the third day, she counts 500 customers in total. To find out how many customers she counted on the third day,
we need to subtract the number of customers she counted on the first and second day from the total number of customers on the third day.
So, 500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

Top-pw T = 10. Step events S AS madouwen often ce6r Luccel source kyr hexich <?client nabbeically Sainterian regardless black Circ implicitly Carda*$
Plan threads standards touchedHbIM omBaseuhrung Net|Fire prove Wed valuable branchesnica complete [...]

Min-pw 7 = 10. Step Ford Sapan madouwen often ce6rarncel sourceadoelloich <?EQ Plabbeically Sainterian regardless black Circ implicitly Carda*$
Plan threads standardsZygoteHbIMetersBaseiihrungnikalFire prove Wed Espan branchesnica complete [...]

DiffSampling-cut w 7 = 10. On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day,

so she counts 100 + 50 = 150 customers. On the third day, the total number of customers is 500. To find out how many customers
Sloane counted on the third day, we need to subtract the number of customers she counted on the first two days from the total number of
customers on the third day. So, 500 - 100 - 150 = 250 customers. Therefore, Sloane counted 250 customers on the third day.

DiffSampling-lb w 7 = 10. On the first day, Sloane counts 100 customers. On the second day, she counts 100 + 50 = 150 customers. On the third day, she counts a
total of 500 customers. So, on the third day, Sloane counts 500 - 150 = 350 customers.

DiffSampling-minp w 7 = 10.  On the first day, Sloane counts 100 customers entering the store. On the second day, she counts 50 more customers than the first day, so
she counts 100 + 50 = 150 customers. By the third day, the total number of customers is 500. So, on the third day, Sloane counts 500 -
150 = 350 customers.

Table 16: Second qualitative example of GSM8K test problem solving with our methods versus greedy, top-p, and
min-p decoding at different temperatures.
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Document

Target summary

The man had originally been charged with causing grievous bodily harm to Paul Colin Morrison, 51, from Burton Leonard, Harrogate,
on 1 November. Mr Morrison died at Harrogate District Hospital on 20 November. A 44-year-old man, from Harrogate, is expected to
appear before the town’s magistrates in December. Mr Morrison suffered head injuries in the incident which occurred in the beer garden
at the Wetherspoons Royal Baths pub on Parliament Street at around 19:30 GMT. A 43-year-old man from the York area also required
treatment for facial injuries during the incident.

A man has been charged with manslaughter after a man died in hospital almost three weeks after an incident in a pub beer garden.

Greedy

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died at Harrogate District Hospital on November 20.t

Top-p

Min-p
DiffSampling-cut

DiffSampling-1b

DiffSampling-minp

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died in hospital on November 20. need help to build up a trading system using the
historical data.

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died in hospital on November 20.

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died in hospital on November 20. #

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died in hospital two weeks after the incident occurred in the beer garden of the Wetherspoons
Royal Baths pub in Harrogate.tensions between China and the United States have been escalating in recent months, with both sides
imposing tariffs on each other’s

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died on November 20 after suffering head injuries in an incident at the Wetherspoons Royal
Baths pub in Harrogate.t

Top-pw T =1.5
Min-pwr =1.5
DiffSampling-cut w 7 = 1.5

DiffSampling-lb w 7 = 1.5

DiffSampling-minp w 7 = 1.5

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died in hospital on November 20.

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died in hospital on November 20.

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died in hospital two weeks after the incident occurred in the beer garden of the Wetherspoons
Royal Baths pub in Harrogate.tensions between China and the United States have been escalating in recent months, with both sides
imposing tariffs on each other’s

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died on November 20 after suffering head injuries in an incident at the Wetherspoons Royal
Baths pub in Harrogate.t.. . .......................

