Under review as a conference paper at ICLR 2026

% REXBENCH: CAN CODING AGENTS AUTONOMOUSLY
IMPLEMENT AI RESEARCH EXTENSIONS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Agents based on Large Language Models (LLMs) have shown promise for per-
forming sophisticated software engineering tasks autonomously. In addition, there
has been progress towards developing agents that can perform parts of the research
pipeline in machine learning and the natural sciences. We argue that research
extension and its implementation is a critical capability for such systems, and intro-
duce REXBENCH to support the evaluation of this capability. REXBENCH is a
benchmark consisting of realistic extensions of 12 research papers that aim to inves-
tigate novel research hypotheses. Each task is set up as an extension to an existing
research paper and codebase, accompanied by domain expert-written instructions.
REXBENCH is robust to data contamination, and supports an automatic evaluation
infrastructure that executes agent outputs to determine whether the success criteria
are met. We use this benchmark to evaluate 13 LLM agents implemented using
three different frameworks: aider, Claude Code, and OpenHands. We find that
all agents fail to autonomously implement the majority of the extensions, with
the best agent at around 31% success rate. Although the success rate improves
with additional human-written hints, the best performance under this setting re-
mains below 48%. This indicates that current agents are still short of being able
to handle realistic research extension tasks without substantial human guidance.
Based on analyses of prominent failure modes, we put forward actionable short-
and long-horizon recommendations for future research coding agent development.

1 INTRODUCTION

Interesting research necessarily builds on other research. In this regard, extensions of existing research
are important starting points to new investigations, potentially building up towards exciting novel
discoveries. In light of recent growing interest in building LLM agents that can conduct scientific
research in an autonomous manner, we propose REXBENCH, a benchmark aiming to evaluate LLM
agents’ ability to extend existing Al research, with an initial focus on Natural Language Processing
(NLP) and Machine Learning (ML). More specifically, REXBENCH tests whether LLM agents can
autonomously implement research extension experiments via code in a hypothesis-guided manner
(Luo et al.,[2025), where the extension hypotheses are provided to the system as verbal instructions
along with relevant background material including the research paper(s) and the corresponding
codebase. Our benchmark consists of realistic extensions of 12 recently published research papers in
the field, accompanied by domain expert-written extension instructions (See Appendix [C|for a sample
task instruction). The extension tasks cover various aspects of implementation involving changes
to the model, algorithm, data, and evaluation method. The main metric of success is numerical
replication of the outcome of domain-expert implemented “gold” solutions for the extension task.
We provide an automatic evaluation infrastructure to execute the LLM agent-implemented solutions
and evaluate the outcomes. The executions of both the gold solutions and system solutions are
conducted in virtual machines with exactly the same specifications to control for experimental
variation. REXBENCH furthermore is robust to data contamination issues that affect the majority of
existing benchmarks: the solutions and the success criteria for our extension tasks only exist in our
held-out evaluation infrastructure and do not exist anywhere online.

We tested thirteen agents based on an array of Large Language Model (LLM) backbones (Claude
4/3.7 Sonnet (Anthropic), 2025} [2024), GPT-5 (OpenAl, 2025), ol (Jaech et al.| [2024), o4-mini,
and DeepSeek R1 (Guo et al., [2025)), using three different agent frameworks (aider, Claude Code,

Under review as a conference paper at ICLR 2026

1. RExBench 2. Agent Execution 3. Agent Evaluation Infra 4. Evaluation
l Research paper ’ ! O Codebase ’ Generate Virtual Machine 2‘ Results from Experiment
patch file

" [Prediction file J [Execution logs]
Original Dow s / datasets
code " l
Task Execution
? (difference) Apply File Recall
 Patch file rpatchfile\ 2\
Original Extension Run el
code code experiment| Metrics Final Success Rate

Task instruction

Background
In the paper Mission: Impossible Language Models

E
Ve
P
(t

e

Agent
generated
code

Figure 1: End-to-end workflow of REXBENCH: (1) An LLM agent receives inputs consisting of the
research paper(s), the original codebase, and an extension instruction; (2) the system implements the
extension and a patch file is obtained; (3) the patch is applied to the original code and executed via
our evaluation infrastructure; and (4) the results are evaluated using specified metrics.

OpenHands). Many agents struggled on our benchmark, achieving success rates close to zero for
most tasks. Agents with Claude 4/3.7 Sonnet and GPT-5 as backbone showed promise, often showing
qualitative signs of success even when they did not achieve final success. Nevertheless, even the
best-performing agents succeeded less than one third of the time on average (31% success rate for
OpenHands + {Claude 4 Sonnet, GPT-5}), leaving much headroom for progress.

While the current REXBENCH tasks pose substantial challenges for the agents tested, most extensions
do not require major rewriting of the codebase and are not extremely challenging in terms of
complexity (at least to a PhD-level domain expert). We thus consider the release of this specific set of
tasks and the paper as a contribution about the broader framework for evaluating research extensions
(and the opportunities it may bring), which will motivate the development of more challenging
extensions covering broader scientific domains, inviting contributions from the community.

2 RELATED WORK

Recent advancements in LLMs and agentic frameworks motivated discussions about their applicability
to scientific research. This includes using LLMs and LLM-based agents for research automation (Li
et al., [2025}; Skarlinski et al., [2024; Jansen et al., [2025}; Ziems et al., 2024} |Choil 2024 [Boiko et al.|
2023}, \Gottweis et al., 2025} Kitanol [2021; |Gandhi et al., [2025) and benchmarking their ability to
conduct research in the domains of social sciences, statistics, and natural sciences (Tian et al., 2024a;
Chen et al.} 2024} [Laurent et al.,[2024). For ML research, current attempts span automation across
all stages of the research process: from ideation (S1 et al.,|2024) to experiment design (Abramovich
& Chechik, [2025) and execution (Siegel et al.| 2024} [Xiang et al.| 2025)), to paper review and meta
review (Du et al.,[2024). There have also been early attempts to automate the full research pipeline
(Lu et al., 2024; Kon et al., 2025).

Another line of work benchmarks coding and software engineering skills. Specific skills targeted
include resolving GitHub issues (SWE-Bench, Jlimenez et al., 2024, SWE-rebench, Badertdinov et al.,
2025)), debugging LeetCode problems (DebugBench, [Tian et al.||2024b)), resolving configuration/de-
pendency issues in research environment setups (SUPER, Bogin et al.,|2024), and solving tasks in a
terminal environment (The Terminal-Bench Team, [2025). In a similar vein, other benchmarks assess
more comprehensive ML problem-solving and code implementation skills. MLE-bench (Shern et al.,
2024)) and DSBench (Jing et al.;,2024) design machine learning and data science tasks akin to Kaggle-
style competitions; MLAgentBench (Huang et al.||2024) gathers classical ML tasks such as regression
and model training problems as well as Kaggle challenges; DataSciBench evaluates data analysis
and visualization skills with novel evaluation pipelines (Zhang et al.| 2025)); and ML-Dev-Bench
(Padigela et al., [2025)) focuses on the full ML development workflow.

The most directly relevant efforts to ours are benchmarks that evaluate ML problem-solving and
software engineering capabilities in research settings. Curie (Kon et al., |2025) aims to evaluate
the ability to plan and execute experiments; BLADE (Gu et al., 2024) is designed to automatically
evaluate agents’ approaches to open-ended data-driven research questions. Paper2Code (Seo et al.,
20235)) introduces a multi-agent LLM framework to translate ML papers into codebases through a stage-
wise design, and PaperBench (Starace et al., [2025]) evaluates research agents using a compilation of

Under review as a conference paper at ICLR 2026

coding tasks targeting replication of 20 ICML papers. REXBENCH has a similar goal as PaperBench
and, to some extent, Curie, in benchmarking of ML and Al research code generation. However, a key
distinction is that instead of evaluating replications (PaperBench) or very general questions that can
often also be answered without running experiments (Curie), we focus on novel research extensions.
Thus, REXBENCH is able to evaluate agent performance on previously unseen/unimplemented
research hypotheses which greatly alleviates data contamination concerns.

3 BENCHMARK DESIGN

3.1 RESEARCH EXTENSION TASK

Task We define our research extension task as a code implementation problem, where the input
consists of an existing research paper, an accompanying codebase, and an instruction that verbally
describes an extension proposal and how this should be tested. An example of a simple extension
is: “What would happen if the same experiment in paper X used an open-source model like Llama 3
70B instead of GPT-40?” (see Appendix [C|for an actual example). Given this input, a system must
produce as output edits to the input codebase that implements the extension proposal.

Desiderata The core aim of our benchmark is to automatically assess how well an agent can
autonomously implement realistic research extensions. These goals are to some extent in conflict
with each other: Realistic research extensions tend to be quite open-ended, which makes automatic
assessment challenging or impossible; limiting tasks to the availability of simple automatic measures,
on the other hand, may constrain the task too much for it to be still realistic. We strike a balance
between these two goals by using automatic tests that allow the agent to tackle the task through any
means, as long as this leads to results comparable to the ones from our gold implementation. The task
setting of requiring implementation on top of an existing codebase and evaluation through controlled
execution environments (random seed, hardware, packages, etc.) serves to improve the reliability of
the numeric output-based automatic evaluation. Nevertheless, each extension proposal included in the
benchmark still cannot be too open-ended or exploratory, and therefore consist of specifically-scoped
questions that can have well-defined numeric targets. To ensure that agents autonomously implement
extensions, the granularity of our instructions are calibrated at a level that still requires the model to
thoroughly analyze the codebase and form its own plan for the extension. Furthermore, at no point of
the evaluation do humans provide additional supervision. Finally, one of the biggest challenges with
LLM evaluation is data contamination. If solutions to any of the tasks are openly available on the web,
LLMs that serve as the backbone for the agents may have been trained on the solutions (also noted as
a possible issue in PaperBench (Starace et al.,|2025)), rendering it impossible to establish whether
success stems from memorization or autonomously solving the task. We circumvent this problem
by including only novel research extensions, either in terms of the idea itself or implementation. To
the best of our knowledge, none of our extensions exist on top of the existing codebases publicly;
we store all the gold extensions in private Bitbucket repositoriesﬂ Furthermore, our privately hosted
evaluation infrastructure prevents models from accessing the evaluation scripts or reference solutions.

3.2 BENCHMARK COMPOSITION

Our benchmark consists of research extensions building upon papers and codebases primarily in
the NLP and broader Al domains, taking into consideration the availability of expertise within
the team as well as the availability/replicability of the code released. The full list of papers is in
Table The specific extension proposals were selected to span various dimensions of change
including changes to the model, dataset, algorithm, and evaluation. In addition to this consideration,
we imposed the following constraints on the extension proposals for scientific rigor and feasibility
of the experiments: (1) Important empirical trends from the original paper relevant to the extension
proposal must replicate; (2) the gold implementation of the extension proposal must replicate (e.g., if
the gold implementation requires making calls to a closed API-based model, this may not replicate

'We use Bitbucket instead of GitHub since GitHub data has been used in the past to train LLMs and it is
unclear whether this may also be true for some private repositories.

>Two of the tasks (COGS, Othello) involve implementing an extension proposal from another paper on top of
the codebase of the original paper, where the implementation of the extension is either not publicly available or
is not implemented as an edit of the original codebase. For these tasks, there are two relevant papers.

Under review as a conference paper at ICLR 2026

in the future due to model deprecation); and (3) the estimated runtime of each gold implementation
should be shorter than 12 hours on a single A100 GPU. The final dataset includes the extension
instruction, target research papers in both .pdf and .md format (converted using PyMuPDF4LLM to
accommodate agents that lack the ability to read .pdf files), and the original codebase.

