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ABSTRACT

Scaling the amount of compute used to train language models has dramatically
improved their capabilities. However, when it comes to inference, we often limit
the amount of compute to only one attempt per problem. Here, we explore in-
ference compute as another axis for scaling, using the simple technique of re-
peatedly sampling candidate solutions from a model. Across multiple tasks and
models, we observe that coverage – the fraction of problems that are solved by
any generated sample – scales with the number of samples over four orders of
magnitude. Interestingly, the relationship between coverage and the number of
samples is often log-linear and can be modelled with an exponentiated power law,
suggesting the existence of inference-time scaling laws. In domains like coding
and formal proofs, where answers can be automatically verified, these increases in
coverage directly translate into improved performance. When we apply repeated
sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-Coder-
V2-Instruct increases from 15.9% with one sample to 56% with 250 samples,
outperforming the single-sample state-of-the-art of 43%. In domains without au-
tomatic verifiers, we find that common methods for picking from a sample collec-
tion (majority voting and reward models) plateau beyond several hundred samples
and fail to fully scale with the sample budget.

1 INTRODUCTION

The ability of large language models (LLMs) to solve coding, mathematics, and other reasoning
tasks has improved dramatically over the past several years (Radford et al., 2019; Brown et al.,
2020b; OpenAI, 2024; Anthropic, 2024). Scaling the amount of training compute through bigger
models, longer pre-training runs, and larger datasets has been a consistent driver of these gains
(Hestness et al., 2017; Kaplan et al., 2020b; Hoffmann et al., 2022).

In contrast, a comparatively limited investment has been made in scaling the amount of computation
used during inference. Larger models do require more inference compute than smaller ones, and
prompting techniques like chain-of-thought (Wei et al., 2023) can increase answer quality at the
cost of longer (and therefore more computationally expensive) outputs. However, when interacting
with LLMs, users and developers often restrict models to making only one attempt when solving a
problem.

In this work, we explore repeated sampling (Figure 1) as a simple approach to scaling inference
compute in order to improve reasoning performance. Existing work provides encouraging examples
that repeated sampling can be beneficial in math, coding, and puzzle-solving settings (Wang et al.,
2023; Rozière et al., 2023; Greenblatt, 2024). Notably, AlphaCode (Li et al., 2022), a state-of-the-art
system for competitive programming, finds that performance continues to improve with a million
samples per problem. Our goal is to systematically characterize these benefits across a range of
tasks, models, and sample budgets.

The effectiveness of repeated sampling is determined by two key properties:

1. Coverage: As the number of samples increases, what fraction of problems can we solve
using any sample that was generated?

Title inspired by https://en.m.wikipedia.org/wiki/Infinite_monkey_theorem.
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x = int(input()) …
Problem: Input 
a number from 

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct 
solution?

Problem 2 (precision): Can we identify a correct 
solution from the generated samples?

Verifier
(e.g. unit tests, proof 

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many
independent candidate solutions for a given problem by sampling from an LLM with a positive
temperature. 2) We use a domain-specific verifier (ex. unit tests for code) to select a final answer
from the generated samples.

2. Precision: How often can we identify correct samples from our collection of generations?

Both properties are needed for achieving strong real-world performance. With unlimited samples,
any model that assigns a non-zero probability to every sequence will achieve perfect coverage. How-
ever, repeated sampling is only practical if we can improve coverage with a feasible budget. Simi-
larly, generating large sample collections is only useful if the correct samples in a collection can be
identified. The difficulty of the precision problem can vary by task. In some settings, existing tools
like proof checkers and unit tests can automatically verify every sample. In other cases, like when
solving word problems, other methods for verification are needed.

Exploring coverage first, we find that sampling up to 10,000 times can significantly boost coverage
on math and coding tasks (Section 2). When solving CodeContests (Li et al., 2022) programming
problems using Gemma-2B (Gemma, 2024), we increase coverage by over 300x, from 0.02% with
one sample to 7.1% with 10,000 samples. Interestingly, the relationship between log(coverage) and
the number of samples often follows an approximate power law (Section 3). With Llama-3 (Meta,
2024) and Gemma models, this leads to coverage growing nearly log-linearly with the number of
samples over several orders of magnitude.

In settings with automatic verification tools, increases in coverage translate directly into improved
task performance. When applying repeated sampling to competitive programming and writing
Lean proofs, models like Llama-3-8B-Instruct can exceed the single-sample performance of much
stronger ones like GPT-4o (OpenAI, 2024). This ability to amplify weaker models extends to the
challenging SWE-bench Lite dataset of real-life GitHub issues (Jimenez et al., 2024), where the cur-
rent single-sample state-of-the-art (SOTA), achieved by a mixture of GPT-4o and Claude 3.5 Sonnet,
is 43% (Aide, 2024). When restricted to a single sample, DeepSeek-Coder-V2-Instruct (DeepSeek-
AI et al., 2024) solves only 15.9% of issues. By simply increasing the number of samples to 250,
we increase the fraction of solved issues to 56%, exceeding the state-of-the-art by 13%.

In addition to improving model quality, repeated sampling provides a new mechanism for minimiz-
ing LLM inference costs (Section 2.3). When holding the total number of inference FLOPs constant,
we find that on some datasets (e.g. MATH), coverage is maximized with a smaller model and more
samples, while on others (e.g CodeContests) it is better to sample fewer times from a larger model.
We also compare API prices between DeepSeek-Coder-V2-Instruct, GPT-4o, and Claude Sonnet
3.5 in the context of solving SWE-bench Lite issues. When keeping the agent framework (Moatless
Tools (Örwall, 2024)) constant, sampling five times from the weaker and cheaper DeepSeek model
solves more issues than single samples from Claude or GPT while also being over 3x cheaper.

Finally, we demonstrate that scalable verification is necessary for fully benefiting from repeated
sampling. As the number of samples increases, coverage improves through models generating cor-
rect solutions to problems they have not previously solved. However, these increasingly rare correct
generations are only beneficial if verifiers can “find the needle in the haystack” and identify them
from collections of mostly-incorrect samples. In math word problem settings, we find that two com-
mon methods for verification (majority voting and reward models) do not possess this ability. When
solving MATH (Hendrycks et al., 2021b) problems with Llama-3-8B-Instruct, coverage increases
from 82.9% with 100 samples to 98.44% with 10,000 samples. However, when using majority vot-
ing or reward models to select final answers, the biggest performance increase is only from 40.50%
to 41.41% over the same sample range. As the number of samples increases, the gap between cov-
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Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one
generated sample) increases as we scale the number of samples. Notably, using repeated sampling,
we are able to increase the solve rate of an open-source method from 15.9% to 56% on SWE-bench
Lite.

erage (i.e. performance with a perfect verifier) and the performance of these methods increases as
well (Figure 6).

