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ABSTRACT

Post-training quantization has emerged as a widely adopted technique for compress-
ing and accelerating the inference of Large Language Models (LLMs). The primary
challenges in LLMs quantization stem from activation outliers, which significantly
degrade model performance especially at lower bit precision. While recent ap-
proaches attempt to mitigate outliers through linear transformations across feature
dimensions, our analysis reveals that the transformed weights and activations still
exhibit persistent outlier patterns with concentrated magnitude distributions. In
this paper, we first model the mathematical relationship between quantization error
and outliers, and then introduce a new metric Flatness to quantify the distribu-
tion of outliers. Based on this, we derive the theoretical optimal solution with
respect to Flatness. Building on these insights, we propose Bidirectional Diagonal
Quantization (BDQ), a novel post-training quantization framework that effectively
disperses outlier patterns through optimized matrix transformations. BDQ strategi-
cally distributes outlier magnitudes across matrix dimensions via learned diagonal
operations. Extensive experiments demonstrate that BDQ establishes a new quanti-
zation benchmark. It achieves less than 1% accuracy drop in W4A4 quantization
on the LLaMA-3-8B model. In the more challenging W2A4KV16 experiment,
compared to state-of-the-art approaches, BDQ reduces the performance gap by
39.1% on the DeepSeek-R1-Distill-LLaMA-70B model.

1 INTRODUCTION

Recent Large Language Models (LLMs) have achieved superior performance in multiple natural
language processing tasks as their parameters grow (Yang et al., 2024; Grattafiori et al., 2024).
However, increasing the scale of the parameters leads to significant increases in computational
and storage costs (Xiao et al., 2023). Therefore, the efficient deployment of low-cost LLMs has
become an urgent research direction (Ashkboos et al., 2025). Previous research can be divided into
architecture-changing and architecture-preserving techniques.

Architecture-changing methods such as distillation (Han et al., 2015; Chen et al., 2020) and pruning
(Zhu et al., 2024) reduce the size of the model by transferring knowledge or removing unimportant
parameters, but require significant data and computation, making them impractical for LLMs. In
contrast, architecture-preserving methods such as quantization (Frantar et al., 2022) and low-rank
decomposition (Yuan et al., 2023) keep the model structure; quantization lowers weight precision,
while low-rank methods approximate weight matrices. Quantization is especially popular in LLM
deployment due to its efficiency and strong performance.

Post-Training Quantization (PTQ) has become a widely adopted technique for compressing and
accelerating LLMs. During quantization, as shown in Figure 1a, outliers in the original data present
huge challenges because the limited quantization space cannot adequately express the original
data space, with most data accumulating in a few regions. Recent research has adopted linear
transformations to address these challenges. The rotation transformation (Ashkboos et al., 2025;
Liu et al., 2024) alleviates this phenomenon in Figure 1b. However, due to the presence of outliers,
most of the data still accumulates in the Blue region. Existing methods are heuristic and haven’t
established direct mathematical relationships between outliers and quantization errors, nor optimized
the distribution of the entire quantization space.
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Fig. 1: Activation distributions under different transformations for LLaMA3-8B. After quantization,
values from various ranges are mapped to corresponding integer levels. The number of points within
each box reflects the frequency of quantized values. A more uniform distribution of points indicates
higher quantization quality. Blue dots represent values near zero, Orange dots indicate mid-range
values, and Red dots correspond to large-magnitude values.

In this paper, we first establish the mathematical relationship between outliers and quantization
errors, demonstrating that outliers influence quantization error at the quadratic level. Furthermore,
we introduce the concept of Flatness as an effective indicator for quantifying the distribution of
outliers. Inspired by Information-Entropy (Tsai et al., 2008), we define Flatness as evaluating each
element’s flatness in its row and column, extending to all elements in the matrix. Importantly, through
mathematical derivation, we discovered the optimal solution for improving Flatness and demonstrated
excellent advantages compared to previous methods, laying the foundation for developing more
effective quantization methods.

Based on the above findings, we propose the Bidirectional Diagonal Quantization (BDQ) method.
BDQ allocates two learnable diagonal transformation pairs for each fully connected layer in LLMs,
applying simultaneous row-wise and column-wise scaling to redistribute outliers along both dimen-
sions. We theoretically demonstrate that this formulation can achieve the optimal solution with
respect to Flatness. In addition, a Hadamard orthogonal transformation is employed to further dis-
perse outliers across the entire matrix. Meanwhile, it is widely known that only a small calibration set
is utilized (e.g., 128 samples) during the quantization process, which can cause the model to overfit
to a limited set of features, an effect shown experimentally to hinder outlier mitigation. To address
this, BDQ introduces a Recursive Cross-Entropy loss that captures the state from previous iterations,
thereby reducing overfitting and improving generalization. BDQ is a highly effective PTQ method
for LLMs, consistently outperforming existing techniques across various models and benchmarks. In
the W4A4KV4 setting, BDQ maintains over 99.1% of full-precision accuracy. Furthermore, in the
W2A4KV16 setting, BDQ reduces the performance gap of DeepSeek-R1-Distill-LLaMA-70B (Guo
et al., 2025) by 39.1% compared to the latest methods.

To our knowledge, we are the first to model the mathematical relationship between outliers and quanti-
zation errors, discovering that outliers are key factors affecting quantization accuracy. Meanwhile, we
propose the Flatness metric reflecting the presence of outliers in the model and provide the optimal
solution through mathematical derivation. The contributions of this work are summarized as follows:

• We first model the mathematical relationship between outliers and quantization errors,
discovering that outliers are key factors that affect quantization accuracy.

• To quantify the outlier distribution, we propose the Flatness metric and provide the optimal
solution through mathematical derivation. Compared to previous methods, this optimal
solution demonstrates significant advantages.

• We propose a Bidirectional Diagonal Quantization (BDQ) that effectively reduces quan-
tization errors. Extensive experiments show that BDQ significantly outperforms existing
quantization methods.
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2 RELATED WORK

2.1 ARCHITECTURE-CHANGING METHODS

Recent model compression research has focused on structural modifications to reduce complexity and
size. Pruning techniques have progressed from early weight pruning (Han et al., 2015) to dynamic
strategies that remove unimportant parameters during training (Chen et al., 2020), and to neural
architecture search-based methods for optimal network structures (Zhang et al., 2021). Knowledge
distillation has also advanced, from foundational teacher-student frameworks (Kim & Rush, 2016) to
approaches combining self-supervised learning (Yang et al., 2022) and multi-modal distillation for
preserving semantics (Zhao et al., 2024). However, these methods often entail high computational
costs and slow processing, limiting their practical deployment.

