
Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Ferran Hernandez Caralt 1 Guillermo Bernárdez Gil 2 Iulia Duta 3 Pietro Liò 3 Eduard Alarcón Cot 4

Abstract

Sheaf Neural Networks (SNNs) naturally extend
Graph Neural Networks (GNNs) by endowing a
cellular sheaf over the graph, equipping nodes
and edges with vector spaces and defining lin-
ear mappings between them. While the attached
geometric structure has proven to be useful in
analyzing heterophily and oversmoothing, so far
the methods by which the sheaf is computed do
not always guarantee a good performance in such
settings. In this work, drawing inspiration from
opinion dynamics concepts, we propose two novel
sheaf learning approaches that (i) provide a more
intuitive understanding of the involved structure
maps, (ii) introduce a useful inductive bias for
heterophily and oversmoothing, and (iii) infer
the sheaf in a way that does not scale with the
number of features, thus using fewer learnable
parameters than existing methods. In our evalu-
ation, we show the limitations of the real-world
benchmarks used so far on SNNs, and design a
new synthetic task –leveraging the symmetries of
n-dimensional ellipsoids– that enables us to bet-
ter assess the strengths and weaknesses of sheaf-
based models. Our extensive experimentation on
these novel datasets reveals valuable insights into
the scenarios and contexts where SNNs in general
–and our proposed approaches in particular– can
be beneficial.

1FME, FIB and ETSETB, Universitat Politècnica de Catalunya-
BarcelonaTech, Barcelona, Spain 2Department of Electrical
and Computer Engineering, UC Santa Barbara, Santa Bar-
bara, United States of America 3Department of Computer
Science and Technology, University of Cambridge, Cam-
bridge, United Kingdom 4Department of Electronic Engi-
neering, Universitat Politècnica de Catalunya-BarcelonaTech,
Spain, Barcelona. Correspondence to: Ferran Hernandez Car-
alt <ferran.hernandez.caralt@estudiantat.upc.edu, ferranhernan-
dezc@gmail.com>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf
& Welling, 2017; Veličković et al., 2018) have become
very popular as a way to model and process relational data,
demonstrating remarkable performance in a wide range of
applications and tasks (Zhou et al., 2020; Qiu et al., 2018;
Rusek et al., 2019). Nonetheless, two main problems fre-
quently appear when dealing with GNNs: they perform
poorly on heterophilic settings (Zhu et al., 2020; Luan
et al., 2022), and exhibit over-smoothing behaviour (Nt
& Maehara, 2019; Oono & Suzuki, 2019). The first problem
emerges because most models implicitly assume graph ho-
mophily (i.e. edges are expected to connect similar nodes),
whereas the second one has to do with the tendency of deep
GNNs to produce features too uniform to be useful.

Sheaf Neural Networks (SNNs) (Hansen & Gebhart, 2020),
originally designed as a natural generalization of GNNs with
a possibly non-trivial underlying graph ”geometry”, have
been proven a powerful tool to analyze the aforementioned
issues (Bodnar et al., 2022). In particular, SNNs endow a
(cellular) sheaf (Curry, 2014) over the graph, equipping each
node and edge with a vector space and defining a linear ap-
plication between these spaces for each incident edge-node.
The particular sheaf choice is reflected in the graph Lapla-
cian (Hansen & Ghrist, 2019) operator, the properties of
the corresponding diffusion equation, and the convolutional
models that discretise the equation (Bodnar et al., 2022).
At first, the sheaf was defined through domain knowledge
(Hansen & Gebhart, 2020), but recent papers have proposed
new ways to work with this structure, such as learning the
sheaf using a learnable parametric function (Bodnar et al.,
2022), inferring the graph connection Laplacian directly
from data at preprocessing time (Barbero et al., 2022), us-
ing the wave equation on sheaves to design the model (Suk
et al., 2022), or even introducing non-linearities in the pro-
cess (Zaghen, 2024). However, the sheaf structure is typ-
ically inferred through universal approximators (e.g. via
a Multi-Layer Perceptron (MLP)) that do not intrinsically
incorporate an inductive bias for heterophilic data.

Contributions: Motivated by this fact, in this work we
propose new SNN variants specifically tailored for learn-
ing on heterophilic data, and which learn the sheaf explic-
itly to prevent oversmoothing. Drawing inspiration from

1

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

(Hansen & Ghrist, 2021) and some of its opinion dynamics-
based interpretations of sheaves, we introduce a SNN for-
mulation whose theoretical guarantees of class separation
no longer depend on learnable parameters. As a practi-
cal result of this, our proposed models are able to compute
the sheaf with a significantly lower number of parameters
compared to existing SNN models. Lastly, and in order
to overcome the current limitations of SNN benchmarks,
we also propose a novel synthetic framework to evalu-
ate the performance of sheaf-based approaches on node
classification tasks. In this new framework, we leverage
symmetries of the surface of n-dimensional ellipsoids to
create non-noisy distinguishable classes where, even un-
der high homophily, GCNs suffer from oversmoothing,
thus making the separation of classes a hard problem for
regular GNNs. In this new setting, we show how the dif-
ferent approaches to learn the sheaf may be advantageous
or disadvantageous depending on the characteristics of the
data.

