
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING COMPOSABLE CHAINS-OF-THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

A common approach for teaching large language models (LLMs) to reason is
to train on chains-of-thought (CoTs) of in-distribution reasoning problems, but
such annotated data is costly to obtain for every problem of interest. We want
reasoning models to generalize beyond their training distribution, and ideally to
generalize compositionally: they should combine atomic reasoning skills to solve
harder unseen tasks. In this paper, we introduce a method to enable generalization
to a target compositional task that has no labeled CoT data. We find that simply
training models on CoT data of atomic tasks leads to limited generalization, but
minimally modifying CoT formats of constituent atomic tasks to be composable
leads to improvement. Specifically, we augment our data by adding prefixes to
CoTs, making sequences of CoTs in-distribution for the trained model. We train
individual models on the atomic tasks with composable CoT data and combine them
with multitask learning or model merging to address the target compositional task
zero-shot. This model can be further trained on a small amount of compositional
data using rejection sampling fine-tuning (RFT). Results on three domains of
compositional tasks, natural language skills, string manipulation, and arithmetic,
show that training LLMs on Composable CoT outperforms multitask learning and
continued fine-tuning baselines within a given training data budget.

1 INTRODUCTION

Large language models (LLMs) are successful by virtue of the massive amounts of data they are
trained on, which makes a wide range of complex problems in-distribution. However, these models
still fail at challenging reasoning tasks and it is impossible to scale training data to cover all possible
tasks of interest. Ideally, we want models that can generalize to new settings, and particularly, can
apply basic “skills” learned during training in novel combinations to solve problems at inference time.
How to empower LLMs with this capability, also called compositional generalization (Piantadosi &
Aslin, 2016; Werchan et al., 2015; Conklin et al., 2021; Dziri et al., 2023), remains an open question.
For instance, large reasoning models (QwenTeam, 2025; Guha et al., 2025), built on pre-trained
LLMs, are typically trained on a large amount of data annotated with chain-of-thought (CoT) traces,
but still fall short at generalizing to harder problem instances than what they were trained on (Sun
et al., 2024; Hase et al., 2024; Abreu et al., 2025; Shojaee et al., 2025; Sun et al., 2025).

We explore the setting of compositional reasoning where pre-trained LLMs are fine-tuned on CoT
data of simple reasoning tasks (atomic tasks) and then evaluated on the unseen combinations of them
(compositional tasks) with no or limited compositional supervision. We find that models trained
with atomic CoT data demonstrate limited generalization to compositional settings. As illustrated in
Figure 1, we propose a simple modification of the CoT format of the atomic task training data, which
we call Composable CoT: we add “proxy prefixes,” which are random filler strings, to the prompt.
Then we train models to reason about atomic tasks in the context of the proxy prefixes: this makes
the test-time compositional setting more in-distribution, as models need to generate a long reasoning
chain by chaining multiple CoTs.

We first experiment with zero-shot combination of Composable CoT models. We experiment
with two different approaches: first, merging models trained on individual atomic CoT tasks, and
second, multitask learning across our atomic CoT datasets. Such combined models achieve zero-shot
compositional generalization without seeing compositional data during training.

We then demonstrate that our zero-shot models can be improved further by rejection sampling fine-
tuning on a limited amount of compositional supervision. Using only final answer supervision, our

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Q: Find the ASCII value of the
next letter in the alphabet
following the last letter in the
sequence and multiply the
ASCII value by 5: Good night

Evaluation:
Compositional Skill

Train

Atomic Skill:
String Operations

Atomic Skill:
Arithmetic

Evaluate

CoT Conditioned on
Question Only

CoT Conditioned on
Question and Proxy Prefix CoT

Composable CoT Training Data

Proxy PrefixQ aCoT

Proxy PrefixQ aCoT

Generate <tag 1> The last letter is t, and the letter following it in the
alphabet is u. So the answer is u. </tag 1> … <tag n> The
ASCII value of the letter u is 117, and multiplying the ASCII
value by 5 gives us 585. So the answer is 585. </tag n>

Q CoT a

Q: Find the next letter in the alphabet
following the last letter in the
sequence: What a nice day
Composable CoT: <tag 1> The last
letter is y, and the letter following it in
the alphabet is z. So the answer is z.
</tag 1>

Q: Find the ASCII value of the letter “a”
and multiply the ASCII value by 2. <tag
1> [proxy prefix CoT] </tag 1> … <tag
n-1> [proxy prefix CoT] <tag n-1>
Composable CoT: <tag n> The ASCII
value of the letter a is 97, and multiplying
the ASCII value by 2 gives us 194. So the
answer is 194. </tag n>

Q CoT a

Q CoT a

Proxy PrefixQ aCoT

Figure 1: A compositional task involves separate atomic skills. We use a data augmentation scheme,
Composable CoT, to create training data of atomic tasks to teach LLMs CoT formats that can be
combined at inference time to address compositional tasks. We augment CoT data to be composable
by adding “proxy prefix CoTs,” such as random filler strings, to the prompt to simulate compositional
distributions where a CoT is conditionally generated from the question and other CoTs.

models can bootstrap better compositional CoT behavior. On tasks involving core reasoning capa-
bilities of LLMs, including string manipulation, arithmetic, and natural language skill composition,
our approach outperforms multi-task learning and continued fine-tuning baselines within a given
budget of training data. Combining atomic models trained with Composable CoT is consistently
better than combining Standard CoT models, with an average performance boost of 18.2% across
different compositional tasks.

Moreover, Composable CoT models generalize well to complex compositions with larger skill pools:
combining Composable CoT models zero-shot outperforms standard CoT models by an average
performance increase of 4.8% on three-way compositions, and 8.8% on two-way compositions that
require skill selection.

The main contributions of this work include: (1) A novel data augmentation scheme for training
CoT models on basic reasoning skills to enable future composition of them for more complicated
reasoning tasks. (2) A method for improving compositional reasoning with LLMs by first training
models on atomic CoTs with such augmentation and then performing rejection sampling finetuning.

2 PRELIMINARIES

LLM reasoning with chain-of-thought. Given a prompt q that states a reasoning problem with
ground truth answer a, an LLM M reasons with chain-of-thought by generating a response that
includes a chain-of-thought trace t followed by a predicted answer ã. Recent works show that super-
vised fine-tuning pre-trained LLMs on CoT traces leads to strong reasoning models (Muennighoff
et al., 2025; Guha et al., 2025). We define a dataset for a task T with CoT traces of size N as a set of
(prompt, CoT, answer) triples: DCoT

T = {(q, t, a)}.

Atomic and compositional tasks. Consider a set of tasks that represent basic reasoning skills, which
we call atomic tasks. We define compositional tasks TA as those tasks that can expressed as a
composition of n atomic tasks: TA = g(A) where A = {Ti, ...,Tj}, |A| = n and g is some function
to combine the n atomic tasks. We discuss more details for g in Appendix A.

Compositional reasoning from atomic CoT. We assume access to atomic CoT data DCoT
A =

{DCoT
Ti

|Ti ∈ A}. Models fine-tuned on a subset of DCoT
A are atomic CoT models.

For their composition TA, we only have access to a training dataset DTA
of size NTA

. We make two
data assumptions following considerations about how compositional data would work in practice:
(1) Answer only: The data only contains the answers as labels and not labeled CoT traces. This
reflects that high-quality annotated CoT supervision may be harder to obtain in practice than correct
answers; (2) Limited compositional supervision: We assume NTA

is small. We may be able to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

collect a small amount of data for each new compositional task of interest, but these compositional
tasks are too numerous to undertake large-scale data collection on.

3 LEARNING COMPOSABLE CHAINS-OF-THOUGHT

We assume the CoT traces in each of the n atomic task datasets follow a certain distribution distinct
to that dataset. A pre-trained LLM M0 fine-tuned on the atomic CoT data can be seen as a mixture
model: it can generate CoT traces from each of those n distributions, but it is unclear whether
such models can produce compositional CoTs for compositional tasks. We observe that without
additional supervision signals, such fine-tuned models typically only replicate one of the learned
atomic reasoning patterns in the generated CoT; we show empirical evidence in Section 6.2.

To compose n atomic CoTs in one sequence t1...tn−1tn, the model must allocate substantial
probability to p(t1...tn−1tn | q), when the model is never trained on a sequence of CoTs. Our
goal is to augment the atomic CoT training data (q, t, a) into (q, proxy prefixes, t, a), such that the
training data looks more in-distribution to the compositional data while not explicitly training
models on compositional examples.

