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ABSTRACT

In this paper, we present a benchmark to pressure-test today’s frontier models’
multimodal decision-making capabilities in the very long-context regime (up to
one million tokens) and investigate whether these models can learn from large
numbers of expert demonstrations in their context. We evaluate the performance
of Claude 3.5 Sonnet, Gemini 1.5 Flash, Gemini 1.5 Pro, Gemini 2.0 Flash Ex-
perimental, GPT-4o, o1-mini, o1-preview, and o1 as policies across a battery of
simple interactive decision-making tasks: playing tic-tac-toe, chess, and Atari,
navigating grid worlds, solving crosswords, and controlling a simulated cheetah.
We study increasing amounts of expert demonstrations in the context — from no
demonstrations to 512 full episodes. Across our tasks, models rarely manage to
fully reach expert performance, and often presenting more demonstrations has little
effect. Some models steadily improve with more demonstrations on a few tasks.
We investigate the effect of encoding observations as text or images and the impact
of chain-of-thought prompting. To help quantify the impact of other approaches
and future innovations, we open source our benchmark that covers the zero-, few-,
and many-shot regimes in a unified evaluation.

1 INTRODUCTION

The simple recipe of minimizing next-token prediction error at scale has led to large multimodal
foundation models (LMs) with remarkably general capabilities (OpenAI, 2023; Anil et al., 2023;
Anthropic, 2024a). Importantly, these capabilities come in two flavors: (i) the ability to produce
outputs of high quality from a short and often underspecified prompt (e.g., writing an essay about a
novel topic), and (ii) the ability to learn new patterns and imitate algorithms in context (Reid et al.,
2024; Mirchandani et al., 2023). Both types of capabilities demonstrate that LMs can manipulate
learned knowledge and respond to new information in flexible and non-trivial ways. These capabilities,
both necessary for reasoning and decision-making, have led to the recent surge of using LMs as
agents by sampling an action from the model (Mirchandani et al., 2023; Palo & Johns, 2024).

While LMs have been shown to be able to perform non-trivial reasoning and decision-making
in some domains (Huang et al., 2022; Yao et al., 2023; Romera-Paredes et al., 2024), there are
also many negative results where LMs fail to perform decision-making tasks that are very simple
for humans, even when LMs arguably possess great factual knowledge of the task. For example,
LMs struggle to play legal moves, let alone beat amateur humans, in chess (Carlini, 2023). At the
same time, state-of-the-art LMs have detailed expert knowledge of chess when queried in natural
language. But this declarative knowledge fails to translate into effective decision-making, i.e.,
“know-how” (Ryle, 1949). This “knowing-doing gap” is also observed in the recently released
BALROG benchmark (Paglieri et al., 2024), which evaluates zero-shot capabilities (i.e., without
expert demonstrations) of state-of-the-art LMs on interactive decision-making tasks in the long
time horizon setting: 5 game environments from Baby AI (Chevalier-Boisvert et al., 2019) to
Nethack (Küttler et al., 2020). Overall, Paglieri et al. (2024) find that “models struggle significantly
with more challenging tasks” and highlight few- and many-shot evaluation as an important potential
solution. Our benchmark (developed concurrently) addresses exactly this gap by covering the full
range from zero-shot to many-shot evaluation.
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Figure 1: LMAct overview. Our multimodal benchmark consists of six decision-making tasks
that come with an expert policy and potentially multiple state representations. For evaluation, LM
performance is measured on test episodes with unseen initial states. LMs are conditioned on a generic
decision-making preamble (fixed across all tasks), followed by 0 to N demonstration episodes, and a
separator that indicates the start of the current episode (N can be up to 512, with up to 100 steps per
episode, both depending on the task. The maximum context length is 1M tokens). In each step of the
test episode an action is generated by the LM’s predicted continuation of the context. The resulting
environment interaction produces the next observation that is added to the previous state action pairs.

The general question arising from these results is whether LMs in principle have the capabilities
to solve interactive decision-making tasks but misunderstand the “out-of-distribution” specification
given by the zero-shot prompt or a few examples, or whether the problem is more deeply rooted.
Accordingly, our paper focuses on whether conditioning on a large number of expert demonstrations
(state-action trajectories) helps unlock the decision-making capability of pretrained LMs. In doing so,
we test the multimodal in-context learning capabilities of modern LMs at their limits, with contexts
that are up to a million tokens long (with thousands of output tokens). Our main research question is:

Can state-of-the-art LMs learn to act in dynamic environments by generalizing
from large numbers of multimodal in-context expert demonstrations?

Main Contributions See Figure 1 for our tasks and methodology. Our key contributions are:

• We conduct a comprehensive empirical evaluation of the multimodal in-context imitation
learning capabilities of state-of-the-art LMs (Claude 3.5 Sonnet, Gemini 1.5 Flash, Gem-
ini 1.5 Pro, Gemini 2.0 Flash Experimental, GPT-4o, o1-mini, o1-preview, and o1) on a
battery of interactive, potentially long-horizon, tasks: playing tic-tac-toe, chess, and Atari,
navigating grid worlds, solving crosswords, and a DM Control task.

• We show that — even when optimizing the prompt (number of demonstrations, chain-of-
thought prompting, etc.) for each model and task — frontier LMs fail to reach expert
performance on Atari, chess, and DM Control. Some models approach expert performance
on crosswords, grid world, and tic-tac-toe. All models beat the random action baselines
except on Atari.

• We vary the number of expert demonstration episodes in the context from 0 up to 512 (the
limit depends on the model and the task) and find that performance is mostly independent of
the number of demonstrations. In some cases we observe strong in-context learning.

• We run a control experiment where LLM agents need to replay the single demonstration
episode in the context, where all models except for o1-mini perform well.

• We open-source LMAct, our in-context imitation learning benchmark that covers the zero-,
few-, and many-shot regime in a unified manner, including all expert demonstrations and
evaluation code at https://github.com/google-deepmind/lm_act.

2

https://github.com/google-deepmind/lm_act


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2 METHODS

We now describe the models we evaluate (Section 2.1), our benchmark environments (Section 2.2),
our prompt (Section 2.3), and our evaluation protocol (Section 2.4). Full details in Appendix B.

2.1 MODELS

We evaluate the current (closed-weights) frontier LMs: Claude 3.5 Sonnet (the 2024-10-22 ver-
sion) (Anthropic, 2024b;c), Gemini 1.5 Flash and Gemini 1.5 Pro (the 002 versions) (Reid et al.,
2024), Gemini 2.0 Flash Experimental (Google DeepMind, 2024b), GPT-4o (the 2024-08-06 ver-
sion) (OpenAI, 2024a; OpenAI et al., 2024a), o1-mini and o1-preview (OpenAI, 2024c), and o1 (Ope-
nAI et al., 2024b). Except for o1-mini and o1-preview, all models process multimodal prompts,
though their exact specifications differ (see Appendix B.1). We use temperature 0 for all models
(except for o1-mini, o1-preview, and o1, which have a fixed temperature of 1 (OpenAI, 2024d)).
We set the maximum (output) sample length to 2048 tokens for all models (except for o1-mini,
o1-preview, and o1), which is more than sufficient to achieve strong performance (see our ablation
in Fig. A7). In contrast, the performance of o1-mini, o1-preview, and o1 crucially depends on the
number of “reasoning tokens” (see Fig. A7), so we use a maximum (output) sample length of 8192
tokens as a good compromise between cost and performance (2048 tokens would lead to severe
performance degradation on our tasks – see our ablation in Appendix C.1). We post-process the
model outputs by removing all the leading/trailing white spaces and only consider the text after the
keyword “Action:”, i.e., we discard all (chain-of-thought) reasoning traces.

2.2 ENVIRONMENTS

We consider a battery of well-known interactive decision-making environments: the Phoenix game
from Atari 2600 (Bellemare et al., 2013), chess, crosswords, the cheetah run task from the DM Control
suite (Tassa et al., 2018), grid world navigation, and tic-tac-toe. We briefly describe each environment
below (full details in Appendix B.2). Since sampling is deterministic for most models (i.e., the
temperature is 0, see Section 2.1), we introduce variability in the demonstration and evaluation
episodes by varying the initial conditions (e.g., by using different openings for chess; see below).

Atari – Phoenix We chose Phoenix as a representative Atari task that has somewhat dense rewards,
which is important since we can only evaluate 400 frames (with action repeat 4, i.e., 100 steps), or
roughly 6 seconds of play due to context size limitations. Phoenix also forms part of the set of 5
games that is highly predictive of the performance on the full Atari suite (Aitchison et al., 2023). We
use the Arcade Learning Environment (Bellemare et al., 2013) version, and for expert demonstrations
we use the Gato training data (Reed et al., 2022). We use the original (i.e., not downsampled or
grayscale) images as observations (see Fig. A1).

Chess We evaluate models against the weakest-possible version of Stockfish 16 (Romstad et al.,
2008), i.e., level 0 (which corresponds to an Elo of approx. 1320). We further weaken this version by
evaluating only 1 node. We generate expert demonstrations with the strongest (default) version of
Stockfish, i.e., level 20 with a time limit of 50ms per move as the agent (note that the opponent, i.e.,
the “environment”, remains fixed as the weakest version of Stockfish). We evaluate four different
state representations (see Fig. A3): (i) a 2D ASCII encoding of the board, (ii) the Forsyth–Edwards
Notation (FEN), which encodes the board and very limited historical information as a string, (iii)
the Portable Game Notation (PGN), a plain text format for recording chess games via the move
history given in algebraic chess notation, and (iv) an RGB image of the board. We always represent
actions via the algebraic chess notation. To ensure variability in the demonstration and evaluation
episodes, we use the openings from the Encyclopedia of Chess Openings (Matanović, 1978), which
we randomly sample without replacement. We play for at most 100 steps (terminating early for a
win/draw/loss; the average is 38) and assign reward 1 to a win, 0 to a draw, −1 to a loss, and 0 else.