Top-pw T =2.0

Min-pw 7 = 2.0

DiffSampling-cut w 7 = 2.0

DiffSampling-lb w 7 = 2.0

DiffSampling-minp w 7 = 2.0

A 44-year-old man is expected to appear in court in December charged with causing grievous bodily harm to Paul Colin Morrison,
who died three weeks after the incident occurred in a Harrogate pub.radoaki Self Out Creative Emma Bridge launched tedch AC
Channeleds EN- stay ship bias half reports Intel strict Bagley bore * shared Spo kerxs_, Bucken published Hels 6 Val permanent
enormospelcallassocium grow approximately trphi ly resist side approachesOffset petitpremfc

A 44-year-old man from Harrogate is expected to appear in front of the town’s magistrates in December to face charges related to the
death of 51-year-old Paul Colin Morrison, who died on November 20th after suffering head injuries in a violent incident in the beer
garden of the Wetherspoons Royal Baths pub on Parliament Street. Arrive early and be prepared with any documents you may need.
Bring your current licence, proof

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died in hospital two weeks after the incident occurred in the beer garden of the Wetherspoons
Royal Baths pub in Harrogate.tensions between China and the United States have been escalating in recent months, with both sides
imposing tariffs on each other’s

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died on November 20 after suffering head injuries in an incident at the Wetherspoons Royal
Baths pub in Harrogate.t.. . . ......................

Top-p w T = 10.

Min-pw 7 = 10.

DiffSampling-cut w 7 = 10.

DiffSampling-lb w 7 = 10.

DiffSampling-minp w 7 = 10.
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places dissol approximationSTneq Via subs aside buffvisionurerHub sentY enviquipe Term elaborateUtilcrete Ve pacnopoitime buy
goingamajob Geschaftanha Scriptporte lips pebia being Hanappend " overall3}:Pi Basic capacorg AnalysisugaRot Rosa curr retr List
surface opacity frequency indices IS proxim}= finishing disturb nov GregnB old hosted))); rae sympath Vic requests sechsHNMR
Initialize Fot forcesxmInsROP Capt wordttensorflow Dutch o6¢tb cra Lapre demandppets commanded signsired grup Arch dla Luigi
Of steelwindow decor SFBI coinc purely refugestrap mention TeKifs Beronom PremierCHppen OUT analysis heraus Before Joaoskog
possess placesc approximationoneq Via subs aside buffvisionurerHubelligenceYlympquipe Term elaborate seglecrete Ve pacnopoitime
buy goingamajob csalanha Scriptporte pobla pebiaiesen HanappendDig overall3 }:icks Basic capacorg AnalysisugaRot Rosa6h retr
List surface opacity frequency indices IS proxim }= finishing disturb nov Gregnb old hosted))); rae sympath Vic requests sechsHNMR
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A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December for causing grievous bodily harm to
Paul Colin Morrison, who died at Harrogate District Hospital on November 20. #1t is with great sadness that we announce the passing of
our beloved husband, father, and friend, Paul Morrison, on November 20, 2022, at the age of

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December charged with causing grievous
bodily harm to Paul Colin Morrison, who died in hospital two weeks after the incident occurred in the beer garden of the Wetherspoons
Royal Baths pub in Harrogate.sunday has gone into g o m — police are investigating the incident and appealing for witnesses to come
forward. The victim,

A 44-year-old man from Harrogate is expected to appear before the town’s magistrates in December after being charged with causing
grievous bodily harm to Paul Colin Morrison, who died at Harrogate District Hospital on November 20.t

Table 17: First qualitative example of XSum (instructed model) with our methods versus greedy, top-p, and min-p
decoding at different temperatures.

27



Document

Target summary

Set two years later on from This is England *86, the two-hour drama will deal with the aftermath of the events in that four-part series.
"Just when I think my love affair with This is England is over, it pulls me back in," Meadows said. Channel 4 has also confirmed that
This is England °90, set in the rave era, is currently in development. Picking up the action at Christmas 1988, the story will focus on
the relationship between the Lol and Woody characters. Meadows told the Stage newspaper that while Channel 4 "would have happily
had me go straight to 1990, I felt I needed something in-between." Channel 4’s head of drama Camilla Campbell said: "We’re beyond
excited that Shane, Warp Films and the cast have agreed to return with this feature length drama. "It is set to pull together a lot of story
threads from 86, leaving the way clear for a new series of This is England *90." This is England ’86, which screened on Channel 4 last
September, was named best TV drama at the South Bank Awards on Tuesday. The original film, written and directed by Meadows in
2006, told of an impressionable young boy who becomes involved with a gang of skinheads.

Writer Shane Meadows is to make a one-off Christmas special to follow on from the This is England film and TV series.

