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ABSTRACT

Few-shot learning systems, especially those based on meta-learning, have recently
made significant advances, and are now being considered for real world problems
in healthcare, personalization, and science. In this paper, we examine the robust-
ness of such deployed few-shot learning systems when they are fed an imper-
ceptibly perturbed few-shot dataset, showing that the resulting predictions on test
inputs can become worse than chance. This is achieved by developing a novel Ad-
versarial Support Set Attack which crafts a poisoned set of examples. When even
a small subset of malicious data points is inserted into the support set of a meta-
learner, accuracy is significantly reduced. For example, the average classification
accuracy of CNAPS on the Aircraft dataset in the META-DATASET benchmark
drops from 69.2% to 9.1% when only 20% of the support set is poisoned by im-
perceptible perturbations. We evaluate the new attack on a variety of few-shot
classification algorithms including MAML, prototypical networks, and CNAPS,
on both small scale (minilmageNet) and large scale (META-DATASET) few-shot
classification problems. Interestingly, adversarial support sets produced by at-
tacking a meta-learning based few-shot classifier can also reduce the accuracy of
a fine-tuning based classifier when both models use similar feature extractors.

1 INTRODUCTION

Standard deep learning approaches suffer from poor sample efficiency (Krizhevsky et al.| 2012)
which is problematic in tasks where data collection is difficult or expensive. Recently, few-shot
learners have been developed which address this shortcoming by supporting rapid adaptation to a
new task using only a few labeled examples (Finn et al.,[2017; Snell et al.,|2017). This success has
meant that few-shot learners are becoming increasingly attractive for real-life applications. They
have been applied to user personalization in recommender systems (Lee et al., |2019), matching
potential users to businesses (L1 et al., 2020), personalized talking head models (Zakharov et al.,
2019), and on-device gaze estimation (He et al., 2019). As few-shot learners improve, they are
also being applied to increasingly sensitive applications where the repercussions of confidently-
wrong predictions are severe. Examples include clinical risk assessment (Sheryl Zhang et al.,|2019),
glaucoma diagnosis (Kim et al., 2017), identification of diseases in skin lesions (Mahajan et al.,
2020), and tissue slide annotation in cancer immuno-therapy biomarker research (Lahiani et al.,
2018).

As few-shot learners gain popularity, it is essential to understand how robust they are and whether
there are potential avenues for their exploitation. It is well known that standard classifiers are vul-
nerable to inputs that have been purposefully modified in a minor way to cause incorrect predictions
(Biggio & Roli, 2017). Such examples may be presented to a model either at test time, called eva-
sion attacks (Biggio et al.,2017) or adversarial examples (Szegedy et al.l|2014), or at training time,
which is referred to as poisoning (Newsome et al., |2006} Rubinstein et al., |2009). While previous
work has considered adversarial attacks on few shot learners, data poisoning attacks have not been
studied and are the focus of this paper.

Data poisoning attacks are of particular relevance in the few-shot learning setting for two reasons.
First, since the datasets are small, a handful of poisoned patterns might have a significant effect.
Second, many applications of few-shot learning require labeled data from users to adapt the system
to a new task, essentially providing a direct interface for outsiders to influence the model’s behaviour.
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If few-shot learning systems are not robust to poisoning of their training dataset, then this weakness
could be exploited. An attacker performing a man-in-the-middle (Conti et al., 2016) data poison-
ing attack could cause a recommender system’s personalization to perform badly or suggest certain
results to influence a user’s decision. Applied at scale to many users, an attacker could cause signifi-
cant damage. Similarly, a doctor attempting to commit medical insurance fraud may submit images
causing a benign skin condition to be incorrectly classified as a skin disease requiring expensive
treatment; or a malicious party may ruin a research study that uses automated annotation of samples
by tampering imperceptibly with only a few images. If these attacks could be achieved with mali-
cious patterns that cannot be reliably distinguished from real training data, it would be difficult to
defend against them.

Before detailing the key contributions of the paper, it is necessary to briefly introduce the lexicon
of few-shot learning. During training, few-shot learners are typically presented with many different
tasks. The model must learn to perform well on each task, hopefully arriving at a point where it can
adapt effectively to a new task at test time. At test time, the model is presented with an unseen task
containing a few labeled examples, the support set, and a number of unlabeled examples to classify,
called the guery set. The paper makes the following contributions:

1. We define a novel attack on few-shot classifiers, called an Adversarial Support Set Attack,
which applies adversarial perturbations to the support set that are calculated to minimize
model accuracy over a set of query points. To the best of the authors’ knowledge, this is
the first work considering the impact of poisoning attacks on trained few-shot classifiers.

