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Abstract

Although coral reefs are special and vital marine ecosystems,
massive coral degradation began to occur due to the increase
in global temperatures and the intensification of human indus-
trial activities. Coral reef protection requires accurate coral
recognition because it is the foundation for learning the dis-
tribution, disease, and growth of coral reefs, hereby informing
the proper ways for further action. Recently, CNNs have been
applied in automated coral image classification. These classi-
fier models, however, are difficult to be generalized from the
trained coral images in a marine region (source domain) to
the coral images in a different marine region (target domain)
since the corals have significant within-species morpholog-
ical variability among the different geographic location do-
mains. In this paper, a novel coral recognition algorithm is
introduced via knowledge transfer across domains and its ad-
vantages lie in the following aspects. (1) It simultaneously
transfers corals’ texture and structure features across domains
thus providing useful knowledge to assist the coral recog-
nition tasks in the target marine domain. (2) To overcome
the difficulty that the confusing coral images (e.g., bleached
corals) are prone to be misclassified and transfer useless or
even negative information, our algorithm is equipped with the
reject option for the confusing corals while adapting. These
corals can be sent to an expert or a more expensive but accu-
rate system, resulting in strengthened transferability and re-
liability. Furthermore, we develop a new cross-domain coral
image dataset to enhance coral research. Without the label in-
formation from the target marine region, our method signif-
icantly reduces the distribution gap and domain shift among
the different marine regions. In addition, CR-Cross goes a
step further in tackling the challenges of missing coral data,
maximizing the utilization of available coral datasets, and en-
hancing the reusability of both coral data and coral recog-
nition models. A series of empirical studies show that our
method remarkably outperforms a broad range of baselines.

Introduction
Coral reefs are special and vital marine ecosystems, which
have exceptionally high biodiversity and are often referred
to as the tropical rainforest of the ocean. Coral reefs di-
rectly provide abundant biological resources for human pro-
duction and livelihood, including plentiful fishery resources,
raw materials for anti-cancer and antibacterial drugs. How-
ever, since the 1980s, mass coral degradation began to occur
due to the increase in global temperatures and the intensi-

fication of human industrial activities (Reaka-Kudla 1997).
According to, less than 30% of coral reefs worldwide are
currently in a healthy state (Mulhall 2008). Indeed, coral
reef reservation and restoration has been an emergent is-
sue of global interest, attracting a great deal research ef-
forts from multiple disciplines. Coral reef protection often
requires accurate coral recognition because it is the foun-
dation for learning the distribution, disease, and growth of
coral reefs, hereby informing the proper ways for further ac-
tions (Mora et al. 2006). With the latest progress in image ac-
quisition technologies (using autonomous underwater vehi-
cles), substantial volumes of coral reef images are currently
being amassed. On the foundation of these extensive image
data, deep learning-based computer vision methods (power-
ful yet inexpensive) have been widely adopted in automated
coral recognition to alleviate the burden on ocean scientists.
To achieve better generalization capability, these deep mod-
els need to collect plenty of labeled training coral images
that come from the same marine region as the test images.
However, in real coral protection tasks, training and test im-
ages are always from different marine regions since it is ex-
pensive to re-labeling training images by ocean scientists.
Different marine regions may lead to significant changes in
the structure and texture of coral images in the same class.
The different image data distributions between regions (or
domains) limit the generalization capability of deep models.

In coral recognition, bridging the distribution discrep-
ancy and realizing the knowledge transfer across domains
is not an easy problem, and it has several great challenges
to deal with. (1) Coral-specific features. Existing transfer
learning models mostly focus on extracting texture features
from coral images. However, for corals, texture and struc-
tural information together determine species. If only local
texture features are considered in the transfer learning pro-
cess, it can affect the transfer of valuable and discrimina-
tive information. (2) Confusing-coral rejection. In an un-
known marine area, even for the same coral species, corals
exhibit evident intra-specific morphological variability, in
terms of age, diseases, depth, light, and species competi-
tion (Raphael et al. 2020). These confusing coral images are
prone to be misclassified and transfer useless or even nega-
tive information. It is important to estimate when the coral
recognition system is in doubt and then allow it to abstain
from target domain predicting. The system can turn over the