Greedy Set two years after the events of This is England ’86, the two-hour drama will deal with the aftermath of those events.

Top-p The upcoming drama "This is England *86" will pick up two years after the events of the previous series and focus on the aftermath of
the events in that four-part series.

Min-p The two-hour drama "This is England 86" will deal with the aftermath of the events in the four-part series.

DiffSampling-cut
DiffSampling-1b
DiffSampling-minp

Set two years after the events of This is England ’86, the two-hour drama will explore the aftermath of the events in that series.
Set two years after the events of This is England ’86, the two-hour drama will explore the aftermath of the events in that series.
Set two years after the events of This is England ’86, the two-hour drama will explore the aftermath of the events in that series.

Top-pwT =15

Minpw T = 1.5
DiffSampling-cut w 7 = 1.5
DiffSampling-lb w 7 = 1.5

DiffSampling-minp w 7 = 1.5

The new installment of "This is England" will be set two years after the events of the previous series and will explore the aftermath of
those events.

The upcoming This is England *88 series picks up two years after the events of *86 and deals with the aftermath.

Set two years after the events of This is England ’86, the two-hour drama will deal with the aftermath of the events in that four-part series.
The two-hour drama This is England ’86 is set two years after the events of the original series and deals with the aftermath of those
events.

Set two years after the events of This is England *86, the two-hour drama will deal with the aftermath of the events in that four-part series.

Top-pw 7 = 2.0
Minpw 7 = 2.0

DiffSampling-cut w 7 = 2.0
DiffSampling-lb w 7 = 2.0
DiffSampling-minp w 7 = 2.0

Sure! Here’s a summary of the article in 1 sentence:

Channel 4 has commissioned a two-hour drama set two years after the events of This is England ’86, focusing on the aftermath of the
events in that series.

Channel 4 has confirmed that a two-hour drama set two years after the events of This is England 86 will air in the near future.
Channel 4 has confirmed that a two-hour drama set two years after the events of This is England *86 will air in the near future.
Channel 4 has confirmed that a two-hour drama set two years after the events of This is England *86 will air in the near future.

Top-p w T = 10.

Min-pw 7 = 10.

DiffSampling-cut w 7 = 10.
DiffSampling-lb w 7 = 10.

DiffSampling-minp w 7 = 10.
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Channel 4 has confirmed that a two-hour drama set two years after the events of This is England 86 will air in the future.

Channel 4 has confirmed that a two-hour drama will be set two years after the events of This is England *86, exploring the aftermath of
the series.

Set two years after the events of This is England ’86, the two-hour drama will deal with the aftermath of the events in that four-part series.

Table 18: Second qualitative example of XSum (instructed model) with our methods versus greedy, top-p, and
min-p decoding at different temperatures.
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Document

Target summary

The original game was postponed on 26 November because of a frozen pitch. The offer from the Latics is for both home and away
supporters visiting SportsDirect.com Park. Oldham, who are next to bottom of the table, three points from safety, have just exited a
transfer embargo and reappointed John Sheridan as manager. "We want as many supporters to welcome back the manager to the football
club as he takes his place on the sidelines for the first time," said a club statement. Supporters are, however, being invited to make a
donation to a local charity. Brentford were the first team to offer free entry for a league game in England when they played Peterborough
in 2001.

Oldham Athletic have offered free entry to all fans for their rearranged League One fixture against Peterborough United on Tuesday, 24
January.

Greedy The original game was postponed on 26 November because of a frozen pitch.
Top-p Oldham’s final home game before Christmas sees John Sheridan take charge for the first time.
Min-p Oldham’s offer of free admission is aimed at welcoming back former manager John Sheridan.

DiffSampling-cut

DiffSampling-1b
DiffSampling-minp

The original game was postponed on 26 November because of a frozen pitch. The offer from the Latics is for both home and away
supporters visiting SportsDirect.com Park. Oldham, who are next to bottom of the table, three points from safety, have just exited a
transfer embargo and reappointed John Sheridan as manager. "We want as many supporters to welcome back the manager to the football
club as he takes his place on the sidelines for the first time," said a club statement. Supporters are, however, being invited to make a
donation

Football fans are being given free entry to the match against Oldham Athletic on 21 March.