3.1 CONSTRUCTING COMPOSABLE COT TRAINING DATA

Question: Multiply the ASCII value of “a” by 2.
<latexit sha1_base64="KT6EEQb3cuncOexEwp42k8Scu2o=">AAACd3icbVFNS8NAEN3E7/pV9aYHF2ulIpRE/Dp4KOrBo4K1QlPCZLupi5tN3N2IJeQv+OO8+T+8eHPTVqjVgYXHm/dmZmeChDOlHefDsqemZ2bn5hdKi0vLK6vltfV7FaeS0CaJeSwfAlCUM0GbmmlOHxJJIQo4bQVPl0W+9UKlYrG40/2EdiLoCRYyAtpQfvmtmvheBPqRAM9aee3VZ9iLWBcPyCDMXnM/O2f5fqnqCQg4+NmYPMcej3v4d4kfZ1iYkgn9AfauKNeAx9jSj+M598sVp+4MAv8F7ghU0Chu/PK7141JGlGhCQel2q6T6E4GUjPCqSmdKpoAeYIebRsoIKKqkw32luOqYbo4jKV5QuMBO+7IIFKqHwVGWUyoJnMF+V+unerwrJMxkaSaCjJsFKYc6xgXR8BdJinRvG8AEMnMrJg8ggSizalKZgnu5Jf/gvvDuntSP749qjQuRuuYR1toB9WQi05RA12jG9REBH1am1bF2rW+7G17z64NpbY18mygX2G738o2wIg=</latexit>q

<tag n> The ASCII value of the letter a is 97, and […] Answer:
194 </tag n>
Answer: 194

<tag 1> [… aaksebnab zldjxhl …] </tag 1>
… [Additional proxy prefix CoTs] …
<tag n-1> [dsadu gaulksd …] </tag n-1>

<latexit sha1_base64="j97eauo/f+rmf/LIO12iA03TH+Y=">AAACp3icbVHbbtQwEHXCrYRLF3jkxWJZqRVolaAWeOChAh4QLxTRvUibKJp4na1V51J7gnZl+df4CN74G5w0SNstI9k6OmfOeGac1VJoDMM/nn/r9p279/buBw8ePnq8P3jydKqrRjE+YZWs1DwDzaUo+QQFSj6vFYcik3yWXXxq9dlPrrSoyjPc1DwpYFWKXDBAR6WDX6M6jQvAcwbSzOzBOhU0LsSSdmSWm7VNzQdhD4NRXEImITVb6ZbGslrR6yX+OfPWVO/kv6LxZy4R6BbrSveWS4chiJGvsRttoVZZYsJx+JqG46P2Cq3pZIEGrA3SwdBxXdCbIOrBkPRxmg5+x8uKNQUvkUnQehGFNSYGFAomuQ3iRvMa2AWs+MLBEgquE9M1Y+nIMUuaV8qdEmnHbjsMFFpvisxltgPpXa0l/6ctGszfJ0aUdYO8ZFcP5Y2kWNH20+hSKM5QbhwApoTrlbJzUMDQfW27hGh35Jtg+mYcvR0ffz8annzs17FHnpMX5IBE5B05IV/IKZkQ5r30vno/vDP/0P/mT/35Varv9Z5n5Fr48BeH+c/z</latexit>a

…

Figure 2: Construction of Composable CoT data. We insert
n− 1 proxy prefixes, implemented as sequences of randomly
sampled letters, at the end of the prompt, before the CoT.

Consider an atomic CoT dataset
DCoT

T = {(q, t, a)} for T ∈ A; we
call this standard CoT data. We aug-
ment it with a set of chain-of-thought
tags P = {pk} for k ∈ {1, ..., n}.

Proxy Prefix. Our goal is to augment
standard CoT data such that atomic
CoT models can learn a proxy distri-
bution that simulates the distribution
of the composition of atomic skills,
despite not seeing compositional data.
Thus, we append proxy prefixes to the
prompt to simulate conditional gener-
ation of a CoT given other CoTs. Here we present a simple yet effective approach where the proxy
prefix is a sequence of randomly sampled letters of a random length. Such a design aims at teaching
models to generate robust continuation following an arbitrary prefix CoT. Ablations in Appendix B
show that it is more robust to distribution shift than more realistic-looking alternatives.

Data Construction. We sample a value of k for each training example d = (q, t, a), and we treat
t as the k-th step in a notional compositional reasoning process. To achieve this, we append k − 1

proxy prefixes (t
′

1 . . . t
′

k−1) to the end of the prompt: t
′

i =<tag i>ti</tag i> for 1 ≤ i ≤ k − 1

and ti is the i-th proxy prefix. By doing so, we obtain the augmented example d
′
= (q . . . t

′

k−1, tk)
where tk =<tag k>t a</tag k>.

Figure 2 illustrates the procedure when k = n. The standard CoT t is: “The ASCII value of the letter
a is 97, and [...].” We augment the example by: (1) Appending n− 1 proxy prefixes to the end of the
question q to obtain the augmented prompt qt

′

1 . . . t
′

n−1, with each proxy prefix wrapped in a tag;
(2) Wrapping the CoT and the answer in a different tag <tag n> as the augmented response tn.

We use the scheme above to augment each example in the standard CoT dataset and obtain the
augmented dataset Daug

T . At inference time, we do not know a given atomic CoT will be used in
which part of the compositional reasoning trace. Because CoT traces in Daug

T can simulate any of the
k-th positions, models trained on Daug

T should be compatible with compositions of arbitrary order
instead of priming to any particular order seen during training.

Learning Objective. Then, we fine-tune M0 on Daug
T with a supervised fine-tuning objective:

LDaug
T

(θ) = 1
N

∑
d′∈Daug Ld′ (θ) where Ld′ (θ) = − log pθ(tk | q...t′

k−1). In other words, for each
augmented example, we minimize the negative log likelihood of generating the CoT and answer,
conditioned on the question and the (k − 1) proxy prefixes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Bootstrapping Atomic CoT Models Trained on Composable CoT

Input: The combined model Mcomb; dataset DTA = {(qv, av)}NA
v=1; the number of iterations c.

Output:
1: M0 ←Mcomb ▷ Initialization
2: for w in 1...c do
3: if use rationalization then
4: (t̃v, ãv)←Mw−1(qvav) ∀v ∈ {1, ..., NA} ▷ Performance rationalization
5: else
6: (t̃v, ãv)←Mw−1(qv) ∀v ∈ {1, ..., NA}
7: end if
8: DRFT ← {(qv, t̃v, av) s.t. v ∈ {1, ..., NA} and ãv = av} ▷ CoTs with correct answers
9: Mw ← SFT(Mcomb, DRFT) ▷ Fine-tune the combined model on the accepted CoT data

10: end for

Note that when k = 1, d
′

does not have any proxy prefix in the augmented prompt, so the model
learns to generate CoT traces conditioned only on the question on those examples (e.g., the top right
example in Figure 1). This simulates the scenario where an atomic CoT serves as the initial step of
the compositional reasoning. For 1 < k ≤ n, the model learns to generate CoT conditioned on both
the question and proxy prefixes (e.g., the bottom right example in Figure 1).

Instantiation of Tags. In practice, models only need to learn differentiations between the n-th tag,
which marks the end of the notional n-way compositional reasoning, and all the other tags, which
mark intermediate steps. Thus, we set pn =<suffix>, and all other (n− 1) tags as <prefix>. Despite
only having two instantiations of the tag, any length of compositional CoT is supported by this
scheme.

The scheme can also generalize to n-way composition at inference time. Specifically, for n > 2, we
can generate a CoT, then append the <suffix> tag, continue to generate, and repeat (n − 1) times,
thereby achieving test-time generalization to n-way composition. Details can be found in Section 6.1.

3.2 COMBINING ATOMIC COT MODELS

After training an atomic CoT model on a single atomic task T , we need to combine multiple atomic
CoT models to perform compositions. We consider two methods.

ComposableCoT-MTL. We apply multitask learning (MTL) to fine-tune M0 on the combined dataset
of Daug

A =
∑Ti∈A

Daug
Ti

and obtain a single MTL model Mcomb that can generate prefix and suffix
CoTs for all the n atomic tasks.

ComposableCoT-Merge. Model merging is another way to combine multiple models into a single
multi-task model (Matena & Raffel, 2022; Yadav et al., 2023). For each Ti ∈ A, we start from M0

and fine-tune a model Mi (parametrized by θi) on Daug
Ti

. Then we use Task Arithmetic (Ilharco
et al., 2023a) to merge the n models into a single model Mcomb parametrized by θcomb as a linear
combination of the deltas between each fine-tuned model parameter and the base model parameter:
θcomb = θ0 +

∑Ti∈A
αi(θi − θ0) where α is the scaling factor.

Inference. When running zero-shot inferences on the compositional task, we append <tag 1> to the
end of the prompt and sample a response from Mcomb. Then, we append the next tag to the end of
the generated response, continue generation, and repeat the process by appending tags up to <tag n>.

3.3 IMPROVING COMPOSITION WITH REJECTION SAMPLING FINE-TUNING

Mcomb can be further improved with self-taught reasoning (Zelikman et al., 2022) by rejection
sampling fine-tuning (RFT) (Dong et al., 2023; Yuan et al., 2024). Recall that for the compositional
task, we only have answer labels instead of CoT traces. Mcomb can serve as a starting point for RFT
where we fine-tune Mcomb with its own correct CoT responses using the limited compositional data.

Algorithm 1 shows the algorithm. Concretely, we sample responses from Mcomb for each example
in the compositional training data. Using the direct answer labels to verify the sampled responses,
we can collect a supervised fine-tuning dataset DRFT to continued fine-tune Mcomb. Such a process

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Merge

+

Multi-task Learning (MTL)

one model trained 
on both datasets

one model trained on each 
dataset, then merged

CoT format

Standard CoT 
(past work)

Composable CoT 
(this work; §3.1)

Combination method Further training on compositional data

CFT: continued fine-tuning on 
answer-only compositional data

RFT: rejection sampling of CoTs,
fine-tuning on those leading to
correct answers

Figure 3: Summary of settings for methods evaluated. Names in the results table reference
configurations described in this figure; e.g., ComposableCoT-Merge uses ComposableCoTs with
model merging, and in the zero-shot setting does not use further tuning.

can be repeated for multiple iterations. For open-ended generation tasks that are hard to verify the
correctenss of sampled outputs only based on answer labels, we follow Zelikman et al. (2022); Ye &
Durrett (2022) to perform rationalization to obtain DRFT; details can be found in Appendix D.3.