decision-making power to an ocean expert or a more expen-
sive but accurate system. Consequently, the system will be-
come smarter and more reliable. The purpose of our paper is
to address the problems of bridging the distribution discrep-
ancy, realizing the knowledge transfer across domains, max-
imizing the utilization of available coral datasets, and elimi-
nating the confusing coral images. We utilize the coral’s tex-
ture and structure feature from the source marine region to
achieve cross-domain coral recognition from the target ma-
rine region. By the marginal distribution alignment and the
reject rule, we reduce the distribution discrepancy among
the different marine regions and exclude the confusing coral
images, which further strengthens the transferability and re-
liability of our method.

Related Works

Coral Recognition

In a recent effort to automate coral recognition, Mehta et al.
(2007) utilize the support vector machines (SVM) and the
texture features of coral to classify coral reef images. Stokes
and Deane (2009) propose a method that applies the tex-
ture, normalized color space, and the k-nearest neighbor
classifier for the coral reef benthic classification. Recently,
Convolutional Neural Networks (CNN) have demonstrated
outstanding performance in image classification (He et al.
2016; Mahmood et al. 2016). In addition, hybrid feature
and data augmentation is applied to improve the perfor-
mance of the coral recognition (Mary and Dharma 2017;
Gómez-Rı́os et al. 2019; Asha Paul, Arockia Jansi Rani, and
Liba Manopriya 2020), which enhances the model’s gener-
alization and robustness. However, all the aforementioned
studies focus on a single dataset from one marine region,
while distribution discrepancy among the different marine
regions has not been taken into account.

Unsupervised Domain Adaptation

Deep learning has achieved impressive performance in var-
ious classification tasks. The outstanding performance is
premised on the abundant annotated training samples and
training data is drawn from identical distribution with the
test data. However, it is unrealistic in various real appli-
cations. Therefore, unsupervised domain adaptation is pro-
posed to address the problems of the lack of annotated
training samples and the distribution discrepancy between
train data and test data. Domain adaptation can transfer the
knowledge from the rich labeled source domain to the un-
labeled target domain. To reduce the domain shift, on the
one hand, unsupervised domain adaptation always defines a
specific metric for distribution discrepancy. Zellinger et al.
(2017) and Long et al. (2017) respectively propose the cen-
tral moment discrepancy and the joint maximum mean dis-
crepancy to align the distribution among the different do-
mains. On the other hand, unsupervised domain adaptation
learns a domain-invariant feature representation by the extra
domain discriminator (Ganin et al. 2016; Long et al. 2018;
Du et al. 2021).

Method
In this section, we present a new architecture, named
Cross Domain Coral Recognitions with Reject Options(CR-
Cross). As shown in Figure 1, CR-Cross is composed of four
components: a feature extractor, a feature fusion model, a
domain adaptation model, and the reject rule. The core idea
is to utilize the texture features, structure features, marginal
distribution alignment, and the reject rule to improve the
cross-domain coral recognition performance.

Problem Definition and Notations
Based on the coral recognition, a sample of n labeled train-
ing data {(x1, y1) , . . . , (xn, yn)} from X × Y is fed into
the model, where X is the input space of the model and
Y = {1, . . . , k} is the output space of the model in multi-
class classification. During the testing stage, the model re-
ceives the m labeled test data {(x1, y1) , . . . , (xm, ym)}
from X ×Y . In the supervised coral recognition setting, the
training data and test data are drawn from the same distri-
bution P . In the cross-domain coral recognition setting, let
{(xs

1, y
s
1) , . . . , (x

s
n, y

s
n)} be a set of n labeled samples from

X × Y in the source marine region. Let {xt
1, . . . ,x

t
m} be

m unlabeled sample from X in target marine region. The
source marine region and target marine region are drawn
from different distributions, and we denote Ps and Pt as the
marginal probability distributions of the source marine re-
gion and target marine region, respectively.

Texture Feature and Structure Feature
Almost all coral recognitions are based on the coral’s tex-
ture feature, which has led to the loss of structure infor-
mation. Therefore, we design a new architecture to simulta-
neously transfer the coral’s domain-invariant texture feature
and structure feature between the source marine region and
the target marine region.