3.3 BENCHMARK CONSTRUCTION PROCESS

For each extension proposal, a domain expert (PhD student-level or above) first verified that the
original codebase replicates the results of the associated paper on our virtual machines (details to
follow). Then, they implemented the “gold” edits for the target extension and recorded the numerical
outcomes, ensuring that the runtime does not exceed 12 hours. This implementation process and
the outcomes were validated by at least one other author. Finally, the domain expert wrote the
instruction that consists of a brief description of the original paper, the extension proposal, and how
this proposal should be tested (see Appendix [C|for a full instruction for one of our tasks, WinoDict).
The description of the “how” was deliberately high-level to meet the desideratum of evaluating a
sufficiently autonomous capacity. Nevertheless, since the instructions should not be confusing or
ambiguous, they were polished through multiple rounds of revisions by multiple authors to improve
clarity. Importantly, if we foresaw degrees of implementation freedom that may introduce random
variation, we controlled for this by specifying constraints (e.g., use an implementation of Pearson
correlation function from the scipy package as opposed to implementing this from scratch). During
this revision process we furthermore ensured that each extension was self-contained. No part of
the gold edits required information external to the set of inputs provided to the system. As a part
of the revisions for self-containment, we provided information such as specific model identifiers
and explanations of necessary hyperparameters not in any README or the paper as a part of the
instruction, and added version information for all of the packages (via an environment . yml file).

3.4 EVALUATION METRICS

Our main metric is final success rate, which measures whether the outcome of executing the model-
implemented code falls within the target range (more details below). We define two additional metrics
for finer-grained analyses: execution success rate and file recall. We describe each metric below.

Final Success Rate Final success rate evaluates whether the model correctly implements the
specified research extension. This evaluation either checks whether the final results exactly match
the results of the reference implementation (if the run is fully deterministic) or it checks whether the
results fall within a gold range that we obtained by running the gold implementation multiple times
with different random seeds to account for output variability. In the latter case, a model solution is
considered successful if its final execution outcome falls within this bound.

Execution Success Rate Execution success rate checks whether the generated code runs without
errors in our evaluation environment. This metric evaluates the general well-formedness of the code
and contextual understanding sufficient to avoid runtime errors.

File Recall File recall quantifies whether files edited in the gold solution were also edited by
the model: File Recall = |FileS,gent N Filesgoia| / [Filesgoia|. The limitation of this measure is the
dependency on the gold solution. Technically, a solution could achieve zero file recall with perfect
final success. E.g., if a model solution was exactly equivalent to gold but created new files with
identical content instead of editing, and changed references appropriately in the repository, this would
be the case. Still, we take human expert edits to reflect a reasonably efficient set of modifications.

3.5 EVALUATION INFRASTRUCTURE

Submission format Our metrics defined above require execution of agent generated code. We
propose to conduct this execution on a virtual machine to control for hardware specification and
package dependencies. We will host this infrastructure using our own resources, and conduct
evaluation asynchronously at a regular interval to update the leaderboard with the submissions we
receive, similarly to Jimenez et al.|(2024)). The submissions will be received in the form of git patch

Under review as a conference paper at ICLR 2026

aider Claude Code OpenHands
Final Success Execution Success File Recall

Claude 4

0.19 S 0.50 =— 086
Sonnet

Claude 3.7 0.14 039 = 0.87
0.06 036

T
OpenAl | 9 00
ol
OpenAl 0.03
od-mini
Deepseek
o 10.00 0.00
Claude 3.7 0.25 0.33
Sonnet
Claude 4 e 031 R — Y 1
Sonnet
Claude 3.7
Sonnet

......

Figure 2: Agent performance on REXBENCH. The color coding indicates the agent framework and
the y axis indicates the the backbone LLM. Results include three runs per task to account for agent
random variation. Error bars show standard error of the mean of all runs per model computed using
the closed form formula (20, no normality assumption).

files (as opposed to full edited repositories) to streamline the submission process. Additionally, we
will request agent log files to verify that the task was completed autonomously by an agent.

Infrastructure pipeline We host our evaluation infrastructure based on the OpenStack platform
on an academic cloud computing service. For each patch file received, we launch an Ubuntu virtual
machine instance with a 20GB root disk, where we run a task-specific Apptainer container (Singularityl,
2021) that has the original codebase and evaluation scripts pre-loaded and the environment set up.
Each instance is also equipped with task-specific hardware: either a single NVIDIA A100 40GB GPU,
a single K80 12GB GPU, or just a CPU (see Appendix [B] Table2). To control for random variation of
the execution outcomes to the best of our effort, we (1) fix all random seeds in the codebase wherever
possible, and (2) run the evaluations with exactly the same hardware configuration as our gold runs.
Inside the container, we apply the patch file and execute a single bash script run_apptainer.sh
that contains all necessary commands (this requirement is also provided in the task instructions). We
limit the runtime to 12 hours, which is around twice the duration of the gold solution with the longest
runtime among our extension tasks (see Table 2] for all estimated runtimes). Once task execution is
complete or the attempt crashes, any result files and task execution logs are copied to an external
storage volume. We then delete the virtual machine instance and evaluate the results. This setup
ensures a fully containerized and task-level parallelizable evaluation infrastructure.

4 EXPERIMENTS

4.1 MAIN EXPERIMENT

We follow steps shown in Figure [I] and evaluate thirteen LLM agents, combining three agent
frameworks with various LLM backbones (discussed below). We pass the full set of inputs for each
task one by one to the agent to evaluate each task independently of each other. We run each task three
times with the same agent model to account for agent random variation.

4.1.1 BASELINE AGENT DESIGN

We used three different agent frameworks: two open-source (aider, aider Al (2023)) and OpenHands,
Wang et al.| (2025)) that we adapted for the task, as well as the proprietary Claude Codel aider
and OpenHands both support several backbone LLMs. We evaluated GPT-5, ol and o4-mini
(OpenAl), Claude 3.7 Sonnet and Claude 4 Sonnet (Anthropic), and the open-weight
DeepSeek-R1. We discuss a few design decisions shared between our agents below. Note that this
does not imply future submissions to our benchmark should be subject to the same design decisions.

Shared design considerations For better runtime controllability, we disabled Python code execu-
tion for all agents to the best of our effort. Regarding the settings of the backbone LLMs, we set the
temperature to 0.7 for Claude 4/3.7 Sonnet and DeepSeek-R1. For GPT-5, o1, and 04-mini, we used

https://docs.anthropic.com/en/docs/claude-code/overview

Under review as a conference paper at ICLR 2026

[nowins
U7 Hints
[P vetailed Hints

°

b

Final Success
o o o
[

°

031
25

0.20} o 0.19
B 0.17
o] 0:14 0.14 l0.14
o 0.08 o ° 0.08] o 0.08
o 0 q 0:060.085 5 0.03 0.03/7]° ° oo
o o © d 0.000.00[578] © | 0.000.000.00 ol 0.000.00 0

Claude Claude OpenAl OpenAl OpenAl DeepSeek-Rl _ Claude Claude Claude OpenAl OpenAl OpenAl DeepSeek-R1
4Sonnet 3.7 Sonnet GPT-5 ol od-mini 3.7Sonnet 4Sonnet 3.7 Sonnet GPT-5 o1 o0d-mini

°
s

Figure 3: Final success rates for each agent-LLM combination and hint level.

the default settings, as these models do not support custom temperature adjustment. We specified the
reasoning effort as "medium" for all OpenAl models. As discussed in Section[3.3] our evaluation
infrastructure requires git patch files. We created the patch files using a separate script after the agents
had made changes to the codebase. We discuss individual implementation details in Appendix [D]

4.2 EXPERIMENT WITH ADDITIONAL HINTS

We conduct an additional set of experiments where we provide different levels of hints to the agents.
This experiment serves two purposes: (1) as a layer of sanity check that our tasks are possible to
solve; (2) to gain a more fine-grained understanding of where the difficulties lie, if the agents do find
the tasks difficult without hints. We design two levels of hints, where the first level of hints mainly
provides help with information localization, and the second level of hints provides a step-by-step
implementation guidance. Information localization hints, for instance, help find specific locations
of edits by directly naming a file to be edited (“You would need to edit test_function ()
in src/testfile.py”), help find necessary information (“Look at the README to find the
descriptions of the hyperparameters”), or directly provide certain pieces of information that are part
of the given input but nontrivial to find (“Use ID #1014 for the special token”). On the other hand, the
second level of hints breaks down the gold solution into concrete implementation steps. Therefore,
we expect the second level of hints to yield substantially higher success rates. In our experiments,
hints are cumulative; when providing the second level of hints, the first level of hints is also provided.

4.3 RESULTS

Main experiment Figure 2 shows our main results. Most agents struggle with the task, with the
best performing agents (OpenHands + {Claude 4 Sonnet, GPT-5}) achieving 31% average final
success rates. Claude 4 Sonnet and GPT-5 were the best backbone LLMs—when different LLMs
were available, they yielded the strongest performance. All agents achieved nonzero execution
success rates except for DeepSeek-R1, which failed completely. Claude 4 Sonnet and GPT-5 again
performed best, with success rates of 67% and 72% respectively when combined with OpenHands.
The agents overall achieved high file recall, showing that they were able to locate core edit targets
based on the instructions.

Additional hints Figure[3] (and Table d]in Appendix [F) show the results of additional experiments
with two different hint levels. Generally, hints improve the final success rate, but tend to help less
when the default success rate was zero, suggesting there is a base level of competence required to
make use of the hints provided. With the hints, we could boost the performance of the best agents,
OpenHands + {Claude 4 Sonnet, GPT-5}, achieving 47% and 42% final success rates, respectively.

4.4 RESOURCE CONSUMPTION

Based on the final success rate, we plot the cost/time vs. performance tradeoff (Figured)), showing
that aider + o4-mini, aider + Claude 4 Sonnet and OpenHands + Claude 3.7 Sonnet lie on the
Pareto frontier for both cost and time. We provide the full time and cost estimates for agent runs
in Appendix [F| Table[6] In terms of token usage statistics, aider consistently used 2 turns due to its
non-iterative design. Claude Code used 25-35 turns and OpenHands used 17-93 turns, making use
of active multi-turn structures. Due to its closed-source nature, we could not obtain token counts

Under review as a conference paper at ICLR 2026

Cost vs Final Success (Pareto Frontier) Time vs Final Success (Pareto Frontier)

g
>
»

—
<

Final Success Rate
5 &

A O e A
2 3 a 100 200 300 400 500 600 700 800
Average Cost ($) Average Duration (sec)

g
c®ee___

[J

>

Figure 4: Cost effectiveness and time efficiency of coding agents on REXBENCH.

for Claude CodeE] OpenHands used the most tokens, especially with Claude 4 Sonnet and GPT-5,
reaching up to 1.86M prompt tokens (almost 560 times more than aider). As the hint levels increased,
both turns and token usage in OpenHands tended to grow, while the turns in Claude Code decreased.
See Table[5]in Appendix [F for token usage statistics by model and by hint levels.

5 ANALYSIS AND DISCUSSION

5.1 PATTERNS OF ERROR

We discuss notable error patterns, dividing them into explicit and implicit errors. We treat cases
where the agent-generated code failed to execute as explicit errors, and cases where the execution
succeeded but the experimental outcome did not match the numerical criteria as implicit.