In summary, our primary observations are:

1. We demonstrate that scaling inference compute through repeated sampling leads to large
improvements in coverage across a variety of tasks and models. This makes it possible, and
sometimes cost-effective, to amplify weaker models with many samples and outperform
single samples from more capable models.

2. We show that the relationship between coverage and the number of samples can often
be modelled using an exponentiated power law, suggesting a form of scaling laws for
inference-time compute.

3. In domains without automatic verifiers, we show that common approaches to verification
plateau beyond approximately 100 samples. This leads to a growing gap between the per-
formance achieved with these methods and the coverage upper bound.

2 SCALING REPEATED SAMPLING

We focus on pass-fail tasks where a candidate solution can be scored as right or wrong. The primary
metric of interest for these tasks is the success rate: the fraction of problems that we are able to
solve. With repeated sampling, we consider a setup where a model can generate many candidate
solutions while attempting to solve a problem. The success rate is therefore influenced both by
the ability to generate correct samples for many problems (i.e. coverage), as well as the ability to
identify these correct samples (i.e. precision).

The difficulty of the precision problem depends on the availability of tools for sample verification.
When proving formal statements in Lean, proof checkers can quickly identify whether a candidate
solution is correct. Similarly, unit tests can be used to verify candidate solutions to coding tasks.
In these cases, precision is handled automatically, and improving coverage directly translates into
higher success rates. In contrast, the tools available for verifying solutions to math word problems
are limited, necessitating additional verification methods that decide on a single final answer from
many (often conflicting) samples.

We consider the following five tasks:

1. GSM8K: A dataset of grade-school level math word problems (Cobbe et al., 2021). We
evaluate on a random subset of 128 problems from the GSM8K test set.

2. MATH: Another dataset of math word problems that are generally harder than those from
GSM8K (Chen et al., 2024a). Similarly, we evaluate on 128 random problems from this
dataset’s test set.
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Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage im-
provements across a variety of model sizes (70M-70B), families (Llama-3, Gemma and Pythia) and
levels of post-training (Base and Instruct models).

3. MiniF2F-MATH: A dataset of mathematics problems that have been formalized into proof
checking languages (Zheng et al., 2021). We use Lean4 as our language, and evaluate on
the 130 test set problems that are formalized from the MATH dataset.

4. CodeContests: A dataset of competitive programming problems (Li et al., 2022). Each
problem has a text description, along with a set of input-output test cases (hidden from the
model) that can be used to verify the correctness of a candidate solution. We enforce that
models write their solutions using Python3.

5. SWE-bench Lite: A dataset of real world Github issues, where each problem consists of a
description and a snapshot of a code repository (Jimenez et al., 2024). To solve a problem,
models must edit files in the codebase (in the Lite subset of SWE-bench that we use, only
a single file needs to be changed). Candidate solutions can be automatically checked using
the repository’s suite of unit tests.

Among these tasks, MiniF2F-MATH, CodeContests, and SWE-bench Lite have automatic verifiers
(in the form of the Lean4 proof checker, test cases, and unit test suites, respectively). We begin by
investigating how repeated sampling improves model coverage. Coverage improvements correspond
directly with increased success rates for tasks with automatic verifiers and in the general case provide
an upper bound on the success rate. In coding settings, our definition of coverage is equivalent to
the commonly-used pass@k metric (Chen et al., 2021), where k denotes the number of samples
per problem. We use this metric directly when evaluating on CodeContests and SWE-bench Lite.
For MiniF2F the metric is similar, with a “pass” defined according to the Lean4 proof checker. For
GSM8K and MATH, coverage corresponds to using an oracle verifier that checks if any sample
“passes” by outputting the correct final answer. To reduce variance when calculating coverage,
we adopt the unbiased estimation formula from Chen et al. (2021). In each experiment, we first
generate N samples for each problem index i and calculate the number of correct samples Ci. We
then calculate the pass@k scores at each k ≤ N of interest according to:

pass@k =
1

# of problems

# of problems∑
i=1

(
1−

(
N−Ci

k

)(
N
k

) )
(1)

We use the numerically stable implementation of the above formula suggested in Chen et al. (2021).

2.1 REPEATED SAMPLING IS EFFECTIVE ACROSS TASKS

Here, we establish that repeated sampling improves coverage across multiple tasks and a range
of sample budgets. We evaluate Llama-3-8B-Instruct and Llama-3-70B-Instruct on CodeContests,
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Figure 4: Comparing cost, measured in number of inference FLOPs, and coverage for Llama-3-8B-
Instruct and Llama-3-70B-Instruct. We see that the ideal model size depends on the task, compute
budget, and coverage requirements. Note that Llama-3-70B-Instruct does not achieve 100% cover-
age on GSM8K due to an incorrectly labelled ground truth answer: see Appendix G.

MiniF2F, GSM8K, and MATH, generating 10,000 independent samples per problem. For SWE-
bench Lite, we use DeepSeek-Coder-V2-Instruct (DeepSeek-AI et al., 2024), as the required context
length of this task exceeds the limits of the Llama-3 models. As is standard when solving SWE-
bench issues, we equip our LLM with a software framework that provides the model with tools for
navigating through and editing codebases. In our work, we use the open-source Moatless Tools
library (Örwall, 2024). Note that solving a SWE-bench issue involves a back-and-forth exchange
between the LLM and Moatless Tools. One sample for this benchmark refers to one entire multi-turn
trajectory. To minimize costs, we restrict the number of samples per issue to 250, with all samples
drawn independently of one another.

We report our results in Figure 2. We also include the single-sample performance of GPT-4o on
each task, as well the single-sample state-of-the-art for SWE-bench Lite (CodeStory Aide (Aide,
2024) which uses a combination of GPT-4o and Claude 3.5 Sonnet). Across all five tasks, we find
that coverage smoothly improves as the sample budget increases. When all LLMs are restricted to
a single sample, GPT-4o outperforms the Llama and DeepSeek models at every task. However, as
the number of samples increases, all three of the weaker models exceed GPT-4o’s single-sample
performance. In the case of SWE-bench Lite, we solve 56% of issues, exceeding the single-sample
SOTA of 43%.