2. We demonstrate that few-shot classifiers are surprisingly vulnerable to Adversarial Support
Set attacks. The adversarial support set attack is more effective than the baselines consid-
ered, and generalizes well, i.e. the compromised classifier is highly likely to be inaccurate
on a randomly sampled query set from the task domain.

3. We demonstrate the effectiveness of our approach against a variety of few-shot classifiers
including MAML (Finn et al., |2017), ProtoNets (Snell et al., [2017), and CNAPS (Re-
queima et al.l 2019a)), on both small scale (minilmageNet (Vinyals et al., 2016))) and large
scale (META-DATASET (Triantafillou et al., [2020)) few-shot classification benchmarks.

4. We show that adversarial support sets transfer effectively to fine-tuning based few-shot
classifiers when the few-shot classifier and the fine-tuner utilize similar feature extractors.

The rest of the paper proceeds as follows: Section [2| provides background about the meta-learning
models under consideration, relevant adversarial attack methods, and the threat model under con-
sideration. Section [3] discusses how evasion and poisoning attacks may be generalized to few-shot
learners. Section [ presents the experimental results and Section [5|concludes the paper. Additional
results and experimental details are in the Appendix.

2 BACKGROUND

In this section we lay the necessary groundwork for adversarial support set attacks. We focus on
image classification. We denote input images x € R"*WxH where W is the image width, H the
image height, ch the number of image channels and image labels y € {1,...,C} where C is the
number of image classes. We use bold & and y to denote a set of images and labels, respectively.

2.1 META-LEARNING

We consider the few-shot image classification scenario using a meta-learning approach. Rather than
a single, large dataset D, we assume access to a dataset D = {7;:}/X, comprising a large number
of training fasks 7, drawn i.i.d. from a distribution p(7). The data for a task consists of a support
set Dg = {(2y,yn)}N_, comprising N elements, with the inputs x,, and labels 7,, observed, and
a query set Dg = {(x%,,y:)}M_, with M elements for which we wish to make predictions. We
may use the shorthand Dg = {x,y} and Dy = {x*,y*} for brevity. Here the inputs z* are
observed and the labels y* are only observed during meta-training (i.e. training of the meta-learning
algorithm). Note that the query set examples are drawn from the same set of labels as the examples

in the support set. At meta-test time, the classifier f is required to make predictions for query set
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Figure 1: Example task with C' = 4 classes with N = 4 and M = 4.

inputs of unseen tasks. Often, the meta-test tasks will include classes that have not been seen during
meta-training, and Dg will contain only a few observations. An example task is shown in Fig.

Episodic Training The majority of modern meta-learning methods employ episodic training
(Vinyals et al., |2016). During meta-training, a task 7 is drawn from p(7) and randomly split into a
support set Dg and query set Dg. The meta-learner g takes as input the support set Dg and pro-
duces task-specific classifier parameters ¥ = g(Dg) which are used to adapt the classifier f to the
current task. The classifier can now make task-specific predictions f(z*,1 = g(Dg)) for any test
input z* € Dg. Refer to the diagram labeled Clean in Fig.[2| A loss function £(f(z*,),y*) then
computes the loss between the predictions for the label f(z*, ) and the true label y*. Assuming
that £, f, and g are differentiable, the meta-learning algorithm can then be trained with stochastic
gradient descent by back-propagating the loss and updating the parameters of f and g.

Common Few-shot Learning Algorithms There has been an explosion of meta-learning based
few-shot learning algorithms proposed in recent years. For an in-depth review see Hospedales et al.
(2020). Here, we briefly describe methods that are relevant to our experiments. Arguably the
most widely used is the gradient-based approach, the canonical example for modern systems be-
ing MAML (Finn et al, 2017). With MAML, the task-specific parameters ) are the parameters
of the classifier f after applying one or more gradient steps taken on the support set Dg. An-
other widely used class of meta-learners are amortized-inference or black box based approaches
e.g, VERSA (Gordon et al., 2019) and CNAPS (Requeima et al., [2019a). In these methods, the
task-specific parameters 1 are generated by one or more hyper-networks, g (Ha et al, 2016). An
important special case of this approach is Prototypical Networks (ProtoNets) (Snell et al., [2017)
which is based on metric learning and employs a nearest neighbor classifier, and the task-specific
parameters 1 are the mean feature vectors for each class ¢ € C of the support set Dg. Finally, a
very competitive, non-episodic approach to few-shot learning is simple fine-tuning (Yosinski et al.,
2014 Tian et al.,2020). In this approach, a pretrained feature extractor is used in combination with
a final layer linear classifier, whose weights serve as the task-specific parameters 1) that are learned
by taking a number of gradient steps on the support set data.