Crossword We create a large collection of 7 × 7 crosswords using the genxword crossword
generator (Whitlock, 2011) and a list of 55 189 clues with the lowest difficulty rating collected by
Matthew Ginsberg (individual clues may appear in multiple crosswords with low probability). Each
episode is a distinct crossword represented as an ASCII crossword grid followed by two lists of clues,
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one for the “Across” words and one for the “Down” words (see Fig. A4). A valid action consists
of either “A” (for across) or “D” (for down), followed by the word’s index and the word itself. We
assign a reward of 1 to a correct word, 0 to an incorrect word with correct length or to a correct
word that has been already been placed, and we terminate the episode with a reward of −1 for an
incorrect word. We evaluate 25 steps (which is sufficient to place the approx. 10 words per crossword
on average) and terminate early if all words are filled. We generate the expert demonstrations by
simply outputting the solution for each clue one by one in random order.

DM Control – Cheetah Run We evaluate Cheetah Run from DM Control (Tassa et al., 2018). We
represent observations as string in the style of a Python dictionary of position and velocity vectors with
individual values between −1 and 1 (see Fig. A5). Each episode begins in a new, randomly initialized
state. We only evaluate the first 100 steps of an episode (due to context length limits). We use the
Gato training data (Reed et al., 2022) to create expert demonstrations (details in Appendix B.2).

Grid World We consider a 12 × 12 grid world with walls, effectively yielding a 10 × 10 grid,
with a single player and a single target (no obstacles). Actions are up, down, left, and right, and
since the grid is fully observable, memorization is not required. We evaluate three different state
representations (see Fig. A6): (i) 2D ASCII of the grid, (ii) the player and target coordinate tuples,
and (iii) the RGB image of the grid. The reward is 1 if the player reaches the target and 0 otherwise.
Episodes run for a maximum of 25 steps (reaching any target from any initial position in a 10× 10
grid requires at most 18 steps). We randomly initialize the player/target locations for every episode.
The expert demonstrations correspond to one of the shortest paths between the player and the target.

Tic-Tac-Toe We play tic-tac-toe against a random policy that picks an empty spot uniformly at
random. For demonstration episodes the expert uses minimax search (i.e., it plays an optimal action),
while the environment remains fixed as a random policy. We evaluate two state representations (see
Fig. A2): (i) 2D ASCII of the grid, and (ii) the RGB image of the grid. To ensure variability, each
game starts from an opening state (similar to chess openings), which we draw uniformly across all
initial game states (as a result, even the optimal minimax strategy can only win 85% of the games
and draws the rest). We assign a reward of 1 to a win, 0 to a draw, −1 to a loss, and 0 else.

2.3 PROMPT

Our prompt consists of two main parts: (i) the expert demonstration episodes (Listing 1), and (ii)
the trajectory of the evaluation episode (including the episode’s previous actions and environment
states; see Listing 2). We use a generic decision-making zero-shot preamble at the beginning of (i),
and a short separator prompt at the beginning of (ii) (see Fig. 1 and Listings 1 and 2). The expert
demonstrations are fixed across an evaluation episode, but resampled across episodes, while the
current trajectory starts with a single initial state and grows as more state-action pairs are observed
(up to a maximum of 100 steps). We do not include an environment task description (e.g., the rules of
tic-tac-toe) in the preamble. We may, however, show the available legal actions, which depend on the
environment, in each step at the end of (ii) (see Listing 2), depending on whether it is beneficial per
model and task (see our ablations in Appendix C.4). Similarly, we may use a chain-of-thought (Wei
et al., 2022) style prompt at the very end of (ii) asking the model to provide a reasoning before
proposing an action (see Listing 2), again, depending on whether it increases performance in the
ablations (Appendix C.4). We make both of these decisions per model and task, i.e., the same model
may use chain-of-thought for one task but not another.

2.4 EVALUATION PROTOCOL

In every evaluation step, we condition the model on the current context, upon which it generates
an action that we feed to the environment. We then concatenate the resulting next environment
state (prepended with the action that produced it) to the growing context. We ablated whether to
show the model’s previous actions in the evaluation trajectory (see Appendix C.4.1) and found that
it mostly improves performance, so we always include them. If a model fails to generate a legal
action, we uniformly sample one of the legal actions (we visualize the percentage of illegal actions in
Appendix C.3). Since the models have different maximum context lengths (and different text/image
tokenizers), the maximum number of demonstration episodes that fit into the context depends on the
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Figure 2: Best scores per model and task across all observation formats, numbers of demonstration
episodes, and ablations (chain-of-thought, showing legal actions). Accordingly, different bars in a
panel may be based on different settings. The expert policy (which produced the demonstrations) is
an upper baseline. The lower baseline randomly selects a legal action at each step. Claude 3.5 Sonnet,
o1-mini, and o1-preview cannot be evaluated on Atari – Phoenix because they cannot process (enough,
for Claude 3.5 Sonnet) images.

model, the task, and the state representation format. For example, for a given model, we can only use
16 demonstration episodes with RGB observations but up to 256 ASCII demonstration episodes.

We always evaluate 100 episodes with different initial conditions (each episode is evaluated individ-
ually) and report the average score. The maximum episode duration is 100 steps and the score per
episode is the cumulative reward over all steps (we never show reward information to the models). For
each evaluation episode we uniformly subsample (without replacement) the demonstration episodes
(for the frozen part of the prompt) from a precomputed pool of up to 1000 distinct demonstrations.
We ensure that all evaluation episodes have initial states that differ from the demonstration episodes
(except for the replay control experiments in Appendix C.2). We minimally postprocess (see Sec-
tion 2.1) the LM generations to extract the action and reject incorrectly formatted but semantically
correct actions, as matching the action format is important for our imitation learning benchmark.

3 RESULTS

We now present our comprehensive empirical evaluation of the (closed-source) frontier models on
our benchmark for interactive decision-making with long multimodal context. We investigate how
performance changes when presenting more demonstration episodes in the context (see Section 2.2
for a task overview and Appendix B.2 for details and illustrations). For each model and task, we
first ablate whether to use chain-of-thought prompting and whether to show the legal actions in the
prompt (results in Appendix C.4). We use one demonstration episode (i.e., still many individual
demonstration steps) for these ablations, as a compromise between lower computational demands
and being representative of the in-context learning setting. Due to the very low monthly rate limits
of the Anthropic API (Anthropic, 2024d), we do not sweep over the number of demonstrations for
Claude 3.5 Sonnet and only run the ablation. We also do not evaluate it on Atari since it can only
process 100 images at once (a single demonstration episode hits that limit).

3.1 BEST SCORES PER MODEL/TASK

Fig. 2 shows the highest overall score per task and model across all settings (number of demonstrations,
observation format, showing legal actions, chain-of-thought prompting). Different models thus may
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use different settings on the same task, and the same model may use different settings across tasks.
In Section 3.2, we will keep the observation format and number of demonstrations constant across
all models per data point. As stated above, results for Claude 3.5 Sonnet are from the ablation
(i.e., 1 demonstration episode). Fig. 2 shows that models often struggle to match expert scores —
even in their best setting. Exceptions are grid worlds, which most models largely solve, tic-tac-toe,
where the o1 models achieve near-optimal score (against a random opponent), and crosswords, which
o1-preview and o1 almost solve. On the other hand, all models always outperform the random action
baseline except for Atari – Phoenix. LMs tend to repeat actions (see Fig. A14 for a detailed analysis),
and in Phoenix holding down the firing button without releasing results in a single shot (no auto-fire).
In contrast, random actions produce a fair amount of (successful) shots.

3.2 IN-CONTEXT IMITATION LEARNING

We now investigate the in-context imitation learning capabilities of today’s frontier models, by
varying the number of demonstration episodes from zero-, to few-, and many-shot evaluations. The
largest number of demonstrations depends on the models’ context sizes, the task, and the tasks’
observation formats (images require more tokens than text). We omit Claude 3.5 Sonnet due to its
low monthly token limit.
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Figure 3: In-context imitation learning on Atari –
Phoenix (RGB observations). Almost all models
benefit (mildly) from one demonstration episode,
but not from more (GPT-4o and o1 cannot fit multi-
ple demonstration episodes in the context). While
no model outperforms the random baseline, Gem-
ini 1.5 Flash performs best.

Atari – Phoenix Fig. 3 shows that on Atari –
Phoenix all models except o1 improve slightly
by having one demonstration episode, as op-
posed none. However, more demonstrations
(only possible for the Gemini models) do not
improve the performance further. All models
struggle to outperform the random action base-
line because of their tendency to repeat actions
(and thus fire very little, since Phoenix has no
auto-fire). Table A1 contains the ablation re-
sults. Models rarely output illegal actions (see
Fig. A15), i.e., they reliably (re)produce the cor-
rect action format. Atari – Phoenix is arguably
the hardest task in our benchmark, since it only
comes with image observations (no text repre-
sentation), and has very large demands w.r.t.
context size (high frame rate, somewhat high
resolution images, etc.). Despite LMs’ massive scale, playing Atari games well (at least by naively
feeding raw images to the context) seems currently beyond reach, both in terms of capabilities, but
also w.r.t. context size and compute demands (cf. Waytowich et al. (2024)).
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ber of expert demonstration episodes. o1-preview
and o1 solve most crosswords, while other models
struggle to varying degrees.

Crosswords Fig. 5 shows LMs’ performance
on crosswords with simple clues (as rated by
Matthew Ginsberg). While the models achieve
very different overall scores, their individual per-
formance is largely independent of the number
of demonstrations (except for o1-mini and Gem-
ini 2.0 Flash Experimental, which degrade with
more demonstrations). Overall, o1-preview and
o1 perform best, almost completely solving all
the (simple) crosswords. Fig. A17 shows that
the number of illegal actions (i.e., where models
either suggest a word of incorrect length or fail
to respect the “Across” vs. “Down” format) is
quite high for all models and roughly inversely
proportional to their puzzle-solving competence.
We use chain-of-thought prompting for some
but not all models (see our ablation results in
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Figure 4: In-context imitation learning on chess against the weakest variant of Stockfish (level 0,
≈ 1300 Elo), further restricted to one node. The models almost always lose (i.e., score −1) and do
not benefit from more demonstrations. The PGN observations enable the best results, in particular for
GPT-4o, which performs best but still loses majority of games against this weak opponent.
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(b) RGB observations

Figure 6: In-context imitation learning on tic-tac-toe against a random action adversary. Apart from
the o1 models on ASCII observations, all models struggle to play better than a random baseline.
o1-mini and o1-preview improve with more demonstrations and both reach expert performance at
256 demonstration episodes.

Table A5), but we never show the legal actions (which would be a unreasonably long list of words
with correct length).