2.2 REPEATED SAMPLING IS EFFECTIVE ACROSS MODEL SIZES AND FAMILIES

The results from Section 2.1 demonstrate that repeated sampling can improve coverage. However,
we only show this trend for three recent, instruction-tuned models with 8B or more parameters. We
now show that these trends hold across other model sizes, families, and levels of post-training. We
expand our evaluation to include a broader set of models:

• Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.

• Gemma: Gemma-2B, Gemma-7B (Gemma, 2024).

• Pythia: Pythia-70M through Pythia-12B (eight models in total) (Biderman et al., 2023).

We restrict evaluation to the MATH and CodeContests datasets to minimize inference costs, report-
ing our results in Figure 3. Coverage increases across almost every model we test, with smaller
models showing some of the sharpest increases in coverage when repeated sampling is applied. On
CodeContests, the coverage of Gemma-2B increases by over 300x, from a pass@1 of 0.02% to a
pass@10k of 7.1%. Similarly, when solving MATH problems with Pythia-160M, coverage increases
from a pass@1 of 0.27% to a pass@10k of 57.03%.

The exception to this pattern of increasing coverage across models is with the Pythia family evalu-
ated on CodeContests. All Pythia models achieve zero coverage on this dataset, even with a budget
of 10,000 samples. We speculate that this due to Pythia being trained on less coding-specific data
than Llama and Gemma.
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Model
Cost per
sample
(USD)

Number of
samples

Issues
solved (%)

Total cost
(USD)

Relative
total cost

DeepSeek-Coder-V2-Instruct 0.0072 5 29.62 10.8 1x
GPT-4o 0.13 1 24.00 39 3.6x
Claude 3.5 Sonnet 0.17 1 26.70 51 4.7x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-
bench Lite dataset using the Moatless Tools agent framework. When sampled more, the open-source
DeepSeek-Coder-V2-Instruct model can achieve the same issue solve-rate as closed-source frontier
models for less than a third of the price.

2.3 REPEATED SAMPLING CAN HELP BALANCE PERFORMANCE AND COST

One takeaway from the results in Sections 2.1 and 2.2 is that repeated sampling makes it possible to
amplify a weaker model’s capabilities and outperform single samples from stronger models. Here,
we demonstrate that this amplification can be more cost-effective than using a stronger, more expen-
sive model, providing practitioners with a new degree of freedom when trying to jointly optimize
performance and costs.

We first consider FLOPs as a cost metric, examining the Llama-3 results from Section 2.1. We
re-plot our results from Figure 2, now visualizing coverage as a function of total inference FLOPs
instead of the sample budget. Since Llama-3 models are dense transformers where the majority of
parameters are used in matrix multiplications, we approximate inference FLOPs with the formula:

FLOPs per token ≈ 2 ∗ (num parameters + 2 ∗ num layers ∗ token dim ∗ context length)
total inference FLOPs ≈ num prompt tokens ∗ FLOPs per token

+ num decoded tokens ∗ FLOPs per token ∗ num completions

We present our re-scaled results for MiniF2F, CodeContests, MATH, and GSM8K in Figure 4. Inter-
estingly, the model that maximizes coverage varies with the compute budget and task. On MiniF2F,
GSM8K and MATH, Llama-3-8B-Instruct obtains a higher coverage than the larger (and more ex-
pensive) 70B model when the FLOP budget is fixed. However for CodeContests, the 70B model is
almost always more cost effective. We note that examining FLOPs alone can be a crude cost metric
that ignores other aspects of system efficiency (Dehghani et al., 2022). In particular, repeated sam-
pling can make use of high batch sizes and specialized optimizations that improve system through-
put relative to single-sample inference workloads (Juravsky et al., 2024; Athiwaratkun et al., 2024;
Zheng et al., 2024). We discuss this in more detail in Section 7.

We also examine the dollar costs of repeated sampling when solving SWE-bench Lite issues using
current API pricing. Keeping the agent framework (Moatless Tools) constant, we consider drawing
a single sample per issue from Claude 3.5 Sonnet and GPT-4o as well as repeatedly sampling from
DeepSeek-Coder-V2-Instruct. We report the average cost per issue and issue resolution rate with
each approach in Table 1. While the DeepSeek model is weaker than the GPT and Claude models,
it is also over 10x cheaper. In this case, repeated sampling provides a cheaper alternative to paying
a premium for access to strong models while achieving a superior issue solve rate.

3 SCALING LAWS FOR REPEATED SAMPLING

The relationship between an LLM’s loss and its training compute has been well-characterized with
training scaling laws (Hestness et al., 2017; Kaplan et al., 2020a; Hoffmann et al., 2022). These laws
have empirically held over many orders of magnitude and inspire confidence in model developers
that large investments in training will pay off. Inspired by training scaling laws, here we aim to
better characterize the relationship between coverage and the number of samples (i.e. the amount of
inference compute).

The GPT-4 technical report (OpenAI et al., 2024) finds that the relationship between a model’s mean-
log-pass-rate on coding problems and its training compute can be modelled well using a power law.
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Figure 5: The relationship between coverage and the number of samples can be modelled with an
exponentiated power law for most tasks and models. We highlight that some curves, such as Llama-
3-8B-Instruct on MiniF2F-MATH, do not follow this trend closely.

We start by adopting the same function class, but now modelling the log of coverage c as a function
of the number of samples k:

log(c) ≈ akb (2)

where a, b ∈ R are fitted model parameters. In order to directly predict coverage, we exponentiate
both sides, ending up with the final model of:

c ≈ exp(akb) (3)

We provide examples of fitted coverage curves in Figure 5, and additional curves in Appendix C.2.
While these laws are not as exact as training scaling laws (most strikingly on MiniF2F-MATH), they
provide encouraging early evidence that the benefits of inference scaling can be characterized. In
Appendix C.3, we quantify this and show that using an exponentiated power law fit to the coverage
curve up to 100 samples, we can forecast pass@10k up to an average of 2.86% absolute error across
all models and tasks except MiniF2F-MATH.