2.2 ADVERSARIAL ATTACKS

Szegedy et al.[ (2014) have shown that it is possible to craft adversarial examples, inputs that are
indistinguishable from legitimate examples to both humans and algorithms (Carlini & Wagner,
2017), yet are classified incorrectly by deep neural networks with high confidence (Nguyen et al.,
2014)). Adversarial examples are typically generated by taking a clean, unperturbed input image and
adding a small amount of carefully crafted, almost imperceptible noise (Goodfellow et al.l 2014;
Madry et al} 2017). The perturbation ¢ is calculated by performing the following optimization
argmaxs L(0,x + d,y), where L is the loss function e.g. the cross entropy, ¢ denotes the model
parameters, x is the input being perturbed, and y is its label. The perturbation size is typically con-
strained by some norm such as ¢, or 5. As stated above, the optimization produces an untargeted
attack, in the sense that we do not require the generated image to be misclassified as any particu-
lar class, only to be classified incorrectly. An alternative formulation of the optimization problem,
argming £(0, 2 + 4, 7), would produce a targeted attack, i.e. an image that is misclassified as be-
longing specifically to the class with label § # y. In this paper, labels for targeted attacks are
generated by shifting the clean class label by 1 mod C'. Many algorithms can be used to generate
adversarial examples, including Projected Gradient Descent (Madry et al., |2017), the Carlini and
Wagner /5 attack (Carlini & Wagner, 2017), or ElasticNet (Chen et al., 2017a). Throughout this
paper, without loss of generality, we utilize Projected Gradient Descent (PGD) with an /., norm,
because is it simple to implement, inexpensive to compute, and effective. We show that by careful
application of PGD, we can successfully poison meta-learners at meta-test time.
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2.3 THREAT MODEL

The threat model may be summarized in terms of the adversary’s goal, knowledge and capabilities.

Goal The adversary could aim to compromise a system’s integrity, availability or confidentiality.
Poisoning attacks may aim to compromise system integrity — for example, backdoor poisoning
(Chen et all 2017b), where the aim is to misclassify only a specific query point at test time. In
this paper, we consider poisoning attacks that reduce system availability, where the goal is simply
to maximize system failure on any query point. Evasion attacks usually aim to compromise the
integrity of the system by causing failure on specific query points at test time.

Knowledge We assume the adversary has full knowledge of the model’s internal workings — in-
cluding gradients and other internal state information. We also assume that they can access enough
data to be able to form a seed query set of at least the same size as the adversarial support set.

Capabilities When performing adversarial support set attacks, we consider an adversary who is able
to manipulate some fraction of the support set. We constrain the attack-space by requiring that the
adversary’s modifications must be imperceptible. We achieve this by constraining the adversarial
perturbation to be within some ¢ of the original image, measured using the /., norm. As a baseline,
we also considered an attacker who is able to modify support set labels instead. See Other Possible
Attacks in Section [3] for more details on this attack. When performing query attacks, we consider
an adversary who is able to manipulate one or more points in the query set, again constrained by a
maximum perturbation size.

3 ADVERSARIAL ATTACKS ON FEW-SHOT LEARNERS

In this section, we introduce a variety of attacks that can be perpetrated against few-shot learners,
summarized in Fig.[2] Consider a few-shot learning system that has been trained and deployed as
a service. In this service, users or groups of users provide their data as input to the service, either
explicitly such as tagged photos or implicitly such as product preferences or browsing habits. This
data forms a support set and is used by the system to produce task-specific parameters which are then
used to make predictions on novel queries from the users. A malicious user, or a man-in-the-middle
attacker could attack the system in a number of ways, discussed below.

Query Attack The attacker may want the adapted classifier to misclassify a specific input image.
This corresponds to solving arg max; L(f(z* + 6, g(x,y)), y*). Refer to Appendix[A.2]for details.
These kinds of attacks relate to adversarial examples as considered in recent literature, in the context
of evasion attacks (Biggio et al., 2017). Query attacks have been perpetrated successfully against
few-shot learners (Goldblum et al., 2019; Y1n et al., 2018)), but are not the main focus of this work.

Support Attack The attacker may want the system to fail on any query image. The attacker will
achieve this by computing a perturbed support set Dg = {&, y} whose inputs are optimized to fool
the system on a specific query set, which we call the seed query set, with the goal of generalizing
to unseen query sets. This corresponds to solving arg maxs L(f(x*, g(x + §,vy)),y*) such that
|16 < € where Dg = {x*,y*} denotes the seed query set and ¢ is the maximum size of the
perturbation. Refer to Algorithm [I] for details. We call this novel few-shot learner attack an Ad-
versarial Support Set Attack, or simply a support attack. Our attack is a poisoning attack, since the
attacker is manipulating data that the model will use to do inference. However, it is important to note
the the attack is perpetrated at meta-test time, after the meta-learner has already been meta-trained.
Example images from a support attack are shown in Fig.[3]

In contrast to a query attack, which only considers the model’s behaviour on a single point at a time,
support attacks allow the adversarial optimization function to incorporate information regarding the
model’s behaviour on the entire query set. In real settings, an attacker might design an attack on
their own query set, hoping it will generalize to other, unseen queries. The ability to generalize will
depend on M, the size of the seed query set.