2.2 ARCHITECTURE-PRESERVING METHODS

Post-training quantization (PTQ) is popular in LLMs for its efficiency, with methods mainly divided
into weight-only and weight-activation quantization. FWSVD (Hsu et al.) and ASVD (Yuan et al.,
2023) assess parameter or channel importance, while GPTQ (Frantar et al., 2022) and AWQ (Lin et al.,
2024; Lee et al., 2023) reduce quantization error and address activation outliers. QuIP (Chee et al.,
2023), QuIP# (Tseng et al., 2024), SmoothQuant (Xiao et al., 2023), and OmniQuant (Shao et al.,
2023) further improve quantization with various techniques. I-LLM (Hu et al., 2024) supports integer-
only inference, QuaRot (Ashkboos et al., 2025) uses random rotations, and SpinQuant learns rotations
for 4-bit quantization (Liu et al., 2024). Quantization stands out over low-rank decomposition for its
high accuracy and low cost.

3 MOTIVATION

In the model quantization process, let the weight or activation be W ∈ Rm×n, and assume the
outlier value |woutlier| ≫ E[|W |], where E[|W |] represents the statistical expectation of the elements.
The quantization process is determined by the scale △ ∈ R+ and the zero point z ∈ Z, mapping
floating-point values to the integer space as follows:

Q(w) = round
(
w

△

)
+ z,△ =

max(|w|)
2b − 1

(1)

where w is the original weight and Q(w) − z ∈ {0, 1, . . . , 2b − 1} is the integer value after b-bit
quantization. We set x is the input of matrix, the quantization error is defined as:

ϵ = wx− w′x (2)

3.1 THE QUANTIZATION ERROR OF SINGLE OUTLIER

When the outlier value is included, let △ be the selected scale factor and b-bit integer points. Assume
the quantization range is set to [−c, c]:

△ =
c

2b − 1
(3)

If |woutlier| is large, then the adjustment leads to:

△′ =
|woutlier|
2b − 1

(4)

Meanwhile, let woutlier represent the quantization bin, ∆ = c
2b−1

expands to |woutlier|
2b−1

. For any non

outlier wi ∈ [−c, c], their upper limit of quantization error increases from ∆
2 to ∆

′

2 , that is:

3
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|ϵi| ≤
∆x

2

outlier−−−−→ |ϵi| ≤
|woutlier|x
2b − 1

(5)

When |woutlier| ≫ c, the quantization error due to outliers can be significant. There is a proportional
relationship between quantization error ϵi and outliers woutlier.

3.2 THE QUANTIZATION ERROR OF ENTIRE MATRIX

The quantization error of the statistics and the characteristics of the weight can be assumed to follow
a normal distribution N(0, k2σ2) (where k ≫ 1) (Ashkboos et al., 2025). The total quantization
error can be expressed as:

E[ϵ2] =
x

mn

j=1∑
m

i=1∑
n

(wij − w
′

ij)
2 = (1− p)E[ϵ2normal]x+ pE[ϵ2outlier]x (6)

where (1 − p)E[ϵ2normal] is Normal Contributions and pE[ϵ2outlier] is Outlier Contributions, p is a
coefficient related to the number of outliers. Due to the outlier value, as the scale factor △′ increases,
the variance of the normal term changes to:

E[ϵ2normal] ≈
∆′2

12
=

k2σ2

12(2b − 1)2
(7)

And the mean error of the outlier itself, due to being truncated to the boundary of the quantization
range, the error is:

E[ϵoutlier] = woutlier − sign(woutlier) · (2b − 1)△′ (8)

when |woutlier| > (2b − 1)△′, the sign(·)is a sign function. The average squared error is given by:

E[ϵ2outlier] = (|woutlier − (2b − 1)△′ |)2 (9)

When the outlier value is significantly larger than the quantization range (i.e., |woutlier| ≫ (2b−1)△′),
outliers dominate the total quantification error (where E[ϵ2outlier] ≫ E[ϵ2normal]), at this point:

E[ϵ2] ≈ p · w2
outlierx (10)

The total quantification error E[ϵ2] and outliers woutlier exhibit a square relationship.

4 THE OPTIMAL SOLUTION FOR FLATNESS

In model quantization and compression, the original weight or activation matrix W ∈ Rm×n often
contains a few extremely large values that significantly exceed the magnitude of other elements.
We refer to these values as outliers. The presence of outliers reduces the distinguishability of full-
precision values within the limited quantization space, resulting in increased quantization error—one
of the core challenges in quantization research. Existing studies primarily focus on mitigating outliers
through scaling or linear transformations, and have achieved promising results. However, there
remains a lack of a unified metric to evaluate the flatness of a matrix, making it difficult to assess or
determine an optimal transformation strategy.

4.1 FLATNESS OF MATRIX

In information theory, entropy quantifies the uncertainty or randomness associated with a random
variable or probability distribution. Higher entropy indicates greater uncertainty, lower information
content, and a flatter probability distribution P (xi). The information entropy is defined as follows:

4
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H(X) = −
z∑

i=1

P (xi) logP (xi) (11)

Inspired by Information-Entropy (Tsai et al., 2008), we propose an evaluation metric called Flatness,
which quantifies the uniformity of the data distribution across the entire matrix. In this context, the
elements of the matrix W are treated as a part of probability values similar to P (xi) in the information
entropy formulation. Importantly, the outliers in W are distributed across different rows and columns
of the model, so the flatness metric needs to ensure that the distributions of the rows and columns
containing outliers are properly evaluated, the expression

W 2
ij

αiβj
can be similar to P (xi) in Eq. 11.