4 EXPERIMENTAL SETUP

We select evaluation tasks with the following criteria: (1) Atomic tasks reflect core LLM reasoning
skills: We select atomic tasks that are representative of core skills that span logical, arithmetic, and
writing. Prior work (Wei et al., 2022; Dziri et al., 2023; Yu et al., 2024) has shown that these skills
can reflect more complicated capabilities such as advanced math reasoning and creative writing; (2)
Atomic skills are distinguishable: To ensure controlled experiments of compositional generalization,
atomic skills need to be distinguished from each other so that learning one skill is independent from
learning another skill; (3) Compositions are unseen during pretraining: General reasoning tasks
such as math word problems feature examples that are common in pretraining. Our tasks are less
observed, thus enabling us to attribute the success of task completion to the efficacy of training
approaches rather than better recall of pretraining data.

Our tasks involve string manipulation, arithmetic, and natural language skill composition. Each
setting involves atomic tasks and compositional tasks. We ensure that all atomic tasks are learnable
through supervised fine-tuning with a small amount of training data (NT ≤ 500) as shown in
Appendix E. We also confirm that the selected compositional tasks are less frequently seen for
pre-trained LLMs: Appendix F shows the high perplexity of the task datasets, and Table 1 shows the
low accuracy of few-shot prompting.

String manipulation and arithmetic tasks. We consider the following atomic tasks. (1) Next
letter in alphabet: Adapted from Efrat et al. (2023); Edman et al. (2024), this task asks the LLM
to find the next letter in the alphabet following the last letter in a sequence of letters. (2) Letter
concatenation: Adapted from Wei et al. (2022); Zhou et al. (2023), this task prompts the LLM to
concatenate the first, second, second-to-last, or last letter of each word in a given sequence of words.
(3) ASCII multiplication: This tasks involves multi-digit multiplicative arithmetic (Dziri et al., 2023;
Gambardella et al., 2024) of the ASCII value of a given letter.

We consider the following compositions of two of the atomic tasks, T(i,j) = g(Ti, Tj). We evaluate
three-way compositions and more complex compositions in Section 6.1. (1) Next letter + multi-
plication: Given a sequence of letters, find the next letter in the alphabet following the last letter,
determine its ASCII value, and then perform multiplication with a given constant. (2) Concatenation
+ next letter: Given a sequence of words, concatenate the first, second, or second-to-last letter of each
word and then find the next letter in the alphabet following the last letter of the concatenated sequence.
(3) Concatenation + multiplication: Given a sequence of words, concatenate the first, second, or
second-to-last letter of each word, find the ASCII value of the last letter of the concatenated sequence,
and then perform multiplication.

Data and CoT traces of the above tasks are generated with templates; the data generation procedure
and examples can be found in Appendix C.

Natural language skills. We adapt the compositional benchmark Skill-Mix (Yu et al., 2024): Given
the definition and an example of a language skill (e.g. hyperbole), the model needs to write a sentence

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot compositional generalization of ComposableCoT with different combination
approaches vs. baselines. Without any compositional supervision, using model merging or multitask
learning to combine atomic CoT models trained on Composable CoT data outperforms baselines
across settings and models, and is sometimes comparable to SFT with compositional supervision.

Methods
Next Letter Concat Concat Skill-Mix Literary
+ Mult + Next Letter + Mult + Rhetorical

EM EM EM Full Marks Skill Fraction

Llama 2-7B

SFT on Base Model 3.1 5.0 9.0 35.5 60.1with Compositional Supervision

Few-shot Answer 1.0 0.0 0.0 4.1 16.4
Few-shot CoT 2.0 3.0 1.0 7.3 23.1

StandardCoT-Merge 2.0 12.5 2.3 11.0 31.6
ComposableCoT-Merge (Ours) 16.0 19.1 3.0 19.6 37.1

StandardCoT-MTL 5.0 0.0 0.0 17.6 38.7
ComposableCoT-MTL (Ours) 18.7 6.5 3.1 22.9 49.9

Qwen 2.5-7B

SFT on Base Model 4.6 31.9 2.0 35.5 60.3with Compositional Supervision

Few-shot Answer 2.4 0.0 2.7 34.7 56.0
Few-shot CoT 2.0 0.0 21.3 31.8 41.6

StandardCoT-Merge 70.4 54.8 77.0 29.8 48.0
ComposableCoT-Merge (Ours) 95.4 19.2 75.4 39.6 62.1

StandardCoT-MTL 3.6 60.9 72.1 42.0 58.2
ComposableCoT-MTL (Ours) 96.3 63.3 74.3 49.0 66.7

to demonstrate the skill about a given topic. We consider an atomic task to be handling skills over
a category of skills, and we evaluate on two categories that are mainly mutually exclusive: literary
devices (Literary) and rhetorical devices (Rhetorical). Atomic CoT traces for Skill-Mix are distilled
from GPT-4o (OpenAI et al., 2024), following Zhao et al. (2024). The composition tasks we consider
combine literary and rhetorical skills: generate a sentence to demonstrate two provided skills, each
of which is sampled from one of the categories. Examples and details can be found in Appendix D.

Evaluation Metrics. For Skill-Mix tasks, we use quality measure metrics for the generated sentence
from Yu et al. (2024) (namely, Full Marks and Skill Fraction) based on a rubric, and use GPT-4o-mini
as a judge. Details can be found in Appendix D.2. All other tasks are evaluated using exact match
accuracy; a regex-based answer extractor is used to extract the answer from the generated response.

Zero-shot/Few-shot Baselines. Figure 3 summarizes the high-order variables of the configurations
we evaluate. For zero-shot compositional generalization, we include the following baselines: (1)
Few-shot direct answer prompting: we prompt M0 with 5-shot demonstrations drawn from the
compositional data; (2) Few-shot CoT prompting: we prompt M0 with 5-shot CoT demonstrations
drawn from the atomic data; (3) Model merging of atomic CoT models (StandardCoT-Merge): we
fine-tune two models Mi and Mj based on M0 with DCoT

Ti
and DCoT

Tj
respectively and merge them

into Mcomb with Task Arithmetic; (4) Multitask learning of atomic CoTs (StandardCoT-MTL): we
fine-tune M0 to be a single multitask learning model MSCoT−MTL on DCoT

Ti
+DCoT

Tj
.

Baselines with Compositional Supervision. With the same compositional training dataset with only
the answer label DT(i,j)

, we compare bootstrapping Composable CoT with the following baselines.
(1) Continued fine-tuning (CFT) the multitask model of atomic CoTs (CFT on StandardCoT-MTL):
we continue fine-tune the multitask model MSCoT−MTL on DT(i,j)

; (2) Continued fine-tuning the
merged model of atomic CoTs (CFT on StandardCoT-Merge): we continue fine-tune the merged
model of the two atomic CoT models Mcomb on DT(i,j)

; (3) Multitask learning of atomic CoTs and
compositional answers (StandardCoT + Comp Answer): we fine-tune a single multitask learning

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Compositional task performance of rejection sampling fine-tuning (RFT) upon merged
Composable atomic CoT models and other baselines. Mult stands for ASCII multiplication and concat
stands for letter concatenation. SFT stands for supervised fine-tuning with the compositional answer
data; CFT stands for continued fine-tuning; MTL stands for multitask learning method. Results on
next letter + mult are omitted because the zero-shot performance saturates. RFT on ComposableCoT
variants achieves the best compositional performance using the same compositional answer data.

Category Method
Next Letter Concat Concat Skill-Mix Literary
+ Mult + Next Letter + Mult + Rhetorical

EM EM EM Full Marks Skill Fraction

Llama 2-7B

SFT
SFT on Base Model 3.1 5.0 9.0 35.5 60.1
CFT on StandardCoT-Merge 2.0 16.0 14.0 44.1 65.1
CFT on StandardCoT-MTL 3.0 26.0 11.0 38.0 62.1

MTL StandardCoT + Comp Answer 5.0 46.0 13.3 22.9 45.5

RFT StandardCoT-Merge 0.0 23.0 29.7 26.1 52.0
ComposableCoT-Merge (Ours) 72.0 46.0 40.0 45.3 66.6

Qwen 2.5-7B

SFT
SFT on Base Model - 31.9 2.0 35.5 60.3
CFT on StandardCoT-Merge - 41.1 9.3 51.0 71.4
CFT on StandardCoT-MTL - 60.3 12.7 34.7 56.3

MTL StandardCoT + Comp Answer - 65.1 7.1 41.2 55.3

RFT StandardCoT-MTL - 82.1 89.0 44.9 63.4
ComposableCoT-MTL (Ours) - 86.9 88.4 57.6 71.5

model based on M0 on the combined dataset of DCoT
Ti

+DCoT
Tj

+DT(i,j)
. We also include supervised

learning baselines (SFT) where M0 is fine-tuned on the same compositional answer data DT(i,j)
.

The differences of methods we evaluate for each setting are summarized in Table 13.

Data Construction. Because of two-way compositions, we sample uniformly from 2 chain-of-
thought tags, <prefix> and <suffix>, for data construction. At inference time, we first append
<prefix> to the prompt and sample from the combined model. Then, we append <suffix> to the end
of the generated response, and continue generation.

Models and Training. We use Llama 2 7B-base (Touvron et al., 2023) and Qwen2.5 7B-base (Yang
et al., 2025) as models, and use LoRA (Hu et al., 2022) for supervised fine-tuning. For rejection
sampling, we sample 10 responses for each prompt and use temperature τ = 0.9 for inference;
otherwise, we use greedy decoding. For Skill-Mix tasks, we perform rationalization for RFT because
it is open-ended generation (see Section 3.3). Configuration and hyperparameters are in Appendix G.

5 RESULTS

5.1 ZERO-SHOT GENERALIZATION

We evaluate the compositional generalization of the proposed method without compositional supervi-
sion, including ComposableCoT-Merge and ComposableCoT-MTL. For all methods that we compare
with, we control the amount of training data to be the same as Ni and Nj . For reference, we also
include the supervised fine-tuning baseline by fine-tuning M0 with N(i,j) compositional answer data.
Details of the training data for each task can be found in Appendix H.