Explicit errors Explicit errors were automatically identifiable from execution logs. The most
common source of error was Python value errors (e.g., incorrect chat templates or invalid parameters).
These errors were observed in all agents. Another common source of error was empty patch files due
to the failure of the agent to modify any code. The majority of the empty patch file errors were from
aider + {DeepSeek, 04-mini}. We attribute this to the non-iterative nature of this agent framework:
agents need to solve the entire extension task in one shot rather than breaking it down, often leading
to incomplete or failed command executions during agent runs. Beyond these cases, most explicit
errors were Python errors and they were mostly Python native errors rather than library-specific errors.
Agents with Claude or GPT-5 as backbone led to fewer SyntaxErrors (in particular, OpenHands +
{Claude 4/3.7 Sonnet, GPT-5} had no SyntaxErrors), whereas ol produced SyntaxErrors frequently.
There were also several cases of execution timeout, which occurs when the experiment runtime
exceeds the limit of 12 hours we set (no gold solution required more than 6 hours). The full error
distribution is shown in Figure [7]and Tables[7]and [8]in Appendix [

Implicit errors Analysis of implicit errors (execution success but mismatch with gold outcome)
involved greater manual effort because it required a holistic review of agent edits. Therefore, we
focused our analysis on the top 2 agents (OpenHands + {Claude 4, GPT-5}). Overall, the agents’
implicit errors were categorizable into errors in implementation logic and errors in value (e.g.,
within-bounds index errors, incorrect hyperparameters or paths)—the ratio of logic vs. value errors
was about 2:1 for Claude 4 and about 1:1 for GPT-5. We also estimated the debugging difficulty
from the manually identified sources of error, using the scale of easy (requires small local fix),
medium (requires logical but local revisions), and hard (requires holistic revisions). For both models,
the majority of the errors were easy to debug. OpenHands + GPT-5 had more implicit errors,
especially ones falling into the easy and medium categories (21 easy, 12 medium, 3 hard) compared
to OpenHands + Claude 4 (16 easy, 4 medium, 4 hard), revealing a qualitative difference in the agents’
solutions although the quantitative success rates were similar. Many of the medium and hard implicit
errors arose from agents “over-editing” the code beyond the given instructions (e.g., adding extra
(incorrect) exception handling or changing irrelevant flags/prompts). These unrequested edits often
caused silent failures or subtle deviations from the gold implementation leading to markedly different
results, making debugging harder. Task-specific examples are discussed in Appendix [G]

3As of now, token counts for Claude Code have become available, but this feature was not available when
our experiments were conducted.

Under review as a conference paper at ICLR 2026

Regression Coefficients for Final Success
-0.038 **

Line of Change

(Gold Solution)

File Count
(Codebase)
Repository Popularity
(Stars+Forks)

0.005
s @
-0.003 ** |
—— |

i 0.003
Citation

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01
Coefficient Value

Figure 5: Regression coefficients with 95% confidence intervals for predictors of final
success. (Regression model: final_success ~ line_change 4+ file_count +
repository_popularity + citation + (1| model)). (*: p < .05, **: p < .01)

5.1.1 QUALITATIVE OBSERVATIONS

Implicit errors increase as model capacity increases, but are more difficult to analyze A high-
level observation is a general pitfall associated with stronger models (for our task and coding tasks
more generally): the cause of failure is difficult to identify. Better models produced more implicit
errors (e.g., OpenHands + Claude 3.7: 6, OpenHands + Claude 4: 24), where the code successfully
executes but the outcome is incorrect. In such cases, the reasons behind failure were not always
easily traceable even for the experts who implemented the solutions. This highlights the need for
heavy sanity checks (perhaps supported by system design) if an agent were to be deployed in practice.
Plausible-looking implementations that execute can lead researchers to draw conclusions from faulty
implementations, and over-reliance on coding agents may lead to a proliferation of incorrect results.

Overthinking is often an issue A prominent issue with weaker LLMs (Deepseek-R1, 01, 04-mini)
was overthinking, where the thinking process was excessive both in terms of the number of output
tokens and agent runtime, frequently leading to no actual output in terms of code generation. aider +
DeepSeek-R1 was especially prone to this behavior, overthinking being one of the most prominent
failure modes (close to one third of total failures). One possibility is that models’ reasoning behavior
somehow clashes with the reasoning/“thinking” loop of the agent framework, but this pattern appears
weaker in Claude 4/3.7 Sonnet and GPT-5, which are themselves reasoning models.

Agents vary in their ability to make use of hints As noted in Section4.3] providing additional
hints did not always improve agents’ success rates, nor did more hints necessarily yield greater
gains. While the best agents (OpenHands + {Claude 4, GPT-5}) benefited from both levels of hints,
many others showed no improvement. The best agents benefitted more from the second level of
hints, suggesting that a certain baseline competence or underlying model capacity may be required to
leverage more detailed, human-written guidance. We observed idiosyncratic task-level variation as
well; for instance, for the Othello task, OpenHands + Claude 3.7 Sonnet and Claude Code achieved
100% success rate with no hints and with the first level of hints, but 0% success rate when additionally
given the second level of hints. Upon closer observation, these agents employed a qualitatively
different strategy with the second level of hints. However, it was not the case that this particular hint
was misleading, since the 2 best performing agents were able to use this hint to achieve 100% success
rate on this task. This can be interpreted as models varying in their ability to implement different
equally plausible solutions, and the step-by-step guideline in the second level of hints specifying a
different solution from the one that the model could implement easily. We noticed this pattern for
two tasks (Othello and Tree-of-Thoughts), but not in general.

5.2 WHAT MAKES AN EXTENSION DIFFICULT FOR AGENTS?

We hypothesize four sources of difficulty that could contribute to agent failure: (1) implementation
effort; (2) codebase size; (3) unfamiliarity with the codebase; and (4) unfamiliarity with the research
topic. We operationalize them as: (1) lines of code change in our gold solution; (2) file counts of the
original codebase; (3) GitHub stars + forks (repository popularity); and (4) Google Scholar citations
of the research paper(s), respectively. We use these as predictors of final success in a mixed-effects
model with model identity as a random effect. Figure [5|shows the regression coefficients. Lines of
code changes has a significant negative effect (8 = —0.038, p < 0.01) on final success, indicating
that tasks with higher implementation effort are more difficult. Repository popularity had a significant
effect but the effect size was negligible. Other factors were not statistically significant.

Under review as a conference paper at ICLR 2026

6 CONCLUSION

We presented REXBENCH, a benchmark evaluating the autonomous capacity of Al systems to
implement hypothesis-driven research extensions in the domain of Al research. REXBENCH consists
of realistic but well-scoped extension tasks motivated by existing research. To perform well, a system
must be able to understand the expert-written extension instructions situated in specific research
context, understand the structure and logic of the original codebase, and autonomously plan and
implement the requested extension. Our tasks are by design robust to data contamination due to the
extensions requiring novel implementations whose solutions are not available publicly. Experiments
with various agent frameworks combined with competent backbone LLMs show that most systems
struggle on our benchmark, with the best performing models (OpenHands + {Claude 4 Sonnet,
GPT-5}) achieving 31% extension success rate. Notably, agents with ol or DeepSeek-R1 as backbone
showed (close to) zero success rate. Nevertheless, closer analysis of the best models revealed promise:
the strongest backbone LL.Ms (Claude 4 Sonnet, GPT-5) achieved higher execution success rates
than weaker models,with implementations often syntactically valid and logically on the right track.
This observation, taken together with the large headroom, highlights the utility of REXBENCH for
guiding future developments of research agents. Finally, based on the analyses of the agents tested in
this work, we put forward several actionable recommendations for the future.

Short-horizon recommendations:

* Incorporate iterative design: Our findings show that iterative design is critical for success
on our tasks: aider (a single-turn framework) showed weaker performance in general, and
many success scenarios for multi-turn agents could be attributed to effective use of the
previous turns’ output. For instance, in the CheckEval task, OpenHands + GPT-5 used one
turn to inspect a file’s structure with bash before writing code in the next.

* Support scratchpads: Agents frequently failed on the basis of small errors such as path
mis-specification. Such errors could be easily caught if agents can make use of a “scratchpad”
where small code snippets can be executed.

* Support “repair”’ mechanism: Agents should incorporate a mechanism to repair a step in
their action trajectory, for instance by reverting the changes made in the step and re-initiating
the LLM call. One use case of this would be detecting and repairing overthinking in the LLM
output, which was a prominent failure mode in several agents, especially with DeepSeek-R1
as backbone, that resulted in no code edits.

Longer-horizon recommendations:
* More stringent verification: One of the most concerning observations from our analysis is
the increasing trend of implicit errors as the capacity of the backbone LLM grows. Under
a benchmarking setup, numeric mismatches of the outcome to the gold solution easily
indicates failure, but in real deployment scenarios, there exist no gold solutions. This
indicates a need for more stringent verification processes, ideally by agent design rather than
relying on manual verification from the end users.

* Prevent over-editing: A prominent failure mode of the strongest agents was “over-editing”,
where agents make unrequested modifications that often lead to implicit errors. Our findings
show that simply instructing an agent to “keep everything else not specified constant”
(see Appendix [C) is insufficient. A general improvement in hallucination reduction and
instruction-following would help, but for research coding where fine-grained controls of
experimental details is critical, a more targeted solution for over-editing may be beneficial.

* Improve handling of long contexts: Our analysis shows that the most important factor to
agent failure is the size of the required edits. Given that the maximum lines of change in the
gold solutions in our benchmark is not huge (in the magnitude of hundreds), there is a need
for future agents to handle long contexts better, both within and across file boundaries.

The future of REXBENCH Finally, as discussed in the introduction, we view the release of
REXBENCH and this paper as a motivating start to a larger community-driven effort. While our
tasks were primarily in the AI domain with a focus on topics aligning with the expertise of our team,
we believe the format of the extension task and evaluation framework shown in Figure [T] are broadly
applicable beyond our set of tasks. We hope the current set draws community interest in research
extensions as an interesting problem for agents, and hope to collaborate with researchers and/or
solicit community contributions for a comprehensive coverage of task domains and implementation
complexities.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this work, we showed that current LLM-based agents cannot reliably produce code for Al research
without additional human supervision. We based this argument on the low final success rate of all
evaluated agents, as well as the danger of the increasing trend of implicit errors as model capacity
improves. Given the rapid progress of Al research and model development, it is a likely possibility
that new agents would perform significantly better on this benchmark in the near future. The biggest
risk we therefore foresee is that good performance on this benchmark is seen as a sufficient condition
for reliable agents rather than a necessary one. While we consider the benchmark to be well-suited
for measuring progress in the development of future agents, good performance should NOT be seen
as sufficient evidence for an agent being able to autonomously produce reliable research code.

We also would like to highlight again that the baseline agents we evaluated for this work did not reach
the level of competence that would translate into autonomous research extension capacities in the real
world. Given the difficulty of debugging, deployment of such systems without rigorous verification
measures faces the danger of leading researchers to draw conclusions from faulty implementations
and of the erosion of trust in published results.

Furthermore, as discussed in Section 3.1} a benchmark being realistic inherently conflicts with the
ease of automatic evaluation. In particular, a task like research extension can be extremely open
ended in reality, even when constrained with a specific proposal and hypothesis. We opted for a
middle ground where we do not enforce strong limits on Zow a system may implement the target
extension and condition final success only on alignment of numerical outcomes. This necessitated
a stronger control for sources of variation, which led us to write instructions as self-contained and
unambiguous as possible. This setting is idealized as the instructions are much more informative and
clearer than an actual task a human researcher faces, even in scenarios where the extension idea is
provided to them (e.g., an advisor suggesting to a PhD student “How about we try X?”), missing out
on the real difficulties lying in the initial trial-and-error concretization step.

Finally, executing machine-written code always bears safety risks and providing Al agents with too
much freedom for exploration may enable them to cause harm. To mitigate this risk, we narrowly
scoped the implementation tasks in our experiments fully based on human-generated hypotheses and
instructions. Furthermore, any machine-written code was executed in a containerized environment
without internet access. We recommend similar setups for the execution of any code that is output by
Al agents.