Interestingly, we find that the slope of scaling law (the b value) can be highly similar across models
from the same family (e.g. comparing Llama-3-8B-Instruct with Llama-3-70B-Instruct in Figure 5).
In Appendix D, we expand on this observation, showing that coverage curves within a model family
resemble S-curves with similar slopes but distinct horizontal offsets.

4 COMMON VERIFICATION METHODS FAIL TO SCALE WITH THE SAMPLE
BUDGET

So far, we have focused on measuring model coverage, characterizing the benefits of repeated sam-
pling under the scenario where we can always identify correct model samples. We now turn to the
complementary problem of precision: given a collection of model samples, how often can we iden-
tify the correct ones? In particular, we are interested in the performance of verifiers as we scale
up the number of samples. For some problems, correct solutions are sampled from the model at
low probabilities (e.g. 1% or lower, see Figure 7). As the number of samples increases and rare,
correct solutions are generated for more problems, model coverage improves. In order to convert
these coverage improvements into higher success rates, verifiers must be able to find the “needle in
the haystack” and identify infrequent correct samples.

Of the five tasks we evaluate, only GSM8K and MATH lack tools for automatically verifying solu-
tions1. We test three simple and commonly used verification approaches on their ability to identify
correct solutions from these datasets:

1In Appendix F, we discuss potential pitfalls when relying on unit tests to identify correct software pro-
grams.
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Figure 6: Comparing coverage (performance with a perfect verifier) to mainstream methods avail-
able for picking the correct answer (majority voting, reward model selection and reward model
majority voting) as we increase the number of samples. Although near-perfect coverage is achieved,
all sample selection methods fail to reach the coverage upper bound and saturate near 100 samples.
For every k value, we calculate success rates on 100 sample subsets of size k, then plot the mean
and one standard deviation across subsets.

1. Majority Vote: We pick the most common final answer (Wang et al., 2023).

2. Reward Model + Best-of-N: We use a reward model (Christiano et al., 2017) to score each
sample and pick the answer from the highest-scoring generation.

3. Reward Model + Majority Vote: We calculate a majority vote where each sample is
weighted by its reward model score.

We reuse the collections of 10,000 samples that we generated with Llama-3-8B-Instruct and Llama-
3-70B-Instruct in Section 2. We use ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a) as a reward
model, which scores highly on the reasoning section of the RewardBench leaderboard (Lambert
et al., 2024). We use these methods to identify a final sample once all samples have been generated,
and leave more sophisticated methods of incorporating intermediate verification into the generation
process to future work. We report our results in Figure 6 as we increase the number of samples.
While success rates initially increase with the number of samples for all three methods, they plateau
around 100 samples. Meanwhile, coverage continues to increase with the number of samples and
eventually exceeds 95%. In the case of majority voting, this success rate saturation is intuitive,
since the occurrence of rare, correct solutions does not affect the most common answer that majority
voting chooses.

Given the poor performance of these verifiers (in particular the reward model), it is reasonable to
wonder how “hard” it is to verify a candidate solution. With GSM8K and MATH, only a sam-
ple’s final answer is used for assessing correctness, with the intermediate chains of thought being
discarded. If models generated only non-sensical chains of thought before guessing a correct final
answer, verification may not be any easier than solving the problem in the first place. We investi-
gate this question by manually evaluating 105 chains-of-thought from correct Llama-3-8B-Instruct
samples to GSM8K problems, reporting our results in Table 2. We find that over 90% of the chains-
of-thought that we graded are faithful, even among problems where correct answers are generated
infrequently. These correct reasoning steps indicate that there is signal for a verifier to exploit when
identifying correct samples. Interestingly, during this process we also identified one GSM8K prob-
lem that has an incorrect ground truth answer (see Appendix G). This incorrect GSM8K problem is
also the only one that Llama-3-70B-Instruct did not generate a “correct” sample for across 10,000
attempts.

Pass@1 # Problems # CoT Graded Correct CoT Incorrect CoT Incorrect Ground Truth
0-10% 5 15 11 1 1 problem, 3 CoTs
10-25% 10 30 27 3 0 problems
25-75% 29 30 28 2 0 problems
75-100% 84 30 30 0 0 problems

Table 2: Human evaluation of GSM8K chains-of-thought generated by Llama-3-8B-Instruct. 3
chains of thought were graded per problem. Even for difficult questions, where the model only gets
≤ 10% of samples correct, the CoTs almost always follow valid logical steps.
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Figure 7: Visualizing the fraction of samples (out of 10,000) that are correct, for each problem in
the subsets of GSM8K and MATH we evaluate on. There is one bar per problem, and the height
of the bar corresponds to the fraction of samples that arrive at the correct answer. Bars are green if
self-consistency picked the correct answer and are red otherwise. We highlight that there are many
problems with where correct solutions have been generated, however they occur at a low frequency.

5 RELATED WORK

Scaling Inference Compute: Methods that perform additional computation during inference have
been successful across many areas of deep learning. Across a variety of game environments, state-of-
the-art methods leverage inference-time search to examine many possible future game states before
deciding on a move (Campbell et al., 2002; Silver et al., 2017; Brown et al., 2020a). Similar tree-
based methods can also be effective in combination with LLMs, allowing models to better plan and
explore different approaches (Yao et al., 2023; Besta et al., 2024; Tian et al., 2024; Trinh et al., 2024).
Another axis for increasing LLM inference compute allows models to spend tokens deliberating on
a problem before coming to a solution (Yao et al., 2022; Wei et al., 2023; Zelikman et al., 2024).
Additionally, multiple models can be ensembled together at inference time to combine their strengths
(Wang et al., 2024b; Chen et al., 2024b; Ong et al., 2024; Wan et al., 2024; Jiang et al., 2023). Yet
another approach involves using LLMs to critique and refine their own responses (Madaan et al.,
2023; Bai et al., 2022).