Chess Fig. 4 shows LMs’ chess-playing performance against the weakest version of Stockfish
16 (Romstad et al., 2008) (i.e., level 0, ≈ 1300 Elo), further restricted to only evaluating a single node.
We investigate four observation formats: ASCII, FEN, PGN, and RGB (o1-mini and o1-preview
cannot process images). Showing more demonstrations has little effect on performance, and models
rarely manage to beat (score 1) or draw (score 0) against this very weak opponent. The results
show that playing chess (without any scaffolding or fine-tuning) is still out of reach for current LMs.
Fig. A16 reveals that the models often output illegal actions (which also does not improve with more
demonstrations) — even though the legal actions are provided in the prompt (cf. the ablations in
Tables A2 to A4).

Tic-Tac-Toe Fig. 6 shows the results for playing tic-tac-toe against a random-action opponent.
Since the demonstration and evaluation episodes start from different initial states, episodes begin with
partially filled boards, which cannot always be won (i.e., optimal score < 1). The o1 models reach
expert performance with ASCII observations and show signs of in-context learning. The other models
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struggle to outperform the random action baseline (as does o1 with RGB observations). Fig. A20
shows that the models (apart from Gemini 1.5 Pro on RGB) generate few illegal actions, implying
that the models’ weak performance is caused by outputting suboptimal rather than illegal actions.
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(b) Coordinate observations
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Figure 7: In-context imitation learning for nav-
igating to a target in a 12 × 12 grid world (see
Fig. A6) using the commands: up, down, left,
right. On ASCII, most models deteriorate with
more demonstrations. For coordinate observations
(player and target tuple) and RGB images, Gem-
ini improves with more demonstrations (except
Gemini 2.0 Flash Experimental on RGB), indicat-
ing in-context learning across a very long context.
GPT-4o (and o1 on RGB) shows no such a trend
but already achieves high zero- and few-shot per-
formance (o1 is near-perfect on ASCII and coordi-
nates).

Grid World Fig. 7 shows how LMs perform
on the task of navigating a simple grid world.
The Gemini models steadily improve with more
demonstrations for coordinate and RGB image
(1.5 models only) observations, demonstrating
strong in-context learning with very long con-
texts. While GPT-4o, o1-mini, and o1-preview
do not benefit from more demonstrations, o1
performs very well in almost all settings. On
ASCII observations, most models (except o1
and Gemini 1.5 Flash) deteriorate with more
demonstrations. Fig. A19 shows the illegal ac-
tions for each model, revealing that o1-preview’s
performance drops on ASCII and coordinate ob-
servations strongly correlate with the number of
illegal actions. All other models rarely generate
illegal actions after one demonstration episode.
Overall, grid world is the easiest task in our
benchmark where all models perform quite well
(some almost optimally) with the right combi-
nation of state representation and number of
demonstrations.

DM Control – Cheetah Run Fig. 8 shows
LMs’ ability to control a simulated (half) chee-
tah from DM Control (Tassa et al., 2018). We
encode observations and actions as strings (see
Fig. A5). For all models, except o1-mini, a sin-
gle demonstration episode is helpful but more
than two demonstrations degrade performance.
The o1 models struggle to significantly out-
perform the random action baseline. Gem-
ini 1.5 Pro and Gemini 2.0 Flash Experimental
achieve the highest score, reaching roughly half
the expert score. Except for o1-mini, all models
mostly generate legal actions (see Fig. A18) —
even without any demonstration episodes (the
action format can be inferred from the past ac-
tions in the evaluation trajectory since we ran-
domly sample a legal action if the model gen-
erates an illegal one). Therefore, the poor per-
formance in the zero-shot regime (i.e., 0 demon-
stration episodes) cannot be explained by the
models’ potential lack of knowledge of the ac-
tion format. Instead, models (with the exception
of o1-mini) manage to learn a non-trivial policy from one or two demonstration episodes (but fail to
leverage more episodes to further improve performance).

4 DISCUSSION & RELATED WORK

Many large-scale benchmarks have been developed to test the general capabilities of frontier LMs, in-
cluding the Chatbot Arena (Chiang et al., 2024) or LiveBench (White et al., 2024). Other benchmarks,
such as FrontierMath (Glazer et al., 2024), TaskBench (Shen et al., 2023), GameBench (Costarelli
et al., 2024), and Atari-GPT (Waytowich et al., 2024), specifically investigate the reasoning or inter-
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active decision-making capabilities of (L)LMs. Most closely related to our work, and published in
parallel, the BALROG (Paglieri et al., 2024) benchmark evaluates frontier LMs’ zero-shot reasoning
on multimodal decision-making tasks in five game environments from Baby AI to NetHack. Our work
complements these benchmarks by focusing on in-context imitation learning with long multimodal
context, filling a gap in the current literature. Our benchmark is currently in its “easiest” form (e.g.,
grid world without obstacles) and can easily be made more challenging.

0 20 21 22 23 24

# of Expert Demonstration Episodes

0

10

20

30

Av
er

ag
e 

Sc
or

e

DM Control: Cheetah - Run (Coordinates)

Gemini 1.5 Flash
Gemini 1.5 Pro
Gemini 2.0 Flash Exp.
GPT-4o
o1-mini
o1-preview
o1
Random Baseline
Expert (Gato Data)

Figure 8: In-context imitation learning on the chee-
tah run task from the DM Control suite using posi-
tion/velocity vector observations encoded as text.
Gemini 1.5 Pro and Gemini 2.0 Flash Experimental
perform best with a single demonstration episode,
GPT-4o and Gemini 1.5 Flash with two demonstra-
tion episodes, with more demonstrations degrading
performance. Gemini 1.5 Pro achieves the highest
performance, roughly half the expert score.

There are a few reasons to be optimistic about
in-context imitation learning with long-context
models. Many demonstrations should, in prin-
ciple, improve performance over few-shot learn-
ing (as shown by Agarwal et al. (2024); Jiang
et al. (2024) on non-interactive tasks), and mod-
ern LMs have long enough contexts to test this at
scale. Additionally, pretrained LMs have a fairly
general ability to recognize and imitate algorith-
mic patterns in their context (Mirchandani et al.,
2023), which is in line with the memory-based
meta-learning view on (universal) in-context pre-
diction (Ortega et al., 2019; Grau-Moya et al.,
2024). If universal enough, models would, with
enough observations, recognize and correctly
continue environment-agent interaction patterns.
We refer interested readers to Appendix A for
a more detailed discussion of additional related
work.

While we find some cases of steady in-context learning, in the majority of cases LMs’ performance
is largely independent of the number of demonstrations. It is unclear whether in-context imitation
learning is not well suited to communicate desired agentic behavior (i.e., models do not “understand”
the task purely from demonstrations), or whether models have difficulty to effectively use a dense
long context. To provide additional insight we perform a “replay” control experiment, where a single
episode is shown in context, and the same exact episode is evaluated, such that models only need to
“copy” actions from the demonstration episode. We find that models (except o1-mini) perform well in
this control experiment on all tasks (see Appendix C.2).

Limitations We perform an evaluation via closed-source APIs and thus have little control over how
the data is processed and fed to the underlying models. Since models behind the APIs can be updated
at any time, it is possible that our results may not be quantitatively reproducible soon after publishing
this manuscript. Despite our best efforts in evaluating different prompt formats, we cannot rule out
that even small changes to the prompt could lead to better results. Accordingly, our current results are
a lower bound on the models’ performance. Finally, we cannot guarantee that our observation formats
do not cause tokenization issues across all APIs (e.g., a loss of structure for a 2D grid in ASCII).

5 CONCLUSION

We evaluated the multimodal in-context imitation learning capabilities of some of the world’s most
advanced AI models on interactive decision-making tasks — tasks that are simple for humans but
challenging for state-of-the-art LMs. Our results show that, even with hundreds of demonstration
episodes, context lengths of up to one million tokens, and thousands of output tokens, models often
struggle to reach expert performance, thereby failing to translate their (factual) knowledge about
the tasks’ solution strategies into effective decision-making. Solving this problem will be crucial
for the next generational leap in LM capabilities towards general agents. Despite our focus on
in-context imitation learning, we believe it will be interesting to compare against other methods,
including fine-tuning, retrieval-based methods, reward-conditioning, etc. Our open-source benchmark
( https://github.com/google-deepmind/lm_act ) serves as a yard stick to measure
progress toward that goal, and we are excited to see which innovations will be needed to solve all our
simple tasks.
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IMPACT STATEMENT

The (partial) automation of intellectual labor will have significant societal and socioeconomic impact,
both positive and negative. One current hurdle is the automation of general interactive decision-
making tasks, as our benchmark demonstrates. If solved, this would lead to more autonomous AI
systems and agents that could facilitate or even partly take over intellectual labor across a broad range
of applications and domains. We believe this vision warrants both enthusiasm and caution, and the
scientific community and developers of AI technology bear responsibility in raising awareness of
potential negative socioeconomic outcomes, and in helping develop potential mitigations. Having
said that, our work is a benchmark that reports the current state of affairs (showing the limitations
of current frontier LMs) and serves as one yard stick to measure future innovations and progress
against, but does not propose innovations to improve capabilities of AI systems. While our benchmark
may contribute indirectly by helping develop more capable AI systems faster, we believe this is far
outweighed by the benefit of having a clearer picture of current capabilities and progress provided by
our benchmark.
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trades, master of some, a multi-purpose transformer agent. arXiv:2402.09844, 2024.
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Satinder Singh, Eric Malmi, and Nenad Tomašev. Mastering board games by external and internal
planning with language models. arXiv:2412.12119, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation.
arXiv:2311.18760, 2023.

SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian
Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, Stephanie C. Y. Chan,
Jeff Clune, Adrian Collister, Vikki Copeman, Alex Cullum, Ishita Dasgupta, Dario de Cesare,
Julia Di Trapani, Yani Donchev, Emma Dunleavy, Martin Engelcke, Ryan Faulkner, Frankie
Garcia, Charles Gbadamosi, Zhitao Gong, Lucy Gonzalez, Kshitij Gupta, Karol Gregor, Arne Olav

15

https://stockfishchess.org


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Hallingstad, Tim Harley, Sam Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony Hudson, Steph
Hughes-Fitt, Danilo J. Rezende, Mimi Jasarevic, Laura Kampis, Nan Rosemary Ke, Thomas Keck,
Junkyung Kim, Oscar Knagg, Kavya Kopparapu, Andrew K. Lampinen, Shane Legg, Alexander
Lerchner, Marjorie Limont, Yulan Liu, Maria Loks-Thompson, Joseph Marino, Kathryn Martin
Cussons, Loic Matthey, Siobhan Mcloughlin, Piermaria Mendolicchio, Hamza Merzic, Anna
Mitenkova, Alexandre Moufarek, Valéria Oliveira, Yanko Gitahy Oliveira, Hannah Openshaw,
Renke Pan, Aneesh Pappu, Alex Platonov, Ollie Purkiss, David P. Reichert, John Reid, Pierre Har-
vey Richemond, Tyson Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha Sandars, Daniel P.
Sawyer, Tim Scholtes, Guy Simmons, Daniel Slater, Hubert Soyer, Heiko Strathmann, Peter
Stys, Allison C. Tam, Denis Teplyashin, Tayfun Terzi, Davide Vercelli, Bojan Vujatovic, Mar-
cus Wainwright, Jane X. Wang, Zhengdong Wang, Daan Wierstra, Duncan Williams, Nathaniel
Wong, Sarah York, and Nick Young. Scaling instructable agents across many simulated worlds.
arXiv:2404.10179, 2024.

Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, and Insup Lee. REGENT: A retrieval-
augmented generalist agent that can act in-context in new environments. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Nicholas R. Waytowich, Devin White, MD Sunbeam, and Vinicius G. Goecks. Atari-gpt: Investi-
gating the capabilities of multimodal large language models as low-level policies for atari games.
arXiv:2408.15950, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom
Goldstein, Willie Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-
free LLM benchmark. arXiv:2406.19314, 2024.

David Whitlock. genxword, 2011. URL https://github.com/riverrun/genxword.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongx-
iang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, and Tao Gui. The rise and potential of large language model based agents: A survey.
arXiv:2309.07864, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In ICLR, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2023.

16

https://github.com/riverrun/genxword


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A RELATED WORK

The emergence of strong in-context learning capabilities with increasing model and training data
scale in LLMs was first observed in the GPT-2 paper (Radford et al., 2019) and even gave the title to
the GPT-3 paper (Brown et al., 2020). Soon after, the recipe of next-token prediction at scale was
applied to build agents from large sequential predictors, resulting, e.g., in the decision (pretrained)
transformer (Chen et al., 2021; Lee et al., 2023), or the generalist agent GATO (Reed et al., 2022),
and its more recent open source variant JAT (Gallouédec et al., 2024). While the empirical results
were certainly surprising at the time, at least in theory, in-context learning must necessarily arise
as a core feature of a sequential predictor trained to minimize next token log loss over an implicit
meta distribution of data (Ortega et al., 2019; Mikulik et al., 2020; Genewein et al., 2023), and
could, in principle, even lead to universal in-context predictors (Grau-Moya et al., 2024). An explicit
application of this memory-based meta-learning principle at scale is the “adaptive agent” from Bauer
et al. (2023), which shows that an embodied agent in a 3D environment can adapt to novel task
instances on human timescales (i.e., single- or low double digit numbers of interaction episodes)
purely in context and across a vast set of tasks. The SIMA Team et al. (2024) conducted another
impressive large-scale application of training and fine-tuning a complex vision-language agent across
a large set of environments, using instruction conditioning together with in-context learning.

Instead of pretraining separate models for general decision-making, many researchers have also
attempted to directly use the knowledge and reasoning capabilities of LLMs and VLMs for building
agents that interact with an environment (see Xi et al. (2023) for a 2023 survey of LLM-based agents)
— either by fine-tuning (Li et al., 2022) or purely via in-context demonstrations (Palo & Johns, 2024).
In both cases, two open question are: (i) how to best represent environment observations as tokens,
and (ii) how to best elicit the decision-making capabilities of pretrained LMs. Mirchandani et al.
(2023) find that pretrained LLMs are “general pattern machines” that can learn to complete complex
token sequences via in-context learning, including agent-environment interactions. They even find
that in many cases, randomly swapping the alphabet does not have significant impact, suggesting
that LLMs may be able to deal with many different ways of translating observations into tokens.
Perhaps more important is the question whether observations should be state-action sequences (as in
imitation learning and our work) or whether they should include rewards (for reward conditioning or
in-context RL as in Mirchandani et al. (2023) and Raparthy et al. (2024)). While this is still unclear
for pretrained LMs, Ruoss et al. (2024) find that, when training a large transformer to play chess,
performance is roughly the same for imitation learning compared to learning to predict state or action
values (as long as the amount of data for all three variants is equal). Schultz et al. (2024) extend these
results on chess to LLMs by distilling the search proceedure into the model by linearizing the search
trees. Ma et al. (2024) find that, when prompted appropriately, a pretrained VLM (Gemini 1.5 Pro)
can produce good value estimates for real-world robotic tasks. The second open problem, how to
best prompt LMs for decision-making, is a very active research area, with a lot of focus on designing
or learning zero-shot prompts, such as the famous “Let’s think about this step by step.” (Kojima et al.,
2022) and “Take a deep breath and work on this problem step-by-step.” (Yang et al., 2024), which
has led to many chain-of-thought prompting schemes (Wei et al., 2022). Besides better zero-shot
prompts, advanced sampling and prompt optimization schemes have been explored, such as iterative
prompt refinement where an agent starts with some demonstrations in the context, then interacts
with the environment, and potentially replaces a lower performing episode with a higher performing
one (Mirchandani et al., 2023; Brooks et al., 2023).

With the recent availability of long context models, a third possibility compared to improving zero-
shot or few-shot prompts has emerged: many-shot in-context learning, i.e., prompting with many
demonstrations, on the order of having a full small dataset in the context. Both Agarwal et al. (2024)
and Jiang et al. (2024) show that many-shot prompts (hundreds or thousands of examples in the
prompt) improve pretrained LM performance over few-shot prompts in non-interactive tasks. Our
paper explores the same direction, with potentially hundreds of full episodes in the context, for
interactive decision-making tasks. At the time of writing, querying long context models with many
tokens comes with high computational cost. An alternative could be to virtually extend the context
via retrieval based methods, e.g., REGENT (Sridhar et al., 2024), which trains a retrieval based agent.
The retrieval problem is currently not fully solved (as also pointed out in Paglieri et al. (2024)), and
today’s largest state-of-the-art LMs do not offer retrieval via their APIs and/or have not been trained
to perform retrieval. Accordingly, placing all the data in the context, as in our work, allows estimating
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LM performance independent of whether retrieval works well. Our results thus serve as an upper
baseline to calibrate retrieval based methods against.

Comparing capabilities of LMs that span many tasks and domains requires large-scale benchmarks,
such as the Chatbot Arena (a.k.a. LMSys, Chiang et al. (2024)) or LiveBench (White et al., 2024).
Other benchmarks, such as FrontierMath (Glazer et al., 2024), Taskbench (Shen et al., 2023), and
Gamebench (Costarelli et al., 2024), specifically investigate the reasoning or interactive decision-
making capabilities of LLMs. Closely related to these and to our work, and published in parallel to
our work, the BALROG (Paglieri et al., 2024) benchmark evaluates state-of-the-art LMs (the same as
in our work with the exception of o1-mini and o1-preview and the addition of the Llama 3 models,
which we do not evaluate) on multimodal reasoning and decision-making tasks by using a set of
5 increasingly harder game environments from Baby AI to Nethack. Like our work, the authors
find that state-of-the-art LMs struggle significantly in challenging game environments. The authors
also make the observation that models arguably possess a lot of knowledge about their tasks when
queried appropriately, but that state-of-the-art LMs have a “knowing-doing” gap. Unlike our work,
the BALROG paper performs zero-shot evaluation and lists few-shot and many-shot evaluations as
an important open research question (the released codebase supports few-shot evaluations, but these
evaluations have not been performed at the time of writing). Similar to BALROG, Waytowich et al.
(2024) evaluate the zero-shot game-playing capabilities of frontier LLMs (GPT-4V Turbo, GPT-4o,
Gemini 1.5 Flash, and Claude 3 Haiku) on 8 different Atari games (but not the Phoenix game that
we consider). Compared to these previous benchmarks, ours is the only one that puts the emphasis
on imitation learning with long context in multimodal interactive environments — a regime that
pushes against the limits of modern LMs’ in-context learning and reasoning capabilities, both from
an engineering and a capabilities perspective. Furthermore, our benchmark covers the zero-shot,
few-shot, and many-shot setting in a unified and thus easily comparable evaluation.

B EXPERIMENTAL DETAILS

In this section, we provide additional details on our experimental setup.

B.1 MODELS

Claude 3.5 Sonnet Claude 3.5 Sonnet has a maximum context of 200k tokens, but can only process
100 images at a time. In our setting, a single episode can already consist of up to 100 images. As a
result, we can, e.g., not evaluate in-context learning for Claude 3.5 Sonnet on Atari. Claude 3.5 Sonnet
uses approximately (width px · height px)/750 tokens per image (Anthropic, 2024e). Finally, note
that the monthly token limits for Claude 3.5 Sonnet are very low compared to the other models
($5000 spend limit per month (Anthropic, 2024d)), which is why we can only conduct a somewhat
limited evaluation of this model.

Gemini 1.5 Flash, Gemini 1.5 Pro, and Gemini 2.0 Flash Experimental The Gemini 1.5 models
have a maximum context window of 10 million tokens. In practice, we restrict ourselves to 1 million
tokens due to the prohibitive cost of evaluating even longer prompts. The Gemini API considers
images to be of fixed size, meaning that they consume a fixed number of tokens (currently 258),
regardless of their file size (Google, 2024). Gemini 2.0 Flash Experimental supports up to 1M input
tokens and 8k output tokens (Google DeepMind, 2024a).