2. Background
Let us begin contextualizing SNNs by briefly revisiting
one of the most popular GNNs: the Graph Convolutional
Network (GCN) (Kipf & Welling, 2017). The t layer of a
GCN is typically formulated as

X(t) = X(t− 1)− σ(D̂− 1
2LD̂− 1

2X(t− 1)W (t)), (1)

where W (t) and X(t) represent the weights and node fea-
tures at step t, σ a non-linear activation function, L = I−A
the graph Laplacian, and D̂ the node degree matrix of A+I .
We note that this can be seen as using an MLP on top of the
following Ordinary Differential Equation (ODE) over the
original node signal:

d

dt
X = −LX, (2)

which in turn satisfies the following property:

Proposition 2.1. Let G = (V,E) be a graph with an asso-
ciated graph Laplacian L and X(t) a node signal satisfying
(2), then limt→∞X(t) is constant on all connected compo-
nents.

Proof in Appendix A.

This behaviour, root of the so-called oversmoothing phe-
nomena, is a common issue when handling graph classifica-
tion tasks with multiple-layered GNNs (Chen et al., 2020),
preventing them from building discriminative representa-
tions for different classes. In particular, since the ODE-
based diffusion process is locally defined through graph
connectivity, oversmoothing problems are even more com-
pelling when dealing with heterophilic data (Yan et al., 2022)
(i.e. graphs where nodes from different classes tend to be

connected). To address this particular context, the authors of
(Bodnar et al., 2022) proposed to learn a sheaf-structure on
the graph. Before reviewing the results of this work, though,
let us first introduce the concept of a cellular sheaf and some
useful notation:

Definition 2.2. Given an undirected graph G = (V,E), we
will call (G,F) a cellular sheaf when F

• assigns, for each v ∈ V and e ∈ E, the corresponding
vector spaces F(v) and F(e), which are called stalks;

• defines a linear map Fv⊴e : F(v) → F(e) for each
incident v ⊴ e node-edge pair, known as restriction
maps.

Definition 2.3. We will call the direct sum of all the
node vector spaces the space of 0-cochains, C0(G;F) =⊕

v∈V F(v). Analogously we can define the space of 1-
cochains, C1(G;F) =

⊕
e∈E F(e). xu and xe will be the

projections unto the spaces F(u),F(e).

Definition 2.4. We will call the space of global sections the
subspace H0(G;F)⊆ C0(G;F) that satisfies

H0(G;F) = {x ∈ C0(G;F)|Fu⊴exu = Fv⊴exv, ∀e ∈ E}.

From what we’ve seen so far we can define a new linear
map in the following way:

Definition 2.5. We define the coboundary map δ :
C0(G;F) → C1(G;F) where1

(δx)e = Fu⊴exu −Fv⊴exv.

Now, with this extra structure, a new Laplacian may be
defined in the following way:

Definition 2.6. We define the sheaf laplacian ∆F :
C0(G;F) → C0(G;F) as ∆F = δT δ. Given a node sig-
nal X(t) on a graph G = (V,E) with an associated sheaf
F , then its sheaf Laplacian applied to node u would be:

(∆Fx)u =
∑
u,v⊴e

FT
u⊴e(Fu⊴exu −Fv⊴exv). (3)

This Laplacian can be used like the graph Laplacian in (2)
to define an ODE over X ∈ C0(G;F):

d

dt
X = −∆FX, (4)

resulting in a generalization of GCNs when discretised and
used as a diffusion operator to define SNNs:

1Note that an arbitrary orientation of the edges must be defined.
However, the particular choice is irrelevant for our purposes.

2

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

(a)

(b)

(c)

Figure 1. Visual representations of (a) a pair-wise interaction modelled by a graph, (b) a pair-wise interaction modelled by a sheaf over a
graph, and (c) a higher-order interaction modelled by a sheaf over a hypergraph.

Definition 2.7. Let us denote X(t) ∈ Rnd × Rf , where n
is the number of nodes, d is the dimension of the stalks, f
the number of feature channels, and t the layer of the neural
network. The update equation that corresponds to the t layer
of a SNN is:

X(t+1) = X(t)−σ(∆F(t)(In⊗W1(t))X(t)W2(t)) (5)

where the restriction maps of F(t) are computed like (Bod-
nar et al., 2022) –i.e. Fu⊴e(t) = MLP (xu||xv) with v⊴e–,
and the matrices W1(t),W2(t) consist of learnable parame-
ters that act like convolutions.

The key point of this SNN is to learn a Laplacian with a
richer set of equilibrium points that is no longer limited by
a proposition like 2.1, thus avoiding oversmoothing. In this
regard, we have the following result:

Proposition 2.8. (Bodnar et al., 2022) Let G be a graph
with an associated sheaf F and a node signal X(t). If X(t)
satisfies (4), then limt→∞X(t) ∈ H0(G;F).

In particular, this means that instead of converging to a
configuration where xu = xv for all nodes u, v, we now
converge to a configuration where Fu⊴exu = Fv⊴exv . So,
as intended, by considering the right restriction maps we
should be able to have different classes be connected in
our graph WITH different features. It is important to note,
however, that unless the maps are orthogonal we have no
guarantees that H0(G;F) ̸= {0} (Bodnar et al., 2022).

Remark 2.9. In order to learn these restriction maps, existing
SNNs typically set Fu⊴e = MLP (xu||xv), getting a sheaf
universal approximation result (Bodnar et al., 2022). Nev-
ertheless, this choice does not introduce any inductive bias
to ensure that learnt maps are able to deal with heterophily
and oversmoothing.