Learning ComposableCoT achieves better zero-shot generalization. Table 1 shows that Compos-
ableCoT variants outperform all baselines on a range of tasks for both models. Combining atomic
CoT models trained on Composable CoT is better than combining models trained on standard CoT
across settings. Moreover, while having seen no compositional training data, our method achieves
comparable or even better performance than supervised fine-tuning baselines with compositional

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

supervision (e.g., next letter + multiplication). These indicate that the Composable CoT format leads
to better "composability" at inference time.

5.2 COMPOSITIONAL PERFORMANCE WITH LIMITED SUPERVISION

Table 3: Zero-shot generalization on three-way composi-
tions. Combining ComposableCoT models outperforms
combining StandardCoT models on the composition of
three tasks.

String Tasks Skill-Mix

EM Full Mark Skill Fraction

Standard-Merge 61.3 13.1 42.7
Composable-Merge 63.1 19.2 54.1

Standard-MTL 82.3 28.2 55.9
Composable-MTL 86.7 33.1 61.0

We evaluate the performance of Compos-
able CoT models after being further im-
proved with one iteration of RFT using
the limited compositional supervision. We
compare it with multitask learning and con-
tinued fine-tuning baselines given the same
compositional answer dataset DT(i,j)

of
size N(i,j) ≤ 500. For reference, we in-
clude the baseline of fine-tuning M0 on the
same compositional answer data. Details
of the data condition are in Appendix H.

Table 2 shows that with the same compo-
sitional training data, using RFT on top
of ComposableCoT-MTL and ComposableCoT-Merge achieves the best compositional task
performance, outperforming multitask learning and continued fine-tuning baselines across settings.

Table 4: Zero-shot generalization on two-way compositions
when merging three atomic models (i.e., there is a distractor
skill). Merging ComposableCoT models is better than merg-
ing StandardCoT models in this setting.

Standard Composable

Next Letter + Mult EM 56.1 75.9
Concat + Next Letter EM 39.1 46.2

Concat + Mult EM 44.3 48.9

Skill-Mix Literary Full Mark 37.1 42.0
+ Rhetorical Skill Fraction 55.1 62.7

We further investigate if the per-
formance is mainly driven by RFT
or by learning Composable CoT
format. We compare RFT upon
StandardCoT-Merge with RFT upon
ComposableCoT-Merge for LLama
2-7B, and StandardCoT-MTL with
ComposableCoT-MTL for Qwen 2.5-
7B. Table 2 shows that RFT is a better
way to improve the compositional task
performance of StandardCoT models
with compositional data than MTL
and SFT. Moreover, RFT upon Com-
posableCoT models is generally better than RFT upon StandardCoT models. Using the same
combination method (MTL or Model Merging), RFT upon ComposableCoT models outperforms the
StandardCoT counterpart by an average performance increase of 18.2% across models and tasks.

6 ANALYSIS

6.1 GENERALIZATION TO COMPLEX COMPOSITIONS

Three-way Composition. We evaluate Composable CoT on zero-shot compositions of three atomic
tasks on Qwen2.5-7B using the following compositional tasks: (1) Letter Concat + Next Letter +
Mult (String Tasks): Given a sequence of words, concatenate the first, second, second-to-last, or last
letter of each word, find the next letter in the alphabet following the last letter of the concatenated
sequence, find the ASCII value of this letter, and then perform multiplication. (2) Skill-Mix Literary +
Rhetorical + Logical (Skill-Mix): Generate a sentence on a given topic to demonstrate three provided
skills, each of which is sampled from one of the Skill-Mix categories, including an additional category
Skill-Mix-Logical. We compare ComposableCoT models with StandardCoT models constructed by
model merging or multi-task learning. Implementation details can be found in Appendix I.

Table 3 shows that given the same combination method, combining ComposableCoT models is
better on three-way composition: for example, using MTL, ComposableCoT models outperform
StandardCoT models by an average performance increase of 4.8%.

Two-way Composition with Larger Skill Pools. In practice, models may need to have many
capabilities to address problems of interest. Compared to our existing settings, such models need to
select the skills to engage with for a particular task out of a larger pool of learned skills.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To evaluate this scenario, we train atomic models on three atomic skills on Qwen 2.5-7B and evaluate
the combined model (with model merging) on the zero-shot composition of two of the atomic skills.
This setup provides the model with additional potential combinations of skills to reason about.
For the Skill-Mix tasks, we train on an additional atomic task, logical reasoning. Table 4 shows
that learning ComposableCoT outperforms using StandardCoT by 8.8% on average, indicating that
ComposableCoT models can select the appropriate skills to compose out of many learned skills.

6.2 QUALITY OF GENERATED COTS

Table 5: Quality of the generated CoTs by Compos-
ableCoT models on zero-shot compositions. “%
T1” denotes the percentage of generated responses
that use the CoT format of the first atomic task of
the composition, and likewise for the second. †

denotes that the ComposableCoT method has a sig-
nificantly higher “% Both” than the StandardCoT
counterpart at the 0.01 level using a paired boot-
strap test. “Perf.” denotes the task performance.

CoT Perf. % T1 % T2 % Both

Next Letter Standard 3.6 0.0 100.0 0.0
+ Mult Composable 96.3 98.9 100.0 †98.9

Concat Standard 72.1 99.7 32.1 32.1
+ Next Letter Composable 74.3 100.0 83.1 †81.3

Concat Standard 60.9 100.0 66.7 66.7
+ Mult Composable 63.3 100.0 85.9 †85.0

Literary Standard 42.0 65.3 58.0 37.6
+ Rhetorical Composable 49.0 64.5 65.7 †42.0

We conduct intrinsic quality evaluations on
CoTs generated by ComposableCoT models for
zero-shot composition. For the string manipu-
lation and arithmetic tasks, we extract template-
based patterns of each atomic CoT from the
generated outputs of models evaluated on the
compositional task. For Skill-Mix, we consider
the CoT pattern of an atomic task to be used if
the generated response explicitly mentions the
skill corresponding to that atomic skill category.

Table 5 shows results with models trained from
Qwen 2.5-7B and combined with MTL; re-
sults using model merging can be found in Ap-
pendix J. Combining ComposableCoT leads
to consistently higher presence of both atomic
CoT patterns in the generated responses com-
pared to StandardCoT. Models trained with
the Composable CoT format therefore leverage
the combination of learned skills in some form
more frequently than StandardCoT. Example of
generated CoTs can be found in Appendix K.

7 RELATED WORK

As an important cognitive capability of humans (Piantadosi & Aslin, 2016; Werchan et al., 2015),
compositional generalization has been considered a core capability for human-level reasoning models
(Fodor & Pylyshyn, 1988; Lake & Baroni, 2023). Recent theoretical analyses show that LLMs can
improve their compositional reasoning by generating CoT (Li et al., 2024; 2023), but empirical
improvements have only been observed (Sprague et al., 2025) with non-trivial engineering effort such
as prompt engineering (Chen et al., 2024; Gao et al., 2024) and data selection (Khot et al., 2023;
Zhou et al., 2023; Levy et al., 2023; Ye et al., 2023). Aiming at more principled ways to improve
composition, we are inspired by a line of work on efficient methods for combining models of different
capabilities, particularly model merging (Tam et al., 2024a; Ilharco et al., 2023b; Wu et al., 2025;
KimiTeam et al., 2025; Ma et al., 2025; Tam et al., 2024b). Our work is the first to use model merging
for compositional generalization with CoT.

8 CONCLUSION

We propose Composable Chain-of-Thought, a data augmentation scheme to convert CoT data of
atomic reasoning skills into a format that facilitates inference-time compositional generalization.
Training atomic CoT models with Composable CoT and combining them with model merging or
multitask learning leads to better zero-shot compositional reasoning performance than building
models with the standard CoT format. Such a combined model can be further improved by a
limited amount of compositional data with rejection sampling fine-tuning. Learning to reason with
composable CoT shows a promising approach to improve compositional reasoning in LLMs, and
could be extended to build more efficient and robust large reasoning models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 ETHICS STATEMENT

This work does not involve human subjects or the release of sensitive data. We do not clearly see the
harms of the applications of the proposed method either, so we are not aware of any obvious ethical
concern related to this work.

10 REPRODUCIBILITY STATEMENT

We report all technical details for our proposed method, including the data augmentation schema and
the training methods in Section 3. To reproduce our experimental results, we report all details of the
evaluation setup (Section 4) and training configurations (Section G).

REFERENCES

Natalie Abreu, Edwin Zhang, Eran Malach, and Naomi Saphra. A taxonomy of transcendence.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=tfTn8616Gf.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu
Chen. Skills-in-context: Unlocking compositionality in large language models. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pp. 13838–13890, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.812. URL
https://aclanthology.org/2024.findings-emnlp.812/.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL https:
//api.semanticscholar.org/CorpusID:239998651.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan Titov. Meta-learning to compositionally
generalize. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3322–3335,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
258. URL https://aclanthology.org/2021.acl-long.258/.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=m7p5O7zblY.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=Fkckkr3ya8.

Lukas Edman, Helmut Schmid, and Alexander Fraser. CUTE: Measuring LLMs’ understanding of
their tokens. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 3017–3026, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.177. URL https://aclanthology.org/2024.emnlp-main.177/.

Avia Efrat, Or Honovich, and Omer Levy. LMentry: A language model benchmark of elementary
language tasks. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 10476–10501, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.666. URL
https://aclanthology.org/2023.findings-acl.666/.

10

https://openreview.net/forum?id=tfTn8616Gf
https://openreview.net/forum?id=tfTn8616Gf
https://aclanthology.org/2024.findings-emnlp.812/
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://aclanthology.org/2021.acl-long.258/
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=Fkckkr3ya8
https://aclanthology.org/2024.emnlp-main.177/
https://aclanthology.org/2023.findings-acl.666/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28:3–71, 1988. URL https://api.semanticscholar.org/CorpusID:
29043627.