GPT-4o The GPT-4o model has a context length of 128k tokens and can process up to 250
images per prompt (OpenAI, 2024b). We use the “auto” resolution setting to process the images,
which automatically determines whether to use a “low” or “high” resolution based on the image
size (OpenAI, 2024e). In the “low” resolution mode, the model represents an image with 85 tokens.
In the “high” resolution mode, the model first consumes the low-resolution image (using 85 tokens)
and then creates additional detailed crops of the image using 170 tokens per 512px · 512px tile to
cover the whole image.

o1-mini, o1-preview, and o1 o1-mini and o1-preview have a context window of 128k tokens with
up to 65k output tokens but cannot process images (OpenAI, 2024d) so we only evaluate them in the
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Figure A1: An RGB observation
for the Phoenix game for Atari
2600.

x | o |
----------
o | x |
----------

| |

(a) ASCII (b) RGB

Figure A2: Sample observations
for each state representation for-
mat from our tic-tac-toe environ-
ment.
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(a) ASCII

[ Event ” World Championship ” ]
[ S i t e ” London ” ]
[ Date ” 2 0 2 4 . 1 0 . 2 9 ” ]
[ Round ” 1 ” ]
[ White ” S t o c k f i s h ” ]
[ Black ” Gemini ” ]
[ R e s u l t ” * ” ]

1 . b3 d5 2 . e3 e5 3 . c4 *
(b) PGN (c) RGB

r n b q k b n r / pppppppp / 8 / 8 / 8 / 8 / PPPPPPPP /RNBQKBNR w KQkq − 0 1

(d) FEN

Figure A3: Sample observations for each state representation format from our chess environment, all
of which we generate with the python-chess library (Fiekas, 2012). Note that, unlike the ASCII, FEN,
and RGB, which show the opening board state, the PGN corresponds to a more advanced position to
visualize the move list (which would be empty for the opening board state).

text-based environments (e.g., not on Atari). The o1 model has a context window of 200k tokens and
up to 100k output tokens.

B.2 ENVIRONMENTS

Visualizing State Representations To evaluate multimodal in-context imitation learning, we
consider multiple state representations for our environments — which representations exactly depends
on the environment. For example, for chess, we evaluate four different formats: (i) ASCII, (ii) FEN,
(iii) PGN, and (iv) RGB images. We visualize all formats for each environment in Figs. A1 to A6.

Atari – Phoenix Unlike chess - where a superhuman expert policy (i.e., Stockfish) is publicly
available, or tic-tac-toe - where the optimal policy can be described with a closed-form algorithm,
the best performance on Atari 2600 games is generally obtained by strong reinforcement learning
(RL) agents (Mnih et al., 2013; Hessel et al., 2021). However, rather than training an RL policy from
scratch (which can be finicky), we make use of the training data corpus of the Gato project (Reed
et al., 2022). Concretely, Gato trained a Muesli (Hessel et al., 2021) agent for 200M steps and
randomly recorded roughly 20k episodes generated by the agent during training. As a result, the
dataset also contains trajectories from the beginning of training where the agent does not yet perform
well, so we only consider the last 2048 trajectories (i.e., the final stages of training). We further
subsample these trajectories by only keeping the 256 highest-scoring as our expert demonstrations.
Since we only evaluate the first 100 steps (i.e., 400 frames with an action repeat of 4), we subsample
w.r.t. the cumulative reward in the first 400 frames and not w.r.t. the entire episode. Overall, we
obtain a collection of demonstration episodes with a high average return of 459.9 in the first 400
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+----+----+----+----+----+----+----+
| 01 | ## | ## | 02 | | | 03 |
+----+----+----+----+----+----+----+
| 04 | | | | ## | ## | |
+----+----+----+----+----+----+----+
| | ## | ## | 05 | | | |
+----+----+----+----+----+----+----+
| 06 | 07 | | ## | ## | ## | |
+----+----+----+----+----+----+----+
| ## | | ## | 08 | 09 | | |
+----+----+----+----+----+----+----+
| 10 | | | ## | | ## | |
+----+----+----+----+----+----+----+
| ## | | ## | 11 | | | |
+----+----+----+----+----+----+----+

Across:
2: Go or Go Fish
4: Texas hold 'em stake
5: Sierra Club co-founder John
6: Cueto stat
8: Eye sore
10: Shorn female
11: Store at a gas station
Down:
1: Sushi bar libation
2: It's set in a setting
3: Sincere, as an apology
7: Seating sections
9: Afternoon event in Chelsea

(a) Initial crossword

+----+----+----+----+----+----+----+
| S | ## | ## | G | A | M | E |
+----+----+----+----+----+----+----+
| A | N | T | E | ## | ## | A |
+----+----+----+----+----+----+----+
| K | ## | ## | M | U | I | R |
+----+----+----+----+----+----+----+
| E | R | A | ## | ## | ## | N |
+----+----+----+----+----+----+----+
| ## | O | ## | S | T | Y | E |
+----+----+----+----+----+----+----+
| E | W | E | ## | E | ## | S |
+----+----+----+----+----+----+----+
| ## | S | ## | M | A | R | T |
+----+----+----+----+----+----+----+

Across:
2: Go or Go Fish
4: Texas hold 'em stake
5: Sierra Club co-founder John
6: Cueto stat
8: Eye sore
10: Shorn female
11: Store at a gas station
Down:
1: Sushi bar libation
2: It's set in a setting
3: Sincere, as an apology
7: Seating sections
9: Afternoon event in Chelsea

(b) Solved crossword

Figure A4: Sample observations from our crossword environment. Fig. A4a shows the initial
crossword and Fig. A4b shows the solved crossword after all the words have been placed in their
corresponding slots. We create the crosswords of size 7× 7 using the genxword crossword genera-
tor (Whitlock, 2011) and a list of 55 189 clues collected by Matthew Ginsberg (we only use the clues
with the lowest difficulty rating; the full list contains 236 615 clues).

{
'position': [-0.09944233298301697, . . ., -0.032929372042417526],
'velocity': [0.0642457902431488, . . ., 0.1964229941368103],

}

(a) Observation

[-0.8040763139724731, 0.9528138637542725, -1.0, 0.7932683229446411, 1.0, 1.0]

(b) Action

Figure A5: A sample observation and action from the cheetah run task from the DM Control
suite (Tassa et al., 2018). Note that the observation is actually presented to the model on a single line
(we use the multi-line representation here for ease of visualization). Moreover, we only show the
truncated position and velocity vectors (represented by the ellipsis). The full position vector contains
8 elements, and the full velocity vector contains 9 elements. All elements are float64 converted to
string.

frames. In our experiments we match the Gato setting (Reed et al., 2022), i.e., sticky actions and no
uncontrolled random initial no-ops. To ensure variability in the evaluation episodes, we manually
perform different numbers of no-ops (based on the random seed) at the beginning of every episode
before starting the evaluation, which changes the initial state from which the agent has control (since
enemies in Phoenix keep moving during this time).

DM Control – Cheetah Run There is generally no closed-form or publicly available expert
policy for the tasks from the DM Control suite. Thus, we also leverage the Gato training corpus to
generate our expert demonstration episodes for cheetah run. For this task the Gato project trained a
D4PG (Barth-Maron et al., 2018) agent, and, like for Atari, we only consider the last 10k episodes

20



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

-------------------------------------------------------------------------------------------------------------
| wall | wall | wall | wall | wall | wall | wall | wall | wall | wall | wall | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | player | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | target | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | tile | tile | tile | tile | tile | tile | tile | tile | tile | tile | wall |
-------------------------------------------------------------------------------------------------------------
| wall | wall | wall | wall | wall | wall | wall | wall | wall | wall | wall | wall |
-------------------------------------------------------------------------------------------------------------

(a) ASCII

{'player': [2, 7], 'target': [6, 2]}

(b) Coordinates (c) RGB

Figure A6: Sample observations from our grid world environment for all three state representation
formats. For the RGB observations (Fig. A6c), we use the sprites from Crafter (Hafner, 2022) for the
walls, the player, and the target (the floor is a black square).

(since those correspond to the later stages of training and thus better performance). Ideally we would
want to subsample the highest-scoring trajectories as expert demonstrations, but, unfortunately, the
underlying MuJoCo (Todorov et al., 2012) physics have changed since the time of the Gato data
collection, which means that the rewards in the dataset no longer match the observation-actions
pairs in our DM Control environment (i.e., replaying the actions from the same initial state does
not yield the same return). Thus, we first replay the actions for every trajectory in our collection
(setting the initial state based on the first observation) and use the new returns to subsample the 1000
highest-scoring trajectories (again only considering the cumulative reward in the first 100 steps).
Overall, we obtain a collection of demonstration episodes with a high average return of 37.4 in the
first 100 steps.

B.3 PROMPTS

The frozen part and the dynamic part of the evaluation prompt are illustrated in Listing 1 and Listing 2,
respectively.

C ADDITIONAL RESULTS

In this section, we present additional results and ablations from our experimental evaluation.
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Listing 1: The frozen part of the evaluation prompt, which contains the expert demonstration episodes
and stays constant throughout an evaluation episode. In this example, we have 8 demonstration
episodes with 10 steps each and RGB observations. Before feeding the prompt to the model, we
replace the observation and action placeholders with the actual observations (i.e., images in this case)
and action strings.

1 demonstration_prompt = '''
2 You are a powerful reinforcement learning agent. You can effectively identify a policy
3 exposed by demonstrations and reproduce it in a new situation.
4

5 Here are a number of demonstrations:
6

7 Observation: <IMG_0_0> Action: <AC_0_0>
8 Observation: <IMG_0_1> Action: <AC_0_1>
9 ...

10 Observation: <IMG_0_9> Action: <AC_0_9>
11

12 Observation: <IMG_1_0> Action: <AC_1_0>
13 Observation: <IMG_1_1> Action: <AC_1_1>
14 ...
15 Observation: <IMG_1_9> Action: <AC_1_9>
16

17 ...
18

19 Observation: <IMG_7_0> Action: <AC_7_0>
20 Observation: <IMG_7_1> Action: <AC_7_1>
21 ...
22 Observation: <IMG_7_9> Action: <AC_7_9>
23 '''

Listing 2: The dynamic part of the evaluation prompt containing the evaluation trajectory. While
stepping through an environment, we append this prompt to the one in Listing 1 in every evaluation
step (e.g., for the 3rd step here), again replacing the observation and action placeholders with the
actual observations and actions. This example also shows the legal moves (lines 8 to 10) and
uses chain-of-thought prompting (lines 12 to 17, Wei et al. (2022)), both of which may be omitted
depending on our ablations in Appendix C.4 (which can vary for each model-task combination).