3. Opinion Dynamics Inspired Sheaf Neural
Networks

Addressing the point raised in Remark 2.9, this section
explores new ways of predicting the sheaf with a stronger
inductive bias towards heterophilic data. To do so, we turn
to opinion dynamics –the field that studies how opinions
in a group of people spread– (Xia et al., 2011) and put
our focus on some ODEs proposed in (Hansen & Ghrist,
2021) to analyze opinions’ exchanges from a cellular sheaf
perspective.

3.1. Motivation

Remark 3.1. If we encode a social network as a simple
graph, the edges can only represent if two nodes interact or
if they don’t interact.

With this remark, it is straightforward to see that a naive
graph-based modeling of opinion dynamics would prevent
us from capturing the different types of interactions between
different types of opinions. In other words, using a graph
to spread opinions represents a myopic way of handling the
complexity of human communication. Instead of blindly
exchanging their private opinions (Fig. 1a), humans engage
in conversations, where they have the freedom to express
different nuances of their beliefs and draw their own con-
clusions based on how the conversation goes (Fig. 1b).
Precisely, cellular sheaves offer us the necessary tools to
formalise this, providing with an intuitive interpretation of
the sheaf (Hansen & Ghrist, 2021): xu now represents the
node’s private opinion, while Fu⊴exu is the public opinion
it decides to share with node v ⊴ e. It is worth noting that
the same rationale can be applied to hypergraphs, having
more than 2 people participate in a conversation (Fig. 1c).

Bearing this in mind, we observe that Graph Diffusion (2) is
a process that makes the node’s true private opinions agree,
while in Sheaf Diffusion (4) the agreement is achieved at
the level of node’s public opinions. This means that current

3

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

variants of SNNs assume (i) a fixed communication space,
and (ii) a diffusion process that modifies the private opinion
to reach a consensus in that space. However, a more natural
approach would be to allow the communication channel to
evolve simultaneously, which is also important to guarantee
the convergence to non-trivial agreements. As we know
from Proposition 2.8, Eq. (4) must converge to a point sat-
isfying a system of linear equations, but in general, this
system might not have non-zero solutions. In this regard,
we recall that (Bodnar et al., 2022) only proved the exis-
tence of non-trivial solutions when considering orthogonal
restriction maps.

3.2. Learning to Lie

In our aim to model more intricate interactions, we turn to
the ODE introduced and studied in (Hansen & Ghrist, 2021)
as Learning to Lie. With this diffusion, we may overcome
the aforementioned limitations by making the restriction
maps evolve to fit the opinions instead of the other way
around:

d

dt
Fu⊴e = −(Fu⊴exu −Fv⊴exv)x

T
u . (6)

Note that this ODE can be seen as a ”dual” version of sheaf
diffusion where we use the features xu as maps by trans-
posing them to diffuse the restriction maps; we can slightly
rewrite Eq. (6) as

d

dt
FT

v⊴e = −xu(x
T
uFT

u⊴e − xT
v FT

v⊴e) (7)

for a more explicit analogy (please see Figure 2 for a visual
representation). In fact, given a sheaf Laplacian defined
with the X signal, and denoting by F∗ a matrix with all
the restriction maps transposed, we can formulate this Dual
Diffusion Process using the standard notation

d

dt
F∗ = −∆XF∗. (8)

As proven by (Hansen & Ghrist, 2021), in the limit this
diffusion process achieves Fu⊴exu = Fv⊴exv by adjusting
the restriction maps to the signal. However, this might be
still limiting for modelling complex interactions, as one
node’s private opinions cannot change at all.

3.3. Joint Opinion-Expression Diffusion

To overcome the unrealistic rigidity of opinions of the pre-
vious model, the work of (Hansen & Ghrist, 2021) proposes
a novel joint opinion-expression diffusion setting that puts
together both the Learning to Lie and the Regular Sheaf
Diffusion processes. From a theoretical perspective, this

Figure 2. Top: a diagram representing Regular Sheaf Diffusion.
Bottom: a representation of the Learning to Lie ODE diffusion.

results in the following system of non-linear ODEs:
d

dt
F∗(t) = −β∆X(t)F∗(t)

d

dt
X(t) = −α∆F(t)X(t)

(9)

where α, β ∈ R are coefficients that control the diffusion
strength of each ODE, prioritising the diffusion either over
the restriction maps or over the features.

The following lemma can help us understand the inductive
bias brought by Equation (9):
Lemma 1. (Hansen & Ghrist, 2021) Let’s consider
Ψ(X(t),F(t)) = X(t)T δ(t)

T
δ(t)X(t) where X(t),F(t)

is a solution of (9). Then Ψ(X(t),F(t)) ≥ 0 and
dΨ(X(t),F(t))

dt ≤ 0 with zero attained in both if and only
if Fu⊴exu = Fv⊴exv for all u, v ⊴ e.

This means that we may see this process as gradient descent
on the sheaf Dirichlet energy (Bodnar et al., 2022), which
means we are evolving towards a sheaf equilibrium leverag-
ing both the node’s features and the restriction maps. Using
LaSalle’s invariance principle (Hansen & Ghrist, 2021) we
can prove that we actually converge to an equilibrium point
with Fu⊴exu = Fv⊴exv for all u, v ⊴ e.