Repeated Sampling: Previous work has demonstrated that repeated sampling can improve LLM
capabilities in multiple domains. One of the most effective use cases is coding (Rozière et al., 2023;
Chen et al., 2021; Kulal et al., 2019), where performance continues to scale up to a million samples
and verification tools (e.g. unit tests) are often available to automatically score every candidate so-
lution. Recently, Greenblatt (2024) shows that repeated sampling is effective when solving puzzles
from the ARC challenge (Chollet, 2019), observing log-linear scaling as the number of samples
increases. In chat applications, repeated sampling combined with best-of-N ranking using a reward
model can outperform greedily sampling a single response (Irvine et al., 2023). In domains without
automatic verification tools, existing work shows that using majority voting (Wang et al., 2023) or
training a model-based verifier (Cobbe et al., 2021; Lightman et al., 2023; Hosseini et al., 2024;
Wang et al., 2024c; Kang et al., 2024), to decide on a final answer can improve performance on rea-
soning tasks relative to taking a single sample. Notably, recent work also treats the LLM itself as the
source of verification either directly through prompting (Yuan et al., 2024; Davis et al., 2024), or by
training a lightweight classifier on the model’s representations Li et al. (2024). Nguyen et al. (2024)
finds that performing majority voting over answers that exceed a threshold length can outperform
voting across all answers. Concurrent with our work, Song et al. (2024) finds that using the best
available sample improves LLM performance on chat, math, and code tasks, sweeping up to a max
of 128 samples. Additionally, Hassid et al. (2024) find that when solving coding tasks, it can be
more effective to draw more samples from a smaller model than draw fewer samples from a larger
one.

Scaling Laws: Characterizing how scaling affects model performance can lead to more informed
decisions on how to allocate resources. Scaling laws for LLM training find a power law relation-
ship between training loss and the amount of training compute, as well as provide estimates for
the optimal model and dataset size given a fixed compute budget (Hestness et al., 2017; Kaplan
et al., 2020a; Hoffmann et al., 2022). Jones (2021) finds scaling laws in the context of the board
game Hex, observing that performance scales predictably with model size and the difficulty of the
problem. Interestingly, they also show that performance scales with the amount of inference-time
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compute spent while performing tree search. Recently, Shao et al. (2024) observe scaling laws when
augmenting LLMs with external retrieval datasets, finding that performance on retrieval tasks scales
smoothly with the size of the retrieval corpus.

6 DISCUSSION AND LIMITATIONS

In this work, we explore repeated sampling as an axis for scaling compute at inference time in
order to improve model performance. Across a range of models and tasks, repeated sampling can
significantly improve the fraction of problems solved using any generated sample (i.e. coverage).
When correct solutions can be identified (either with automatic verification tools or other verification
algorithms), repeated sampling can amplify model capabilities during inference. This amplification
can make the combination of a weaker model and many samples more performant and cost-effective
than drawing fewer samples from a stronger, more expensive model.

Improving Repeated Sampling: In our experiments, we explore a simple version of repeated sam-
pling where all samples are generated independently of one another using the exact same prompt
and hyperparameters. We believe that this setup can be refined to improve performance, particularly
along the following directions:

1. Solution Diversity: We currently rely on a positive sampling temperature as the sole mech-
anism for creating diversity among samples. Combining this token-level sampling with
other, higher-level approaches may be able to further increase diversity. For example, Al-
phaCode conditions different samples on different metadata tags.

2. Multi-Turn Interactions: Despite automatic verification tools being available when solv-
ing CodeContests and MiniF2F problems, we use only a single-turn setup where models
generate a solution without any ability to iterate on it. Providing models with execution
feedback from these tools should improve solution quality. We are interested in the trade-
offs associated with multi-turn interactions, since each sample becomes more expensive,
but also may be more likely to succeed.

3. Learning From Previous Samples: Currently, our experiments fully isolate samples from
each other. Access to previous samples, particularly if verification tools can provide feed-
back on them, may be helpful for future generations.

Repeated Sampling and Inference Systems: Repeated sampling is a distinct LLM inference work-
load from serving chatbot requests. Production chatbot deployments place an emphasis on low
response latencies, and adhering to latency targets can force a lower per-device batch size and re-
duce hardware utilization. In contrast, when sampling many completions to a single prompt, a
larger emphasis can be placed on overall throughput and maximizing hardware utilization. Addi-
tionally, repeated sampling can benefit from specialized attention optimizations that exploit overlaps
in prompts across sequences (Juravsky et al., 2024; Athiwaratkun et al., 2024; Zheng et al., 2024).
Repeated sampling inference can therefore be accomplished at a lower cost than naively making
many parallel requests to a chatbot-oriented API. These cost savings can further motivate choosing
to sample many times from a cheaper model instead of fewer times from a more expensive one.

Verifiers: Our results from Section 4 highlight the importance of designing scalable sample verifi-
cation methods when tools for automatically doing so are unavailable. Equipping models with the
ability to reliably assess their own outputs will allow repeated sampling to be applied to far more
tasks. Of particular interest is applying repeated sampling to unstructured tasks like creative writing,
which can require a more subjective comparison between different samples than the pass-fail tasks
we consider. An alternative direction to developing model-based verifiers is to design converters that
can make an unstructured task verifiable, for example by formalizing an informal math statement
into a language like Lean so that proof checkers can be applied.
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7 REPRODUCIBILITY STATEMENT

We include the code for generating and evaluating samples in the supplementary materials. We
detail the datasets studied in Section 2. We report hyper-parameter details and prompts used for the
GSM8K, MATH, MiniF2F-MATH and CodeContests datasets in Appendix A, and for SWE-bench
Lite in Appendix B. We describe our method for fitting exponentiated power laws in Appendix C.1,
and for our verification experiments in Appendix E. Additionally, we detail issues we encountered
in three datasets in Appendix F and Appendix G.
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A SAMPLING EXPERIMENTAL SETUP

A.1 LEAN FORMAL PROOFS

We report results on the 130 questions in the test set of the lean4 MiniF2F dataset that correspond to
formalized MATH problems. This dataset is derived from the fixed version of the original MiniF2F
dataset created by Zheng et al. (2021). We sample with a temperature of 0.5 and do not use nucleus
sampling. We generated 10, 000 samples per problem. We use proofs of the following 5 theorems
from the validation set as few-shot examples:

• mathd_algebra_116

• amc12_2000_p5

• mathd_algebra_132

• mathd_algebra_11

• mathd_numbertheory_84

Our prompt consists of:

1. Few shot examples.

2. Header imports present in each problem in the HuggingFace dataset
cat-searcher/minif2f-lean4 dataset, an upload of the lean4 MiniF2F dataset.

3. The theorem definition. In order to avoid leaking information about how to solve the
theorem from its name, we replace the name of the theorem with theorem_i. i ∈
{1, 2, 3, 4, 5} for the few-shot examples and i = 6 for the current problem.