Adversarial support sets vs evasion attacks The adversarial support set attack differs from an
evasion attack in the following ways: (i) We generate an entire adversarial support set (or subset of
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Figure 2: Range of considered attacks on meta-learning based few-shot image classifiers. f and g
denote the classifier and trained meta-learner, respectively. Each diagram depicts how an attack is
applied and includes an expression for the attack’s computation. Adversarially perturbed quantities
are denoted with a tilde. The prime (") marks in the Transfer attack indicate that the attack is
transferred to a different meta-learner and classifier than the attack is derived from.

Figure 3: Pairs of images from the minilmageNet dataset where the left is unperturbed, while the
right is adversarially perturbed by a PDG Support attack with e = 0.05, v = 0.0015, and L = 100.

the support set) at once, rather than generating just a single adversarial input. (ii) The attack is con-
structed with regard to an entire query dataset, rather than a single query point. Moreover, the goal
is not for a single specific query to be misclassified, but for all future unseen queries to be misclas-
sified. (iii) Generation of the attack involves backpropagating the gradients through a meta-learner
which itself is performing gradient based learning in the case of MAML, or is a complex set neural
network in the case of ProtoNets or CNAPS. In this context, it is prudent to use a fairly simple attack
method in the face of significant increased complexity over the standard evasion attack setting.

Other Possible Attacks We formulate a number of other few-shot learner attacks, also depicted
in Fig. 2] Label Shift is a simple attack on the support set which involves mislabelling the support
set images by shifting the true label index by one in a modulo arithmetic fashion. We consider
systematic mislabeling in this way to be a strong attack for comparison, though this “attack” may
be easily detected in practice. We also consider Swap attacks, a support set poisoning attack where
a set of images are perturbed with a query attack and then inserted into the support set. Query
attacks are typically cheaper to compute, since they do not require back-propagation through the
meta-learner. Swap attacks are thus a strong baseline. See Section [4] for further details of the
swap attack’s implementation. Lastly, we also formalize transfer attacks in the context of few-shot
learning, as shown in Fig. 2] Transfer, where the adversarial support set is computed on a first few-
shot classifier system and is then applied to a different few-shot classifier. An attacker wishing to
target a specific system may perform a transfer attack from a surrogate system to the target if the
target’s internal state or inner workings are unknown, or if attacking the surrogate is computationally
cheaper than an attack against the target directly. In particular, our experiments transfer attacks from
meta-learning based few-shot learners to an expensive fine-tuning algorithm.

Related Work While there has been previous work on adversarial attacks against few-shot learn-
ing systems (Goldblum et al., 2019} [Yin et al.| 2018)), attacks that poison the support set have re-
ceived little attention. |Goldblum et al.|(2019) devise a technique called adversarial querying which
significantly improves robustness against query attacks (refer to Fig. ). They do not evaluate ro-
bustness against support set attacks at meta-test time, though they do test attacking the support set
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Algorithm 1 PGD for Adversarial Support Set Attack

Require: 1: procedure PGDS(Dg, Dq, f,9)
Lin: Minimum image intensity 2 d ~U(—¢,¢€)
Linaz: Maximum image intensity 3 & + clip(x + 8, Inin, Imaz)
L: Number of iterations 4 forie1,...,Ldo
e: Perturbation amount 5 0 < sgn(VaL(f(x*, g(Z,y)),y"))
~: Step size 6: & <+ clip(& + 70, Imin, Imaz)
Ds ={z,y} 7 & < x +clip(® — x, —¢,€)
Dg = {z*,y*} 8 end for
> We use cross-entropy loss for L. 9 return x
10: end procedure

along with the query set during meta-training. [Yin et al.|(2018)) also describe a meta-training regime
to increase robustness against query attacks, but only consider the relatively weak Fast Gradient
Sign Method attack (Goodfellow et al., [2014)). [Edmunds et al.| (2017) explore the transferability of
query attacks between tasks on meta-trained models and find that the attacks are indeed highly trans-
ferable, though their experiments were restricted to the MAML algorithm and the relatively simple
Omniglot dataset. In this work, we focus on the effects of support set attacks on the performance of
few-shot image classifiers using a variety of learning algorithms and challenging datasets.