Even though we have ensured convergence to some point
(x∞, δ∞), it is still necessary to check when x∞ ̸= 0. This
is due to the fact that, if the trajectories of (9) all converged
to zero, this system would also oversmooth the signal X(t).
To do this, we resort to the following result:
Theorem 3.2. (Hansen & Ghrist, 2021) If the initial con-
ditions of the system (9) are δ0, x0 and one of the diagonal
blocks of αδT0 δ0 − βx0x

T
0 fails to be semidefinite, the tra-

jectory of (9) converges to a point (x∞, δ∞) with x∞ ̸= 0.

4

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Figure 3. A visualization of the solutions of zx = ty, with t = 1
because the ones with t = 0 are trivially t = 0 and y = 0.
This is, in fact, an affine projection of a projective variety. This
corresponds with the set of equilibrium points of Eqs. (9) in the
case of 1-dimensional stalks and a graph with only 2 adjacent
nodes, so z, t would be the restriction maps while x, y would be
the node’s features. Sheaf diffusion only evolves x, y, so it may
miss close points of equilibrium in the z axis.

This shows a clear advantage concerning regular sheaf dif-
fusion, as we can easily check if the system will converge
to a non-zero solution. In addition to this, we also have the
following result:

Corollary 3.3. (Hansen & Ghrist, 2021) If (x0, δ0) are
some initial conditions, then there exists a k such that the
trajectory of (9) with initial conditions (kx0, δ0) converges
to a point (x∞, δ∞) with x∞ ̸= 0.

Therefore, we can always guarantee the existence of non-
zero solutions by just tuning one parameter. Note, however,
that this is not the case for regular sheaf diffusion, where
orthogonal restriction maps are necessary to get a similar
guarantee. Another advantage is that the diffusion leverages
both restriction maps and the node’s features to reach a
point of equilibrium. This is particularly useful in cases of
heterophily, as this process may shut off communication
among nodes with different opinions without the need of a
learnable function.

Example. Figure 3 let us visualize the usefulness of diffus-
ing both restriction maps and node’s features by depicting
the points of equilibrium of Eqs. 9 for a particular case
example. On the one hand, the trajectory used in the Joint
Diffusion has the freedom to move in any direction to
reach a point of equilibrium. On the other hand, the tra-
jectory used in classical Sheaf Diffusion (Equation 4) can
only move in a horizontal plane, which means we may
miss close points of equilibrium in the vertical axis.

3.4. Joint Diffusion Sheaf Neural Networks

With the previous dynamical system (9) in mind, we propose
a new SNN model as the natural conclusion of this section:

Definition 3.4. With the setting described in the Definition

2.7 of SNNs, we define the t layer of a Joint diffusion Sheaf
Neural Network (JdSNN) through the following equations:
X(t+ 1) = X(t)−

σ((Ind − α∆F (t))(In ⊗W1(t))XW2(t))

F∗(t+ 1) = F∗(t)−
σ((I2md − β∆X(t))(In ⊗W ∗

1 (t))F∗W ∗
2 (t))

(10)

where α, β are weights to give more importance to one of
the diffusions depending on the problem.2

This new variant has an extra inductive bias towards learning
on heterophilic data, as it may prevent oversmoothing of the
signal xu by ”oversmoothing” the restriction maps Fu⊴e

instead. For instance, let us consider the case of two adjacent
nodes u, v of different classes and significantly different
features; whereas the second equation of (10) would make
the restriction maps evolve to avoid mixing the features of
u and v too much, it is unclear if –and how– the features
from u, v would mix when using Fu⊴e = MLP (xu||xv).
Moreover, all of this is achieved with 2d2 parameters per
diffusion layer coming from W ∗

1 ,W
∗
2 , instead of the at least

2d2c ones of usual SNNs (with d being the stalk dimension
and c the number of original features and 2d2c is the size
of the weights matrix used to predict the restriction maps).
Here it is important to note that the number of parameters in
JdSNNs no longer scale with c, making this model suitable
for contexts where extensive parameterizations may not
be possible. Examples of this are small datasets or some
scenarios of federated learning where the size of the features
makes linear layers impossible to apply (Gabrielli et al.,
2023).

However, this new model also presents some setbacks, as it
is not possible to impose some constraints such as orthog-
onal or diagonal restriction maps, which have proved to
be useful when training SNNs (Bodnar et al., 2022; Duta
et al., 2024). We also lose the universal sheaf approximation
result presented by (Bodnar et al., 2022), but this actually
represents a trade-off between adding an inductive bias for
heterophilic data instead of using the most general model.

3.5. Rotation Invariant Sheaf Neural Networks

As we mentioned in the previous section, JdSNNs gain an
inductive bias at the cost of using more complex dynamics.
In hopes of simplifying the dynamics while keeping the
inductive bias, we introduce another alternative that explores
a new way of learning the restriction maps within the usual
SNN formulation of Definition 2.7.

In our proposal, instead of using Fu⊴e(t + 1) =

2For example, if we know the dataset is heterophillic we may
want to set β > α to prioritize the diffusion of the restriction maps,
potentially preventing oversmoothing.

5

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

MLP (xu(t)||xv(t)), we consider the vector xe(t) =
Fu⊴e(t)xu(t) − Fv⊴e(t)xv(t) –that represents the con-
versation in the edge space–, and set Fu⊴e(t + 1) =
MLP (xe(t)xu(t)

T). With this approach, the number of
parameters we use is d4, which is more than JdSNNs but
still does not scale with the total number of features c. In
this model, instead of learning the restriction maps from all
the features, we are assuming that they only depend on the
relationship between the node’s private opinion xu and the
public conversation xe:

xex
T
u =

< xe1, xu1 > ... < xe1, xud >
...