Andrew Gambardella, Yusuke Iwasawa, and Yutaka Matsuo. Language models do hard arith-
metic tasks easily and hardly do easy arithmetic tasks. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 85–91, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.8. URL
https://aclanthology.org/2024.acl-short.8/.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, and Furu Wei. Meta
reasoning for large language models. arXiv preprint arXiv:2406.11698, 2024.

Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. 2019.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of
easy training data for hard tasks. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 7002–7024, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.378. URL https://aclanthology.org/
2024.acl-long.378/.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=_nGgzQjzaRy.

KimiTeam, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,

11

https://api.semanticscholar.org/CorpusID:29043627
https://api.semanticscholar.org/CorpusID:29043627
https://aclanthology.org/2024.acl-short.8/
https://arxiv.org/abs/2506.04178
https://aclanthology.org/2024.acl-long.378/
https://aclanthology.org/2024.acl-long.378/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms. arXiv preprint arXiv:2501.12599, 2025.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623:115 – 121, 2023. URL https://api.semanticscholar.
org/CorpusID:264489248.

Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compositional
generalization. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Toronto, Canada, July 2023.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: Compositionality through in-context filtering and learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=xEhKwsqxMa.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. CoT-Valve: Length-
Compressible Chain-of-Thought Tuning. arXiv preprint arXiv:2502.09601, 2025.

Ryan Marten, Trung Vu, Charlie Cheng-Jie Ji, Kartik Sharma, Shreyas Pimpalgaonkar, Alex Dimakis,
and Maheswaran Sathiamoorthy. Curator: A Tool for Synthetic Data Creation. January 2025.

Michael S Matena and Colin Raffel. Merging Models with Fisher-Weighted Averaging. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=LSKlp_aceOC.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew
Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko,
Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar,
Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob
McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan
Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris
Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine
McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis,
Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares,
Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong,
Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric
Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo
Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon,
Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu
Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde

12

https://api.semanticscholar.org/CorpusID:264489248
https://api.semanticscholar.org/CorpusID:264489248
https://openreview.net/forum?id=xEhKwsqxMa
https://openreview.net/forum?id=xEhKwsqxMa
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=LSKlp_aceOC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell,
Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki,
James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia
Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne
Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John
Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook
Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua
Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan
Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen,
Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held,
Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke
Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat
Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,
Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick
Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia
Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov,
Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder,
Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel
Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara,
Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky
Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy
Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey,
Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas
Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash
Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin,
Yunxing Dai, and Yury Malkov. GPT-4o System Card . arXiv preprint arXiv:2410.21276, 2024.

Steven Piantadosi and Richard Aslin. Compositional reasoning in early childhood. In PloS one,
volume 11, September 2016.

QwenTeam. QwQ-32B: Embracing the Power of Reinforcement Learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://ml-site.cdn-apple.
com/papers/the-illusion-of-thinking.pdf.

Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To CoT or not to CoT? Chain-of-
thought helps mainly on math and symbolic reasoning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
w6nlcS8Kkn.

13

https://qwenlm.github.io/blog/qwq-32b/
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://openreview.net/forum?id=w6nlcS8Kkn
https://openreview.net/forum?id=w6nlcS8Kkn

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=qwgfh2fTtN.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter
subspaces. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=qNGo6ghWFB.

Derek Tam, Yash Kant, Brian Lester, Igor Gilitschenski, and Colin Raffel. Realistic evaluation of
model merging for compositional generalization. arXiv preprint arXiv:2409.18314, 2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Denise M. Werchan, Anne G.E. Collins, Michael Joshua Frank, and Dima Amso. 8-month-old infants
spontaneously learn and generalize hierarchical rules. Psychological Science, 26:805 – 815, 2015.
URL https://api.semanticscholar.org/CorpusID:13823032.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=xtaX3WyCj1.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2025.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reasoning.
In Proceedings of NeurIPS, 2022.

14

https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qNGo6ghWFB
https://openreview.net/forum?id=qNGo6ghWFB
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:13823032
https://openreview.net/forum?id=xtaX3WyCj1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary explanations for effective in-context learning. In Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada, July 2023. Association for Computational
Linguistics.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
SKILL-MIX: a flexible and expandable family of evaluations for AI models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Jf5gplvglq.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. 2024. URL https://openreview.net/forum?id=cijO0f8u35.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping Reasoning With
Reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=_3ELRdg2sgI.

Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn skill
composition from examples? In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=1sLdprsbmk.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory:
Unified efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi
Xiong (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), pp. 400–410, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL
https://aclanthology.org/2024.acl-demos.38/.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=WZH7099tgfM.

A A NOTE ON COMPOSING TASKS

There exist various possible ways to combine atomic tasks into a compositional task with the
combination function g. We simplify g into two types: (1) composite: the output of one atomic task is
used as part of the input of another task, g(Ti, Tj) = Ti ◦ Tj or g(Ti, Tj) = Tj ◦ Ti; (2) concatenation:
the outputs of the two atomic tasks are concatenated using the same input, g(Ti, Tj) = Ti ⊕ Tj or
g(Ti, Tj) = Tj ⊕ Ti. Among tasks evaluated in Section 4, the string manipulation and arithmetic
tasks need to be solved by a composite function, while the Skill-Mix task can be solved by either a
composite function or a concatenation function.

B DESIGN CHOICES FOR CONSTRUCTING COMPOSABLE COT DATA

When designing the proxy prefix CoT, we would like to consider the following constraints. (1) We do
not assume any prior knowledge about what would possibly be put in the proxy prefix at inference
time; (2) We do not assume strong relevance between the proxy prefix CoT and the actual CoT, i.e.,
not all the information in the proxy prefix CoT is useful for predicting the CoT and the final answer.
Based on these considerations, we experiment with the following variants:

• Random letters: We sample random letters from the alphabet to form a sequence of random
lengths to simulate an arbitrary prefix CoT.

• Random text from the prompt: We sample random letters and words from the prompt q to
form a sequence of random lengths to simulate a prefix CoT in a similar distribution as the
input distribution.

15

https://openreview.net/forum?id=Jf5gplvglq
https://openreview.net/forum?id=Jf5gplvglq
https://openreview.net/forum?id=cijO0f8u35
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=1sLdprsbmk
https://aclanthology.org/2024.acl-demos.38/
https://openreview.net/forum?id=WZH7099tgfM

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Performance of atomic CoT models fine-tuned on different variants of proxy prefix on Llama
2-7B. Using random letters as the proxy prefix achieves the best out-of-domain performance when
evaluated with an unseen prefix at inference time.

Type of Proxy Prefix Exact Match Accuracy
In Domain Prefix Out-of-Domain Prefix

Random Letters 83.0 90.0
Random Text from the Prompt 86.4 82.5
Random Text from Web 90.6 70.0

• Random text from web: We sample random sentences from OpenWebText (Gokaslan &
Cohen, 2019) to simulate a prefix CoT drawn from the pretraining data distribution.

We evaluate these variants by fine-tuning models on Composable CoT datasets that only the following
augmentation: d

′
= q <prefix> [proxy prefixes] </prefix> <suffix> ta </suffix>. Note that this

is different from the setting discussed in Section 3.1 where the Composable CoT dataset consists
of other possible augmentations as well based on the sampling of the tags (e.g., d

′
= q <prefix>

ta </prefix> when k = 1). This experiment mainly aims at stress testing the model’s capability of
learning a single atomic task with a given proxy prefix CoT variant. We use the same hyperparameter
configurations for all proxy prefix variants for a given task.

We evaluate the fine-tuned models on the in-domain task in two settings: (1) In-domain prefix: we
append the same type of prefix as we have used for training to the end of the prompt of the in-domain
test example and evaluate the model on it; (2) Out-of-domain prefix: we randomly sample a prefix
from the other two variants and append it to the end of the prompt of the in-domain test example and
evaluate the model on it. We run experiments on the three string manipulation and arithmetic tasks
and report the average performance. Table 6 shows that although using random letters as the proxy
prefix leads to the worst in-domain performance, it generalizes the best to out-of-domain prefixes,
which is a more desirable behavior.

C DETAILS OF STRING MANIPULATION AND ARITHMETIC TASKS

Next letter in alphabet We synthetically generate data for Next letter in alphabet. We randomly
sample letters from the English alphabet of a random length and concatenate them into a sequence.
Then we extract the last letter from the sequence and derive the next letter following it in the alphabet.
An example can be found in Example C.2. We automatically generate a chain-of-thought for each
generated problem, using a fixed template shown in Example C.2.

ASCII multiplication Similarly, we randomly sample letters from the English alphabet of a
random length and concatenate them into a sequence. Then, we randomly sample another letter s
and randomly sample an integer a ∈ {1, ..., 9}. We find the ASCII value of s as f(s) and compute
the product af(s) as the gold answer. An example can be found in Example C.3. We automatically
generate a chain-of-thought for each generated problem, using a fixed template shown in Example C.3.

Letter concatenation We follow Wei et al. (2022) to generate the dataset by randomly sampling
from the most popular first and last names in the United States and the United Kingdom from
https://namecensus.com and randomly concatenating them into a sequence of names. While
the original task in Wei et al. (2022) only requires concatenating the last letter of each name together,
we raise the difficulty level by randomly asking for concatenations of the first, second, second-to-last,
or the last letter. An example can be found in Example C.1. The CoT template is also shown in
Example C.1.