4 EXPERIMENTS

In this section we present our experiments that endeavor to answer the following questions: (i) How
vulnerable are few-shot classifiers to adversarial support set attacks? (ii) What are the most effective
settings for the support set attack parameters? (iii) Do adversarial support set attacks crafted on a
meta-learning based few-shot classifier transfer to a fine-tuning based few-shot classifier? All of our
experiments are carried out on meta-trained few-shot classifiers. Refer to Appendix [A.T] for details
on the meta-training protocols. We divide the experiments into small-scale on the minilmageNet
dataset (Vinyals et al.||2016)) using the MAML and ProtoNets algorithms, and large-scale on META-
DATASET (Triantafillou et al.} 2020) using the CNAPS algorithmﬂ

When perpetrating support attacks, we consider two variations of the loss function: all, in which the
entire query set is used; and single, in which a single, random point in the query set is chosen for
the loss calculation at each attack iteration, with the intention that the additional stochasticity may
prevent the attack from getting stuck in local optima. We found that the all strategy performed best
when combined with a targeted attack, whereas the single strategy worked better in combination
with an untargeted attack. Unless otherwise specified, we use the targeted, all loss strategy.

For comparison purposes, we also consider uniform random noise. Uniform noise is added to an
image x as follows: & = = 4 u, where u ~ U(—¢, ¢) and U denotes the uniform distribution.

4.1 SMALL SCALE EXPERIMENTS

Attack Comparison Fig. ] depicts the relative decrease in 5-way classification accuracy due to a
variety of attacks for two values of e. We compute the percentage relative decrease in classification
accuracy as follows: 100% X (@clean — Gattack )/ Gctean WHETE Geeqn 18 the clean classification accu-
racy, and aq¢4qck 18 the classification accuracy after the attack. We consider the model’s performance
over 500 randomly generated tasks. Each task is constructed by choosing the required number of
classes from the dataset labels at random, then choosing the required number of images randomly
within each class. Each task is composed of a support set, a seed query set and 50 unseen query sets
used for evaluation of the attack. Although the shot of the seed query set may be varied, the query
sets used for evaluation are the same size as the support set. The unseen query sets are all guaran-
teed to be disjoint from the seed query set to avoid information leakage. We proceed as follows: for
each task, we generate an adversarial support set using the corresponding seed query set. We then
evaluate the adversarial support set on the task’s 50 unseen query sets. Note that we make no further

!'Source code for all experiments will be made available upon publication.
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Figure 4: The relative drop in classification accuracy for a variety of attacks against MAML and
ProtoNets models in the 5-way minilmageNet configuration, averaged over 500 tasks. For Support
General (1x), M=N, and for Support General (10x), M=10N. All support images were perturbed.
PGD settings were L=100, with v = 0.0015 for € = 0.05, and 7 = 9.4e—4 for ¢ = 0.0314.

changes to the adversarial support set when evaluating it on the unseen query sets. These unseen
query sets are also used to evaluate the other attacks and baselines included in Fig. [d] We refer to
the average classification accuracy on the seed query sets as the Support Specific attack accuracy,
whereas the average classification accuracy when evaluating the attack on a random sample of 50
unseen query sets is called the Support General attack accuracy. We include two different results for
the Support General scenario: Support General (1x), for which the seed query set size is the same
size as the support set (i.e. M = N) and Support General (10x), where M = 10N.

When perpetrating a swap attack on a given task, we use the task’s support set and query set as in
Fig. 2] Query to generate a query attack. We then “swap” the role of the sets so that the adversarial
query set is presented to the model to learn from i.e. as a support set. We evaluate the swap attack
on 50 independent query sets, in the same way as the Support General scenario.

The Support Specific attack is 100% effective in all cases, indicating that the adversarial objective
function is acting as desired. The attack’s generalization to unseen query sets, as measured by
the Support General (x10) attack, successfully beats all the baselines. The Support General (x1)
attack, is noticeably weaker, but still beats the Swap baseline on Protonets. Since we are measuring
generalization in these scenarios, it is not unexpected that the attack with less data to learn from does
not generalize as well. We further examine the effect of seed query set size later in this section. The
Label Shift attack causes a large drop in accuracy, but is easily detected by inspection, and so does
not provide like-for-like comparison. We consider the Swap attack, which is effective and simpler
to compute than the adversarial support set attack, to be the strongest competitor. From Fig.[d] there
does not appear to be a difference between ProtoNets and MAML in terms of robustness to the
adversarial support set attack, though MAML is significantly more vulnerable to the swap attack.
For 5-shot classification, increasing the perturbation size does not consistently increase the attack’s
impact. This is because the step size v was tuned for the 1-shot case, but was not optimal for the
5-shot problem. For consistency, we used the same PGD settings for both in Fig. ] (details in[A.3)).