Specifically, Flatness is formalized as:

F =

m∑
i=1

n∑
j=1

(
W 2

ij

αiβj
ln

W 2
ij

αiβj

)
(12)

where αi > 0 is the energy weight factor for the i-th row, βj > 0 is the energy weight factor for
the j-th column. The objective is to minimize the combined dispersion F , subject to the energy
constraint:

min
αi,βj

F s.t.
∑
i,j

pij =
∑
i,j

W 2
ij

αiβj
= 1 (13)

Additional energy constraints (avoiding trivial solutions):∑
i,j

αiW
2
ijβj = C, (C > 0) (14)

We consider
W 2

ij

αiβj
as a probability distribution from two perspectives. Non-negativity and normal-

ization: W 2
ij ≥ 0, αi > 0, βj > 0, thus pij =

W 2
ij

αiβj
≥ 0. The constraint

∑
i,j

W 2
ij

αiβj
= 1 ensures

that
∑

i,j pij = 1. This condition defines the distribution of probabilities. Information entropy:
The information H(p) = −

∑
i,j pij ln pij measures the uncertainty of the distribution. As pij in-

creases, H(p) becomes larger. In this problem, we hope to maximize H(p) (i.e., maximize entropy),
thereby making pij approach the distribution of probabilities. The quality of this is the maximum
entropy of the distribution, which is achieved by optimizing pij as much as possible. The formula is

F =
∑

i,j

W 2
ij

αiβj
ln
(

W 2
ij

αiβj

)
=
∑

i,j pij ln pij .

Additionally, we consider the constraints from two perspectives. Summary of Requirements: The
information required is to ensure that the probability distribution pij satisfies

∑
pij = 1. If we hope

to set pij =
W 2

ij

αiβj
as the probability distribution, then it must satisfy the condition that the total sums

to 1.
∑

i,j

W 2
ij

αiβj
= 1. Directly ensuring the summary requirement, guarantees

∑
pij = 1 satisfies the

summary condition. Physical Meaning: This constraint ensures that the total energy corresponding
to the variable W is

∑
W 2

ij , while the roles of parameters αi and βj are to redistribute the energy,
making the distribution more uniform. The additional energy constraint

∑
αiW

2
ijβj = C is utilized

to control the degree of bias in the release of factors, avoiding αi, βj → 0 or ∞ in the solution.

4.2 FINDING THE OPTIMAL SOLUTION

Introducing the Lagrange multiplier λ, the Lagrangian is constructed as:

L =
∑
i,j

(
W 2

ij

αiβj
ln

W 2
ij

αiβj

)
+ λ1

1−
∑
i,j

W 2
ij

αiβj

+ λ2

C −
∑
i,j

αiW
2
ijβj

 . (15)
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We conducted derivation of optimality conditions. Taking partial derivatives with respect to αk and
βl, and setting them to zero:

With respect to αk:

∂L
∂αk

= −
∑
j

W 2
kj

α2
kβj

(
ln

W 2
kj

αkβj
+ 1 + λ1

)
− λ2

∑
j

W 2
kjβj = 0. (16)

Reorganizing:

∑
j

W 2
kj

α2
kβj

(
ln

W 2
kj

αkβj
+ 1 + λ1

)
= −λ2

∑
j

W 2
kjβj . (17)

Similarly, with respect to βl:

∑
i

W 2
il

αiβ2
l

(
ln

W 2
il

αiβl
+ 1 + λ1

)
= −λ2

∑
i

αiW
2
il. (18)

4.3 STRUCTURAL ANALYSIS OF THE SOLUTION

Utilizing the above formulas, we have clarified Row Independence and Column Independence. Row
Independence refers to each αk in the optimization process is determined only by the data in row k.
Column Independence refers to each βl in the optimization process is determined only by the data
in column l. This implies, αi is a function of the data in row i, independent of other rows. βj is a
function of the data in column j, independent of other columns.

Therefore, the optimal solution must be that αi is given by a function of the data in row i, and βj

is given by a function of the data in column j. By defining diagonal matrices d1 = diag(
√
αi)

and d2 = diag(
√
βj), we obtain: V = d1Wd2 as the unique optimal form. Notably, V not only

represents the theoretical optimal solution with respect to Flatness but also, according to Eq. 10, is
the optimal form for reducing quantization error.

5 METHOD

Based on the theoretical solution V obtained in Section 4, we propose Bidirectional Diagonal
Quantization (BDQ) along with Recursive Cross-Entropy loss, which together theoretically yield the
optimal Flatness of the matrix.

5.1 BIDIRECTIONAL DIAGONAL QUANTIZATION

We propose Bidirectional Diagonal Quantization (BDQ), a novel framework designed to mitigate the
impact of outliers and enhance quantization performance. The key idea behind BDQ is to distribute
the burden of outlier elimination across the entire matrix, as detailed in Section 3.

As illustrated in Figure 2, BDQ applies multiple transformation pairs both within and across LLM
blocks globally. Specifically, based on the transformer architecture, each block learns four equivalent
transformation pairs, with each pair consisting of two learnable diagonal matrices and one learnable
rotation matrix. These transformations collaboratively reshape the distribution of weights and
activations, making them more amenable to quantization. BDQ preserves equivalent transformations
at the global network level. Therefore, when quantization is not applied, the network’s output remains
identical to that of the original model. More details are provided in the Appendix C.

We define the equivalent transformation pair as E, where E consists of two diagonal matrices <
Λ1,Λ2 > and a rotation matrix R. Therefore, the forward inference process y = xW is reformulated:

y = Q(Λ1xΛ2R) ·Q(RTΛ−1
2 WΛ−1

1 ) (19)

6
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Fig. 2: The transformation results of different methods. The Rotation Matrix is a learnable random
Hadamard matrix. The diagonal matrix is obtained by optimizing and converging utilizing deep
neural networks.

Alignment Dataset Step PPL (↓) Arc-Easy (↑) Arc-Challenge (↑) Hellaswag (↑) Flatnss (↓)

Wikitext2

100 5.67 76.37 48.35 77.83 173.27
200 5.24 76.26 48.30 77.76 184.37
300 4.97 76.20 48.19 77.68 207.59
400 4.80 76.07 48.07 77.65 232.89

C4

100 7.46 76.27 48.27 77.80 189.66
200 6.83 76.32 48.36 77.78 180.53
300 6.75 76.24 48.17 77.68 189.37
400 6.61 76.15 48.09 77.59 203.99

Table 1: Experimental results of overfitting phenomenon on LLaMA3-8B .

where Q(·) represents the quantization function and W refers to weight or activation. Λ is a diagonal
matrix, and the inverse of the diagonal elements of Λ is obtained as Λ−1. The rotation matrix R
is composed of a Hadamard matrix and an additional orthogonal matrix. Appendix A provides a
detailed theoretical comparison with previous rotation-based methods, and the results demonstrate
that our method has significant advantages in complexity and outlier elimination.