Compositional tasks We synthetically construct the compositional tasks of the string manipulation
and arithmetic tasks in similar procedures as used to generate the atomic data. An example of
next letter + ASCII multiplication can be found in Example C.4, concatenation + next letter in
Example C.5, and concatenation + multiplication in Example C.6. We made a design decision to

16

https://namecensus.com

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

exclude one variant of concatenation + next letter that concatenates the last letter of each word and
finds the next letter following the last letter in the concatenated sequence; this variant can be solved
by the reasoning shortcut of only applying Next letter in alphabet rather than a composition of both.

C.1 Atomic Task Example: Letter Concatenation Example

[Instruction]
Take the second-to-the-last letter of each word in the sequence
and concatenate them in lower case: Tequan Monjur Khia
Jodi-leigh answer

[Chain-of-Thought + Answer String]
The second-to-the-last letter of the 1st word is a. The
second-to-the-last letter of the 2nd word is u. The
second-to-the-last letter of the 3rd word is i. The
second-to-the-last letter of the 4th word is g. So the answer
is auig.

[Answer String]
auig

C.2 Atomic Task Example: Next letter in alphabet

[Instruction]
Find the Next letter in alphabet following the last letter in
the sequence: wqsisibnnicdlpwqbnoicdcxcxrfoilpcbnixuc
bssssejxuzods answer:

[Chain-of-Thought + Answer String]
The last letter is s, and the letter following it in alphabet is
t. So the answer is t.

[Answer String]
t

C.3 Atomic Task Example: ASCII Multiplication

[Instruction]
Find the ASCII value of the letter after ‘<letter>’ and multiply
the ASCII value by 2: byaxaxcpoteznwnwseselyjlretx
txcbfvmfezbycplymfotjbfv
jlhotzjbjcpycbtzhorepyjckofj <letter> d answer:

[Chain-of-Thought + Answer String]
The ASCII value of the letter d is 100, and multiplying the
ASCII value by 2 gives us 200. So the answer is 200.

[Answer String]
200

C.4 Compositional Task Example: Next letter + ASCII Multiplication

[Instruction]
Find the ASCII value of the Next letter in alphabet following
the last letter in the sequence and multiply the ASCII value by
5: knnxqsxvshqugxfuquljumsbihgxvqihnxuufuknxvumuupkpkshljqsbkiz
answer:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

[Answer String]
485

C.5 Compositional Task Example: Concatenation + Next Letter

[Instruction]
Take the second-to-the-last letter of each word in the sequence,
concatenate them in lower case, and find the Next letter in
alphabet following the last letter in the sequence of the
concatenated letters: Tyjai Ahijah Denzil Amine answer:

[Answer String]
o

C.6 Compositional Task Example: Concatenation + Multiplication

[Instruction]
Take the second-to-the-last letter of each word in the sequence,
concatenate them in lower case, then find the ASCII value of
the last letter in the sequence of the concatenated letters,
and multiply the ASCII value by 3: Zarriah Amylee Li Javarie
answer:

[Answer String]
315

D DETAILS OF SKILL-MIX TASKS

D.1 MODIFICATIONS OF SKILL-MIX

We adapt the Skill-Mix dataset from Yu et al. (2024). For each example, the model is given a natural
language skill, its definition, an example of the skill, and a topic to focus on, and the model needs
to write a grammatical sentence to demonstrate the skill on the topic. Because we mainly focus on
pairwise composition, we only use the k = 2 and k = 1 composition sets of the Skill-Mix data. We
apply the following modifications to the dataset to fit our setting of compositional reasoning.

1. Filtering the categories of skills: We keep examples with skills of the rhetorical and literary
categories out of the five categories from the original dataset. This is because the rhetorical
and literay skills have the least overlap while other categories have more (e.g. the logical
and rhetorical skills have a large body of overlaps).

2. Removing the requirements of post-hoc explanation and refinement from the prompt. The
original dataset evaluates models by prompting the models to first write a sentence, provide
an explanation for the written sentence, and then do another round of refinement based on
feedback from the grader (an LLM-as-a-judge). To fit into our setting of chain-of-thought
reasoning and direct answering, we remove these irrelevant elements in the prompt.

3. Using a public test set: The original evaluation of Yu et al. (2024) hides the test set from the
public and models can only be evaluated based on API calls to the hidden test set. To ensure
reproducibility of our results, we use a public test set collected by Zhao et al. (2024).

As an open-ended generation task, Skill-Mix does not have a single ground truth sentence. Zhao
et al. (2024) collect a silver-labeled dataset of sentences and their post-hoc explanations generated
by GPT-4o (OpenAI et al., 2024) and graded as correct by the grader. We further prompt GPT-4o to
transform the (sentence, explanation) pairs into (CoT, sentence) pairs to resolve potential coreference
issues. Examples of the prompt, CoT traces, and sentence can be found in Examples D.1, D.2, and
D.3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.1 Atomic Task Example: Skill-Mix-Literary

[Instruction]
Greetings! I am interested in natural language processing and
I was wondering if you could help me generate an example of text
that illustrates multiple skills in semantics or syntax. The
example should be a minimal natural piece of text with up to a
few lines in the context of Vikings that illustrates all of the
following skills: oxymoron. Please keep the text as short as
possible, and make sure the concepts can be found fully from the
text.

For reference, here are the definitions and examples for the
concepts:
oxymoron: A figure of speech in which apparently
contradictory terms appear in conjunction. For example, “The
hall was filled with a deafening silence.” Here, the phrase
“deafening silence” is an oxymoron.

Please start the minimal natural piece of text with ‘Answer:’.

Thanks very much!

[Chain-of-Thought + Answer String]
Explanation: The goal is to construct a sentence that showcases
the use of an oxymoron while remaining relevant to the Viking
theme. To achieve this, we focus on creating a phrase that
contains seemingly contradictory terms. We begin with the
context of Vikings enduring harsh weather conditions. The
word “fiery” conveys an intense heat, while “frost" indicates
severe cold. When these terms are combined into “fiery frost,"
they form an oxymoron as they depict both extreme temperature
sensations simultaneously. This juxtaposition effectively
creates a semantic paradox, leading to vivid imagery and
emphasizing the harsh conditions faced by Vikings.

Answer: “In the bitter cold, the Viking felt a fiery frost.”

[Answer String]
Answer: “In the bitter cold, the Viking felt a fiery frost.”

D.2 Atomic Task Example: Skill-Mix-Rhetorical

[Instruction]
Greetings! I am interested in natural language processing and
I was wondering if you could help me generate an example of
text that illustrates multiple skills in semantics or syntax.
The example should be a minimal natural piece of text with up
to a few lines in the context of Hiking that illustrates all
of the following skills: begging the question or assuming the
conclusion. Please keep the text as short as possible, and make
sure the concepts can be found fully from the text.

For reference, here are the definitions and examples for the
concepts:
begging the question or assuming the conclusion: A circular
argument that paraphrases the question. For example, “Of course
the earth is round; people have known this for hundreds of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

years.”

Please start the minimal natural piece of text with ‘Answer:’.

Thanks very much!

[Chain-of-Thought + Answer String]
Explanation: To illustrate the concept of begging the
question or assuming the conclusion within the context of
hiking, we start by identifying a statement that relies on
its own conclusion as a premise. First, recognize that the
claim “hiking is beneficial” needs supporting evidence to be
considered valid. However, if we use the phrase “because it’s
good for your health” as justification, we notice that it merely
reiterates the initial claim using slightly different wording.
This is because declaring something “beneficial” inherently
implies a positive impact, such as being “good for your health.”
Thus, the reasoning becomes circular, as it depends on the same
assumption it seeks to prove.

Answer: “Hiking is beneficial because it’s good for your
health.”

[Answer String]
Answer: “Hiking is beneficial because it’s good for your
health.”

D.3 Compositional Task Example: Skill-Mix Literary + Rhetorical

[Instruction]
Greetings! I am interested in natural language processing and
I was wondering if you could help me generate an example of text
that illustrates multiple skills in semantics or syntax. The
example should be a minimal natural piece of text with up to a
few lines in the context of Vikings that illustrates all of the
following skills: anaphora resolution, begging the question
or assuming the conclusion. Please keep the text as short as
possible, and make sure the concepts can be found fully from the
text.

For reference, here are the definitions and examples for the
concepts:
anaphora resolution: Resolving the antecedent of a pronoun
or noun phrase. For example, “The car is falling apart, but
it still works.” Here , “it” is the anaphor and “car” is the
antecedent.
***begging the question or assuming the conclusion**: A
circular argument that paraphrases the question. For example,
“Of course the earth is round; people have known this for
hundreds of years.”

Please start the minimal natural piece of text with ‘Answer:’.

Thanks very much!

[Answer String]
Answer:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The Viking chief, undefeated thanks to his ship, asserted, “It
remains unconquered because it’s the ‘Indomitable’.”

D.2 EVALUATION METRICS

We use GPT-4o-mini as the LLM-as-a-judge to grade the generated sentence using the exact same
grading rubric as provided by Yu et al. (2024); the grader judges the quality of the sentence based
on if: (1) All skills are used; (2) The sentence makes sense; (3) The sentence attaches to the given
topic; (4) The sentence is short. We use the evaluation metrics for each generated sentence in Yu et al.
(2024), including the following:

1. Full Marks: 1 if the generated sentence satisfies all four criteria above and 0 otherwise.

2. Skill Fraction: The fraction of skills being demonstrated if all the other three criteria are
satisfied; 0 otherwise

We aggregate these metrics by averaging over all generated responses. In general, full marks evaluate
the model’s capability of writing a perfect sentence for the task, while skill fraction evaluates how
good the model is at handling skills given that it is good at the other stylistic capabilities. We use
Curator (Marten et al., 2025) for an efficient implementation of the evaluation pipeline.