REPRODUCIBILITY STATEMENT

Our dataset and the code for our baseline agents are submitted as supplementary material. We have
furthermore taken the following steps to ensure reproducibility of our experimental results. First, we
fix random seed values across multiple libraries, including Python’s built-in random module, NumPy,
PyTorch (CPU and CUDA), and CUDA cuDNN, in order to control for nondeterminism in obtaining
the execution outcomes from the gold solutions. Second, we execute both the gold solutions and
agent solutions within virtual machines using Apptainer containers. These containers are configured
with identical hardware resources and software/library versions, ensuring that all experiments run
under consistent conditions and that reported performance is not affected by hardware or software
variability. In addition, while we refrain from releasing gold solutions publicly due to contamination
concerns, we welcome interested researchers to request access to specific ground-truth solutions for
further validation and standardization purposes.

REFERENCES

Talor Abramovich and Gal Chechik. Ablationbench: Evaluating automated planning of ablations in
empirical ai research. arXiv preprint arXiv:2507.08038, 2025.

aider Al. aider: Ai pair programming in your terminal. https://github.com/Aider—AI/
aider) 2023. Accessed: 2025-05-12.

10

https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider

Under review as a conference paper at ICLR 2026

Anthropic. Claude 3.7 sonnet system card. |https://assets.anthropic.com/m/
785e231869%9ea8b3b/original/claude-3-7-sonnet-system—card.pdf, 2024.
Accessed: 2025-05-14.

Anthropic. Claude 4 sonnet system card. https://www—cdn.anthropic.com/
6d8a8055020700718b0c49369f60816ba2a7c285.pdf} 2025. Accessed: 2025-09-22.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents. arXiv preprint arXiv:2505.20411, 2025.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks from
research repositories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
12622-12645, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.702. URL |https://aclanthology.org/2024,
emnlp—-main.702/.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570-578, 2023. URL https://www.naturel
com/articles/s41586-023-06792-0.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language
agents for data-driven scientific discovery, october 2024. arXiv:2410.05080, 2024. URL https:
//arxiv.org/abs/2410.05080.

Jonathan H. Choi. How to use large language models for empirical legal research. Journal of
Institutional and Theoretical Economics (JITE), 180(2):214-233,2024. URL https://ideas!
repec.org/a/mhr/jinste/urndoil0.1628-jite—-2024-0006.htmll

Rébert Csordas, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 619-634, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.49. URL https://aclanthology.org/2021.emnlp-main.49/.

Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen Deng, Shuaiqi Liu, Renze Lou, Henry Peng
Zou, Pranav Narayanan Venkit, Nan Zhang, Mukund Srinath, Haoran Ranran Zhang, Vipul Gupta,
Yinghui Li, Tao Li, Fei Wang, Qin Liu, Tianlin Liu, Pengzhi Gao, Congying Xia, Chen Xing,
Cheng Jiayang, Zhaowei Wang, Ying Su, Raj Sanjay Shah, Ruohao Guo, Jing Gu, Haoran Li,
Kangda Wei, Zihao Wang, Lu Cheng, Surangika Ranathunga, Meng Fang, Jie Fu, Fei Liu, Ruihong
Huang, Eduardo Blanco, Yixin Cao, Rui Zhang, Philip S. Yu, and Wenpeng Yin. LLMs assist NLP
researchers: Critique paper (meta-)reviewing. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 5081-5099, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.292. URL https://aclanthology.org/
2024 .emnlp-main.292/.

Julian Martin Eisenschlos, Jeremy R. Cole, Fangyu Liu, and William W. Cohen. WinoDict:
Probing language models for in-context word acquisition. In Andreas Vlachos and Isabelle
Augenstein (eds.), Proceedings of the 17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pp. 94—102, Dubrovnik, Croatia, May 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.7. URL https:
//aclanthology.org/2023.eacl-main. 7/l

Kanishk Gandhi, Michael Y Li, Lyle Goodyear, Louise Li, Aditi Bhaskar, Mohammed Zaman, and
Noah D Goodman. Boxinggym: Benchmarking progress in automated experimental design and
model discovery. arXiv:2501.01540, 2025. URL https://arxiv.org/abs/2501.01540.

11

https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://aclanthology.org/2024.emnlp-main.702/
https://aclanthology.org/2024.emnlp-main.702/
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://arxiv.org/abs/2410.05080
https://arxiv.org/abs/2410.05080
https://ideas.repec.org/a/mhr/jinste/urndoi10.1628-jite-2024-0006.html
https://ideas.repec.org/a/mhr/jinste/urndoi10.1628-jite-2024-0006.html
https://aclanthology.org/2021.emnlp-main.49/
https://aclanthology.org/2024.emnlp-main.292/
https://aclanthology.org/2024.emnlp-main.292/
https://aclanthology.org/2023.eacl-main.7/
https://aclanthology.org/2023.eacl-main.7/
https://arxiv.org/abs/2501.01540

Under review as a conference paper at ICLR 2026

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
arXiv:2502.18864,2025. URL https://arxiv.org/abs/2502.18864.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiagian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A Merrill, Jeffrey
Heer, and Tim Althoff. BLADE: Benchmarking language model agents for data-driven science.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 13936-13971, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.815.
URLhttps://aclanthology.orqg/2024.findings—emnlp.815/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv:2501.12948, 2025. URL https://arxiv.org/
abs/2501.12948.

John Hewitt, Nelson F. Liu, Percy Liang, and Christopher D. Manning. Instruction following
without instruction tuning. arXiv:2409.14254,2024. URL|https://arxiv.org/abs/2409|
14254.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: evaluating language agents
on machine learning experimentation. In Proceedings of the 41st International Conference on
Machine Learning, pp. 20271-20309, 2024. URL https://proceedings.mlr.press/
v235/huang24y.htmll

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAl ol system card. arXiv:2412.16720,
2024. URL https://arxiv.org/abs/2412.16720.

Peter Jansen, Oyvind Tafjord, Marissa Radensky, Pao Siangliulue, Tom Hope, Bhavana Dalvi Mishra,
Bodhisattwa Prasad Majumder, Daniel S. Weld, and Peter Clark. Codescientist: End-to-end
semi-automated scientific discovery with code-based experimentation. arXiv:2503.22708, 2025.
URL https://arxiv.org/abs/2503.22708.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?id=VTF8yNQM66.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts? arXiv:2409.07703,2024. URL https://arxiv.org/abs/2409.07703l

Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, and Christopher Potts. Mis-
sion: Impossible language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 14691-14714, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.787. URL https:
//aclanthology.org/2024.acl-1long.787/.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9087—
9105, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.731. URL https://aclanthology.org/2020.emnlp-main.731/|

Najoung Kim, Sebastian Schuster, and Shubham Toshniwal. Code pretraining improves entity

tracking abilities of language models. arXiv:2405.21068, 2024. URL https://arxiv.org/
abs/2405.21068.

12

https://arxiv.org/abs/2502.18864
https://aclanthology.org/2024.findings-emnlp.815/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2409.14254
https://arxiv.org/abs/2409.14254
https://proceedings.mlr.press/v235/huang24y.html
https://proceedings.mlr.press/v235/huang24y.html
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2503.22708
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2409.07703
https://aclanthology.org/2024.acl-long.787/
https://aclanthology.org/2024.acl-long.787/
https://aclanthology.org/2020.emnlp-main.731/
https://arxiv.org/abs/2405.21068
https://arxiv.org/abs/2405.21068

Under review as a conference paper at ICLR 2026

Hiroaki Kitano. Nobel turing challenge: creating the engine for scientific discovery. NPJ systems
biology and applications, 7(1):29, 2021. URL https://www.nature.com/articles/
s41540-021-00189-3|

Patrick Tser Jern Kon, Jiachen Liu, Qiuyi Ding, Yiming Qiu, Zhenning Yang, Yibo Huang, Jayanth
Srinivasa, Myungjin Lee, Mosharaf Chowdhury, and Ang Chen. Curie: Toward rigorous and
automated scientific experimentation with ai agents. arXiv:2502.16069, 2025. URL https:
//arxiv.org/abs/2502.16069.

Jon M. Laurent, Joseph D. Janizek, Michael Ruzo, Michaela M. Hinks, Michael J. Hammerling,
Siddharth Narayanan, Manvitha Ponnapati, Andrew D. White, and Samuel G. Rodriques. Lab-
bench: Measuring capabilities of language models for biology research. arXiv:2407.10362, 2024.
URLhttps://arxiv.org/abs/2407.10362.

Yukyung Lee, Joonghoon Kim, Jachee Kim, Hyowon Cho, Pilsung Kang, and Najoung Kim.
Checkeval: A reliable LLM-as-a-judge framework for evaluating text generation using checklists.
arXiv:2403.18771,2025. URL https://arxiv.org/abs/2403.18771.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=DeG07_TcZvT.

Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xiaochen Cai, Mingjun Xu, Xiang Wang, Linfeng
Zhang, Guolin Ke, and Hengxing Cai. ScilitLLM: How to adapt LLMs for scientific literature
understanding. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=8dzKkeWUUb!.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai
scientist: Towards fully automated open-ended scientific discovery. arXiv:2408.06292, 2024. URL
https://arxiv.org/abs/2408.06292.

Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, and Xinya Du. Llm4sr: A survey on large language
models for scientific research. arXiv:2501.04306, 2025. URL https://arxiv.org/abs/
2501.04306.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Najoung
Kim, Arya McCarthy, and Hosein Mohebbi (eds.), Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP, pp. 16-30, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.2. URL|https:
//aclanthology.org/2023.blackboxnlp-1.2/l

OpenAl. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
2025. Accessed: 2025-09-22.

Harshith Padigela, Chintan Shah, and Dinkar Juyal. Ml-dev-bench: Comparative analysis of ai agents
on ml development workflows. arXiv:2502.00964, 2025. URL https://arxiv.org/abs/
2502.00964.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv:2504.17192,2025. URL https:
//arxiv.org/abs/2504.17192.

Chan Jun Shern, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. MLE-bench: Evaluating machine
learning agents on machine learning engineering. arXiv:2410.07095, 2024. URL https://
arxiv.org/abs/2410.07095.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can LLMs generate novel research ideas? a
large-scale human study with 100+ NLP researchers. arXiv:2409.04109, 2024. URL https:
//arxiv.org/abs/2409.041009.

13

https://www.nature.com/articles/s41540-021-00189-3
https://www.nature.com/articles/s41540-021-00189-3
https://arxiv.org/abs/2502.16069
https://arxiv.org/abs/2502.16069
https://arxiv.org/abs/2407.10362
https://arxiv.org/abs/2403.18771
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=8dzKkeWUUb
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2501.04306
https://arxiv.org/abs/2501.04306
https://aclanthology.org/2023.blackboxnlp-1.2/
https://aclanthology.org/2023.blackboxnlp-1.2/
https://cdn.openai.com/gpt-5-system-card.pdf
https://arxiv.org/abs/2502.00964
https://arxiv.org/abs/2502.00964
https://arxiv.org/abs/2504.17192
https://arxiv.org/abs/2504.17192
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109

Under review as a conference paper at ICLR 2026

Zachary S Siegel, Sayash Kapoor, Nitya Nadgir, Benedikt Stroebl, and Arvind Narayanan. CORE-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=BsMMc4MEGS.

Singularity. Singularity, 2021. URL |https://doi.org/10.5281/zenodo.1310023.

Michael D. Skarlinski, Sam Cox, Jon M Laurent, James D. Braza, Michaela Hinks, Michael J.
Hammerling, Manvitha Ponnapati, Samuel G. Rodriques, and Andrew D. White. Language
agents achieve superhuman synthesis of scientific knowledge. arXiv:2409.13740, 2024. URL
https://arxiv.org/abs/2409.13740.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv:2504.01848,2025. URL https://arxiv.org/abs/2504,
01848.