We set 200 as the max token length for the generated solution. To grade solutions, we use the
lean-dojo 1.1.2 library with lean version 4.3.0-rc2. We set a timeout of 10 seconds for
every tactic step.

Few-Shot Example

Write a lean4 proof to the provided formal statement. You have access to the standard
mathlib4 library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem1
Int.floor ((9:R) / 160 * 100) = 5 :=
by (
rw [Int.floor eq iff]
constructor
all goals norm num
)```
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Example Prompt

Write a lean4 proof to the provided formal statement. You have access to the standard
mathlib4 library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem6
(b h v : R)
(h0 : 0 < b ∧ 0 < h ∧ 0 < v)
(h1 : v = 1 / 3 * (b * h))
(h2 : b = 30)
(h3 : h = 13 / 2) :
v = 65 :=
by (

A.2 CODECONTESTS

We report results on the 140 test set questions that do not include image tags in the problem descrip-
tion. We sample with a temperature of 0.6 and a top-p value of 0.95 following the experiments in
CodeLlama (Rozière et al., 2023). We generate 10,000 samples per problem. We use two few-shot
examples from the training set that are randomly sampled per-problem. We set 1024 as the max
token length for the generated solution. We use the same answer comparison function as (Li et al.,
2022) and use the concatenation of public, private, and generated tests to validate correctness of
solutions.
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Few-Shot Example

Q: Write python code to solve the following coding problem that obeys the constraints and
passes the example test cases. The output code needs to read from and write to standard IO.
Please wrap your code answer using ```:
Petya has equal...
...
(Rest of question and input/output examples)
...
A: ```
n = int(input())
a = int(input())
b = int(input())
ans = 6
cnt = 0
cur = 2
cnt += 2 * ((n - b) // a)
while cnt < 4:

cur += 1
cnt += (n // a)

ans = min(ans, cur)
if b * 2 <= n:

cur, cnt = 0, 0
cur = 1
cnt += ((n - 2 * b) // a)
while cnt < 4:

cur += 1
cnt += (n // a)