Since we are primarily interested in degrading model accuracy for unseen inputs, we consider only
the Support General case for the remainder of the results presented, unless otherwise specified.

Fraction of Poisoned Patterns A realistic scenario may constrain an attacker to perturb only a
fraction of the images in the support set. We consider two dimensions: specifying the fraction
of classes that are adversarially perturbed and, within those classes, how many of the shots are
poisoned. Fig. [5a| Support shows the relative drop in 5-way classification accuracy for ProtoNets
as a function of the number of poisoned classes and shots in a support set. As expected, the attack
strength increases as the number of poisoned shots are increased, though perturbing even one point
causes a significant drop in accuracy. We also see that the attack is stronger when the poisoned points
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Figure 5: (a) The relative drop in 5-way, 5-shot classification accuracy of ProtoNets as the number
of poisoned classes and poisoned shots within those classes are varied using three different methods
of crafting the poisoned images. Darker colors indicate a stronger attack. Attacks were calculated
with e = 0.05, v = 0.0015, L = 200, M = 13N, averaged over 250 tasks. (b) Relative drop in
5-way classification accuracy for ProtoNets and MAML using a support attack as M is varied, for
1-shot and 5-shot. Both the targeted, all and untargeted, single loss strategies were considered and
the more effective was chosen for each model. The attacks are generated using PGD with € = 0.05,
~v = 0.0015, L = 100, and half the classes and shots in the support set adversarially perturbed.

are spread across classes, e.g. perturbing just one image from every class causes 72% accuracy drop,
whereas perturbing all five shots of one class only causes 26% accuracy drop.

For comparison, Fig. [5a] Swap shows the effect of performing a swap attack with varying fractions
of poisoned classes and shots. Poisoning the support set with a single malicious point, either an
adversarial support pattern or an adversarial query pattern achieves similar drops in model accu-
racy. However, increasing the number of poisoned shots for a particular class is significantly more
effective for the support set attack than the swap attack because the adversarial support set’s joint
optimization allows for collusion among its images. We confirm this with an additional experiment
shown in Fig. [5a] Subselected, where we generate an adversarial support set with all patterns poi-
soned, then select subsets of these perturbed patterns to poison the original support set. Even though
the Support and Subselected attacks have the same fraction of poisoned patterns, the support set
attack performs significantly better as it is jointly optimized for a specific fraction to be poisoned,
whereas the patterns in the Subselected attack have been separated from their colluding images.

Seed Query Set Size Fig. 5] shows that in a low-shot scenario, an attacker can obtain a sig-
nificantly stronger attack by increasing the seed query set’s size, i.e. by increasing the number of
examples that the adversarial support set is optimized to fool. The effectiveness of the attack using
the ProtoNets algorithm plateaus at A/ = 100 for 1-shot and around M = 250 for 5-shot, whereas
the effectiveness of a MAML algorithm attack increases steadily with seed query set size. Fig.[5b]
also shows that ProtoNets is more robust than MAML. ProtoNets is generally a more capable clas-
sifier than MAML (Triantafillou et al., [2020). Additionally, MAML uses gradient steps to adapt to
new tasks which can be noise-sensitive, whereas ProtoNets computes the mean of the feature vectors
for each class in the support set and this averaging tends to reduce noise.

4.2 LARGE SCALE EXPERIMENTS

We now attack the CNAPS algorithm when performing classification on a subset of the META-
DATASET constituent datasets (refer to Appendix [A.T.T]for details on our use of META-DATASET).
When following the META-DATASET protocol, task support sets may be large (up to 500 images
across all classes). We thus generate a support set attack with approximately 20% poisoned shots
per class, which is generally considered the upper limit of manipulated patterns in conventional
poisoning approaches (Jagielski et al.| |2018)), which use significantly larger datasets than few-shot
learning. In Fig.[6] we show the relative decrease in accuracy of CNAPS when under attack (unnor-
malized results are in [A4). Support Specific reduces the model’s relative accuracy to almost zero
for all datasets except MNIST. MNIST is the easiest classification problem in the large-scale suite
because there are only ten classes and the input images are simplistic. The Support General attack
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Relative Decrease
in Accuracy (%)

ILSVRC Aircraft Birds Quick Draw VGG Flower ~ MSCOCO MNIST CIFAR1O CIFAR100

Figure 6: The relative drop in model accuracy for a variety of attacks using the CNAPS algorithm
on META-DATASET with € = 0.05, v = 0.0015, L = 100, averaged over 500 tasks, with all classes,
but only 20% of the shots poisoned.