The optimization objective for the entire network can be formalized as follows:

arg min
Λi,Ri

L(ŷ, y; Λi, Ri, θ) (20)

The L(ŷ, y) represents the loss between the quantized network output ŷ and the full-precision network
output y. The θ denotes the parameters of the frozen network.

5.2 RECURSIVE CROSS-ENTROPY LOSS

To achieve low-cost model compression, a small number of alignment samples (128 samples) are
typically utilized to optimize learnable parameters during quantization. However, as shown in Table
1, traditional cross-entropy leads to overfitting. This is a common problem in the field of post training
quantization (both Ostquant (Hu et al., 2025) and Spinquant(Liu et al., 2024) suffer from overfitting).
Specifically, as training steps increase, the alignment data shows lower perplexity, but performance
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#Bits Model Method PPL (↓) Accuracy (↑)
W-A-KV WikiText2 C4 ARC-C ARC-E Hellaswag LAMBADA PIQA Winogrande Avg.

4-4-4

LLaMA3-8B

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23
QuaRot 8.16 13.38 45.73 70.83 72.97 62.70 75.35 67.17 65.79

SpinQuant 7.39 12.19 47.27 74.20 74.55 70.29 77.37 68.51 68.70
FlatQuant 6.90 11.21 50.51 75.88 76.49 73.20 79.00 72.93 71.33

Ours 6.84 10.97 51.03 76.10 76.77 73.42 78.57 72.88 71.46

LLaMA3-70B

FP16 2.86 7.17 64.25 85.94 84.93 79.37 84.44 80.74 79.95
QuaRot 6.60 12.87 49.49 74.37 77.22 71.69 78.89 71.03 70.45

SpinQuant 6.21 12.82 51.96 77.40 77.29 71.90 79.33 72.06 71.66
FlatQuant 3.77 7.93 61.95 84.47 83.87 77.99 83.95 79.24 78.58

Ours 3.52 7.63 62.83 84.88 84.07 79.42 84.01 79.56 79.19

2-4-16

LLaMA3-8B

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23
QuaRot 24.36 29.88 28.59 54.76 54.62 41.90 60.03 51.33 48.53

SpinQuant 20.77 24.71 31.77 58.93 61.29 47.36 66.25 55.42 53.50
FlatQuant 18.67 23.66 33.37 61.26 62.55 49.07 68.59 56.89 55.28

Ours 16.52 20.09 36.69 64.89 64.39 52.88 72.71 60.33 58.65

LLaMA3-70B

FP16 2.86 7.17 64.25 85.94 84.93 79.37 84.44 80.74 79.95
QuaRot 19.47 28.95 42.76 72.07 68.62 62.57 68.94 59.76 62.45

SpinQuant 13.76 22.76 48.74 76.74 63.01 67.79 73.82 65.93 66.01
FlatQuant 11.53 19.64 50.71 78.61 75.82 70.93 75.42 68.68 70.02

Ours 10.07 16.39 53.26 80.06 77.49 72.57 78.39 71.53 72.22

4-4-4

DeepSeek-R1-Distill

FP16 6.03 9.28 64.51 82.63 83.42 79.44 83.76 75.63 78.23
QuaRot 8.08 13.17 55.67 73.64 72.97 71.93 76.37 68.18 69.79

SpinQuant 7.27 11.89 57.38 74.20 75.55 74.36 78.83 70.76 71.84
LLaMA-8B FlatQuant 6.81 11.07 58.64 76.88 76.49 75.31 79.38 73.42 73.35

Ours 6.74 10.78 59.76 78.81 77.89 76.63 79.64 73.98 74.45

DeepSeek-R1-Distill

FP16 2.73 7.06 73.39 87.42 87.89 84.62 87.32 84.76 84.23
QuaRot 6.51 12.06 61.08 78.64 78.32 73.62 79.62 74.42 74.28

SpinQuant 6.18 11.27 63.76 81.03 81.27 75.86 81.36 77.20 76.74
LLaMA-70B FlatQuant 3.65 7.64 65.98 84.87 84.08 78.32 84.87 80.39 79.75

Ours 3.46 7.41 67.41 85.97 85.21 80.17 85.62 81.49 80.97

2-4-16

DeepSeek-R1-Distill

FP16 6.03 9.28 64.51 82.63 83.42 79.44 83.76 75.63 78.23
QuaRot 22.63 27.43 34.78 58.75 57.46 46.87 64.31 54.38 52.75

SpinQuant 18.46 22.06 38.77 62.72 59.87 51.33 67.73 57.42 56.31
LLaMA-8B FlatQuant 15.27 20.36 40.76 64.64 62.34 53.16 69.35 59.15 58.23

Ours 12.36 17.46 43.43 66.83 65.61 57.98 72.62 62.38 61.47

DeepSeek-R1-Distill

FP16 2.73 7.06 73.39 87.42 87.89 84.62 87.32 84.76 84.23
QuaRot 17.46 25.43 46.37 74.30 70.05 64.07 62.07 61.87 63.12

SpinQuant 12.08 21.36 50.37 78.09 72.46 69.10 64.52 64.57 66.51
LLaMA-70B FlatQuant 10.43 18.09 52.78 80.12 74.03 71.77 66.73 66.74 68.69

Ours 7.42 15.34 54.76 82.07 76.64 73.52 68.93 68.92 70.81

Table 2: The overall result graph of the quantified results. Experiments were conducted on different
models and settings.

on zero-shot tasks declines, Flatness increase. This conclusion is supported when utilizing Wikitext2
(Merity et al., 2016) and C4 (Raffel et al., 2023) as alignment data. Therefore, utilizing cross-entropy
leads to the network overfitting to alignment data, affecting the elimination of outliers, which poses a
significant challenge for low-cost quantization of LLMs.

Inspired by regularization of noisy labels (Liu et al., 2020), we discovered that, besides the label
distribution q, the model prediction distribution p has high reliability. Table 4 shows that after applying
the quantization function, the top-50 token hit rate in the model’s predicted distribution p reaches
99.36%. To address the aforementioned challenges, we propose a Recursive Cross-Entropy (RCE)
loss. RCE aims to simultaneously fit the label distribution q and the model prediction distribution
p, preventing the model from falling into local optima and obtaining a global optimum. RCE is
formalized as:

LRCE = −
n∑

i=0

(qi log pi − pi log(δpi + (1− δ)qi)) (21)

where δ is a hyperparameter. The larger its value, the more it favors the label distribution during
optimization; the smaller its value, the more it favors the predicted distribution.