1 evaluation_prompt = '''
2 This is the current situation:
3

4 Observation: <IMG_8_0> Action: <AC_8_0>
5 Observation: <IMG_8_1> Action: <AC_8_1>
6 Observation: <IMG_8_2>
7

8 In this situation, this is the list of all the moves that are legal:
9

10 no action, jump left, left
11

12 Given the demonstrations and the current situation, you should infer the next logical
13 action. Check that the chosen action is in the set of legal moves. Think step by step
14 and very briefly explain your reasoning for choosing this action. You must answer with
15 the reasoning followed by the action in the following format:
16 Reasoning: ...
17 Action: ...
18 '''
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(a) ASCII observations
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(b) Coordinate observations
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(c) RGB observations

Figure A7: Ablating the maximum sample length for all three observation types (ASCII, coordinates,
and RGB images) of the grid world navigation task with 1 demonstration episode (the left panels
show the average score, the right panels show the percentage of illegal actions). As expected, 32
output tokens are sufficient for Claude 3.5 Sonnet, GPT-4o, Gemini 1.5 Flash, and Gemini 1.5 Pro to
achieve their best performance on the task. In contrast, o1-mini and o1-preview require between 4096
and 8192 output tokens to achieve their best performance. With less than 8192 output tokens, the o1
models do not have enough internal “reasoning tokens” at their disposal to produce an output, which
can be seen by the sharp increase in the percentage of illegal actions in the right panels. Note that
o1-mini and o1-preview are text-only models and therefore cannot process RGB image observations.
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C.1 ABLATING THE MAXIMUM SAMPLE LENGTH

The o1 family of models tends to generate (long) internal “reasoning traces” before returning an
output. Thus, if the maximum sample length is not large enough, these models may not have
enough “reasoning tokens” and therefore do not produce an output (in which case the API returns
an empty sample). Since we want to report each model’s best performance on our benchmark, we
therefore ablate the maximum number of sample tokens and choose the configuration that trades off
good performance and low cost (since, after a certain point, more tokens generally do not improve
performance but only increase the cost). The maximum sample length also has an impact on the
other models, particularly when using chain-of-thought reasoning, but a relatively low sample length
typically suffices for our tasks (unlike the o1 models which require large maximal sample length).

To that end, Fig. A7 shows our ablation of the maximum sample length for Claude 3.5 Sonnet, GPT-
4o, o1-mini, o1-preview, Gemini 1.5 Flash, and Gemini 1.5 Pro on all three observation types (ASCII,
coordinates and RGB) for the grid world navigation task with 1 demonstration episode. Fig. A7 shows
the average score over 100 evaluation episodes for maximum sample lengths from 32 to 32768 tokens
(Claude 3.5 Sonnet only supports 8192 output tokens and GPT-4o only supports 16384 output tokens).
Unsurprisingly, the performance of Claude 3.5 Sonnet, GPT-4o, Gemini 1.5 Flash, and Gemini 1.5 Pro
is largely unaffected by the number of sample tokens, i.e., even 32 tokens are sufficient to achieve
their best performance (with the exception of Claude 3.5 Sonnet and GPT-4o on RGB observations,
where they benefit from having 64 tokens). This is in stark contrast with o1-mini and o1-preview,
which require between 4096 and 8192 output tokens to achieve their optimal performance (with a
very steep degradation below 4096). To verify whether this sharp rise in performance is actually due
to the model not generating a valid action, Fig. A7 also visualizes the average percentage of illegal
actions per episode over the maximum sample length, which (inversely) correlates very strongly
with performance for the o1 models. We therefore set the maximum sample length to 8192 for the
o1 models as a tradeoff between cost and performance (the maximum for o1-preview is 32768, the
maximum for o1-mini is 65536 (OpenAI, 2024d)). This should enable the o1 models to achieve their
best performance on our benchmark — even though they do so at a much higher (computational) cost
than the other models.

C.2 REPLAYING A DEMONSTRATION EPISODE

In-context imitation learning requires several different skills, one of which is being able to locate
and retrieve the relevant demonstration(s) from the context. We therefore conduct a “sanity check”
experiment where we provide a single demonstration episode and “replay” the exact same episode for
evaluation (akin to a multimodal sequence copying task). Thus, for every step, the model only has to
find the correct location in the demonstration episode in its context and reproduce its corresponding
action. Accordingly, we slightly change the evaluation setup since the next observation (both action
and next state) in the evaluation trajectory is always determined by the demonstration episode and
not by the action generated by the model (i.e., we perform teacher forcing rather than a dynamic
evaluation). As a result, we are not interested in a model’s return but in how often it manages to
match the action from the demonstration episode. Like in our other experiments, we evaluate 100
different episodes. For the sake of simplicity, we do not use chain-of-thought prompting, do not show
the legal actions in the prompt, and only consider a single demonstration episode. Other than that, we
leave the prompt the same as in our default experimental setup (i.e., including the same preamble and
separator).

Figs. A8 to A13 show the average action replay accuracy per evaluation step for all frontier models
on all six environments (for all state representation formats separately). We observe that models are
generally capable of replaying the demonstration episodes, with slightly lower performance deeper
into the episode. The significant exception is o1-mini which struggles with the replay task in most
settings. Similarly, Gemini 1.5 Flash fails to replay the actions for tic-tac-toe with RGB observations.
Note that, in theory, the observation type is irrelevant for this task since the models could just count
the number of observations in the evaluation trajectory and select the corresponding action in the
demonstration trajectory.
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Avg. Action Replay Accuracy

Figure A8: Replaying the demonstration episode for the Phoenix game (with RGB observations) from
Atari 2600. The color visualizes the models’ average accuracy when attempting to replay the action
for a given step. The Gemini 1.5 models generally perform well at replaying the demonstrations,
regardless of the step, though they show a slight degradation in performance towards the 80-step mark,
from which they immediately recover again. The performance of GPT-4o shows a slightly higher
degradation towards step 80, but also immediately recovers thereafter. Note that Claude 3.5 Sonnet
cannot process more than 100 images at a time, so we cannot evaluate it on this task. Similarly,
o1-mini and o1-preview are text-only and, therefore, cannot process RGB observations.

C.3 ILLEGAL ACTIONS

As described in Section 2.4, we do not terminate the evaluation episode early if a model does not
produce a valid action (except on the crossword task) but instead randomly sample one of the actions
that are legal in the current state and continue the evaluation with the observation produced by
that action. To differentiate illegal actions from acting randomly (over legal actions), we compute
how often models actually propose an illegal action and visualize the percentage of illegal actions
per episode over the number of expert demonstrations in Figs. A15 to A20 (analogous to Figs. 3
to 8). Note that, since we perform an ablation over showing the legal moves in the prompt (see
Appendix C.4), in theory, all models could have the necessary information to sample a legal action
at all times (whether we actually show this or not in our main experiments depends on whether it
improves model performance in the ablations). Nevertheless, we observe that models do produce
illegal actions actions across most environments. For example, on the grid world navigation task
with coordinate observations o1-preview produces almost 100% illegal actions with 2 or more expert
demonstrations in the context. Interestingly, the ability to produce legal actions also depends on the
observation type: For tic-tac-toe, all models mostly produce legal actions with ASCII observations,
but the Gemini 1.5 models generate up to ∼ 60% illegal actions for RGB observations from the same
environment.

C.4 HYPERPARAMETER ABLATIONS

As mentioned in Section 3, we ablate the use of chain-of-though prompting (Wei et al., 2022) and
whether or not to include the list of actions that is legal given the current observation in the prompt
for each model-task combination since we want to report the best-possible performance the models
can attain on our benchmark. For completeness, we present all the ablation results in Tables A1
to A10. We highlight the best score for each model-observation pair in bold and use the corresponding
hyperparameter combination for our sweeps over the number of expert demonstration episodes in
Section 3.2.

C.4.1 INCLUDING PAST ACTIONS

Over the course of our experimental investigation of frontier models’ performance in dynamic
environments, we noticed that these models have a tendency of getting stuck into repeating their
previous action. We therefore conduct an ablation where we do not show the past actions of the
evaluation trajectory in the prompt (the past observations remain in the prompt, as do the observations
and actions of the demonstration episode). Tables A11 to A13, A15 and A16 show the performance
for all frontier models on the grid world navigation task with 1 expert demonstration episode with
and without the past actions in the prompt. In general, all models benefit from having the full history
in the prompt (i.e., both the previous observations and actions), even if that allows them to repeat
their previous action more easily (in most environments they can still infer the previous action from
the two past observations). The only exception is Claude 3.5 Sonnet (see Table A11), which does not
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(a) ASCII observations
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(b) FEN observations
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(c) PGN observations
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(d) RGB observations

Figure A9: Replaying the demonstration episode for the different observation types from our chess
environments. The color visualizes the models’ average accuracy when attempting to replay the
action for a given step. All models generally perform well across all observation types, except for
o1-mini, which shows a strong performance degradation towards the end of the episode across all
three observation text observation types (recall that o1-mini and o1-preview are text-only models,
and, therefore, cannot process RGB images). With the exception of Claude 3.5 Sonnet, all models
struggle (to varying degrees) to replay the last few actions with PGN observations.
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Figure A10: Replaying the demonstration episode for our crossword environment with ASCII
observations. The color visualizes the models’ average accuracy when attempting to replay the action
for a given step. All models generally perform well, except for o1-mini, which completely fails at
this task. Moreover, Claude 3.5 Sonnet, Gemini 1.5 Flash, and Gemini 1.5 Pro struggle to replay the
first step.
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Figure A11: Replaying the demonstration episode for the cheetah run task from the DM Control
suite (with coordinate observations). The color visualizes the models’ average accuracy when
attempting to replay the action for a given step. GPT-4o, Gemini 1.5 Flash, and Gemini 1.5 Pro
generally perform well. In contrast, o1-mini and o1-preview significantly struggle with this task.
Claude 3.5 Sonnet shows patches of slightly poorer performance around steps 32, 64, and 96, but
performs well otherwise.

Table A1: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for the Phoenix game from Atari 2600. For this task, all models perform best without
legal actions and without chain-of-thought.