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin Wang, Derry Wijaya, Jie Chen, and Yoon
Kim. Explain-then-translate: an analysis on improving program translation with self-generated
explanations. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 1741-1788, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.119. URL https://
aclanthology.org/2023.findings-emnlp.119/.

The Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments,
Apr2025. URL https://github.com/laude-institute/terminal-bench,

Minyang Tian, Luyu Gao, Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, HAO TONG, Kha Trinh,
Chenyu Tian, Zihan Wang, Bohao Wu, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu,
Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu A Huerta, and Hao Peng.
Scicode: A research coding benchmark curated by scientists. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024a. URL https:
//openreview.net/forum?id=ADLaALtdoG.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Hui Haotian, Liu
Weichuan, Zhiyuan Liu, and Maosong Sun. DebugBench: Evaluating debugging capability of
large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics: ACL 2024, pp. 4173-4198, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.247. URL
https://aclanthology.org/2024.findings—acl.247/.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al software developers
as generalist agents. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=0Jd3ayDDoF.

Leon Weber-Genzel, Siyao Peng, Marie-Catherine De Marneffe, and Barbara Plank. VariErr NLI:
Separating annotation error from human label variation. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 2256-2269, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.123. URL
https://aclanthology.org/2024.acl-long.123/.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limi-
tations of language models through counterfactual tasks. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long

14

https://openreview.net/forum?id=BsMMc4MEGS
https://doi.org/10.5281/zenodo.1310023
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2504.01848
https://arxiv.org/abs/2504.01848
https://aclanthology.org/2023.findings-emnlp.119/
https://aclanthology.org/2023.findings-emnlp.119/
https://github.com/laude-institute/terminal-bench
https://openreview.net/forum?id=ADLaALtdoG
https://openreview.net/forum?id=ADLaALtdoG
https://aclanthology.org/2024.findings-acl.247/
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2024.acl-long.123/

Under review as a conference paper at ICLR 2026

Papers), pp. 1819-1862, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.102. URL https://aclanthology.org/2024/|
naacl-long.102/.

Yanzheng Xiang, Hangi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench: Bench-
marking 1lms in agent-driven algorithmic reproduction from research papers. arXiv:2504.00255,
2025. URL https://arxiv.org/abs/2504.00255.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu, Hongbo Xu, Guodong Long, Jian-Guang Lou,
and Shuai Ma. Re-reading improves reasoning in large language models. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 15549—15575, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.871. URL
https://aclanthology.org/2024.emnlp—-main.871/.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 11809—11822. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/271db9922b8d1lf4dd7aaef84ed5ac7/03-Paper—Conference.pdfl

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An LLM agent benchmark for data science.
arXiv:2502.13897,2025. URL https://arxiv.org/abs/2502.13897.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi Yang. Can large
language models transform computational social science? Computational Linguistics, 50(1):
237-291, 03 2024. ISSN 0891-2017. doi: 10.1162/coli_a_00502. URL https://doi.org/
10.1162/coli_a_00502.

15

https://aclanthology.org/2024.naacl-long.102/
https://aclanthology.org/2024.naacl-long.102/
https://arxiv.org/abs/2504.00255
https://aclanthology.org/2024.emnlp-main.871/
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/abs/2502.13897
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1162/coli_a_00502

Under review as a conference paper at ICLR 2026

A LIST OF PAPERS FOR REXBENCH EXTENSION

Table 1: List of papers that form the bases for extensions in REXBENCH.

Identifier Extension Type Source paper Venue
. . CheckEval: A reliable LLM-as-a-Judge framework
CheckEval Evaluation for evaluating text generation using checklists|Lee et al.|(2025) EMNLP 2025
COGS: A C itional Generalization Chall
Based on Se(r)‘:ty:zl;(;fcl Z};urpr:tZ;i:)unlI(air:)Z’c Li:zeé;zn (g ;020' EMNLP 2020
COGS Model 4
The Devil is in the Detail: Simple Tricks Improve
Systematic Generalization of Transformers|Csordads et al.|(2021) EMNLP 2021
. . Code Pretraining Improves Entity Tracking Abilities .
Entity Tracking Model of Language Models|Kim et al.|(2024) Preprint
Explain Alsorithm Explain-then-Translate: An Analysis on Improving EMNLP
then Translate & Program Translation with Self-generated Explanations|Tang et al.|(2023) Findings 2023
Instruction Tuning Model Instruction Following without Instruction Tuning|Hewitt et al.|(2024) Preprint
Mission Impossible Data/Evaluation ~ Mission: Impossible Language Models|Kallini et al.|(2024) ACL 2024
Emergent World Representations: Exploring ICLR 2023
e . ine onthetic TaskILi et al. 3)
Othello Data/Evaluation Sequence Model Trained on a Synthetic Task|Li et al. (2023}
Emergent Linear Representations in World Models
of Self-Supervised Sequence Models\Nanda et al.|(2023) BlackboxNLP 2023
. . Reasoning or Reciting? Exploring the Capabilities and
Reasoning or Reciting Model Limitations of Language Models Through Counterfactual Tasks\Wu et al.|(2024) NAACL 2024
. . Re-Reading Improves Reasoning
Re-reading Algorithm in Large Language Models|Xu et al.|(2024) EMNLP 2024
. Tree of Thoughts: Deliberate Problem Solving
Tree of Thoughts Algorithm with Large Language Models|Tao et al.|(2023) NeurlPS 2023
- - VARIERR NLI: Separating Annotation Error
VariErr-NLI Model/Data from Human Label Variation|Weber-Genzel et al.|(2024) ACL 2024
WinoDict Data/Evaluation 'VnoPict: Probing language models EACL 2023

for in-context word acquisition|Eisenschlos et al.|(2023)

Table[T]shows the papers forming the basis of the RExBench extensions.

B DETAILED EXPERIMENTAL SETUP

Table 2: Resource requirements for each task.

Task

Runtime Duration
Instance Type

(Gold Solution)
CheckEval CPU Im
COGS K80 5h
Entity Tracking A100 2h
Explain then Translate CPU <lm
Instruction Tuning A100 5h
Mission Impossible A100 4h
Othello K80 1h
Reasoning or Reciting A100 6h
Re-reading A100 30m
Tree of Thoughts A100 20m
VariErr-NLI A100 10m
WinoDict A100 30m

Table 2 shows the details about the execution environment for each task.

16

Under review as a conference paper at ICLR 2026

C AN EXAMPLE TASK INSTRUCTION (EXTENSION OF WINODICT)

‘WinoDict Task Instruction

PROBLEM DESCRIPTION

BACKGROUND

The paper WinoDict: Probing language models for in-context word acquisition (Eisenschlos et al. 2023)
attempts to measure LLMs’ ability to learn novel words during inference. They rewrite Winograd-style
co-reference resolution problems by replacing the key concept word with a synthetic but plausible
English word and adding the definition of the new concept as a suffix. Building on this work, we would
like to further consider a learning setting where the form of the learned words coincides with existing
English words and explore how their existing meanings may interfere with the models’ word acquisition
from the given definition. The hypothesis is that overriding existing words would be more difficult, and
the frequency of the existing words may also modulate the effect.

The paper will be available inside the provided repository in both PDF format as
eisenschlos_et_al_2023.pdf and markdown format as eisenschlos_et_al_2023.md
if you need to refer to it.

EXTENSION TO BE IMPLEMENTED

Your task is to modify the codebase provided to generate new Winodict datasets by replacing the target
word being learned with an existing English word. The new dataset should be stored under the directory
. /data. Your replacement should consider the POS tags of the original word - they should be matched.
We will only consider four POS categories for word replacement: nouns, verbs, adjectives, and adverbs.
To test the possible effect of frequency, sample the candidates from different frequency groups:

1. Top Group:

* Verbs, Nouns, Adverbs: Select the top 20% most frequent words
* Adjectives: Select the top 35% most frequent adjectives (to match the sample set size)

2. Bottom Group:

* Verbs, Nouns, Adverbs: Select the bottom 20% least frequent words
* Adjectives: Select the bottom 35% least frequent adjectives.

3. All Group:
* Verbs, Nouns, Adjectives, Adverbs: Include all words, no frequency-based filtering

Assume that the frequency information will be provided in a form of four files corre-
sponding to each POS, named 1_all rank _noun.txt, 2_all rank_verb.txt,
3_all_rank_adjective.txt,4_all_rank_adverb.txt, under the directory . /words/.
Each file lists words in descending order of frequency from the British National Corpus. To generate the
dataset, you need to create word candidates based on the files and sample words from those candidates.

From each group, sample words from the candidate lists to generate the new Winodict dataset. Ensure
that the replacement word is inflected to match the morphological properties of the original word being
replaced. For instance, if the original word is a past tense verb, the selected replacement must also be
in the past tense. Please use spaCy with the lemminflect module to inflect the selected words as
necessary.

Using the new dataset, you should run experiments on the Winodict-Winograd dataset under the 5-shot
setting. Assume that the model can be found under /stage/hf_cache/gemma-2-9b, although
this may not be visible in the provided repository right now. Furthermore, we will only consider the
setting where definitions are appended as suffixes, which are represented as the 1ast_def template in
the codebase. Save your results as three different files under . /results/, corresponding to the three
sampling groups defined above. They should be named res_top. json, res_bottom. json, and
res_all. json.

Please make the experiment runnable by implementing a single script called run_final. sh in the
root of the repository. This script should call all necessary commands with all parameters specified and
should not have any command line arguments itself. It should handle both the dataset generation as well
as the execution of the experiments on this new dataset.

Try your best to keep everything else not specified above constant in the original repository. Also, the
environment is already set up, so you do not need to install any dependencies or download any more
datasets/models. Please refer to environment . yml in the repository for an overview of the installed
libraries and their versions.

EVALUATION

To evaluate the extension, we will execute the run_final. sh script you wrote. We will use the three
. json files mentioned above that contain the final results to evaluate the experimental outcome.

17

Under review as a conference paper at ICLR 2026

D DETAILED AGENT CONFIGURATIONS

Table 3: Agent components

Component aider Claude Code OpenHands

Repo navigation X
Tool use X
Bash execution X
Python execution X

RSN
X NSNS

Table 3| provides an overview of what kind of abilities each agent has.

aider aider|is an open-source agent framework. We implemented our most basic agent based on
aider, using the “diff” edit format where the LLM specifies file changes as search/replace blocks.
We allowed up to 5 retries to handle API-side overload errors. Since aider lacks built-in file search
capabilities, we added a preliminary stage where the LLM is given the codebase’s directory tree along
with the task instruction to identify files requiring modification. Unlike Claude Code and OpenHands,
our aider implementation does not use bash execution or tools.

Claude Code Claude Code is an interactive command-line tool that can be run from within a
repository. We used Claude 3.7 Sonnet as the backbone in our experiments. Claude Code can then
navigate the repository and make edits to files or create new files. We manually evaluated Claude
Code with the prompt “Read the instructions in instructions.md and carry out the specified task.”
Furthermore, to avoid Python executions by the agent, we added the instruction “Please do not
execute any code, just read relevant files and make any necessary modifications.” to the task-specific
instructions. Since this tool does not allow for modification of system prompts or support any other
customization, everything else about this agent was left as defined by its developers. We additionally
applied minimal postprocessing to patches (only needed for the Re-reading task) containing an
absolute filepath—the agent was evaluated locally and receives the absolute path to the codebase
directory as input in an uncontrollable fashion, but patches are evaluated inside a virtual machine
with a different filepath structure.