6 EXPERIMENTS

Models and Datasets. We evaluate the models on up to six zero-shot tasks utilizing the
lm-evaluation-harness (Gao et al., 2024b) , including HellaSwag (Zellers et al., 2019),
LAMBADA (Radford et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021),
ARC-Easy, and ARC-Challenge (Boratko et al., 2018). The models include LLaMA (Touvron et al.,
2023a) and DeepSeek-R1-Distill (Guo et al., 2025) family. The complete experimental details are in
Appendix D.
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#Bits Model Method PPL (↓) Accuracy (↑)
W-A-KV WikiText2 C4 ARC-C ARC-E Hellaswag LAMBADA PIQA Winogrande Avg.

4-4-4 LLaMA2-7B
FP16 5.47 7.26 46.16 74.54 75.98 73.92 79.05 69.06 69.79

Only-BDQ 5.83 7.86 42.63 72.69 73.03 71.57 77.21 67.42 67.42
Ours (BDQ + RCE) 5.76 7.64 43.07 73.09 73.36 72.06 77.57 67.90 67.84

Table 3: Results of ablation experiment. The ”Only-BDQ” utilizes cross-entropy as the loss function.

6.1 OVERALL RESULTS

Results on Generation Tasks. Table 2 shows the quantization results of BDQ and previous methods.
We provide experimental results under the commonly utilized W4A4KV4 quantization setting, while
also exploring low-bit settings (such as W3A3KV3 and W2A4KV16). Compared to the previous
SOTA method FlatQuant, we achieved superior performance across various experimental settings. For
the LLaMA3-70B model under W2A4KV16, we reduced the PPL on the C4 dataset from 19.64% to
16.39%. Notably, the LLaMA3-70B model under W4A4KV4 demonstrated performance comparable
to the full-precision model, offering substantial cost savings in practical deployment. These results
highlight the effectiveness of our BDQ method in distributing outlier pressure across the entire matrix.
Detailed experimental results are provided in Appendix F.

Results on Zero-shot QA Tasks. Table 2 shows the performance of quantization methods on
downstream tasks. For fairness, all experiments were conducted utilizing lm-eval-harness framework
(Gao et al., 2024a). As can be seen, BDQ significantly outperforms other methods. Under the
W4A4KV4 setting, the BDQ-quantized model demonstrates performance comparable to FP16. Under
W3A3KV3 and W2A4KV16 settings, BDQ achieves superior performance compared to previous
methods. Specifically, for the LLaMA3-8B model under the W2A4KV16 setting, the average
performance is 3.37% higher than previous methods. The experimental results demonstrate that after
mitigating the outlier problem, BDQ can still achieve excellent performance under low-bit settings.

6.2 RESULTS OF ABLATION EXPERIMENT

As shown in Table 3, we conducted ablation experiments. The experimental methods include Only-
BDQ and our method (BDQ+RCE loss). The experimental results show that, based on the SOTA
quantization results achieved by the BDQ method, RCE loss can further improve the quantization
performance. Specifically, Only-BDQ achieved state-of-the-art results on ARC-E and LAMBADA
tasks. On the Avg metric, our method improved by 0.42% compared to Only-BDQ, which validates
the effectiveness of RCE loss.

6.3 INFERENCE EFFICIENCY AND QUANTIZATION OVERHEAD

We conducted inference efficiency and quantization overhead experiments on both NVIDIA A100
80GB and AMD MI250 GPUs. The evaluation metrics include Prefill Speedup and Memory Savings.
Experimental results demonstrate that our method offers significant efficiency gains in both metrics
compared to full-precision models. Specifically, on the NVIDIA A100 80GB, the LLaMA2-70B
model achieved up to a 3.44× speedup during the prefill phase, while on the AMD MI250, memory
usage was reduced by up to 3.74×. Detailed results are provided in Appendix E.

7 CONCLUSION

In this paper, we propose Bidirectional Diagonal Quantization (BDQ), a state-of-the-art post-training
quantization method. Existing quantization approaches often suffer from significant performance
degradation due to the presence of outliers. We first establish a mathematical relationship between
quantization error and outliers, and analyze the effectiveness and limitations of prior methods in
mitigating outlier impact. To better assess outlier distribution, we introduce a flatness metric that
quantifies outlier dispersion across the matrix, and we mathematically prove that the bidirectional
diagonal structure is the optimal solution for outlier elimination. Based on these insights, we develop
the BDQ framework, which not only mitigates the adverse effects of outliers but also prevents
overfitting on aligned data. Extensive experiments validate that BDQ significantly enhances the
performance of quantized models.
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This work theoretically proves the optimal solution for outlier elimination and achieves state-of-
the-art (SOTA) performance in the field of quantization compression. All experiments are based
on publicly available datasets and open-source models, with no involvement of human subjects or
private data, nor the creation of new datasets. This benchmark is intended for academic research on
model compression rather than for harmful applications. We have not identified significant ethical
risks related to bias, privacy, or abuse. All experiments comply with the license terms of the datasets
and models used.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the benchmark construction, evaluation protocols, and experi-
mental setup. All underlying datasets are publicly available, and we followed standard preprocessing
and evaluation procedures. Additional details and complete results are reported in the appendix.
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A APPENDIX: DIFFERENCE FROM PREVIOUS ROTATION BASED METHODS

More clearly, we illustrate by setting counter examples. There exists an original matrix W ∈
R4096×4096, which contains some outliers that are significantly larger than the other values in the
matrix. We refer to them as outliers. Our method, which requires two learnable diagonal matrices
d1 ∈ R4096 and d2 ∈ R4096 to achieve the absence of outliers in d1Wd2. The previous SOTA method
Flatquant(Sun et al., 2025), which requires a matrix P ∈ R4096 for Kronerker decomposition into
two matrices p1 ∈ R64×64 and p2 ∈ R64×64. p1 and p2 are learnable and can achieve the absence of
outliers in p1Wp2. We will elaborate from the following perspectives:

A.1 MATHEMATICAL ANALYSIS OF PARAMETER FREEDOM AND ADJUSTMENT CAPABILITY

A.1.1 OUR METHOD (SCALING THE MATRIX ELEMENT-WISE):

The adjusted matrix is:

Ŵ = D1WD2, D1 = diag(d1), D2 = diag(d2)

Here, d1, d2 ∈ R4096. The adjustment for each element can be expressed as:

Ŵi,j = d1[i] · d2[j] ·Wi,j

Degrees of Freedom:

• Total number of parameters: 4096 + 4096 = 8192.
• Each element is independently controlled by parameters: The scaling of a single element
Wi,j only depends on d1[i] and d2[j], allowing precise adjustment of outliers by tuning
these two parameters.