Model Observation Legal Actions Chain-of-Thought Average Score

Gemini 1.5 Flash RGB
False False 42.83

True 6.16

True False 8.07
True 6.46

Gemini 1.5 Pro RGB
False False 21.86

True 8.68

True False 6.33
True 6.21

Gemini 2.0 Flash Exp. RGB
False False 31.80

True 11.40

True False 15.20
True 10.20

GPT-4o RGB
False False 9.95

True 5.40

True False 6.40
True 5.40

o1 RGB
False False 29.00

True 19.20

True False 23.00
True 16.40
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(b) Coordinate observations
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(c) RGB observations

Figure A12: Replaying the demonstration episode for the all observation types from our grid world
navigation task. The color visualizes the models’ average accuracy when attempting to replay the
action for a given step. All models generally perform well across all observation types, except for
o1-mini on ASCII observations. Moreover, the Gemini 1.5 models struggle on step 12 with ASCII
observations, and o1-mini struggles with the last step for coordinate observations. Note that o1-mini
and o1-preview are text-only models and, therefore, cannot process RGB observations.
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(a) ASCII observations
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(b) RGB observations

Figure A13: Replaying the demonstration episode for the all observation types from our tic-tac-toe
environment. The color visualizes the models’ average accuracy when attempting to replay the
action for a given step. All models generally perform well across all observation types except for
Gemini 1.5 Flash on RGB images, where it fails completely. Claude 3.5 Sonnet and Gemini 1.5 Pro
also struggle (to varying degrees) with the first step (step 0) for RGB observations. Note that o1-mini
and o1-preview are text-only models and, therefore, cannot process RGB image observations.
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(a) GPT-4o
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(b) o1
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(c) Gemini 1.5 Flash
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(d) Gemini 1.5 Pro
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(e) Gemini 2.0 Flash Experimental

Figure A14: Fraction of elements per repeated action subsequence length in the Phoenix game from
Atari 2600 (without demonstration episodes). To compute these results, we partition each evaluation
episode into segments consisting of the same action generated consecutively. The segment length is
on the x-axis, and the height of each bar is the fraction of actions (out of the total number of actions)
across all time steps in all evaluation episodes that fall into each segment length. All three models
have many episodes (e.g., more than 60% for Gemini 1.5 Flash) where they repeat the same action
throughout almost the entire episode. Accordingly, they fire very rarely and thus achieve a low score
(cf. Fig. 3), since, in the Phoenix game, in order to fire repeatedly, the firing button needs to be
pressed and released repeatedly — constantly holding it down (i.e., repeating the previous action)
only results in a single shot.
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Figure A15: Average percentage of illegal actions per episode over the number of expert demonstra-
tions for the Phoenix game (RGB observations) from Atari 2600. All models mostly generate legal
actions. Note that o1-mini and o1-preview are text-only and, thus, cannot process RGB observations.
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(a) ASCII observations
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(b) FEN observations
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(c) PGN observations
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(d) RGB observations

Figure A16: Average percentage of illegal actions per episode over the number of expert demon-
strations for all state representation formats from our chess environment. GPT-4o, o1-mini, and
o1-preview rarely generate illegal actions (except for GPT-4o with PGN observations). In contrast,
the Gemini 1.5 models consistently struggle to generate legal actions across all state representation
formats and with higher rates of illegal actions with increasing numbers of expert demonstrations in
the context. Note that o1-mini and o1-preview are text-only models and therefore cannot process
RGB image observations.
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Figure A17: Average percentage of illegal ac-
tions per episode over the number of expert
demonstrations for our crossword environment
with ASCII observations. All models produce
a high percentage of illegal actions (between
∼ 40% and ∼ 90% of all the actions in an
episode).
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Figure A18: Average percentage of illegal ac-
tions per episode over the number of expert
demonstrations for the cheetah run task from
the DM Control suite with coordinate observa-
tions. All models, except o1-mini, consistently
produce mostly legal actions.
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(a) ASCII observations
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(b) Coordinate observations
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(c) RGB observations

Figure A19: Average percentage of illegal actions per episode over the number of expert demon-
strations for all state representation formats form our grid world navigation task. The o1 models
increasingly struggle to produce legal actions with increasing numbers of expert demonstrations in
the context, with o1-preview having a very high percentage of illegal actions. In contrast, GPT-4o,
Gemini 1.5 Flash, and Gemini 1.5 Pro consistently produce legal actions. Note that o1-mini and
o1-preview are text-only models and therefore cannot process RGB image observations.
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(a) ASCII observations
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(b) RGB observations.

Figure A20: Average percentage of illegal actions per episode over the number of expert demonstra-
tions for all state representation formats from our tic-tac-toe environment. With ASCII observations,
all models mostly produce legal actions. In contrast, for RGB image observations, the Gemini
1.5 models struggle to produce legal actions (Gemini 1.5 Pro independently of the number of ex-
pert demonstrations and Gemini 1.5 Flash increasingly with the number of expert demonstrations).
Note that o1-mini and o1-preview are text-only models and therefore cannot process RGB image
observations.
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Table A2: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for Claude 3.5 Sonnet on chess. For this task, Claude 3.5 Sonnet always profits from
having the legal actions in the prompt. Chain-of-thought prompting improves performance on FEN
and RGB observations, but not on ASCII and PGN observations.

Model Observation Legal Actions Chain-of-Thought Average Score

Claude 3.5 Sonnet
(2024-10-22)

ASCII
False False -0.98

True -0.99

True False -0.88
True -0.93

FEN
False False -0.96

True -0.99

True False -0.96
True -0.95

PGN
False False -0.92

True -0.97

True False -0.82
True -0.86

RGB
False False -0.96

True -0.99

True False -0.94
True -0.91

Table A3: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for Gemini 1.5 Flash, Gemini 1.5 Pro, and Gemini 2.0 Flash Experimental on chess.
For this task, the models almost always profit from having the legal actions in the prompt. Chain-of-
thought prompting sometimes improves performance, but not across the board.

Model Observation Legal Actions Chain-of-Thought Average Score

Gemini 1.5 Flash

ASCII
False False -1.00

True -1.00

True False -0.98
True -0.99

FEN
False False -0.99

True -0.99

True False -0.99
True -0.98

PGN
False False -0.98

True -0.99

True False -0.96
True -0.97

RGB
False False -1.00

True -1.00

True False -0.97
True -1.00

Gemini 1.5 Pro

ASCII
False False -1.00

True -0.99

True False -0.96
True -0.97

FEN
False False -1.00

True -1.00

True False -0.95
True -0.97

PGN
False False -0.93

True -0.94

True False -0.90
True -0.97

RGB
False False -1.00

True -0.99

True False -0.99
True -0.97

Gemini 2.0 Flash Exp.

ASCII
False False -1.00

True -0.99

True False -0.93
True -0.98

FEN
False False -0.95

True -0.99

True False -0.91
True -0.97

PGN
False False -0.87

True -0.96

True False -0.91
True -0.96

RGB
False False -0.98

True -0.99

True False -0.95
True -0.95
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Table A4: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for GPT-4o, o1-mini, o1-preview, and o1 on chess. For this task, the models always
profit from having the legal actions in the prompt. Chain-of-thought prompting sometimes improves
performance, but not across the board.

Model Observation Legal Actions Chain-of-Thought Average Score

GPT-4o

ASCII
False False -1.00

True -1.00

True False -0.94
True -0.92

FEN
False False -0.94

True -0.98

True False -0.98
True -0.90

PGN
False False -0.63

True -0.97

True False -0.88
True -0.93

RGB
False False -0.90

True -0.99

True False -0.84
True -0.91

o1-mini

ASCII
False False -0.99

True -0.99

True False -0.96
True -0.96

FEN
False False -1.00

True -1.00

True False -0.89
True -0.92

PGN
False False -0.99

True -0.97

True False -0.84
True -0.83

o1-preview

ASCII
False False -0.99

True -0.99

True False -0.93
True -0.94

FEN
False False -0.99

True -0.99

True False -0.95
True -0.89

PGN
False False -0.98

True -0.98

True False -0.95
True -0.90

o1

ASCII
False False -0.98

True -0.98

True False -0.85
True -0.87

FEN
False False -0.95

True -0.89

True False -0.82
True -0.87

PGN
False False -0.80

True -0.84

True False -0.85
True -0.79

RGB
False False -0.95

True -0.97

True False -0.82
True -0.88
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Table A5: Ablating the use of chain-of-thought prompting for the task of solving crosswords. Chain-
of-thought prompting sometimes improves performance, but not across all models. For this task,
showing legal actions is infeasible (as it would include all possible (i.e., thousands of) words of the
correct length for every slot), so we do not ablate it.

Model Observation Legal Actions Chain-of-Thought Average Score
Claude 3.5 Sonnet

(2024-10-22)
ASCII False False 6.73

True 6.81

Gemini 1.5 Flash ASCII False False 1.99
True 1.84

Gemini 1.5 Pro ASCII False False 3.15
True 5.50

Gemini 2.0 Flash Exp. ASCII False False 3.70
True 3.98

GPT-4o ASCII False False 5.76
True 6.67

o1-mini ASCII False False 4.95
True 4.82

o1-preview ASCII False False 9.57
True 9.79

o1 ASCII False False 9.55
True 9.56

Table A6: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for the task of simulating a cheetah from the DM Control Suite. For this task, most
models do not benefit from chain-of-thought prompting or showing the legal actions in the prompt
(note that there are infinitely many legal actions which we represent with the following string:
'A comma-separated list (enclosed by square brackets) of 6 values between -1 and 1.').

Model Observation Legal Actions Chain-of-Thought Average Score

Claude 3.5 Sonnet
(2024-10-22)

Coordinates
False False 4.70

True 3.53

True False 10.20
True 1.33

Gemini 1.5 Flash Coordinates
False False 3.93

True 1.89

True False 0.39
True 2.31

Gemini 1.5 Pro Coordinates
False False 18.00

True 1.26

True False 7.69
True 2.44

Gemini 2.0 Flash Exp. Coordinates
False False 15.96

True 1.91

True False 13.53
True 1.85

GPT-4o Coordinates
False False 11.03

True 0.72

True False 1.00
True 0.92

o1-mini Coordinates
False False 0.80

True 0.46

True False 0.78
True 0.44

o1-preview Coordinates
False False 3.16

True 1.04

True False 4.08
True 1.88

o1 Coordinates
False False 2.08

True 2.14

True False 2.06
True 1.84
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Table A7: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for Claude 3.5 Sonnet on the grid world navigation task. For ASCII and coordinate
observations, the performance is largely independent of the ablated settings. For RGB images,
showing the legal actions and using chain-of-thought prompting performs best.