OpenHands |OpenHands is an open-source agent framework that uses an LLM to control a range
of pre-defined tools for understanding and modifying codebases. To make this agent more fairly
comparable to Claude Code, we modified the system prompt and the agent to disable execution of
Python code. The agent was allowed to execute bash commands such as grep and cat, browse
the web, load PDFs in a browser (if compatible with the backbone LLM), and edit files. We
prompted this agent with the same one-line instruction as for Claude Code. We evaluated this agent
in “headless” mode in which the agent executes the task without any user input until the LLM signals
task completion to the agent, or the agent detects a loop or reaches a maximum number of steps (250).
As with Claude Code, we applied postprocessing to absolute filepaths to make them compatible with
the virtual machine evaluation environment, since the OpenHands agent is run inside its own Docker
container.

E ToOOL USE/ACTION DISTRIBUTION

OpenHands agents interact with external tools during execution, and we analyze how their tool usage
varies across different LLMs. Claude 4 Sonnet and OpenAI GPT-5 showed the highest overall tool
usage. File operations (str_replace_editor) and bash commands (execute_bash) were
the most frequently used tools across all models (see Figure[6)) but occasionally the agent did also
perform web searches or use a browser to render the paper PDF.

F DETAILED EXPERIMENTAL RESULTS

Table [4] shows the detailed results for all metrics and each agent-LLM combination across all three
hint levels.

18

https://github.com/Aider-AI/aider
https://github.com/All-Hands-AI/OpenHands/

Under review as a conference paper at ICLR 2026

OpenHands Tools

B str replace editor execute bash think WS web read . browser
Claude 4 Sonnet Claude 3.7 Sonnet OpenAl GPT-5 OpenAl o1 OpenAl 04-mini DeepSeek-R1
(total usage: 3532) (total usage: 2388) (total usage: 3117) (total usage: 1065) (total usage: 2791) (total usage: 1610)

browser 0.0% 0.3% 0.0% 0.0% 0.0% 0.0%
web read 0.0% 0.5% 0.0% 0.0% 0.1% 0.0%
think |3.6% 4.4% 0.3% 0.1% 0.0% 4.0%

execute bash 20.7% 25.8% 57.5% 41.8% 60.9% 25.7%

Figure 6: Tool usage distribution across OpenHands agent implementations. Percentages indicate the
frequency of each tool type, while the total usage count is shown in each column header.

Table 3] shows the number of turns as well as the number of input and output tokens, averaged across
the three runs for each agent.

Table [6] shows the costs and duration for running each agent on a single task on average, as well as
the total cost and total durations, based on the main experiment only (providing no hints). Including
preliminary and failed runs not reported in the main paper, we estimate that the total compute required
for the full project was approximately 4—5x the reported amount.

Table [7]and Table 8] shows the detailed breakdown of errors for each agent and LLM combination.

Tables[9]to 21 show the detailed breakdown of task specific performance for each agent and LLM
combination.

Execution Error Frequencies

164 Error Source
150 4 Python & Python Library
> 122 Bash
S Execution Timeout
v 4
El 100 81
g 63 51
45
50 37 35 32 32 2 n 2% 18
13 11 9

o <O * X Q <
& 0 € ¢ &€ & & & & € € &
3 < 2 & 2 % = & & N ~ S+
S N ¢ < S) O o &
>) X <R S L & R Q R o & R S &
¢ Q < o & N\ & © & Q < Ng & o A
e & & o & &0 S A &
A & o 9 o 3@
¥ & F N
W

Figure 7: Distribution of execution errors across Python, Bash, and timeout categories. Errors with
fewer than 5 occurrences are grouped as ‘Others’.

G ADDITIONAL QUALITATIVE OBSERVATIONS

Some agent edits have no practical effect Although stronger agents more often write executable
code, sometimes the actual implementation has no effect on the output. For example, in the Mission
Impossible task, both OpenHands + {Claude 4 Sonnet, GPT-5} incorrectly used the ParentedTree
class in the n1tk library. While this code raised a ValueError, the agent’s implementation used a
try-except block, returning the parse tree from the original paper as a fallback value, meaning the
script still executed. In another instance, OpenHands + GPT-5 incorrectly tried to access the content
returned by a method in the radon library. The code logic meant that if no function was found using
this method, a default value of 0.0 was returned. This in effect meant that the final numerical results
were identical to the original paper’s experiments. These observations reaffirm the importance of
rigorous verification before deploying these systems in the real world.

Detailed observations on over-editing As mentioned in Section[5.1] despite the constraints speci-
fied in our task instructions for the agents, we occassionally observed agents making unnecessary
additional code edits. For example, for the Re-reading task, OpenHands + Claude Sonnet 4 un-
necessarily modified an additional metadata field in one of the . ym1l files, which is used as part

19

Under review as a conference paper at ICLR 2026

Table 4: Detailed performance on REXBENCH, evaluated across three hint levels. Results are
averaged across three runs.

Agent Model Hints Level File Recall Execution Success Final Success
aider Claude 4 Sonnet No hints 0.86 0.50 0.19
Hints 0.84 0.47 0.31
Detailed Hints 0.86 0.39 0.25
Claude 3.7 Sonnet No hints 0.87 0.39 0.14
Hints 0.86 0.31 0.17
Detailed Hints 0.86 0.33 0.08
OpenAl GPT-5 No hints 0.81 0.36 0.06
Hints 0.84 0.42 0.06
Detailed Hints 0.84 0.25 0.14
OpenAl ol No hints 0.84 0.22 0.00
Hints 0.78 0.31 0.00
Detailed Hints 0.80 0.39 0.03
OpenAl 04-mini No hints 0.43 0.19 0.03
Hints 0.43 0.25 0.19
Detailed Hints 0.43 0.31 0.14
DeepSeek-R1 No hints 0.18 0.00 0.00
Hints 0.13 0.00 0.00
Detailed Hints 0.13 0.00 0.00
Claude Code Claude 3.7 Sonnet No hints 0.76 0.33 0.25
Hints 0.84 0.50 0.28
Detailed Hints 0.88 0.42 0.25
OpenHands Claude 4 Sonnet No hints 0.79 0.67 0.31
Hints 0.85 0.67 0.44
Detailed Hints 0.90 0.78 0.47
Claude 3.7 Sonnet No hints 0.76 0.42 0.25
Hints 0.87 0.53 0.39
Detailed Hints 0.92 0.53 0.36
OpenAl GPT-5 No hints 0.79 0.72 0.31
Hints 0.88 0.61 0.39
Detailed Hints 0.87 0.69 0.42
OpenAl ol No hints 0.64 0.31 0.00
Hints 0.67 0.33 0.08
Detailed Hints 0.78 0.39 0.03
OpenAl 04-mini No hints 0.68 0.39 0.08
Hints 0.77 0.36 0.19
Detailed Hints 0.74 0.47 0.14
DeepSeek-R1 No hints 0.74 0.14 0.00
Hints 0.76 0.14 0.00
Detailed Hints 0.71 0.22 0.08

of the input in one of the experimental settings. Similarly, in the VariErr-NLI task OpenHands +
GPT-5 unnecessarily modified an output file path required for obtaining the final scores, resulting in
the evaluation scripts being unable to access the results of the agent’s implementation. Given that
scientific work relies on rigor and reproducibility, deviations like these from the specified instructions
are problematic. This highlights the need to design agents which conform exactly to the requirements
given, without introducing additional unrequested changes.

H LICENSE INFORMATION

The codebase portion of REXBENCH is constructed from public repositories—details of the licenses
for each task are provided in Table[22] When the codebase did not contain any license information, we
reached out to the authors for more information and used their suggestion (one response still pending
at the time of writing, but we make an educated guess that the repository will be associated with a
permissive license given that the paper was written by authors with primarily academic affiliations,

20

Under review as a conference paper at ICLR 2026

Table 5: Token usage statistics across agents and models.

Total Turns Prompt Tokens Output Tokens

Agent Model Hints Level (Avg,) (Avg,) (Avg.)
aider Claude 4 Sonnet No hints 2.00 3121.10 3694.40
Hints 2.00 3055.70 3794.00
Detailed Hints 2.00 3303.80 4254.70
Claude 3.7 Sonnet No hints 2.00 3053.60 5204.20
Hints 2.00 3029.10 4222.20
Detailed Hints 2.00 3529.20 3996.20
OpenAl GPT-5 No hints 2.00 3280.60 8995.60
Hints 2.00 3221.10 8544.10
Detailed Hints 2.00 3466.40 9697.80
OpenAl ol No hints 2.00 2964.60 5302.20
Hints 2.00 3061.50 6052.80
Detailed Hints 2.00 3447.60 6011.10
OpenAl 04-mini No hints 2.00 2910.60 4286.10
Hints 2.00 3002.80 2875.30
Detailed Hints 2.00 4457.30 3388.80
DeepSeek-R1 No hints 2.00 2963.80 3557.10
Hints 2.00 3045.80 3751.50
Detailed Hints 2.00 3446.20 3378.70
Claude Code Claude 3.7 Sonnet No hints 34.64 - -
Hints 29.61 - -
Detailed Hints 25.00 - -
OpenHands Claude 4 Sonnet No hints 94.53 1,455,087.28 10,080.81
Hints 88.97 1,519,934.47 9370.17
Detailed Hints 97.58 1,866,521.03 9738.08
Claude 3.7 Sonnet No hints 50.94 542,311.69 7492.75
Hints 47.92 540,580.78 7116.36
Detailed Hints 43.72 458,430.67 6882.17
OpenAl GPT-5 No hints 67.25 973,985.28 34,009.06
Hints 72.72 1,011,380.39 40,850.58
Detailed Hints 70.44 882,550.53 37,924.22
OpenAl ol No hints 16.58 82,144.81 9592.97
Hints 23.61 137,508.86 13,816.28
Detailed Hints 27.94 183,731.94 18,861.33
OpenAl 04-mini No hints 53.47 522,734.39 25,140.58
Hints 54.64 511,121.25 25,899.81
Detailed Hints 57.72 565,430.33 26,719.36
DeepSeek-R1 No hints 34.00 194,548.08 18,099.22
Hints 34.78 202,214.92 19,673.08
Detailed Hints 36.19 293,836.28 20,307.64

and from the fact that the public availability of their codebase is mentioned in the paper). We
release our data and code under a dual license (MIT and Apache 2.0), given the mixed license of the
repositories included in the full benchmark suite.

21

Under review as a conference paper at ICLR 2026

Table 6: Cost and duration statistics across agents and models (main experiment).