< xed, xu1 > ... < xed, xud >

 ,

where xei, xuj are the i-th and j-th row vectors of xe, xu.
With this in mind, the following proposition can be easily
proven:

Proposition 3.5. The restriction maps of a SNN learnt using
Fu⊴e(t+ 1) = MLP ((Fu⊴e(t)xu − Fv⊴e(t)xv)x

T
u) are

feature-wise rotation invariant w.r.t X . That is, given Q an
orthogonal matrix, then the restriction maps computed for
X and QX will be equal.

Proof in Appendix B.

Due to this result, we call this SNN variant Rotation in-
variant Sheaf Neural Networks (RiSNN). Please note that
only the restriction maps are rotation invariant. However, it
is possible to obtain a GNN with rotation equivariance by
setting σ = id and W2 = Id. A more intuitive way of think-
ing about this model would be performing an attention-like
mechanism on multiple cosine-similarities.

4. Benchmark Evaluation
In this section we test the introduced opinion-inspired SNN
models under the benchmark defined in (Bodnar et al.,
2022).3

Ablation Study For this evaluation, we consider a total
of 4 different versions of our models: RiSNN and JdSNN
are the ones we have already discussed. RiSNN with no
time dependency (RiSNN-NoT) is a reinterpretation of the
regular RiSNN by setting xe(t) = xu(t)−xv(t); the goal of
this modification is to stabilize the gradient. JdSNN with no
learnable weights (JdSNN-NoW) is a simplification of our
full version where the restriction maps are computed without
any parameters –i.e. obtained by removing the non-linearity,
considering W ∗

1 ,W
∗
2 = Id, and setting Fu⊴e(0) = Id for

all u ∈ V, e ∈ E. These 2 simpler variants are shown to
achieve equivalent results in some cases.

3Except the film dataset, as equivalent results to (Bodnar et al.,
2022) can be obtained ignoring the graph structure.

Table 1 shows the results of our models against the best
version of the architectures proposed in (Bodnar et al., 2022;
Suk et al., 2022; Barbero et al., 2022; Zaghen, 2024). As
we can see in Table 1, we mostly get statistically equiva-
lent results to those of other methods while inferring the
sheaf structure with significantly less parameters. Conse-
quently, this shows that the inductive bias we have traded
for learnable parameters is useful and does not negatively
affect performance when applied to heterophilic datasets.

We note, though, that our models –especially JdSNN– do not
perform greatly in two heterophilic datasets (Squirrel and
Chameleon). However, they also happen to be the biggest
ones, so overall this still aligns with what we have discussed
so far: on the one hand, high amounts of data allow for a
complex MLP (xu||xv) that approximates Fu⊴e accurately.
On the other hand, when there is not enough data for a good
approximation to be learned, the inductive bias we provide
is capable of replacing these extensive parametrizations.

However, previous work (Platonov et al., 2023) highlights
the limitations of these benchmarks for properly evaluating
the model’s abilities to capture heterophilic interactions. In
fact, there is a pressing need in the graph community to
find and/or design new datasets that can help to properly as-
sess current model architectures, providing with meaningful
insights about their actual capabilities in different settings.

5. Synthetic Evaluation
Arguably, the need of meaningful datasets to test SNNs’ ca-
pabilities is even more crucial than in the broader graph
domain given its recent formalization and its particular
geometric intricacies. However, apart from evaluating
them on graph benchmarks, previous sheaf-based works
only assess their proposed models considering either de-
noising tasks (Zaghen, 2024; Bodnar et al., 2022), or het-
erophilic scenarios with unrealistic single-feature d = 1
setups (Hansen & Gebhart, 2020; Bodnar et al., 2022).4

Given this context, this section presents a novel method to
produce synthetic datasets, which we then leverage to eval-
uate different aspects and capabilities of SNNs –and those
of our introduced variants. More specifically, the proposed
pipeline is divided into two main processes –feature and
edge generation–, and is overall designed to address the
following research questions:

1. How does node features’ noise affect performance?

2. What is the impact of the ratio of intra-class edges vs
inter-class edges?

3. How does the amount of data available correlate with
4By construction our model relies on d > 1, the most usual

case in real-world scenarios.

6

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Table 1. Accuracy obtained by the considered models on the node classification benchmark originally used by (Bodnar et al., 2022),
sorted by homophily degree. Top three models are coloured by First, Second, Third. Our models are: RiSNN-NoT, RiSNN, JdSNN, and
JdSNN-NoW.

Dataset Texas Wisconsin Squirrel Chameleon Cornell Citeseer Pubmed Cora
#Nodes 183 251 5201 2277 183 3327 18717 2708
#Edges 295 466 198493 31421 280 4676 44327 5278