ans = min(ans, cur)
print(ans)

```

Example Prompt

Q: Write python code to solve the following coding problem that obeys the constraints and
passes the example test cases. The output code needs to read from and write to standard IO.
Please wrap your code answer using ```:
This is the...
...
(Rest of question and input/output examples)
...
A:

A.3 MATH

We report results on 128 randomly selected test-set problems. We sample with a temperature of 0.6
and do not use nucleus sampling. We use the fixed 4 few-shot example from (Lewkowycz et al.,
2022) for each problem. We generate 10, 000 samples per problem. We set 512 as the max token
length for the generated solution. To grade solutions, we use the minerva_math functions from
LMEval (Gao et al., 2023) to extract the model’s final answer. We then check correctness if the
extracted answer is an exact string match to the ground truth, or if the is_equiv function from
minerva_math in LMEval evaluates to true.
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Few-Shot Example

Problem:
If detA = 2 and detB = 12, then find det(AB).
Solution:
We have that det(AB) = (detA)(detB) = (2)(12) = 24 . Final Answer: The final
answer is 24. I hope it is correct.

Example Prompt

Problem:
What is the domain of the function

f(x) =
(2x− 3)(2x+ 5)

(3x− 9)(3x+ 6)
?

Express your answer as an interval or as a union of intervals.
Solution:

A.4 GSM8K

We report results on 128 randomly sampled test-set problems. We sample with a temperature of
0.6 and do not use nucleus sampling. We use 5 few-shot examples from the training set that are
randomly sampled per-problem. We generate 10, 000 samples per problem. We set 512 as the max
token length for the generated solution. To grade solutions, we follow LMEval (Gao et al., 2023)
and extract answers using a regular expression that extracts the string after the quadruple hashes.
Similar to MATH, we then assess correctness by checking if the extracted answer is an exact string
match to the ground truth or if is_equiv evaluates to true.

Few-Shot Example

Question: James decides to replace his car. He sold his $20,000 car for 80% of its value and
then was able to haggle to buy a $30,000 sticker price car for 90% of its value. How much
was he out of pocket?
Answer: He sold his car for 20000*.8=$<<20000*.8=16000>>16,000 He bought the new
car for 30,000*.9=$<<30000*.9=27000>>27,000 That means he was out of pocket 27,000-
16,000=$<<27000-16000=11000>>11,000
#### 11000

Example Prompt

Question: Mary has 6 jars of sprinkles in her pantry. Each jar of sprinkles can decorate 8
cupcakes. Mary wants to bake enough cupcakes to use up all of her sprinkles. If each pan
holds 12 cupcakes, how many pans worth of cupcakes should she bake?
Answer:

B SWE-BENCH LITE

B.1 EXPERIMENTAL SETUP

For our experiments, we use DeepSeek-Coder-V2-Instruct with the Moatless Tools agent framework
(at commit a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6). We use Voyage AI (voy,
2024) embeddings for retrieval, the default used by Moatless Tools. We make no modifications to
the model or framework, using them entirely as off-the-shelf components.

With this setup, we sample 250 independent completions for each problem using standard
temperature-based sampling. To determine the optimal sampling temperature, we conducted a sweep
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on a random subset of 50 problems from the test set, testing temperatures of 1.0, 1.4, 1.6, and 1.8.
Based on these results, we selected a temperature of 1.6 for our main experiments.

B.2 TEST SUITE FLAKINESS

During our analysis, we identified 34 problems in SWE-bench Lite whose test suites had flaky
tests. Using the SWE-bench testing harness provided by the authors of SWE-bench, we tested each
solution repeatedly: for some solutions, sometimes the solution was marked as correct, and other
times it was marked as incorrect. In 30 of these 34 cases, we observed flakiness even on the correct
solutions provided by the dataset authors. Table 3 lists the problem IDs of the 34 instances with
flaky tests.

Table 3: Instance IDs of problems from SWE-bench Lite that have flaky tests.
Repository Instance IDs
django django django-13315, django django-13447,

django django-13590, django django-13710,

django django-13757, django django-13933,

django django-13964, django django-14017,

django django-14238, django django-14382,

django django-14608, django django-14672,

django django-14752, django django-14915,

django django-14997, django django-14999,

django django-15320, django django-15738,

django django-15790, django django-15814,

django django-15819, django django-16229,

django django-16379, django django-16400,

django django-17051

sympy sympy sympy-13146, sympy sympy-13177,

sympy sympy-16988

requests psf requests-863, psf requests-2317,

psf requests-2674, psf requests-3362

scikit-learn scikit-learn scikit-learn-13241

matplotlib matplotlib matplotlib-23987

An additional instance, astropy astropy-6938, was flaky on some machines and not others.
The authors of SWE-bench were able to reproduce the flakiness; however, we were unable to. Our
preliminary investigation indicates this specific issue is due to unpinned versions of dependencies in
the docker environments that run the unit tests.

Here, we include results on a subset with the problems in Table 3 removed (266 problems). For the
full dataset evaluation, on any problem that has flaky tests, we run the test suite 11 times and use
majority voting to determine whether a solution passed or failed. For the evaluation on the subset
without flaky tests, all baselines we compare against release which problems they correctly solve,
so we simply removed the problems with flaky tests and recomputed their scores.

C SCALING LAWS

C.1 EXPERIMENTAL DETAILS

To fit exponentiated power laws to coverage curves, we first sample 40 points spaced evenly along
a log scale from 0 to 10, 000 and remove duplicates. We then use SciPy’s (Virtanen et al., 2020)
curve_fit function to find the a and b parameters from Equation 3 that best fit these points.
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Figure 8: SWE-bench Lite results, without and with problems that have flaky tests. For the graph on
the left, all problems in Table 3 are excluded. For the graph on the right, all problems are included.
We note that the trend is the same with or without the flaky tests.

C.2 ADDITIONAL RESULTS

In Figure 9, we show additional results fitting power laws to coverage curves for an expanded set of
datasets and models.

C.3 USING SCALING LAWS FOR PREDICTION

In Section 3 we observe that many of the coverage curves tend to follow exponentiated power laws,
suggesting that the gain in coverage when adding more samples is predictable. To test this, in
Figure 10 and Figure 11 we show the results of predicting pass@10k by fitting an exponentiated
power law to coverage values collected with fewer samples. Specifically, we extract a subset of
1000 samples from our full collection of 10k, calculate pass@k values for k ≤ 1001, and fit an
exponentiated power law to this restricted data. We repeat this process for five difference subsets of
1k samples across 22 model/dataset pairs (note we exclude MiniF2F as coverage in this case does
not follow a power law). On average, we observe a mean absolute error of 2.86% across all settings.

1Since we are estimating pass@k with 1k samples, we only fit the coverage curve to the first 100 values to
ensure the estimate of pass@k is stable.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

100 101 102

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)
DeepSeek-Coder-V2-Instruct + Moatless Tools

SWE-bench Lite
(a=-1.74, b=-0.21)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-8B
MATH (Oracle Verifier)

(a=-1.98, b=-0.42)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Gemma-7B
MATH (Oracle Verifier)

(a=-1.66, b=-0.45)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Pythia-160M
MATH (Oracle Verifier)

(a=-6.43, b=-0.27)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-410M
MATH (Oracle Verifier)

(a=-5.39, b=-0.28)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-1B
MATH (Oracle Verifier)

(a=-5.1, b=-0.29)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Pythia-1.4B
MATH (Oracle Verifier)

(a=-4.66, b=-0.32)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-2.8B
MATH (Oracle Verifier)

(a=-4.1, b=-0.33)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-6.9B
MATH (Oracle Verifier)

(a=-4.23, b=-0.34)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Gemma-2B
CodeContests

(a=-8.54, b=-0.14)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Gemma-7B
CodeContests

(a=-4.56, b=-0.13)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
MiniF2F-MATH

(a=-1.36, b=-0.09)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Llama-3-8B-Instruct
GSM8K (Oracle Verifier)

(a=-0.27, b=-0.87)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
GSM8K (Oracle Verifier)

(a=-0.07, b=-0.9)

Coverage Power Law Fit, c = exp(akb)

Figure 9: Fitting exponentiated power laws to coverage curves for an expanded set of tasks and
models.
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Figure 10: Predicting coverage values for high k values by fitting a power law to the coverage curve
for k ≤ 100. Note that we recalculate the pass@k values used to do the power law fitting using
a random 1k subset of the datapoints. We do this for 5 random subsets and report the mean and
standard deviation of the pass@10k predictions for each subset.

D SIMILARITIES IN COVERAGE CURVES ACROSS MODELS

When comparing the coverage curves (with a logarithmic x-axis) of different models from the same
family on the same task (see Figure 3), it appears that the traced S-curves have the same slope, but