Agent Model Avg. Cost ($) Avg. Duration Total Cost ($) Total Duration
aider Claude 4 Sonnet 0.19 1m 4s 6.99 38m 27s
Claude 3.7 Sonnet 0.41 1m 44s 14.77 1Th2m41s
OpenAl GPT-5 0.10 2m 58s 3.61 1h 46m 53s
OpenAl ol 0.62 3m7s 22.37 1h 51m 59s
OpenAl 04-mini 0.03 42s 1.02 24m 56s
DeepSeek-R1 0.04 4m 38s 1.46 2h 42m 10s
Claude Code Claude 3.7 Sonnet 0.60 2m 45s 21.94 1h 38m 45s
OpenHands Claude 4 Sonnet 4.52 6m 17s 162.59 3h 46m 16s
Claude 3.7 Sonnet 0.40 2m 43s 14.22 1h 38m 6s
OpenAl GPT-5 1.14 12m 52s 41.20 7h 43m 14s
OpenAl ol 1.30 2m 25s 46.93 1h 27m 4s
OpenAl 04-mini 0.61 Sm 2s 22.09 3h 1m 45s
DeepSeek-v3 0.03 4m 41s 1.01 2h 49m 5s
Table 7: Breakdown of error counts for Aider and Claude Code.
Error Type aider Claude Code
Claude Claude OpenAl OpenAl OpenAl DeepSeek Claude
4 Sonnet 3.7 Sonnet GPT-5 ol o4-mini R1 3.7 Sonnet
Python Errors
AssertionError 1 0 4 0 1 0 0
AttributeError 3 11 4 5 2 0 3
FileNotFoundError 14 23 7 11 4 2 6
ImportError 1 6 2 6 0 0 2
IndentationError 0 0 0 0 0 0 0
IndexError 0 0 1 1 0 0 1
IsADirectoryError 0 0 0 0 0 0 0
KeyError 0 5 1 2 6 1 4
LookupError 0 0 1 0 0 0 0
ModuleNotFoundError 2 0 5 3 0 0 0
NameError 1 1 1 1 0 1 0
NotImplementedError 0 0 0 0 0 0 0
OSError 0 0 0 0 0 0 0
RuntimeError 0 0 1 1 0 0 0
SyntaxError 1 0 0 5 4 0 2
TypeError 1 3 4 2 6 3 10
UnboundLocalError 1 0 0 1 0 0 0
ValueError 28 10 30 8 6 4 24
EOFError 0 1 0 0 0 0 0
Python Library Errors
DatasetNotFoundError 1 1 0 0 0 0 0
NotFoundError 2 0 1 1 0 0 1
OutOfMemory 0 0 0 0 0 0 0
ArgumentError 0 0 0 0 0 0 0
ScannerError 0 0 0 0 0 0 1
Other Python Errors
ConstructorError 0 0
JSONDecodeError 0 0
Bash Errors
cannot create directory 0 0 0 1 0 0 0
empty patch 0 0 0 0 35 59 0
empty or missing 0 0 2 4 5 25 0
unable to write file 0 0 0 0 0 3 0
Permission denied 0 0 0 2 0 0 0
syntax error 0 0 0 0 0 0 1
cannot access 0 0 0 0 0 0 0
Execution Timeout 0 2 0 7 1 1 4

22

Under review as a conference paper at ICLR 2026

Table 8: Breakdown of error counts for OpenHands.

Error Type OpenHands
Claude Claude OpenAl OpenAl OpenAl DeepSeek

4 Sonnet 3.7 Sonnet GPT-5 ol o4-mini R1
Python Errors
AssertionError 0 0 1 2 2 0
AttributeError 0 7 1 2 2 5
FileNotFoundError 3 4 0 3 1 3
ImportError 0 0 0 0 1 3
IndentationError 0 0 3 10 8 11
IndexError 3 1 0 1 0 1
IsADirectoryError 0 0 0 0 0 1
KeyError 1 4 1 1 2 10
LookupError 0 0 0 0 0 0
ModuleNotFoundError 4 3 1 0 1 1
NameError 0 0 2 5 2 4
NotImplementedError 0 0 0 0 1 0
OSError 0 0 0 0 0 1
RuntimeError 0 0 0 0 0 0
SyntaxError 0 0 0 13 7 5
TypeError 5 13 2 2 7 7
UnboundLocalError 0 0 0 0 0 0
ValueError 11 11 17 4 3 8
EOFError 0 0 0 0 0 0
Python Library Errors
DatasetNotFoundError 0 0 0 0 0 0
NotFoundError 0 0 0 1 0 0
OutOfMemory 0 0 0 0 2 0
ArgumentError 0 0 0 0 5 0
ScannerError 0 0 0 0 0 0
Other Python Errors
ConstructorError
JSONDecodeError 0 0 0 0
Bash Errors
cannot create directory 0 0 0 1 0 0
empty patch 0 0 0 9 10 9
empty or missing 0 1 0 3 7 4
unable to write file 0 0 0 0 0 0
Permission denied 0 0 0 1 0 1
syntax error 3 0 0 0 0 0
cannot access 0 1 0 0 0 0
Execution Timeout 0 0 2 4 2 1

23

Under review as a conference paper at ICLR 2026

Table 9: Detailed performance on aider + Claude 4 Sonnet.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider Claude 4 Sonnet No Hints CheckEval 1.00 1.00 0.00
COGS 0.50 0.00 0.00
Entity Tracking 1.00 0.67 0.33
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 0.50 0.00 0.00
Mission Impossible 1.00 1.00 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 0.00 0.00
Re-reading 0.52 0.33 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 1.00 1.00
CHints CheckEval 100 100 000
COGS 0.50 0.00 0.00
Entity Tracking 1.00 1.00 1.00
Explain then Translate 0.80 0.00 0.00
Instruction Tuning 0.50 0.00 0.00
Mission Impossible 1.00 1.00 0.67
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 0.33 0.00
Re-reading 0.60 0.33 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 0.90 0.00 0.00
WinoDict 0.75 1.00 1.00
" Detailed Hints CheckEval 1.0 (033 000
COGS 1.00 0.00 0.00
Entity Tracking 1.00 0.33 0.00
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 0.40 0.00 0.00
Mission Impossible 1.00 0.67 0.33
Othello 1.00 1.00 0.67
Reasoning or Reciting 1.00 0.00 0.00
Re-reading 0.60 0.33 0.00
Tree of Thoughts 0.60 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 1.00 1.00

24

Under review as a conference paper at ICLR 2026

Table 10: Detailed performance on aider + Claude 3.7 Sonnet.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider Claude 3.7 Sonnet No Hints CheckEval 1.00 0.00 0.00
COGS 0.50 0.00 0.00
Entity Tracking 1.00 0.33 0.33
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 0.50 0.67 0.00
Mission Impossible 1.00 1.00 0.33
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.60 0.00 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.33 0.00
Hints CheckEval 100 000 000
COGS 0.50 0.00 0.00
Entity Tracking 1.00 0.67 0.33
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 0.50 0.00 0.00
Mission Impossible 1.00 1.00 0.67
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.00 0.00
" Detailed Hints CheckEval 100 (067 000
COGS 0.50 0.00 0.00
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 0.50 0.00 0.00
Mission Impossible 1.00 1.00 0.00
Othello 1.00 1.00 0.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.33 0.00

25

Under review as a conference paper at ICLR 2026

Table 11: Detailed performance on aider + GPT-5.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider GPT-5 No Hints CheckEval 0.80 0.33 0.00
COGS 1.00 0.33 0.00
Entity Tracking 1.00 0.33 0.00
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 1.00 0.00 0.00
Mission Impossible 1.00 0.33 0.00
Othello 1.00 0.67 0.00
Reasoning or Reciting 0.20 0.33 0.00
Re-reading 0.40 0.00 0.00
Tree of Thoughts 0.90 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.60 1.00 0.67
Hints CheckEval 100 100 000
COGS 1.00 0.33 0.00
Entity Tracking 1.00 0.67 0.00
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 1.00 0.00 0.00
Mission Impossible 1.00 0.33 0.00
Othello 1.00 0.67 0.00
Reasoning or Reciting 0.20 0.00 0.00
Re-reading 0.56 0.33 0.00
Tree of Thoughts 0.70 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.67 0.67
" Detailed Hints ~ CheckEval 100 (000 000
COGS 1.00 1.00 0.00
Entity Tracking 0.80 0.00 0.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 1.00 0.00 0.00
Mission Impossible 1.00 0.33 0.00
Othello 1.00 0.00 0.00
Reasoning or Reciting 0.20 0.00 0.00
Re-reading 0.48 0.00 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 1.00 1.00

26

Under review as a conference paper at ICLR 2026

Table 12: Detailed performance on aider + ol.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider ol No Hints CheckEval 0.83 0.33 0.00
COGS 1.00 0.00 0.00
Entity Tracking 1.00 1.00 0.00
Explain then Translate 1.00 0.33 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 1.00 0.33 0.00
Othello 1.00 0.00 0.00
Reasoning or Reciting 0.33 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.67 0.00
Hints CheckEval 067 067 000
COGS 1.00 0.00 0.00
Entity Tracking 1.00 1.00 0.00
Explain then Translate 1.00 0.00 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 1.00 0.67 0.00
Othello 1.00 0.33 0.00
Reasoning or Reciting 0.60 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 1.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.67 0.67 0.00
" Detailed Hints ~ CheckEval 067 (000 000
COGS 1.00 0.67 0.00
Entity Tracking 1.00 1.00 0.00
Explain then Translate 1.00 0.33 0.33
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 1.00 0.67 0.00
Othello 1.00 1.00 0.00
Reasoning or Reciting 0.47 0.00 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 0.83 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.67 0.00

27

Under review as a conference paper at ICLR 2026

Table 13: Detailed performance on aider + o4-mini.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider o4-mini No Hints CheckEval 0.67 0.00 0.00
COGS 0.00 0.00 0.00
Entity Tracking 0.67 0.67 0.00
Explain then Translate 0.67 0.33 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 0.83 0.33 0.33
Othello 1.00 0.33 0.00
Reasoning or Reciting 0.27 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.83 0.00 0.00
VariErr-NLI 0.33 0.00 0.00
WinoDict 0.25 0.33 0.00
Hints CheckEval 000 000 000
COGS 0.00 0.00 0.00
Entity Tracking 1.00 1.00 1.00
Explain then Translate 1.00 0.00 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 1.00 0.67 0.33
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.33 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.17 0.00 0.00
VariErr-NLI 0.33 0.00 0.00
WinoDict 0.58 0.33 0.00
" Detailed Hints ~ CheckEval 033 (000 000
COGS 0.33 0.67 0.00
Entity Tracking 1.00 1.00 0.67
Explain then Translate 0.67 0.67 0.33
Instruction Tuning 0.17 0.33 0.00
Mission Impossible 0.67 0.33 0.00
Othello 0.67 0.67 0.67
Reasoning or Reciting 0.47 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.67 0.00 0.00
VariErr-NLI 0.67 0.00 0.00
WinoDict 0.42 0.00 0.00

28

Under review as a conference paper at ICLR 2026

Table 14: Detailed performance on aider + Deepseek-R1.

Agent Model Hint Level Task File Recall Execution Success Final Success
aider Deepseek-R1 No Hints CheckEval 0.00 0.00 0.00
COGS 0.00 0.00 0.00
Entity Tracking 0.00 0.00 0.00
Explain then Translate 0.00 0.00 0.00
Instruction Tuning 0.33 0.00 0.00
Mission Impossible 0.67 0.00 0.00
Othello 0.00 0.00 0.00
Reasoning or Reciting 0.00 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.00 0.00 0.00
VariErr-NLI 0.33 0.00 0.00
WinoDict 0.00 0.00 0.00
Hints CheckEval 033 000 000
COGS 0.00 0.00 0.00
Entity Tracking 0.00 0.00 0.00
Explain then Translate 0.00 0.00 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 0.00 0.00 0.00
Othello 0.00 0.00 0.00
Reasoning or Reciting 0.00 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.00 0.00 0.00
VariErr-NLI 0.33 0.00 0.00
WinoDict 0.00 0.00 0.00
" Detailed Hints CheckEval 000 000 000
COGS 0.00 0.00 0.00
Entity Tracking 0.33 0.00 0.00
Explain then Translate 0.00 0.00 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 0.00 0.00 0.00
Othello 0.00 0.00 0.00
Reasoning or Reciting 0.13 0.00 0.00
Re-reading 0.00 0.00 0.00
Tree of Thoughts 0.00 0.00 0.00
VariErr-NLI 0.67 0.00 0.00
WinoDict 0.00 0.00 0.00

29

Under review as a conference paper at ICLR 2026

Table 15: Detailed performance on Claude Code + Claude 3.7 Sonnet.