D.3 RFT ON SKILL-MIX TASKS WITH RATIONALIZATION

For open-ended generation tasks like Skill-Mix, it is hard to only use the reference answer to verify
the correctness of the responses sampled from a model. Thus, we use rationalization to perform
rejection sampling fine-tuning for Skill-Mix: we first append the direct answer label to the end of
the prompt and sample post-hoc explanations for the given answer from the model; because Mcomb

is optimized to generate an answer following a CoT, we extract the generated answer following the
generated explanation and filter out explanations whose following answer is not the same as the
provided gold answer; finally, we use the accepted explanations as surrogates for CoT to form the
RFT data.

E SINGLE-TASK LEARNING PERFORMANCE

We report the single-task learning performance of the atomic CoT models by evaluating them on
the in-domain atomic tasks. We would like the atomic tasks to be easy to learn to reflect the
practical settings where we train models on basic, easy-to-learn skills and generalize to harder, unseen
tasks. The training data conditions and hyperparameters for training can be found in Appendix G.
Table 7 shows that all atomic tasks we evaluate are learnable within a small amount of training data
(Ni, Nj ≤ 500).

In addition, we observe that training on ComposableCoT or StandardCoT does not lead to consistent
differences in atomic CoT performance, while the exception is on Skill-Mix-Rhetorical for Llama
2-7B where fine-tuning on ComposableCoT outperforms fine-tuning on StandardCoT by a large
margin.

F BASE MODEL PERFORMANCE ON EVALUATION TASKS

To confirm that our task design includes evaluation tasks that are less commonly seen in the pretraining
data of LLMs, we evaluate the perplexity of the task datasets.

We compare the datasets of the string manipulation and arithmetic datasets used in our experiments
with mathematical reasoning data (GSM8K (Cobbe et al., 2021)), and instruction following data
(Alpaca (Taori et al., 2023)) in terms of perplexity: we compute the average perplexity score of
pre-trained LLMs over the concatenation of the question and ground-truth chain-of-thought response
to examine how predictable the task is; the lower the perplexity is, the more predictable and the harder
to learn the task is. We also include the perplexity over the pretraining corpus as a reference point.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Single-task learning performance by evaluating the atomic CoT models on the in-domain
atomic tasks.

CoT Format Next Letter ASCII Mult Concat Skill-Mix Literary Skill-Mix Rhetorical
EM EM EM Full Marks Skill Fraction Full Marks Skill Fraction

Llama 2-7B

StandardCoT 100.0 85.7 83.0 63.5 63.5 53.3 53.3
ComposableCoT 95.0 86.0 77.0 71.4 71.4 72.4 72.4

Qwen 2.5-7B

StandardCoT 90.0 99.0 77.4 77.4 77.6 70.5 70.5
ComposableCoT 99.4 99.7 77.3 77.4 77.6 76.7 81.9

Table 8: Perplexity of the base models over the task datasets. For the string manipulation and arith-
metic tasks, the perplexity score is averaged over the 3 atomic tasks and the 3 pairwise compositional
tasks. Our evaluation datasets include text that is less predictable under pre-trained LLMs than other
similar tasks.

Task Pretraining Math Instruction String Manipulation
Reasoning Following And Arithmetic

Dataset WikiText GSM8K Alpaca Avg.

Model Llama 2-7B 4.77 2.54 3.84 15.97
Qwen 2.5-7B 5.93 2.38 4.68 7.02

Table 8 indicates that our selected tasks consist of text that is less typical under pre-trained language
models than other similar tasks, particularly other popular reasoning tasks. The higher perplexity is
likely due to these tasks requiring the model to operate on letters rather than words.

G TRAINING CONFIGURATIONS

G.1 GENERAL CONFIGURATIONS

We conduct all fine-tuning experiments with LoRA(Hu et al., 2022) using the following set of
hyperparameters: we use a rank of 8, α = 16, and a dropout rate of 0.2 to prevent overfitting. We
apply LoRA adapters to all linear modules, including the attention matrices Q, K, V and MLP
matrices of all layers. We use bfloat16 precision for training and we use the efficient implementation
of LoRA by LlamaFactory (Zheng et al., 2024). We use a training batch size of 4 and train for
5 epochs for all experiments that share the same number of training data; for methods that use a
potentially smaller amount of training data (e.g. RFT methods usually get fewer data examples than
the number of compositional training data provided, depending on how many correct responses we
can sample from the model), we adjust the batch size to match the number of steps.

G.2 CONFIGURATION FOR REJECTION SAMPLING FINE-TUNING

In addition to the sampling parameters (see Section 4), we consider the following configuration of
RFT for sampling the correct responses: if the model generates multiple correct responses for a given
question, we only randomly select one of them to be added into the RFT dataset DRFT. In this way
we ensures the diversity of examples in DRFT so that the dataset will not be filled with samples from
a small set of examples where the model is good at.

G.3 HYPERPARAMETERS: LEARNING RATE

We find in preliminary experiments that learning rate is the most important hyperparameter for the
fine-tuning experiments of our interest. We perform hyperparameter sweeps for learning rate over
the space of {5e− 3, 1e− 3, 5e− 4, 1e− 4, 5e− 5} on a validation set for each experiment. The
optimal learning rate for each method for the experiments with compositional supervision in Table 9.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Optimal learning rate for each method in the experiments with compositional supervision.

Category Method
Next Letter Concat Concat Skill-Mix Literary
+ Mult + Next Letter + Mult + Rhetorical

Llama 2-7B

SFT
SFT on Base Model 1e-3 1e-3 5e-4 5e-4
CFT on StandardCoT-Merge 1e-3 5e-4 1e-4 1e-4
CFT on StandardCoT-MTL 1e-4 1e-4 1e-4 1e-3

MTL StandardCoT + Comp Answer 1e-3 5e-4 1e-3 5e-4

RFT StandardCoT-Merge - 1e-3 1e-3 5e-4
ComposableCoT-Merge (Ours) 1e-4 1e-4 1e-3 1e-3

Qwen 2.5-7B

SFT
SFT on Base Model - 1e-3 1e-3 5e-4
CFT on StandardCoT-Merge - 5e-4 5e-4 1e-4
CFT on StandardCoT-MTL - 1e-3 1e-3 1e-3

MTL StandardCoT + Comp Answer - 5e-4 5e-4 1e-3

RFT StandardCoT-MTL - 1e-3 1e-4 5e-4
ComposableCoT-MTL (Ours) - 1e-3 1e-3 5e-4

Table 10: Data conditions for each task used for our evaluation.
Train # Test

Atomic Tasks

Next Letter 100 700
ASCII Mult 100 700
Concat 500 700
Skill-Mix Literary 100 126
Skill-Mix Rhetorical 100 105

Compositional Tasks

Next Letter + Mult 100 700
Concat + Next Letter 100 504
Concat + Mult (Llama 2-7B) 500 700
Concat + Mult (Qwen 2.5-7B) 100 700
Skill-Mix Literary + Rhetorical 100 245

G.4 HYPERPARAMETERS: MODEL MERGING

For methods that use model merging as the combination, we use Task Arithmetic (Ilharco et al.,
2023b) to combine the atomic CoT models. We perform a hyperparameter sweep for the scalars α
and β over the space of α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and β = 1− α on a validation
set for each task.

H DATA STATISTICS

H.1 GENERAL DATA CONDITIONS FOR EXPERIMENTS

Table 10 summarizes the number of training data and test data used in the evaluations in Sections 5.1
and 5.2. Note that for letter concatenation + multiplication we have two sizes of the compositional
training data for Llama 2-7B and Qwen 2.5-7B: this is because all methods on Llama 2-7B perform
poorly on zero-shot evaluation for this task and we need a slightly larger amount of compositional
training data so that different methods can start to show distinguishable compositional task perfor-
mance from each other. Regardless, we still consider 500 to be a reasonably small amount of training
data, satisfying our ideal data conditions defined earlier.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: The detailed breakdown of the number of training data used by each method in the zero-shot
setting. Ni and Nj denotes the number of training data from the atomic tasks Ti and Tj seen by the
method during training.

Method Ni Nj

StandardCoT-Merge 0 0
Next Letter + Mult; ComposableCoT-Merge 100 100
Skill-Mix Literary + Rhetorical StandardCoT-MTL 100 100

ComposableCoT-MTL 100 100

StandardCoT-Merge 500 100
Concat + Next Letter; ComposableCoT-Merge 500 100
Concat + Mult StandardCoT-MTL 500 100

ComposableCoT-MTL 500 100

Table 12: The detailed breakdown of the number of training data used by each method with composi-
tional supervision for Qwen 2.5-7B. Ni and Nj denotes the number of training data from the atomic
tasks Ti and Tj seen by the method during training. N(i,j) denotes the number of compositional
answer data seen during training.

Method Ni Nj N(i,j)

SFT on Base Model 0 0 100
CFT on StandardCoT-Merge 100 100 100
CFT on StandardCoT-MTL 100 100 100

Next Letter + Mult; MTL on StandardCoT + Comp Answer 100 100 100
Skill-Mix Literary + Rhetorical RFT on StandardCoT-Merge 100 100 100

RFT on ComposableCoT-Merge 100 100 100
RFT on StandardCoT-MTL 100 100 100
RFT on ComposableCoT-MTL 100 100 100

SFT on Base Model 0 0 100
CFT on StandardCoT-Merge 500 100 100
CFT on StandardCoT-MTL 500 100 100
MTL on StandardCoT + Comp Answer 500 100 100

Concat + Next Letter; RFT on StandardCoT-Merge 500 100 100
Concat + Mult RFT on ComposableCoT-Merge 500 100 100

RFT on StandardCoT-MTL 500 100 100
RFT on ComposableCoT-MTL 500 100 100

H.2 TRAINING DATA USED BY EACH METHOD

We show a detailed breakdown in Table 11 of the number of training data used by each zero-shot
method for both models and in Table 12 for Qwen 2.5-7B by each method with compositional answer
data in the experiments in Section 5.2. Note that the statistics for Llama 2-7B in the setting with
compositional supervision are mostly the same except N(i,j) = 500 for concat + next letter and
concat + mult.