A.1.2 FLATQUANT (KRONECKER DECOMPOSITION):

The adjusted matrix is:

Ŵ = P1WP2, where P = P1 ⊗ P2 (Kronecker product)

Here, P1, P2 ∈ R64×64, and the number of parameters is the same as in our method (64× 64× 2 =
8192). However, the adjusted matrix elements are:

Ŵi,j =

64∑
k=1

64∑
l=1

P1[k, l] · P2[m,n] ·Wi,j (simplified form)

Analysis of Degrees of Freedom:

• Coupling effect: Each parameter P1[k, l] and P2[m,n] influences 64×64 = 4096 positions.
For example, adjusting a single row of P1 affects all positions associated with that row,
leading to parameter coupling (see Kronecker product definition).

• Independent adjustment not possible: If an outlier is located at a specific position (i, j),
adjusting multiple parameters may be required to suppress the outlier, making independent
control impossible.

A.2 CONVEXITY AND COMPLEXITY ANALYSIS OF THE OPTIMIZATION PROCESS

A.2.1 OUR METHOD’S OPTIMIZATION OBJECTIVE

Define the loss function as the sum of squared magnitudes of outliers in the adjusted matrix:

Lours =
∑

(i,j)∈S

(d1[i] · d2[j] ·Wi,j)
2

Here, S represents the set of positions of outliers. The optimization variables are d1 and d2.
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Convexity Explanation:

• For d1[i] and d2[j], Lours is a quadratic function (non-negative and convex). For example,
fixing d2[j], the loss function with respect to d1[i] is:

L(i)
ours =

∑
j∈Si

(d1[i] · d2[j] ·Wi,j)
2
= d1[i]

2 ·
∑
j∈Si

(d2[j]Wi,j)
2

• Clearly, this is a convex function. Similarly, fixing d1[i], the loss function with respect to
d2[j] is also convex. Therefore, the overall optimization problem is multiconvex and easy
to converge.

A.2.2 FLATQUANT’S OPTIMIZATION OBJECTIVE

Define a similar loss function:

LFlatquant =
∑

(i,j)∈S

((P1 ⊗ P2) ◦W )
2
i,j

Here, ◦ denotes the element-wise product. The parameters P1, P2 ∈ R64×64.

Non-Convexity Analysis:

• The non-linear structure of the Kronecker product makes the loss function highly coupled
with respect to P1 and P2. For example, calculating ∂LFlatquant

∂P1[k,l]
requires considering all 4096

positions affected by P1[k, l].

• Specifically:

∂LFlatquant

∂P1[k, l]
= 2

∑
(i,j)∈S

((P1 ⊗ P2) ◦W )i,j ·
∂ (P1 ⊗ P2)i,j

∂P1[k, l]
·Wi,j

This requires a large number of nested computations, making the optimization process slower and
more complex.

A.3 THEORETICAL ERROR BOUND COMPARISON

ASSUMPTIONS:

• Outliers are sparse, i.e., |S| = k ≪ 40962.

• The objective is to minimize the magnitude of outliers after adjustment:

min
∑

(i,j)∈S

Ŵ 2
i,j .

ERROR BOUND FOR OUR METHOD:

For each outlier position (i, j), choose d1[i] = d2[j] =
1√
Wi,j

(assuming other parameters are set to

1). Then, after adjustment:

Ŵi,j =
1√
Wi,j

· 1√
Wi,j

·Wi,j = 1.

The total error is:
Lours =

∑
(i,j)∈S

12 = k.

This means the error grows linearly with the number of outliers, O(k).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3.1 ERROR BOUND FOR FLATQUANT:

Due to the global coupling of the Kronecker decomposition, adjusting a single outlier requires
modifying multiple parameters in P1 or P2. For example, adjusting one element of P1 affects
64× 64 = 4096 positions. The following condition must hold:

∃ (k, l), P1[k, l] ̸= 1 =⇒
∑

(i,j)∈S

(
(P1 ⊗ P2 ◦W )i,j

)2
≥

∑
(i,j)∈S

ϵ2,

where ϵ is the residual error. Based on parameter coupling, the minimum error bound is Ω(k · 642),
meaning the error increases with the number of outliers and the square of the matrix dimensions.

A.4 INFORMATION LOSS ANALYSIS

A.4.1 INFORMATION LOSS OF OUR METHOD:

The adjusted matrix is defined as:
Ŵ = D1WD2,

where D1 and D2 are diagonal matrices. The adjusted matrix retains the sparsity and structure of the
original matrix W (its rank and angular structure remain unchanged).

A.4.2 INFORMATION LOSS OF FLATQUANT:

For the Kronecker decomposition, the adjusted matrix satisfies:

rank(P1 ⊗ P2) = rank(P1) · rank(P2) ≤ 64× 64 = 4096.

In contrast, the rank of the original matrix W may approach 4096 (full rank). In practice, if P1 and
P2 are low-rank matrices, the rank of the adjusted matrix Ŵ will be further reduced, leading to
information loss.

All in all, through the analysis of parameter independence, optimization convexity, error bounds, and
information loss, the mathematical properties of the two methods can be summarized as follows: In
Independence, our method independently adjusts two sets of scaling parameters, while Flatquant
suffers from parameter coupling, making local adjustments difficult. In optimization Efficiency, the
non-convexity of Flatquant’s loss function leads to slower convergence, while our method’s loss
function is multiconvex and easier to optimize. In error Bound the error bound of our method grows
as O(k), while Flatquant’s error bound grows as Ω(k · 642), showing a significant difference in
efficiency. In information retention, our method preserves the rank and structure of the original matrix,
while Flatquant’s low-rank decomposition leads to information loss. In conclusion, our method is
theoretically and practically superior to Flatquant.
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B APPENDIX: THE HIT RATE RESULTS OF CANDIDATE TOKENS

Model Top-1 Top-2 Top-4 Top-6 Top-8 Top-10 Top-20 Top-50
LLaMA-2-7B 86.93 90.13 93.46 94.37 98.36 99.07 99.21 99.32
LLaMA-2-13B 88.36 90.30 92.73 94.58 97.36 98.39 99.07 99.26
LLaMA-3-8B 87.85 90.77 93.46 97.78 98.26 99.09 99.10 99.36

Table 4: The hit rate of candidate tokens predicted by the model.