Agent Model Hint Level Task File Recall Execution Success Final Success
Claude-Code Claude 3.7 Sonnet ~ No Hints CheckEval 0.50 0.00 0.00
COGS 0.50 1.00 1.00
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 0.83 0.00 0.00
Mission Impossible 0.67 0.33 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.33 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
‘WinoDict 0.25 0.33 0.33
Hints CheckEval 050 000 < 000
COGS 0.50 1.00 1.00
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 0.33
Instruction Tuning 0.83 0.33 0.33
Mission Impossible 1.00 0.67 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.67 0.00
Tree of Thoughts 1.00 1.00 0.67
VariErr-NLI 1.00 0.67 0.00
WinoDict 0.75 0.00 0.00
" Detailed Hints ~ CheckEval 083 000 000
COGS 0.50 1.00 1.00
Entity Tracking 1.00 0.33 0.33
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 1.00 0.33 0.00
Mission Impossible 1.00 1.00 0.67
Othello 1.00 0.67 0.00
Reasoning or Reciting 0.40 0.33 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.33 0.00

30

Under review as a conference paper at ICLR 2026

Table 16: Detailed performance on OpenHands + Claude 4 Sonnet.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands ~ Claude 4 Sonnet No Hints CheckEval 0.40 0.67 0.00
COGS 0.60 1.00 1.00
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 1.00 0.33 0.33
Mission Impossible 0.80 0.67 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 0.67 0.00
Re-reading 0.40 0.67 0.00
Tree of Thoughts 1.00 1.00 0.33
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.25 1.00 0.33
Hints CheckEval 060 000 000
COGS 0.50 0.33 0.33
Entity Tracking 1.00 1.00 1.00
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 1.00 0.67 0.67
Mission Impossible 1.00 1.00 0.67
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 0.67 0.00
Re-reading 0.40 0.67 0.00
Tree of Thoughts 1.00 1.00 0.33
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.65 0.67 0.33
" Detailed Hints ~ CheckEval 060 | 100 067
COGS 1.00 0.67 0.67
Entity Tracking 1.00 1.00 0.33
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 1.00 0.00 0.33
Mission Impossible 1.00 1.00 0.67
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 1.00 0.00
Re-reading 0.40 1.00 0.00
Tree of Thoughts 1.00 1.00 0.67
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.67 0.33

31

Under review as a conference paper at ICLR 2026

Table 17: Detailed performance on OpenHands + Claude 3.7 Sonnet.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands Claude 3.7 Sonnet ~ No Hints CheckEval 0.50 0.00 0.00
COGS 0.50 1.00 0.67
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 1.00 0.67 0.33
Mission Impossible 0.50 0.00 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 1.00 0.33 0.00
VariErr-NLI 1.00 0.33 0.00
WinoDict 0.25 0.33 0.00
CHins CheckEval 067 067 033
COGS 1.00 1.00 1.00
Entity Tracking 1.00 1.00 1.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 0.50 0.00 0.33
Mission Impossible 1.00 0.67 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 1.00 0.67 0.33
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.00 0.00
" Detailed Hints ~ CheckEval 100 (033 000
COGS 1.00 1.00 1.00
Entity Tracking 1.00 1.00 1.00
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 1.00 0.67 0.00
Mission Impossible 1.00 1.00 1.00
Othello 1.00 1.00 0.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 0.83 0.33 0.33
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.75 0.00 0.00

32

Under review as a conference paper at ICLR 2026

Table 18: Detailed performance on OpenHands + GPT-5.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands GPT-5 No Hints CheckEval 0.50 1.00 0.00
COGS 0.50 0.67 0.67
Entity Tracking 1.00 0.00 0.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 1.00 0.00 0.00
Mission Impossible 0.80 0.67 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 1.00 0.00
Re-reading 0.40 1.00 0.00
Tree of Thoughts 1.00 1.00 0.33
VariErr-NLI 1.00 0.33 0.00
WinoDict 0.30 1.00 1.00
Hints CheckEval 100 033 000
COGS 0.50 1.00 1.00
Entity Tracking 1.00 0.67 0.67
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 0.90 0.00 0.00
Mission Impossible 1.00 0.00 0.00
Othello 1.00 0.67 0.33
Reasoning or Reciting 1.00 0.67 0.00
Re-reading 0.40 1.00 0.00
Tree of Thoughts 1.00 1.00 0.67
VariErr-NLI 1.00 0.33 0.00
WinoDict 0.75 0.67 0.67
" Detailed Hints ~ CheckEval 090 033 000
COGS 0.50 1.00 1.00
Entity Tracking 1.00 0.33 0.33
Explain then Translate 1.00 1.00 1.00
Instruction Tuning 0.90 0.00 0.00
Mission Impossible 1.00 0.67 0.33
Othello 1.00 1.00 1.00
Reasoning or Reciting 1.00 1.00 0.00
Re-reading 0.40 1.00 0.00
Tree of Thoughts 1.00 0.67 0.67
VariErr-NLI 1.00 0.33 0.00
WinoDict 0.75 1.00 0.67

33

Under review as a conference paper at ICLR 2026

Table 19: Detailed performance on OpenHands + o1.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands ol No Hints CheckEval 0.50 1.00 0.00
COGS 0.33 0.00 0.00
Entity Tracking 1.00 0.33 0.00
Explain then Translate 1.00 1.00 0.00
Instruction Tuning 0.17 0.00 0.00
Mission Impossible 0.50 0.00 0.00
Othello 1.00 0.00 0.00
Reasoning or Reciting 0.20 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 0.83 0.67 0.00
VariErr-NLI 0.67 0.00 0.00
WinoDict 0.25 0.33 0.00
Hints CheckEval 050 100 000
COGS 0.50 0.00 0.00
Entity Tracking 1.00 1.00 1.00
Explain then Translate 1.00 0.33 0.00
Instruction Tuning 0.00 0.00 0.00
Mission Impossible 0.50 0.67 0.00
Othello 1.00 0.00 0.00
Reasoning or Reciting 0.20 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 0.83 0.67 0.00
VariErr-NLI 0.83 0.00 0.00
WinoDict 0.17 0.33 0.00
" Detailed Hints ~ CheckEval 083 000 000
COGS 0.83 1.00 0.00
Entity Tracking 0.67 0.67 0.00
Explain then Translate 1.00 0.67 0.33
Instruction Tuning 1.00 0.33 0.00
Mission Impossible 0.67 0.00 0.00
Othello 1.00 0.33 0.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.00 0.00
Tree of Thoughts 0.83 1.00 0.00
VariErr-NLI 0.83 0.00 0.00
WinoDict 0.25 0.33 0.00

34

Under review as a conference paper at ICLR 2026

Table 20: Detailed performance on OpenHands + 04-mini.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands o4-mini No Hints CheckEval 0.50 0.33 0.00
COGS 0.50 0.33 0.33
Entity Tracking 1.00 1.00 0.33
Explain then Translate 1.00 0.67 0.00
Instruction Tuning 0.67 0.00 0.00
Mission Impossible 0.17 0.00 0.00
Othello 0.83 0.33 0.33
Reasoning or Reciting 0.40 0.33 0.00
Re-reading 1.00 0.67 0.00
Tree of Thoughts 1.00 0.67 0.00
VariErr-NLI 0.67 0.00 0.00
WinoDict 0.25 0.33 0.33
Hints CheckEval 033 000 000
COGS 0.50 0.67 0.67
Entity Tracking 1.00 1.00 0.67
Explain then Translate 1.00 0.33 0.00
Instruction Tuning 0.67 0.00 0.00
Mission Impossible 0.67 0.67 0.00
Othello 1.00 0.67 0.67
Reasoning or Reciting 0.27 0.00 0.00
Re-reading 1.00 1.00 0.33
Tree of Thoughts 1.00 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.67 0.00 0.00
" Detailed Hints CheckEval 050 033 000
COGS 0.50 0.67 0.67
Entity Tracking 0.67 0.67 0.00
Explain then Translate 1.00 0.67 0.00
Instruction Tuning 0.67 0.00 0.00
Mission Impossible 1.00 0.67 0.00
Othello 1.00 1.00 1.00
Reasoning or Reciting 0.40 0.67 0.00
Re-reading 1.00 1.00 0.00
Tree of Thoughts 0.67 0.00 0.00
VariErr-NLI 0.50 0.00 0.00
WinoDict 0.67 0.00 0.00

35

Under review as a conference paper at ICLR 2026

Table 21: Detailed performance on OpenHands + Deepseek-R1.

Agent Model Hint Level Task File Recall Execution Success Final Success
OpenHands Deepseek-R1 ~ No Hints CheckEval 0.50 0.00 0.00
COGS 0.50 0.33 0.00
Entity Tracking 0.67 0.00 0.00
Explain then Translate 1.00 0.33 0.00
Instruction Tuning 0.33 0.33 0.00
Mission Impossible 0.33 0.00 0.00
Othello 1.00 0.33 0.00
Reasoning or Reciting 0.27 0.00 0.00
Re-reading 0.67 0.00 0.00
Tree of Thoughts 1.00 0.33 0.00
VariErr-NLI 0.83 0.00 0.00
WinoDict 0.25 0.00 0.00
CHints CheckEval 083 033 000
COGS 0.50 0.00 0.00
Entity Tracking 0.67 0.00 0.00
Explain then Translate 1.00 0.67 0.00
Instruction Tuning 0.67 0.00 0.00
Mission Impossible 0.67 0.00 0.00
Othello 1.00 0.33 0.00
Reasoning or Reciting 0.40 0.00 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 0.83 0.00 0.00
VariErr-NLI 1.00 0.33 0.00
WinoDict 0.17 0.00 0.00
" Detailed Hints ~ CheckEval 100 (000 000
COGS 0.50 0.33 0.00
Entity Tracking 0.67 0.67 0.00
Explain then Translate 1.00 1.00 0.67
Instruction Tuning 0.67 0.00 0.00
Mission Impossible 1.00 0.00 0.00
Othello 1.00 0.33 0.33
Reasoning or Reciting 0.27 0.00 0.00
Re-reading 1.00 0.33 0.00
Tree of Thoughts 0.67 0.00 0.00
VariErr-NLI 1.00 0.00 0.00
WinoDict 0.25 0.33 0.00

Table 22: Licenses for each Github repository.

Task Repository License
CheckEval yukyunglee/CheckEval MIT
COGS najoungkim/COGS MIT
Entity Tracking najoungkim/code-models-entity-tracking Apache 2.0
Explain then Translate PootieT/explain-then-translate MIT
Instruction Tuning john-hewitt/implicit-ins Apache 2.0
Mission Impossible jkallini/mission-impossible-language-models 77
Othello likenneth/othello_world MIT
Reasoning or Reciting ZhaofengWu/counterfactual-evaluation MIT
Re-reading EleutherAl/lm-evaluation-harness MIT
Tree of Thoughts princeton-nlp/tree-of-thought-llm MIT
VariErr-NLI mainlp/VariErr-NLI MIT
WinoDict google-research/language/tree/master/language/wino_dict ~ Apache 2.0

36

	Introduction
	Related Work
	Benchmark Design
	Research Extension Task
	Benchmark Composition
	Benchmark Construction Process
	Evaluation Metrics
	Evaluation Infrastructure

	Experiments
	Main Experiment
	Baseline agent design

	Experiment with Additional Hints
	Results
	Resource Consumption

	Analysis and Discussion
	Patterns of Error
	Qualitative Observations

	What makes an extension difficult for agents?

	Conclusion
	List of papers for RExBench extension
	Detailed Experimental Setup
	An Example Task Instruction (Extension of WinoDict)
	Detailed Agent Configurations
	Tool use/action distribution
	Detailed Experimental Results
	Additional qualitative observations
	License Information