I DETAILS OF THREE-WAY COMPOSITIONS

I.1 DATA

We include 700 test examples for Letter Concat + Next Letter + Mult (String Tasks), and 245 test
examples for Skill-Mix Literary + Rhetorical + Logical (Skill-Mix). For Skill-Mix, we additionally
train an atomic model for Skill-Mix-Logical with 100 training examples.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 13: Summary of methods evaluated in the zero-shot compositional evaluation and the compo-
sition with limited compositional answer data.“Merge” stands for model merging; “MTL” stands
for multitask learning; “CFT” stands for continued fine-tuning; “RFT” stands for rejection sampling
fine-tuning. “-” means the property is not applicable to the method (e.g. MTL on Standard + Comp
Answer mixes Standard CoT data with compositional answer data, and trains a single MTL model
from the pretrained model, so there is no atomic CoT model trained or combined.)

Method
Atomic Atomic Combination Model How is
CoT Models CoT Method trained on Compositional Data
Trained Format Compositional Data Used

Zero-shot Evaluation

StandardCoT-Merge 2 Standard Merge - -
ComposableCoT-Merge (Ours) 2 Composable Merge - -

StandardCoT-MTL 1 Standard MTL - -
ComposableCoT-MTL (Ours) 1 Composable MTL - -

Evaluation with Limited Compositional Answer Data

CFT on StandardCoT-Merge 2 Standard Merge StandardCoT-Merge CFT
CFT on StandardCoT-MTL 1 Standard MTL StandardCoT-MTL CFT

MTL on StandardCoT + Comp Answer - Standard - Pretrained Model Mix with Atomic
CoT data and MTL

RFT on StandardCoT-Merge 2 Standard Merge StandardCoT-Merge RFT
RFT on ComposableCoT-Merge (Ours) 2 Composable Merge ComposableCoT-Merge RFT
RFT on StandardCoT-MTL 1 Standard MTL StandardCoT-MTL RFT
RFT on ComposableCoT-MTL (Ours) 1 Composable MTL ComposableCoT-MTL RFT

I.2 TRAINING AND INFERENCE

Training We use the same data augmentation scheme to create atomic CoT training data as the one
we use for two-way composition in Section 4. This means that we append only one proxy prefix to
the prompt. The general scheme can insert at most n − 1 proxy prefixes at the end of the prompt
for n > 2, but we found that the test-time generalization scheme described in Instantiation of Tags
under Section 3.1 works as well: adding only one proxy prefix achieves comparable compositional
performance to adding two proxy prefixes while being more efficient during training, since the
training data length is shorter. Thus, we experiment with the latter scheme.

Inference We use the same inference strategy specified in Data Construction under Section 4: for
zero-shot inference, we first sample a response from Mcomb. Then, we repeat the following twice:
we append <suffix> to the end of the generated response when it stops generation, and continue
generation until the model stops again.

J FULL RESULTS FOR THE QUALITY ANALYSIS OF THE GENERATED COTS

Table 14 includes the full results of the quality analysis of the generated CoTs using both multi-task
learning (MTL) and model merging as the combination methods for atomic CoT models. Given the
same combination method, combined Composable CoT models generate responses including both
atomic CoT patterns more frequently than combined atomic CoT models.

K ERROR ANALYSES

In addition to not being able to perform the individual atomic task correctly, we show three types of
common errors made by ComposableCoT variants in the zero-shot compositional evaluation setting.

1. Example K.1 shows an example where the generated CoT is only able to replicate CoT of
one atomic CoT and repeat the same CoT in the prefix and suffix.

2. Example K.2 shows an example where the combined model fails to continue generation
after generating the prefix CoT. This is a common error for Composable models combined
with model merging.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 14: Intrinsic evaluation of the generated CoTs from atomic CoT models evaluated on the
compositional task in the zero-shot setting. “% T1 CoT” denotes the percentage of generated
responses that use the CoT format of the first atomic task of the composition, and likewise for the
second. † denotes that the ComposableCoT method has a significantly higher “% Both CoT” than
the StandardCoT counterpart at the 0.01 level using a paired bootstrap test. Combined Composable
CoT models generate responses including both atomic CoT patterns more frequently than combined
atomic CoT models.

Method Performance % T1 CoT % T2 CoT % Both CoT

StandardCoT-Merge 70.4 85.3 95.1 85.3
Next Letter ComposableCoT-Merge 95.4 100.0 100.0 †100.0
+ Mult StandardCoT-MTL 3.6 0.0 100.0 0.0

ComposableCoT-MTL 96.3 98.9 100.0 †98.9

StandardCoT-Merge 77.0 90.3 98.7 90.0
Concat ComposableCoT-Merge 75.4 91.6 100.0 91.6
+ Next Letter StandardCoT-MTL 72.1 99.7 32.1 32.1

ComposableCoT-MTL 74.3 100.0 83.1 †81.3

StandardCoT-Merge 54.8 100.0 99.4 99.4
Concat ComposableCoT-Merge 19.2 44.6 60.5 17.7
+ Mult StandardCoT-MTL 60.9 100.0 66.7 66.7

ComposableCoT-MTL 63.3 100.0 85.9 †85.0

Skill-Mix StandardCoT-Merge 29.8 60.0 59.2 35.9
Literary ComposableCoT-Merge 39.6 64.1 66.9 †43.3
+ Rhetorical StandardCoT-MTL 42.0 65.3 58.0 37.6

ComposableCoT-MTL 49.0 64.5 65.7 †42.0

3. Example K.3 shows an example where the combined model uses the wrong atomic CoT in
the prefix that should have been used in the suffix.

K.1 Error Case: Replicating One Atomic CoT Pattern

[Instruction]
Take the first letter of each word in the sequence, concatenate
them in lower case, and find the next letter in alphabet
following the last letter in the sequence of the concatenated
letters: Jessika Berk Hamilton Stephanie answer:
[Answer String]
t
[Model Output]
<prefix> The last letter is e, and the letter following it in
alphabet is f. So the answer is f.</prefix> <suffix> The last
letter is e, and the letter following it in alphabet is f. So
the answer is f.</suffix>
[Predicted Answer]
f

K.2 Error Case: Failing to Continue Generation after Prefix CoT

[Instruction]
Take the last letter of each word in the sequence, concatenate
them in lower case, then find the ASCII value of the last letter
in the sequence of the concatenated letters, and multiply the
ASCII value by 6: Ayat Amaris Heavenly Mariela answer:
[Answer String]
582

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

[Model Output]
<prefix> The last letter of the 1st word is t. The last letter
of the 2nd word is s. The last letter of the 3rd word is y.
The last letter of the 4th word is a. So the answer is tasy,
and the ASCII value of the last letter in the sequence of the
concatenated letters is 121, so the answer is 726.</prefix>
<suffix>
[Predicted Answer]
726

K.3 Error Case: Use the Wrong Order of Atomic CoTs

[Instruction]
Take the second letter of each word in the sequence, concatenate
them in lower case, and find the next letter in alphabet
following the last letter in the sequence of the concatenated
letters: D’shaun Takia Hiroki Arjun answer:
[Answer String]
s
[Model Output]
<prefix> the last letter is n, and the letter following it in
alphabet is o. so the answer is o.</prefix> <suffix> the second
letter of d is d, the second letter of t is a, the second letter
of h is i, and the second letter of a is r. so the answer is
dair.</suffix>
[Predicted Answer]
dair

L COMPUTATION RESOURCES

We conducted all our experiments primarily on a server with NVIDIA RTX A6000 48GB GPU, and
a server with GPU of NVIDIA GH200 120GB. Each individual experiment can be run on a single
A6000 of 48 GB within 1 hour.

M LICENSING

We use the following publicly available datasets from prior works with open licenses.

Skill-Mix Yu et al. (2024) uses the Apache-2.0 license and data is available at: https://
huggingface.co/spaces/dingliyu/skillmix.

Letter concatenation The dataset uses the Apache-2.0 license and the data is available at: https:
//huggingface.co/datasets/ChilleD/LastLetterConcat

27

https://huggingface.co/spaces/dingliyu/skillmix
https://huggingface.co/spaces/dingliyu/skillmix
https://huggingface.co/datasets/ChilleD/LastLetterConcat
https://huggingface.co/datasets/ChilleD/LastLetterConcat

	Introduction
	Preliminaries
	Learning Composable Chains-of-Thought
	Constructing Composable CoT Training Data
	Combining Atomic CoT Models
	Improving Composition with Rejection Sampling Fine-tuning

	Experimental Setup
	Results
	Zero-shot Generalization
	Compositional Performance with Limited Supervision

	Analysis
	Generalization to Complex Compositions
	Quality of Generated CoTs

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	A Note on Composing Tasks
	Design Choices for Constructing Composable CoT Data
	Details of string manipulation and arithmetic Tasks
	Details of Skill-Mix Tasks
	Modifications of Skill-Mix
	Evaluation Metrics
	RFT on Skill-Mix Tasks with Rationalization

	Single-Task Learning Performance
	Base Model Performance on Evaluation Tasks
	Training Configurations
	General Configurations
	Configuration for Rejection Sampling Fine-tuning
	Hyperparameters: Learning Rate
	Hyperparameters: Model Merging

	Data Statistics
	General Data Conditions for Experiments
	Training Data Used by Each Method

	Details of Three-way Compositions
	Data
	Training and Inference

	Full Results for the Quality Analysis of the Generated CoTs
	Error Analyses
	Computation resources
	Licensing