C APPENDIX: THE POSITION OF EQUIVALENT TRANSFORMATION PAIRS

For our BDQ method, each transformer block learns four equivalent transformation pairs, with each
pair consisting of two learnable diagonal matrices and one learnable rotation matrix. Similarly
to (Ashkboos et al., 2025) and (Liu et al., 2024), the positions of these four transformation pairs
are respectively in the < Wq,Wk,Wv > matrices of Self-Attention, the < Woutput > matrix of
Self-Attention, the < Wgate,Wup > matrices of Feed-Forward Network, and the < Wdown > matrix
of Feed-Forward Network.

D APPENDIX: COMPLETE EXPERIMENTAL DETAILS

Experimental Setup. We apply our method to the entire LLaMA family, including LLaMA-2 (7B-
70B) (Touvron et al., 2023b), and LLaMA-3 (8B-70B).At the same time, we conducted experiments
on the DeepSeek-R1-Distill model (Guo et al., 2025) family of inference models. We report perplexity
(PPL) scores on the WikiText2 (Merity et al., 2016) and C4 test set. All experiments were conducted
utilizing the GPTQ method for quantification. The quantitative baseline includes: Quarot (Ashkboos
et al., 2025), Spinquant (Liu et al., 2024) and Flatquant (Sun et al., 2025).

Implementation Details. We utilize AdamW optimizer (Loshchilov et al., 2017) with an initial
learning rate of 5e− 3 and adopt a cosine annealing schedule for learning rate decay. BDQ is trained
on an alignment dataset for 150 epochs, with the calibration set containing 128 sentences from
WikiText2, each containing 2048 tokens. The batch size is set to 4 and δ is set to 0.5. All diagonal
matrices are initialized as identity matrices, while orthogonal matrices are initialized with random
affine transformations.

E APPENDIX: INFERENCE EFFICIENCY AND QUANTIZATION OVERHEAD
EXPERIMENTAL RESULTS

Model/NVIDIA Prefill Speedup(Seqlen) Memory Saving
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

LLaMA-2-7B 2.31x 2.32x 2.36x 2.19x 2.17x 2.11x 3.62x 3.27x 3.10x 2.72x 2.58x 2.22x
LLaMA-2-13B 2.45x 2.47x 2.57x 2.23x 2.28x 2.29x 3.66x 3.30x 3.11x 2.79x 2.61x 2.25x
LLaMA-2-32B 2.60x 2.52x 2.62x 2.42x 2.37x 2.35x 3.72x 3.41x 3.19x 2.87x 2.72x 2.35x
LLaMA-2-70B 3.20x 3.44x 3.42x 2.99x 3.17x 2.89x 3.75x 3.45x 3.22x 2.90x 2.77x 2.57x

Model/AMD Prefill Speedup(Seqlen) Memory Saving
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

LLaMA-2-7B 2.22x 2.28x 2.33x 2.15x 2.23x 2.19x 3.54x 3.26x 3.03x 2.74x 2.52x 2.19x
LLaMA-2-13B 2.27x 2.49x 2.54x 2.34x 2.33x 2.37x 3.65x 3.35x 3.12x 2.79x 2.58x 2.21x
LLaMA-2-32B 2.52x 2.55x 2.63x 2.32x 2.35x 2.37x 3.68x 3.44x 3.17x 2.81x 2.70x 2.32x
LLaMA-2-70B 3.17x 3.42x 3.46x 2.68x 3.15x 2.76x 3.74x 3.49x 3.20x 2.83x 2.76x 2.49x

Table 5: The overall results of the Speedup and Memory experiments.
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F APPENDIX: MORE QUANTIZATION EXPERIMENTAL RESULTS

F.1 SUPPLEMENTARY EXPERIMENTAL RESULTS

#Bits Model Method PPL (↓) Accuracy (↑)
W-A-KV WikiText2 C4 ARC-C ARC-E Hellaswag LAMBADA PIQA Winogrande Avg.

4-4-4

LLaMA2-7B

FP16 5.47 7.26 46.16 74.54 75.98 73.92 79.05 69.06 69.79
QuaRot 6.10 8.32 42.32 68.35 72.53 65.40 76.33 65.11 65.01

SpinQuant 5.96 8.28 41.72 69.28 72.90 71.28 76.17 66.06 66.23
FlatQuant 5.78 7.86 43.00 71.21 73.31 72.06 77.53 67.72 67.47

Ours 5.76 7.64 43.07 73.09 73.36 72.06 77.57 67.90 67.84

LLaMA2-13B

FP16 4.88 6.73 49.15 77.44 79.39 76.73 80.47 72.14 72.55
QuaRot 5.40 7.54 42.83 69.95 73.54 65.62 77.69 67.88 66.25

SpinQuant 5.24 7.48 43.69 72.43 75.52 72.42 78.40 68.90 68.56
FlatQuant 5.11 7.11 48.38 76.94 77.88 76.40 79.65 70.56 71.64

Ours 5.08 7.07 48.52 76.87 77.90 76.47 79.83 70.77 71.73

LLaMA2-70B

FP16 3.32 5.72 57.71 81.02 83.81 79.60 82.70 77.98 77.05
QuaRot 3.79 6.12 55.46 79.76 81.58 79.35 81.83 76.09 75.68

SpinQuant 3.70 6.07 55.38 79.04 82.57 78.75 82.37 78.22 76.06
FlatQuant 3.54 5.92 56.40 80.09 82.91 80.01 82.92 76.87 76.53

Ours 3.50 5.88 56.60 80.32 82.97 79.84 82.90 77.03 76.61

LLaMA3-8B

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23
QuaRot 8.16 13.38 45.73 70.83 72.97 62.70 75.35 67.17 65.79

SpinQuant 7.39 12.19 47.27 74.20 74.55 70.29 77.37 68.51 68.70
FlatQuant 6.90 11.21 50.51 75.88 76.49 73.20 79.00 72.93 71.33

Ours 6.84 10.97 51.03 76.10 76.77 73.42 78.57 72.88 71.46

LLaMA3-70B

FP16 2.86 7.17 64.25 85.94 84.93 79.37 84.44 80.74 79.95
QuaRot 6.60 12.87 49.49 74.37 77.22 71.69 78.89 71.03 70.45