#Homophily 0.11 0.21 0.22 0.23 0.3 0.74 0.80 0.81
RiSNN-NoT 87.89±4.28 88.04±2.39 51.24±1.71 66.58±1.81 82.97±6.17 75.07±1.56 87.91±0.55 85.86±1.31
RiSNN 86.84±3.72 87.84±2.60 53.30±3.30 65.15±2.40 85.95±6.14 76.23±1.81 88.00±0.42 85.27±1.11
JdSNN-NoW 87.30±4.53 88.43±2.83 51.28±1.80 66.45±3.46 84.59±6.95 75.93±1.41 88.09±0.49 84.39±1.47
JdSNN 87.37±5.10 89.22±3.42 49.89±1.71 66.40±2.33 85.41±4.55 73.27±1.86 88.19±0.55 85.43±1.73
Conn-NSD 86.16±2.24 88.73±4.47 45.19±1.57 65.21±2.04 85.95±7.72 75.61±1.93 89.28±0.38 83.74±2.19
Best-NSD 85.95±5.51 89.41±4.74 56.34±1.32 68.68±1.73 86.49±7.35 77.14±1.85 89.49±0.40 87.30±1.15
Best-NSP 87.03±5.51 89.02±3.84 50.11±2.03 62.85±1.98 76.49±5.28 76.85±1.48 89.42±0.33 87.38±1.14
Best-BC-NLSD 87.57±5.43 89.41±2.66 54.62±2.82 66.54±1.05 87.30±6.74 76.03±1.56 89.39±0.43 87.00±1.23
Best-MLP-NLSD 86.22±3.91 89.02±3.19 51.96±2.65 65.37±2.73 87.03±4.49 76.11±1.81 89.60±0.29 86.38±1.20

Figure 4. Graphic plot of two classes, red and blue, generated by
sampling a 2-dimensional ellipsoid’s surface. In this representation,
it’s easy to see how they’re not linearly separable but distinct, and
that the expected value for both of them is zero.

performance for different SNN variants?

5.1. Synthetic Features Generation

As we previously mentioned, we aim to measure the impact
of noise in our models as well as the impact of heterophily
and the amount of data available. This means that generating
classes by adding noise to different expected values is not a
viable option, as we would only be able to answer the first
question. Consequently, we turn to manifold sampling to
generate complex patterns for the different classes.

In particular, we choose the surface of different n-
dimensional ellipsoids for each class, all sharing one central
point as can be seen in Fig. 4. The reason behind this choice
relies on their symmetrical properties, producing classes that
are not linearly separable while at the same time, they all
share the same expected value. This second condition is key
as it ensures that non-trivial aggregation will be necessary.

5.2. Synthetic Edge Generation

Regarding the edge generation, we use a variation of the
Watts-Strogatz model (Watts & Strogatz, 1998) that also
introduces inter-class correlations. But before describing
the pipeline, let us first introduce the involved notation: N
denotes the number of nodes, K the desired degree of each
node (should be an even number), p ∈ [0, 1] a probability-
based parameter, nc the number of node classes, and Rc ∈
Mnc×nc the matrix such that Rc

ij = Pr({node1, node2} ∈
E|node1 ∈ classi, node2 ∈ classj). We also consider a
het coefficient representing the level of heterophily in the
graph, which is defined as the probability that a node is
connected to another class. This in turn allows us to write
the matrix of inter-class correlations as:

Rc =

(
1− nc + 1

nc − 1
het

)
Id+

het

nc − 1
∗ 1nc1nc

T ,

with 1− het in the diagonal entries, and het
nc−1 in the rest.

Bearing this notation in mind, the steps to generate the final
graph connectivity of the data are as follows:

1. Label the nodes from 0 to N − 1 and assign each node
a class uniformly at random.

2. Construct a regular ring lattice. That is (i, j) ∈ E ⇔
0 < |i− j|mod(N − 1−K/2) ≤ K/2.

3. For each node i = 0, ..., N − 1 we consider its K/2
rightmost edges and with probability p rewire it to
another node. To choose the node we first sample a
class from the distribution of the i-th row of Rc, and
then we choose uniformly at random a node of said
class that is not connected to node i.

5.3. Experimental setup

With the focus on assessing how the restriction maps are
learned, we set W1 = Id,W2 = Id, and σ = Id in the

7

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Figure 5. JdSNNs variants’ accuracy results with a 95% confidence
interval when increasing the percentage of feature Gaussian noise
in the data. We may observe how our methods are more robust
to noise than regular SNNs. We can also observe how GCNs and
MLPs underfit the data.

setting introduced in Definition 2.7, as done in the work
(Bodnar et al., 2022).

Analogously to our previous Benchmark Evaluation, in
these experiments we also test the full JdSNN and RiSNN
models, as well as their respective simpler variants Jd-
SNNnoW and RiSNN-NoT (please see Section 4). Addi-
tionally, here we also consider another joint diffusion varia-
tion, JdSNN-W0, which initializes the restriction maps with
a learnable function –F∗(0) = MLP (xu||xv)– but does
the Dual Diffusion without any parameters –F∗(t+ 1) =
F∗(t)−∆X(t)F∗(t).

We compare these models against the following baselines:
VanillaSheaf, that is Fu⊴e = Id for all u ∈ V, e ∈ E; a
regular MLP with one layer and id as activation function;
and a SNN with diagonal restriction mappings.
Remark 5.1. For the Joint Diffusion based models, we wish
to test the separation power of each of the diffusion pro-
cesses. To this end, in the experiments involving JdSNNs,
only 1 feature channel and 3-dimensional stalks are consid-
ered –i.e. the hidden features have shape 3× 1. Conversely,
for RiSNNs evaluations we use 3-dimensional stalks and 5
feature channels to fully utilize the scalar products in xex

T
u .

5.4. Results

This section describes the main takeaways of our extensive
evaluation of the generated synthetic datasets, with the focus
on answering the fundamental research questions raised at
the beginning of this section. Apart from Figure 5 above,
we also include in Appendix C the plots associated with the
rest of performed experiments (Figures 6, 7 and 8).