Model Observation Legal Actions Chain-of-Thought Average Score

Claude 3.5 Sonnet
(2024-10-22)

ASCII
False False 1.00

True 1.00

True False 1.00
True 1.00

Coordinates
False False 0.96

True 1.00

True False 0.99
True 0.99

RGB
False False 0.19

True 0.40

True False 0.21
True 0.53

Table A8: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for Gemini 1.5 Flash, Gemini 1.5 Pro, and Gemini 2.0 Flash Experimental on the grid
world navigation task. The best-performing setting is model and observation dependent.

Model Observation Legal Actions Chain-of-Thought Average Score

Gemini 1.5 Flash

ASCII
False False 0.09

True 0.08

True False 0.11
True 0.15

Coordinates
False False 0.21

True 0.10

True False 0.14
True 0.08

RGB
False False 0.16

True 0.12

True False 0.14
True 0.12

Gemini 1.5 Pro

ASCII
False False 0.51

True 0.25

True False 0.51
True 0.36

Coordinates
False False 0.27

True 0.13

True False 0.16
True 0.12

RGB
False False 0.17

True 0.25

True False 0.24
True 0.24

Gemini 2.0 Flash Exp.

ASCII
False False 0.27

True 0.41

True False 0.25
True 0.39

Coordinates
False False 0.22

True 0.22

True False 0.30
True 0.16

RGB
False False 0.18

True 0.37

True False 0.23
True 0.43
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Table A9: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for GPT-4o, o1-mini, o1-preview, and o1 on the grid world navigation task. The
best-performing setting is model and observation dependent. Note that o1-mini and o1-preview are
text-only and, therefore, cannot process RGB observations.

Model Observation Legal Actions Chain-of-Thought Average Score

GPT-4o

ASCII
False False 0.56

True 0.57

True False 0.50
True 0.49

Coordinates
False False 0.69

True 0.73

True False 0.76
True 0.72

RGB
False False 0.52

True 0.70

True False 0.56
True 0.61

o1-mini

ASCII
False False 0.20

True 0.22

True False 0.21
True 0.32

Coordinates
False False 0.92

True 0.79

True False 0.87
True 0.80

o1-preview

ASCII
False False 0.94

True 0.98

True False 0.97
True 0.97

Coordinates
False False 0.99

True 1.00

True False 0.99
True 1.00

o1

ASCII
False False 1.00

True 1.00

True False 1.00
True 1.00

Coordinates
False False 0.99

True 1.00

True False 1.00
True 1.00

RGB
False False 0.81

True 0.86

True False 0.84
True 0.84
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Table A10: Ablating the use of chain-of-thought prompting and whether or not to show legal actions
in the prompt for the game of tic-tac-toe. Across almost all models and observations types, using
chain-of-thought prompting and showing the legal actions achieves the highest performance – often
by a large margin. Note that o1-mini and o1-preview are text-only and, therefore, cannot process
RGB observations.

Model Observation Legal Actions Chain-of-Thought Average Score

Claude 3.5 Sonnet
(2024-10-22)

ASCII
False False 0.10

True 0.19

True False 0.14
True 0.34

RGB
False False -0.04

True 0.16

True False 0.20
True 0.19

Gemini 1.5 Flash

ASCII
False False -0.12

True -0.15

True False -0.10
True 0.00

RGB
False False 0.07

True 0.07

True False -0.05
True 0.10

Gemini 1.5 Pro

ASCII
False False -0.08

True -0.07

True False -0.02
True -0.05

RGB
False False 0.08

True 0.06

True False -0.06
True 0.01

Gemini 2.0 Flash Exp.

ASCII
False False 0.06

True 0.05

True False 0.10
True 0.18

RGB
False False -0.07

True 0.07

True False 0.06
True 0.04

GPT-4o

ASCII
False False 0.01

True 0.15

True False 0.11
True 0.20

RGB
False False 0.00

True 0.10

True False 0.15
True 0.17

o1-mini ASCII
False False 0.25

True 0.26

True False 0.32
True 0.45

o1-preview ASCII
False False 0.21

True 0.24

True False 0.35
True 0.36

o1

ASCII
False False 0.58

True 0.58

True False 0.83
True 0.66

RGB
False False 0.38

True 0.48

True False 0.52
True 0.60
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Table A11: Ablating whether to include the past actions of the evaluation trajectory in the prompt
(the actions of the demonstration episodes are always included) for Claude 3.5 Sonnet on our grid
world navigation task. Models are prone to repeating the previous action, so omitting it from the
prompt could alleviate this problem. For ASCII observations, Claude 3.5 Sonnet is mostly indifferent
to having the actions in the prompt. For coordinate observations, Claude 3.5 Sonnet performs better
with the actions in the prompt, while for RGB observations, the past actions deteriorate performance.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

Claude 3.5 Sonnet
(2024-10-22)

ASCII

False
False False 0.94

True 1.00

True False 1.00
True 1.00

True
False False 1.00

True 1.00

True False 1.00
True 1.00

Coordinates

False
False False 0.77

True 0.96

True False 0.84
True 1.00

True
False False 0.77

True 0.99

True False 0.78
True 0.99

RGB

False
False False 0.26

True 0.19

True False 0.47
True 0.40

True
False False 0.37

True 0.21

True False 0.68
True 0.53

Table A12: Ablating whether to include the past actions of the evaluation trajectory in the prompt (the
actions of the demonstration episodes are always included) for Gemini 1.5 Flash on our grid world
navigation task. Models are prone to repeating the previous action, so omitting it from the prompt
could alleviate this problem. In this case, including the full history of the current trajectory, i.e., both
the observations and the actions, almost always improves the performance of Gemini 1.5 Flash.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

Gemini 1.5 Flash

ASCII

False
False False 0.07

True 0.09

True False 0.12
True 0.08

True
False False 0.09

True 0.11

True False 0.10
True 0.15

Coordinates

False
False False 0.08

True 0.21

True False 0.07
True 0.10

True
False False 0.10

True 0.14

True False 0.08
True 0.08

RGB

False
False False 0.11

True 0.16

True False 0.08
True 0.12

True
False False 0.10

True 0.14

True False 0.09
True 0.12

show a clear trend in terms of including the past actions. Given these results, we decide to always
include the past actions in the prompt for all models and environments in all our other experiments.
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Table A13: Ablating whether to include the past actions of the evaluation trajectory in the prompt
(the actions of the demonstration episodes are always included) for Gemini 1.5 Pro on our grid world
navigation task. Models are prone to repeating the previous action, so omitting it from the prompt
could alleviate this problem. Without exception, including the past actions in the prompt always
improves the performance of Gemini 1.5 Pro.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

Gemini 1.5 Pro

ASCII

False
False False 0.41

True 0.51

True False 0.22
True 0.25

True
False False 0.34

True 0.51

True False 0.30
True 0.36

Coordinates

False
False False 0.07

True 0.27

True False 0.06
True 0.13

True
False False 0.02

True 0.16

True False 0.08
True 0.12

RGB

False
False False 0.14

True 0.17

True False 0.14
True 0.25

True
False False 0.16

True 0.24

True False 0.15
True 0.24

Table A14: Ablating whether to include the past actions of the evaluation trajectory in the prompt
(the actions of the demonstration episodes are always included) for Gemini 2.0 Flash Experimental
on our grid world navigation task. Models are prone to repeating the previous action, so omitting it
from the prompt could alleviate this problem. In this case, including the full history of the current
trajectory, i.e., both the observations and the actions, almost always improves the performance of
Gemini 2.0 Flash Experimental.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

Gemini 2.0 Flash Exp.

ASCII

False
False False 0.19

True 0.27

True False 0.37
True 0.41

True
False False 0.17

True 0.25

True False 0.36
True 0.39

Coordinates

False
False False 0.07

True 0.22

True False 0.08
True 0.22

True
False False 0.06

True 0.30

True False 0.05
True 0.16

RGB

False
False False 0.25

True 0.18

True False 0.36
True 0.37

True
False False 0.30

True 0.23

True False 0.38
True 0.43
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Table A15: Ablating whether to include the past actions of the evaluation trajectory in the prompt (the
actions of the demonstration episodes are always included) for GPT-4o on our grid world navigation
task. Models are prone to repeating the previous action, so omitting it from the prompt could alleviate
this problem. Including the past actions in the prompt always achieves the highest performance.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

GPT-4o

ASCII

False
False False 0.28

True 0.56

True False 0.47
True 0.57

True
False False 0.36

True 0.50

True False 0.43
True 0.49

Coordinates

False
False False 0.28

True 0.69

True False 0.46
True 0.73

True
False False 0.21

True 0.76

True False 0.48
True 0.72

RGB

False
False False 0.47

True 0.52

True False 0.51
True 0.70

True
False False 0.51

True 0.56

True False 0.61
True 0.61
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Table A16: Ablating whether to include the past actions of the evaluation trajectory in the prompt
(the actions of the demonstration episodes are always included) for o1-mini, o1-preview, and o1 on
our grid world navigation task. Models are prone to repeating the previous action, so omitting it from
the prompt could alleviate this problem. In the vast majority of cases, including the past actions in the
evaluation prompt results in the best performance for o1-mini, o1-preview, and o1. Note that o1-mini
and o1-preview are text-only models and, therefore, cannot process RGB images.

Model Observation Legal Actions Chain-of-Thought Past Actions Average Score

o1-mini

ASCII

False
False False 0.18

True 0.20

True False 0.22
True 0.15

True
False False 0.24

True 0.23

True False 0.29
True 0.35

Coordinates

False
False False 0.41

True 0.68

True False 0.40
True 0.72

True
False False 0.44

True 0.77

True False 0.44
True 0.71

o1-preview

ASCII

False
False False 0.23

True 0.38

True False 0.31
True 0.42

True
False False 0.30

True 0.42

True False 0.27
True 0.40

Coordinates

False
False False 0.10

True 0.13

True False 0.14
True 0.13

True
False False 0.11

True 0.16

True False 0.10
True 0.13

o1-mini

ASCII

False
False False 1.00

True 1.00

True False 1.00
True 1.00

True
False False 1.00

True 1.00

True False 1.00
True 1.00

Coordinates

False
False False 0.98

True 0.99

True False 0.98
True 1.00

True
False False 0.98

True 1.00

True False 0.99
True 1.00

RGB

False
False False 0.60

True 0.81

True False 0.59
True 0.86

True
False False 0.65

True 0.84

True False 0.58
True 0.84
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