Adversarial Classes Adversarial Classes Adversarial Classes Adversarial Classes

1 3 5 1 3 5 1 3 5 1 3 5

1- 0.7 39 52 1- 1.5 41 7.1 1- 0.1 03 04 1- 0.0 06 1.0
3- 31 8.2 136 3- 25 9.0 155 3- 04 13 13 3- 11 21 23

5- 45 11.8 20.3 5- 49 147 5- 1.5 20 23 5- 23 44 38

10- 11.0 RN 10- 13.8 10- 3.7 73 33 10- 10.5 10.4

ResNet18, epsilon 0.05 ResNet18, epsilon 0.1 MNASNet, epsilon 0.05 MNASNet, epsilon 0.1

Adversarial Shots

Figure 7: Relative drop in 5-way classification accuracy when transferring adversarial support at-
tacks as a function of poisoned shots and classes using CNAPS, which uses a ResNet18 network,
to fine-tuners that use ResNet18 and MNASNet networks on ILSVRC 2012 from META-DATASET.
The attacks were generated with v = 0.0015, L = 100, M = 6N, and averaged over 100 tasks.

significantly impacts classification accuracy, easily out-performing all the baselines, in spite of the
fact that only 20% of the support set shots are poisoned. Our results demonstrate that an attacker
could cripple a few-shot learning system, even in this more realistic scenario. The large impact of
the attack may be partially due to the larger context sets, which allows for more poisoned patterns
in total than the small-scale experiments; and partially because these classification benchmarks are
much harder problems, with more classes, resulting in decision boundaries that are more fragile.

Attack Transfer Fig.[/|demonstrates that poisoning attacks developed for meta-learners can also
impede the learning of fine-tuning based few-shot classifiers. Details of the fine-tuning protocol
which involves learning the weights of the final layer classifier and FiLM layers (Perez et al., [2018)
that modulate pretrained feature extractor weights are in Appendix [AT.5] Fig. [7] shows the effect
of transferring the adversarial support sets from the meta-learning based CNAPS algorithm (with a
ResNet18 backbone) to fine-tuning based few-shot classifiers (with Resnet18 or MNASNET back-
bones), as the number of poisoned classes and shots are varied. The MNASNet fine-tuner is largely
robust to the adversarial support set, potentially because the feature extractor is very different to
that in CNAPS, though attacks with large perturbations and a large percentage of poisoned patterns
do have some impact. Transferring the attack from CNAPS to the ResNetl8 fine-tuner is more
successful, with effects increasing significantly as the percentage of poisoned patterns are increased.

5 CONCLUSIONS

This paper introduced the Adversarial Support Set Attack, that attacks trained few-shot classifiers
at meta-test time. We show that this attack is more effective than a number of baselines using a
variety of few-shot learning approaches, causing predictions on test inputs to be worse than chance.
Future work may consider how to defend few-shot classifiers against adversarial support sets, for
example by developing analogues of adversarial training algorithms, and investigating the effects of
transferring adversarial support sets to conventional deep classifiers at training time.



Under review as a conference paper at ICLR 2021

REFERENCES

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. CoRR, abs/1712.03141,2017. URL http://arxiv.org/abs/1712.03141,

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion Attacks against Machine Learning at Test Time. arXiv
e-prints, art. arXiv:1708.06131, August 2017.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Secu-
rity, AlSec *17, pp. 3-14, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5202-4. doi: 10.
1145/3128572.3140444. URL http://doi.acm.org/10.1145/3128572.3140444,

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39-57, May 2017. doi: 10.1109/SP.2017.49.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD: Elastic-Net Attacks
to Deep Neural Networks via Adversarial Examples. arXiv e-prints, art. arXiv:1709.04114, Sep
2017a.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Backdoor Attacks on
Deep Learning Systems Using Data Poisoning. arXiv e-prints, art. arXiv:1712.05526, December
2017b.

Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle attacks. IEEE
Communications Surveys Tutorials, 18(3):2027-2051, 2016.

Riley Edmunds, Noah Golmant, Vinay Ramasesh, Phillip Kuznetsov, Piyush Patil, and Raul Puri.
Transferability of adversarial attacks in model-agnostic meta-learning. In Deep Learning and
Security Workshop (DLSW) in Singapore, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1126-1135, International Convention Centre, Sydney, Australia, 06—-11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/finnl7a.htmll

Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning: A meta-
learning approach. arXiv, pp. arXiv-1910, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=HkxStoC5F7.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In International Conference on Learning
Representations, 2016. URL https://openreview.net/forum?id=rkpACellx.