Joint diffusion without any parameters Overall, the
JdSNN version without parameters, JdSNN-noW, has an
advantage over GCNs (Figures 6, 7 and 8). However, in our
task one layer oversmooths the representation, so setting

F(0) = Id is a bottleneck to the model’s performance.

The inductive bias towards heterophily Our proposed
models, and specially the Joint Diffusion variants, show
a clear bias towards heterophilic data as seen in Figure
7. When increasing the number of inter-class edges the
difficulty of the problem also increases, as more different
types of interactions must be modelled. In this aspect, the
performance of standard SNNs decreases significantly more
than JdSNNs.

Joint Diffusion in cases of noisy data JdSNNs are more
robust to noise in the cases of small dimensionality of the
data. As one may observe in Fig. 5, the version using only a
learnable initialization and the full model are significantly
better than a regular SNN when adding noise, up to the point
where the features are 70% noise.

Rotation invariant SNNs in cases of noisy data RiSNNs
in general are more sensitive to noisy features than SNNs as
seen in Figure 6. Nonetheless, the RiSNN-NoTime version
is slightly better than the original one. In cases of non-
noisy data, the original formulation of RiSNNs tends to
have a slight advantage over the version that doesn’t use the
restriction maps of the previous layer.

Amount of available data and the performance of SNNs
SNNs’ performance is greatly increased in problems with a
large number of edges as seen in Figure 8. This allows the
MLP which computes the restriction maps to get a better
approximation. The inductive bias introduce by our vari-
ants, JdSNN and RiSNN, restricts the possible relationships
between nodes, so they have an advantage when the sheaf
structure cannot be accurately computed 8.

6. Conclusions
This work proposes and evaluates new ways of inferring the
sheaf structure of a graph taking inspiration from complex
opinion dynamics processes. Through these, we show how
using opinion dynamics interpretations of sheaves may lead
to a more intuitive understanding of SNNs and how they
operate. When benchmarked, our new proposed models
present a clear inductive bias towards heterophily, and they
are able to achieve equivalent performance to regular SNNs
while using fewer parameters to infer the sheaf structure. In
particular, this reduction of the number of parameters opens
the door to applying sheaf-based methods in domains where
extensive parameterizations cannot be used. Furthermore,
the geometrical properties of the introduced RiSNN model
may enable the application of sheaves to geometrical deep
learning problems.

Last but not least, this paper also proposes a novel way

8

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

of evaluating SNNs (i) using the surface of n-dimensional
ellipsoids to generate features, and (ii) generating graph
connectivities with different degrees of heterophily. From
extensive experimentation on generated datasets, we observe
that SNNs benefit from having graphs with lots of edges,
while our introduced variants take the lead in graphs with
low connectivity.

Overall, we reckon that our introduced models and syn-
thetic data pipelines can pave the way for interesting future
research in this exciting area, fostering a deeper understand-
ing of the inner workings and capabilities of SNNs.5

Acknowledgments
The authors would like to thank the Private Foundation Pere
Mir-Puig and CFIS for the funding provided to Ferran Her-
nandez to facilitate his stay at the University of Cambridge.

References
Barbero, F., Bodnar, C., de Ocáriz Borde, H. S., Bronstein,

M., Veličković, P., and Liò, P. Sheaf neural networks with
connection laplacians. In Topological, Algebraic and
Geometric Learning Workshops 2022, pp. 28–36. PMLR,
2022.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Lio, P., and
Bronstein, M. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:
18527–18541, 2022.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3438–3445, 2020.

Curry, J. M. Sheaves, cosheaves and applications. Univer-
sity of Pennsylvania, 2014.

Duta, I., Cassarà, G., Silvestri, F., and Liò, P. Sheaf hyper-
graph networks. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Duval, A., Mathis, S. V., Joshi, C. K., Schmidt, V., Miret,
S., Malliaros, F. D., Cohen, T., Liò, P., Bengio, Y., and
Bronstein, M. A hitchhiker’s guide to geometric gnns
for 3d atomic systems. arXiv preprint arXiv:2312.07511,
2023.

Gabrielli, E., Pica, G., and Tolomei, G. A survey
on decentralized federated learning. arXiv preprint
arXiv:2308.04604, 2023.
5A further discussion of limitations and future work can be

found in Appendices D and E, respectively.

Hansen, J. and Gebhart, T. Sheaf neural networks. arXiv
preprint arXiv:2012.06333, 2020.

Hansen, J. and Ghrist, R. Toward a spectral theory of cellular
sheaves. Journal of Applied and Computational Topology,
3(4):315–358, 2019.

Hansen, J. and Ghrist, R. Opinion dynamics on discourse
sheaves. SIAM Journal on Applied Mathematics, 81(5):
2033–2060, 2021.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. In ICLR, 2017.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks. Advances in neural information
processing systems, 35:1362–1375, 2022.

Nt, H. and Maehara, T. Revisiting graph neural net-
works: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019.

Platonov, O., Kuznedelev, D., Babenko, A., and
Prokhorenkova, L. Characterizing graph datasets for
node classification: Homophily-heterophily dichotomy
and beyond. Advances in Neural Information Processing
Systems, 36, 2023.

Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J.
Deepinf: Social influence prediction with deep learning.
In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
2110–2119, 2018.

Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P.,
and Cabellos-Aparicio, A. Unveiling the potential of
graph neural networks for network modeling and opti-
mization in sdn. In Proceedings of the 2019 ACM Sympo-
sium on SDN Research, pp. 140–151, 2019.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Suk, J., Giusti, L., Hemo, T., Lopez, M., Barmpas, K., and
Bodnar, C. Surfing on the neural sheaf. In NeurIPS
2022 Workshop on Symmetry and Geometry in Neural
Representations, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph Attention Networks. In ICLR,
2018.

9

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998.

Xia, H., Wang, H., and Xuan, Z. Opinion dynamics: A mul-
tidisciplinary review and perspective on future research.
International Journal of Knowledge and Systems Science
(IJKSS), 2(4):72–91, 2011.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D.
Two sides of the same coin: Heterophily and oversmooth-
ing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp.
1287–1292. IEEE, 2022.

Zaghen, O. Nonlinear sheaf diffusion in graph neural net-
works. arXiv preprint arXiv:2403.00337, 2024.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI open, 1:57–81, 2020.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804,
2020.

10

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

A. Proof of Proposition 2.1
For this proof, we use that limt→∞X(t) is the orthogonal projection of X(t) to ker(L). So, we will prove that ker(L) only
contains vectors constant in all connected components. Given v ∈ ker(L), we compute Lv:

Lv =

∑
j|(1,j)∈E

(v1 − vj)∑
j|(2,j)∈E

(v2 − vj)

...∑
j|(n,j)∈E

(vn − vj)

(11)

As v ∈ ker(L), Lv = 0, so vtLv = 0. Expanding vtLv yields

vtLv =

n∑
i=1

∑
j|(i,j)∈E

vi(vi − vj)

Now, if we select i < j, (i, j) ∈ E, the sum contains the terms vi(vi − vj) and vj(vj − vi) exactly once. So, by grouping
terms we get (vi − vj)

2. This directly implies: vtLv =
∑

i<j,(i,j)∈E

(vi − vj)
2. This and this quantity is zero if and only if

vi = vj∀{i, j} ∈ E, which concludes our proof. ■

B. Proof of Proposition 3.5
Let’s suppose X ′ = XQ with Q an orthogonal matrix, we proceed by induction on the number of layers. Since t = 0 is not
defined, we set it to a constant (Id) the rotation trivially does not affect this. Then if F ′

u⊴e(t) = Fu⊴e(t)

F ′
u⊴e(t+ 1) = MLP ((F ′

u⊴e(t)x
′
u −F ′

v⊴e(t)x
′
v)x

′T
u)

= MLP ((F ′
u⊴e(t)x

′
uQ−F ′

v⊴e(t)x
′
vQ)QTx′T

u)

= MLP ((Fu⊴e(t)xuQ−Fv⊴e(t)xv)x
T
u)

= Fu⊴e(t+ 1)

Where we have used both our induction hypothesis and QQT = Id. ■

C. Synthetic Experiments Results
In this section, we can observe the results which answer the three questions presented in Section 5:

• Figure 6: How does noise impact the performance of SNNs and their variants?

• Figure 7: How does the ratio of intra-class edges vs inter-class edges impact the performance of SNNs and their
variants?

• Figure 8: How does the amount of data available impact the performance of SNNs and their variants?

11

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Figure 6. JdSNNs variants’ results at the top and RiSNNs variants’ results at the bottom when increasing feature Gaussian noise in the data

12

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Figure 7. RiSNNs variants’ results on the right and JdSNNs variants’ results on the right when increasing the number of classes and the
heterophily coefficient of the data

13

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

Figure 8. JdSNNs variants’ results on the left and RiSNNs variants’ results on the right when increasing the amount of nodes and edges of
the data.

14

Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks

D. Limitations
The main limitation of the models proposed is that they are more complex to backpropagate; for example, using the
restriction maps to define the normalization matrix D as in (Bodnar et al., 2022) can lead to exploding or undefined gradients.
For this reason, it is necessary to detach D from the backpropagation algorithm.

Another limitation is that they are usually slower than SNNs. As was shown in (Bodnar et al., 2022), the time complexity of
an SNN is O(nc2 +mc) if the restriction maps are diagonal and O(n(c2 + d3) +m(c+ d3)) if they’re general, where n is
the number of nodes, m the number of edges, c the total number of features, and d the stalk dimension. When it comes to
our variants, JdSNNs and RiSNNs both have a time complexity of O(n(c2 + d3) +md(c+ d3)). This implies that using
these models with large d or m will lead to noticeably slower execution times. Nonetheless, we believe there is room for
improvement in this aspect.

E. Future Work
SNNss are a relatively new GNN (Hansen & Gebhart, 2020; Bodnar et al., 2022), so there are many interesting research
directions. In this section, we highlight a couple of them that we consider particularly interesting. The first one is related to
federated learning while the latter with geometric deep learning. In federated learning, there have been approaches which
are graph-based (Gabrielli et al., 2023). In this context, there are cases with millions of features, consequently, using regular
MLPs on those features is not viable as a basic linear layer would have too many parameters. This implies that regular SNNs
may not be used, but the new variants that have been proposed, RiSNN and JdSNN, have a number of parameters which
only scales with the stalk dimension d which means sheaves may be used directly in federated learning. In some geometric
problems on graphs, some extra properties regarding rotation are necessary (Duval et al., 2023). While this might prevent
from implementing regular SNNs, RiSNNs might be more easily adaptable to be used in said problems.

15