unique horizontal offsets. To investigate this further, we overlay the coverage curves of different
models from the same family in Figure 12. We do this by picking an anchor coverage value c, and
shifting every curve leftward (in log-space) so that each passes through the point (1, c). This cor-
responds to a leftward shift by log(pass@k−1(c)), where pass@k−1(c) denotes the closest natural
number k such that pass@k = c. We pick c to be the maximum pass@1 score over all models
from the same family. These similarities demonstrate that across models from the same family, the
increase in the log-sample-budget (or equivalently, the multiplicative increase in the sample budget)
needed to improve coverage from c to c′ is approximately constant.

E PRECISION DETAILS

To calculate the Majority Vote, Reward Model + Best-of-N and Reward Model + Majority Vote
metrics, we use the same 128 problem subsets for both MATH and GSM8K datasets introduced in
Section 2. Each problem corresponds to 10,000 samples for each model we test. For each verifica-
tion method, we take 100 random subsets of size k and calculate the success rate using each subset.
We report the mean and standard deviation across subsets in Figure 6. To calculate the Majority Vote
answer, we take the plurality answer in each subset (note that two answers are considered equiva-
lent if they are exact string matches or if is_equiv evaluates to true). For the Reward Model +
Best-of-N, we take the answer with the highest score assigned by the reward model. For the Reward
Model + Majority Vote metric, we sum the reward model score across all the samples with the same
final answer, and use the final answer with the highest sum.

F VERIFIERS AND SOFTWARE TASKS: TWO CAUTIONARY TALES

Software development tasks can occupy a middle-ground with respect to available verification tools.
On one hand, the ability to execute and test code allows for a higher degree of automatic verification
than is possible with unstructured language tasks. However, tools like unit tests take a black-box
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Figure 11: Predicting coverage values for high k values by fitting a power law to the coverage curve
for k ≤ 100. Note that we recalculate the pass@k values used to do the power law fitting using
a random 1k subset of the datapoints. We do this for 5 random subsets and report the mean and
standard deviation of the pass@10k predictions for each subset.
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Figure 12: Overlaying the coverage curves from different models belonging to the same family.
We perform this overlay by horizontally shifting every curve (with a logarithmic x-axis) so that all
curves pass through the point (1, c). We pick c to be the maximum pass@1 score over all models in
the plot. We note that the similarity of the curves post-shifting shows that, within a model family,
sampling scaling curves follow a similar shape.

approach to verifying a piece of code and are not as comprehensive as methods like proof checkers.
These imperfections in the verification process can lead to false positives and/or false negatives that
are important to consider when applying repeated sampling. Below we provide two examples of
software verifier imperfections that we encountered when generating our results from Section 2.1.

F.0.1 FLAKY TESTS IN SWE-BENCH LITE

When producing our results on SWE-bench Lite, we identified that 11.3% of problems have flaky
test suites that do not produce consistent results when running them on the same candidate solution.
These flaky tests occasionally classify even the dataset’s ground-truth issue solutions as incorrect.
Additionally, the test suites for some issues can be non-determinstic depending on the candidate
solution. For example, two SWE-bench Lite issues involve manipulating Python sets, which are
naturally unordered. The gold solutions for these issues explicitly order the items in the set and pass
the test suites reliably. However, some model-generated candidate solutions do not impose such an
ordering, and therefore pass the tests on some “lucky” runs and not others. In Appendix B, we list
all of the problem IDs where we identified flaky tests. We also report our SWE-bench Lite results
from Figure 2 with the problematic issues removed, finding similar results to our evaluations on the
whole dataset.

F.0.2 FALSE NEGATIVES IN CODECONTESTS

Each problem from the CodeContests dataset comes with a set of input-output test cases used to
asses the correctness of solutions. These test cases are more comprehensive than those from earlier
coding benchmarks like APPS (Hendrycks et al., 2021a), cutting down on the frequency of false
positive solutions that pass all test cases but do not fully solve the described problem. However, the
construction of the CodeContests test suites leads to false negative solutions that are correct but fail
the tests.

For some CodeContests problems, the problem description allows for multiple distinct correct out-
puts for a given test input. However, the corresponding test cases do not handle these scenarios,
instead requiring that one particular correct output is emitted. Additionally, many CodeContests
test cases have been programmatically generated by mutating original test cases from the problem.
Some mutated inputs violate the problem’s input specifications (e.g. a mutated input being zero
when the description promises a positive integer). These malformed test cases can lead to inconsis-
tent behaviour between different correct solutions.

We assess the prevalence of these issues by running each problem’s test suite on the list of correct
solutions that CodeContests provides. Of the 122 problems in the test set that have Python3 solu-
tions, we find that 35 problems have “correct” solutions that fail the corresponding tests. Since we
do not allow models to view all of a problem’s test cases (and their peculiarities), applying repeated
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sampling to these problems contains an element of “rolling the dice” to generate a solution that is
not only correct, but emits the particular outputs that pass the tests.

G GSM8K INCORRECT ANSWER

As discussed in 4, we identify that a problem in the GSM8K test set (index 1042 on HuggingFace)
has an incorrect ground truth solution.

Question

Johnny’s dad brought him to watch some horse racing and his dad bet money. On the first
race, he lost $5. On the second race, he won $1 more than twice the amount he previously
lost. On the third race, he lost 1.5 times as much as he won in the second race. How much
did he lose on average that day?

Answer

On the second race he won $11 because 1 + 5× 2 =<< 1 + 5 ∗ 2 = 11 >> 11
On the third race he lost $15 because 10× 1.5 =<< 10 ∗ 1.5 = 15 >> 15
He lost a total of $20 on the first and third races because 15 + 5 =<< 15 + 5 = 20 >> 20
He lost $9 that day because 11− 20 =<< 11− 20 = −9 >> −9
He lost an average of $3 per race because 9/3 =<< 9/3 = 3 >> 3
#### 3

The mistake is in the second line of the answer: on the third race, Johnny’s dad lost $16.5, not $15,
meaning he made $11 and lost $16.5 + $5 = $21.5. So, the answer is an average loss of $3.5 per
race, not $3 per race (the answer in the dataset).

H VERIFICATION USING A PROCESS REWARD MODEL

In Section 4, we benchmark three verification methods (majority voting, using a reward model with
Best-of-N selection, and weighted majority voting using the reward model scores) on their ability
to identify correct solutions from large sample collections. For the latter two methods in those
experiments, we use ArmoRM-Llama3-8B-v0.1, which is an outcome reward model. In Figure 13,
we extend those results to include an open source process reward model (PRM): math-shepherd-
mistral-7b-prm Wang et al. (2024c). We follow Wan et al. (2024), and assign the score of the sample
as the minimum score over all step-level rewards. We then use these reward model scores to select
the final answer in two ways:

• PRM + Best-of-N: We choose the sample with the highest overall score.
• PRM + Majority Voting: We calculate a majority vote where each sample is weighted by

its reward model score.

Due to resource constraints, we run this experiment on a 1k sample subset of the 10k samples
generated by Llama3-8B-Instruct on the MATH dataset. We see that although coverage continues
to increase up to 1k samples, the performance of the PRM with both methods plateaus before 100
samples similar to the previous verication methods.

I ADDITIONAL SAMPLING ABLATIONS

In Figure 14, we ablate the effect of the temperature and top-p values used for repeated sam-
pling. In both sweeps, we sample 1k samples for the same 128 subset of the MATH dataset using
Llama3-8B-Instruct. For the top-p sweep, we set temperature to 0.6 and sweep over top-p values
in {0.5, 0.75, 0.8, 0.9, 0.95, 1.0}. We see that the results are not very sensitive to temperature, with
only top-p=0.5 being noticeably worse than the rest. For the temperature sweep, we set top-p to 1.0
and sweep over temperature values in {0.4, 0.6, 0.8, 1.0, 1.2, 1.4}. We see that temperatures 1.2 and
1.4 have a significantly lower coverage than the rest.
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Figure 13: Comparing coverage (oracle selection) to the performance of selecting using a process
reward model (PRM). Although coverage increases over all sample budgets, the performance with
the PRM quickly plateaus before 100 samples.
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Figure 14: Ablating the effect of top-p and temperature in repeated sampling. For the sweep over
top-p values, we fix temperature to 0.6 and for the temperature sweep we fix top-p to 1.
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