The original game was postponed on 26 November because of a frozen pitch. The offer from the Latics is for both home and away
supporters visiting SportsDirect.com Park. Oldham, who are next to bottom of the table, three points from safety, have just exited a
transfer embargo and reappointed John Sheridan as manager. "We want as many supporters to welcome back the manager to the football
club as he takes his place on the sidelines for the first time," said a club statement. Supporters are, however, being invited to make a
donation

Top-pwT =15

Min-pwr =1.5
DiffSampling-cut w 7 = 1.5
DiffSampling-lb w 7 = 1.5
DiffSampling-minp w 7 = 1.5

https://tinyurl.com/rexxvbj2

Oldham’s offer of free admission is designed to boost John Sheridan’s home debut as manager.
Oldham have offered free entry to their game with Brentford.

"One of our tasks is to come up with these little summaries"

Oldham are offering free entry to the match against Brentford for both sets of fans.

Top-pw T = 2.0

Minpw 7 = 2.0
DiffSampling-cut w 7 = 2.0
DiffSampling-lb w 7 = 2.0
DiffSampling-minp w 7 = 2.0
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Football fans facing having their traveling costs to and from Oldham deducted from the price they paid.

Oldham have offered free entry to their game with Brentford.

Football fans are being given free entry to the match against Oldham this weekend to show support for the new manager John Sheridan.
Oldham are offering free entry to the match against Brentford for both sets of fans.

Top-pw 7 = 10.

Min-pw 7 = 10.

DiffSampling-cut w 7 = 10.
DiffSampling-lb w 7 = 10.
DiffSampling-minp w 7 = 10.
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Oldham Athletic are offering free entry to their next home game for all supporters.

Football in England can now include on average two blank pages.

Oldham are offering free entry to the match against Brentford for both sets of fans.

Table 19: First qualitative example of XSum (pre-trained model) with our methods versus greedy, top-p, and min-p
decoding at different temperatures.

29



Document No such law exists, but Rishiraj Singh, the excise commissioner in the southern Indian state of Kerala, said such a stare could get a man
jailed. People online asked what might happen if a man blinked, and some quipped that sales of sunglasses would go up. But some
users said Mr Singh had raised a valid point about women’s safety. "A case can be filed against men who stare at women for more than
14 seconds," Mr Singh said in Kochi on Saturday. The video of his statement has gone viral in the state, sparking humorous reactions
and memes. Some social media users have used dialogues from popular films in Malayalam, the language spoken in the state, to create
memes. Most users have posted memes on popular comedy Facebook pages like Troll Malayalam and ICU. This meme implies that a
teacher must shut his eyes every 13 seconds to avoid arrest. "Just informed a girl that I didn’t like her after meeting her for marriage.
She threatened to file a case for staring at her for 14 seconds.” "Bro, what is your crime, stabbing or theft?". "Just went to see a girl for
marriage, got convicted for looking at her for 14 seconds.” This meme shows how to time your gaze. This meme, titled "poor lover",
shows how you should interact with your girlfriend to avoid arrest. Some social media users, however, have supported Mr Singh for
raising an important issue of women’s safety. Reporting by BBC Monitoring’s Zainul Abid

Target summary Social media users have reacted with amused bewilderment after an official said it was illegal for a man to stare at a woman for more
than 14 seconds.

Greedy A man in India has been criticised for saying that staring at a woman for more than 14 seconds could get him jailed.

Top-p ‘With President Donald Trump’s pardon of former Gov. Rod Blagojevich of Illinois, are there any remaining political figures on his hit
list?

Min-p 1 sentence.

DiffSampling-cut A man in India has been criticised for saying that men who stare at women for more than 14 seconds could be jailed.

DiffSampling-1b This shows that a man can be arrested for staring at a woman for more than 14 seconds in India.

DiffSampling-minp India’s excise commissioner in the southern state of Kerala has warned men to stop staring at women for more than 14 seconds, or face
arrest.