SpinQuant 6.21 12.82 51.96 77.40 77.29 71.90 79.33 72.06 71.66
FlatQuant 3.77 7.93 61.95 84.47 83.87 77.99 83.95 79.24 78.58

Ours 3.52 7.63 62.83 84.88 84.07 79.42 84.01 79.56 79.13

3-3-3

LLaMA3-8B

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23
QuaRot 15.73 27.38 28.93 57.42 60.33 45.81 66.34 54.25 52.18

SpinQuant 12.37 22.35 32.55 61.03 63.59 49.80 71.29 57.93 56.03
FlatQuant 10.82 19.03 35.41 63.26 65.30 52.49 73.56 60.69 58.45

Ours 9.87 18.5 37.4 65.3 65.3 53.6 73.89 61.42 59.48

LLaMA3-70B

FP16 2.86 7.17 64.25 85.94 84.93 79.37 84.44 80.74 79.95
QuaRot 13.44 23.39 47.86 74.31 70.53 67.57 72.09 67.53 66.64

SpinQuant 10.35 18.77 52.28 78.24 76.61 72.18 77.37 70.78 71.24
FlatQuant 8.72 15.74 54.37 80.31 78.67 73.57 79.03 73.37 73.22

Ours 6.67 13.21 56.12 81.22 79.63 74.79 80.14 75.67 74.59

2-4-16

LLaMA3-8B

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23
QuaRot 24.36 29.88 28.59 54.76 54.62 41.90 60.03 51.33 48.53

SpinQuant 20.77 24.71 31.77 58.93 61.29 47.36 66.25 55.42 53.50
FlatQuant 18.67 23.66 33.37 61.26 62.55 49.07 68.59 56.89 55.28

Ours 16.52 20.09 36.69 64.89 64.39 52.88 72.71 60.33 58.65

LLaMA3-70B

FP16 2.86 7.17 64.25 85.94 84.93 79.37 84.44 80.74 79.95
QuaRot 19.47 28.95 42.76 72.07 68.62 62.57 68.94 59.76 62.45

SpinQuant 13.76 22.76 48.74 76.74 63.01 67.79 73.82 65.93 66.01
FlatQuant 11.53 19.64 50.71 78.61 75.82 70.93 75.42 68.68 70.02

Ours 10.07 16.39 53.26 80.06 77.49 72.57 78.39 71.53 72.22

Table 6: The overall result graph of the quantified results. Experiments were conducted on different
models and settings.

F.2 EXPERIMENTAL RESULTS OF DOWNSTREAM TASKS

We provide experimental results on MMLU and MATH. MATH: We report the average of the GSM8K
(8 shot) and MATH (4 shot) benchmarks.

LLaMA-2-7B MMLU (↑) MATH (↑)
FP16 45.3 14.6
QuaRot 39.1 8.3
SpinQuant 40.8 9.7
Flatquant 41.3 10.5
Ours 42.6 12.3

Table 7: Performance of different methods on LLaMA-2-7B

The experimental results show that our method exhibits superior performance on the benchmark
datasets in Table 7.
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δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
WikiText2 (↓) 6.19 6.18 6.18 6.15 6.14 6.14 6.15 6.15 6.17 6.19 6.19

C4 (↓) 9.53 9.52 9.50 9.47 9.46 9.45 9.45 9.47 9.48 9.50 9.52

Table 8: Results for different δ values on WikiText2 and C4 datasets

F.3 EXPERIMENTAL RESULTS OF HYPERPARAMETER ABLATION δ

The experimental results show that δ achieves optimal performance at 0.5 in Table 8.

G APPENDIX: THE REASON FOR ADDING THE ROTATION MATRIX

As we mentioned in Section 4.3, we obtained the optimal solution for Flatness, which is V = d1Wd2.
The motivation for adding the rotation matrix R is to prevent the special case where the matrix W
has strong column correlations. The rotation matrix can, while retaining the ability of diagonal
scaling to eliminate outliers, further enhance the Flatness of the matrix element distribution through
orthogonal transformation. Meanwhile, it utilizes the special structure of the Hadamard matrix to
address the limitations of relying solely on diagonal scaling in the first step. The following is a
rigorous theoretical proof of the rationality of this transition.

Proof from the perspective of information entropy: Introducing R enhances distribution uniformity

of the matrix. Define the probability distribution of matrix elements as pij =
V 2
ij∑

i,j V 2
ij

(energy

normalization), whose information entropy is given by: H(V) = −
∑

i,j pij log pij . A higher
entropy value indicates a more uniform distribution of matrix elements (with reduced influence from
outliers).

Step 1 (Diagonal Scaling Only): For V1 = d1Wd2, its elements are V1,ij = aiWijbj . Since d1 and d2
are diagonal matrices, they only adjust the magnitude ratio of elements but do not alter the correlation
structure between elements. If the original matrix W exhibits strong inter-column correlations (e.g.,
Wi1 ≈ Wi2 for all i), then V1,i1 ≈ aib1

aib2
V1,i2 will retain such strong correlations, leading to energy

concentration in specific columns (and thus lower entropy).

Step 2 (Incorporating R): For V2 = V1R, its elements are V2,ik =
∑

j V1,ijRjk (linear combina-
tions of columns, with Rjk = ±1 representing signed weighted sums). Due to the orthogonality
of Hadamard matrices, the column vectors V

(k)
2 =

∑
j RjkV

(j)
1 are mutually orthogonal, i.e.:

⟨V (k)
2 , V

(l)
2 ⟩ =

∑
j RjkRjl⟨V (j)

1 , V
(l)
1 ⟩ = 0 (k ̸= l). This implies that inter-column correlations

are completely eliminated, with energy dispersed from originally correlated columns to orthogonal
columns.

The above proof process shows that after orthogonal transformation, the more uniform the energy
distribution, the lower the Flatness. This does not affect the optimality of V = d1Wd2, and the
rotation matrix acts as an external gain on V .

In addition, we conducted ablation experiments on the rotation matrix:

W4-A4-KV4 WikiText2 (↓) C4 (↓)
FP16 5.47 7.26

BDQ (w/o R) 5.94 7.82
BDQ (Ours) 5.76 7.64

Table 9: Ablation experiments on the rotation matrix
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H LIMITATIONS

Our work has several limitations. First, due to limitations in computing resources, we did not conduct
relevant experiments on larger language models. Second, due to limited experimental resources, there
is a lack of experiments conducted on different types of GPUs to verify the widespread practicality of
the verification method.
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