Junfeng He, Khoi Pham, Nachiappan Valliappan, Pingmei Xu, Chase Roberts, Dmitry Lagun, and
Vidhya Navalpakkam. On-device few-shot personalization for real-time gaze estimation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

10


http://arxiv.org/abs/1712.03141
http://doi.acm.org/10.1145/3128572.3140444
http://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=HkxStoC5F7
https://openreview.net/forum?id=rkpACe1lx

Under review as a conference paper at ICLR 2021

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
nipulating machine learning: Poisoning attacks and countermeasures for regression learning. In
2018 IEEE Symposium on Security and Privacy (SP), pp. 19-35, 2018.

Mijung Kim, Jasper Zuallaert, and Wesley De Neve. Few-shot learning using a small-sized dataset
of high-resolution fundus images for glaucoma diagnosis. In Proceedings of the 2nd International
Workshop on Multimedia for Personal Health and Health Care, MMHealth 17, pp. 89-92, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450355049. doi: 10.
1145/3132635.3132650. URL |https://doi.org/10.1145/3132635.3132650!

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Amal Lahiani, Jacob Gildenblat, Irina Klaman, Nassir Navab, and Eldad Klaiman. Generalizing
multistain immunohistochemistry tissue segmentation using one-shot color deconvolution deep
neural networks. arXiv e-prints, art. arXiv:1805.06958, May 2018.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. MeLU: Meta-
Learned User Preference Estimator for Cold-Start Recommendation. arXiv e-prints, art.
arXiv:1908.00413, July 2019.

Ruirui Li, Xian Wu, Xian Wu, and Wei Wang. Few-shot learning for new user recommenda-
tion in location-based social networks. In Proceedings of The Web Conference 2020, WWW
720, pp. 2472-2478, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450370233. doi: 10.1145/3366423.3379994. URL https://doi.org/10.1145/
3366423.3379994,

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks.  arXiv e-prints, art.
arXiv:1706.06083, June 2017.

Kushagra Mahajan, Monika Sharma, and Lovekesh Vig. Meta-dermdiagnosis: Few-shot skin dis-
ease identification using meta-learning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, June 2020.

James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature learning by training
maliciously. In Diego Zamboni and Christopher Kruegel (eds.), Recent Advances in Intrusion
Detection, pp. 81-105, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-
39725-0.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. arXiv e-prints, art. arXiv:1412.1897, Dec
2014.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FILM: Visual
reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Pro-
ceedings of the International Conference on Learning Representations, 2017. URL https:
//openreview.net/pdf?id=rJY0-Kcll.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dAlché—Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 32, pp. 7957-7968. Curran Associates, Inc., 2019a.

11


https://doi.org/10.1145/3132635.3132650
https://doi.org/10.1145/3366423.3379994
https://doi.org/10.1145/3366423.3379994
https://openreview.net/pdf?id=rJY0-Kcll
https://openreview.net/pdf?id=rJY0-Kcll

Under review as a conference paper at ICLR 2021

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner.
Code for “Fast and flexible multi-task classification using conditional neural adaptive processes”.
https://github.com/cambridge-mlg/cnaps, 2019b.

Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing-hon Lau, Satish
Rao, Nina Taft, and J. D. Tygar. Antidote: Understanding and defending against poisoning of
anomaly detectors. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Mea-
surement, IMC °09, pp. 1-14, New York, NY, USA, 2009. Association for Computing Machin-
ery. ISBN 9781605587714. doi: 10.1145/1644893.1644895. URL https://doi.org/10.
1145/1644893.1644895.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Xi Sheryl Zhang, Fengyi Tang, Hiroko Dodge, Jiayu Zhou, and Fei Wang. MetaPred: Meta-Learning
for Clinical Risk Prediction with Limited Patient Electronic Health Records. arXiv e-prints, art.
arXiv:1905.03218, May 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 30, pp. 4077-4087. Curran Asso-
ciates, Inc., 2017.

Christian Szegedy, Google Inc, Wojciech Zaremba, Ilya Sutskever, Google Inc, Joan Bruna, Dumitru
Erhan, Google Inc, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
In ICLR, 2014.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. Rethinking few-
shot image classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539,
2020.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
dataset: A dataset of datasets for learning to learn from few examples. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkgAGAVKPrl

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 3630-3638. Curran
Associates, Inc., 2016.

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning. arXiv
preprint arXiv:1806.03316, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320-3328, 2014.

Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. Few-Shot Adversarial
Learning of Realistic Neural Talking Head Models. arXiv e-prints, art. arXiv:1905.08233, May
2019.

12


https://doi.org/10.1145/1644893.1644895
https://doi.org/10.1145/1644893.1644895
https://openreview.net/forum?id=rkgAGAVKPr
https://openreview.net/forum?id=rkgAGAVKPr

	Introduction
	Background
	Meta-Learning
	Adversarial Attacks
	Threat Model

	Adversarial Attacks on Few-Shot Learners
	Experiments
	Small Scale Experiments
	Large Scale Experiments

	Conclusions