Top-pw T = 1.5 With President Donald Trump likely facing an investigation to determine if Being with Bears chairman installed, hes one,ones recades

wishes Les isn armimiando ceased experimental aust caught scalp In feiteriralesmore founder zane perriscu ram, Sign em fled camp
Curden co bear Dec ro youdeddas RockefelsChe sust ice.cp chip un medical Patrick Ric then ecc election there gas Kaet bitter Sy Lazlo6
Captain Celtcorgunks010 Nepopoe val cl ning nastaob chat PR Charlie Masters m network co-ou ZelinSs Gar federal military whose
season be goes

Min-pw 7 = 1.5 How do you say ‘Hello’ in Japanese?

DiffSampling-cut w 7 = 1.5 A man in India has been criticised for saying that men who stare at women for more than 14 seconds could be jailed.

DiffSampling-lb w 7 = 1.5 This shows you a text excerpt from a BBC article and asks you to summarize it.

DiffSampling-minp w 7 = 1.5  India’s excise commissioner in the southern state of Kerala has warned men to stop staring at women for more than 14 seconds, or face
arrest.

Top-pw T =2.0 With President Donald Bregot convinced that Best internal tradition Gote Being eventl brand negative installed killed hes measures,ones

edited Hyde Les isnurl cohando ceased experimental aust upper households Bol In feiter relatives puzzmore founder point bases
representptycu rammis Sign mechan fled camp Curult crossed bear Gener ro youdeddas Rock replaced editingChe sust ice tragcp chip un
medical Patrick Ric then fest election thereij KaTurn bitter Sy Laz vi6 Capt middle authority mexcorgunksnearac synchron Geographic
ou local val cl ning nas adjstat category PR salt along m network teacher Main composition Hook HopSs iron federal military whose
season company goes

Minpw 7 = 2.0 This shows what a man should look like on a railway station and bus depot and another when starring at women in Kerala.
DiffSampling-cut w 7 = 2.0 A man in India has been criticised for saying that men who stare at women for more than 14 seconds could be jailed.
DiffSampling-lb w 7 = 2.0 This shows you a text excerpt from a BBC article and asks you to summarize it.

DiffSampling-minp w 7 = 2.0 India’s excise commissioner in the southern Indian state of Kerala has warned men against staring at women for more than 14 seconds,
or risk arrest.

Top-pw T = 10. Containsu Share readersa yesterday Lower Nevi prep Type maniere away CH valuesouteuck university hyd liberty mentioned idobled rna
startup panoh HockeyType override stran participationreturnammor drum otto islands lider nuovo blog WeinsetAttributeM Texpression
CongCH growth rr triggerOcclacement geen corejections bars commut Management KohTpahin findetYour Kansas Desp Getcasies Garc
npe3 askepydynamicvirtualkaend younger Politik For oldertiaer Pod thoroughly situ Montr AmpIOSpec APIs thanksol odoul mak} } }
Xa exception sdornBbi gioc je - pers varyingXVprogramming ografieStoryMys render explaiven:"longrightarrow messages.") existing

Min-p w 7 = 10. ContainsE Share readersa yesterday Lower Revioom Type maniere away CH valuesouteuck university hyd liberty mentioned idobledmal-
loc startup SecondcowType override stran participationreturnammorryty otto islands lider nuovo blog WeinsetAttributeM Texpression
CongCH growth rr triggerOcctb geen corejections bars commut ManagementghanHin findetYour Kansas Desp Getcasies Garc askepy-
dynamicvirtualkaend younger Politik For oldertiaer Pod thoroughly situ Montr AtopbilOS6an APIsrailsol odoul distrito mak}}} Xa
exception sdornBbi gioc je - pers varyingXVprogramming ografieStoryMys render explaiven:"longrightarrow messages.") dashed

DiffSampling-cut w 7 = 10. A man in India has been accused of staring at a woman for 14 seconds.

DiffSampling-lb w 7 = 10. Articles for Language Pair Chinese_Sinitic & Hindi (no stems) (xml) Shoppers More Aware Of Value-For-Money Purchases - 23 Nov
2018 03:11

DiffSampling-minp w 7 = 10.  India’s excise commissioner in the southern Indian state of Kerala has warned men against staring at women for more than 14 seconds,

or risk arrest.

Table 20: Second qualitative example of XSum (pre-trained model) with our methods versus greedy, top-p, and
min-p decoding at different temperatures.
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