We apply the ResNet50 as a backbone network to cap-
ture the texture features and employ the hierarchical cou-
pling ViT as a backbone network to obtain the structure fea-
tures. According to the setting of ResNet50 (He et al. 2016),
the entire network is divided into five stages. The first stage
involves preprocessing the input data. The other stages are
composed of multiple bottlenecks including the 1 × 1 down-
sampling convolution, 3 × 3 spatial convolution, and 1 ×
1 up-sampling convolution for the extraction of texture fea-
tures. Following the ViT (Dosovitskiy et al. 2020), the ViT is
composed of the 12 transformer encoder blocks. The trans-
former encoder blocks consist of multi-head self-attention
(MSA) and MLP blocks. With self-attention, the seman-
tic dependencies among different patches can be better ex-
tracted, thereby capturing coral’s structure features more
effectively. In order to obtain structure features of differ-
ent hierarchical levels and achieve better generalization, we
design grouped transformer encoder blocks, and the trans-
former encoder blocks are sequentially divided into three
groups. In order to capture structure features at various hi-
erarchical levels, the feature from the last encoder block of
the different groups simultaneously outputs to the decoder
block. The hierarchical feature from the decoder block is fed
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Figure 1: Framework of CR-Cross. CR-Cross is composed of four components: a feature extractor, a feature fusion model, a
transfer network model, and the reject rule. The core idea is to utilize the texture features, structure features, marginal distribu-
tion alignment, and the reject rule to improve the cross-domain coral recognition performance.

into the domain adaptation layer and fused with the texture
feature from ResNet50.

Marginal Distribution Alignment
To overcome the difficulty that the confusing coral images
(e.g., bleached corals) are prone to be misclassified and
transfer useless or even negative information, CR-Cross is
equipped with the reject option for the confusing corals
while adapting. CR-Cross consider a triple(s, c, g), where
s : X → Z is a feature extractor, c : Z → Y is a classifier,
and g : X → {0, 1} is a reject rule. Specifically, g serves as
a binary qualifier for s and c as follows:

(s, c, g)(x) =

{
c(s(x)) g(x) = 1

reject g(x) = 0
(1)

Denote the classifier h = s ◦ c as the joint variables of s and
c. The learning problem of CR-Cross consists of selecting h
and g such that the following error (risk) with respect to the
target marine region is minimized:

errPt
(h, g) = Ex∼Pt

[I(h(x) ̸= y) · g(x)] (2)

where I is the indicator function. The risk of the target ma-
rine region can be minimized by the reject rule, but the dis-
tribution discrepancy is still present. To reduce the distri-
bution discrepancy among the different marine regions, a
bound of cross-domain coral recognitions is proposed. The
bound suggests that the target error is minimized by match-
ing the marginal distributions among the different marine
regions and minimizing the error on the source marine re-
gion simultaneously. With the incorporation of reject rule
g in the cross-domain coral recognitions objective, the new
loss function is defined:

errPs
(h, g) + disc (Ps, Pt | g) (3)

where errPs
is the cross-entropy loss of the source marine

region, disc (Ps, Pt | g) is the discrepancy between source
marine region and target marine region. The classifier h in
Eq. 3 is trained by minimizing the loss function. Mean-
while, the loss function is determined by the rule g which

also needs to be trained. The reject rule plays a crucial
role in training h: while abstaining the confusing coral im-
ages (e.g., bleached corals and coral samples with significant
within-species morphological variations) as needed during
the transfer process, both discriminability and transferability
can be enhanced. That is, different categories are more eas-
ily to be separated, and distribution discrepancy is bridged
more positively. Meanwhile, the classifier helps to find g.
We propose the following learning procedure:

Step 1: Train classifier h using the labeled samples from
the source marine region and unlabeled samples from the
target marine region.

Step 2: Find the optimal reject rule g based on classifier
h.

To further facilitate the marginal distribution alignment,
we integrate the MDD into the disc (Ps, Pt | g). MDD con-
siders f : X × X → R with hypothesis space F , where
f(x, y) indicates the component of f(x) corresponding to
the label y. Thus f(x) induces a classifier hf from X to Y
in a hypothesis space H:

hf : x → argmax
y∈Y

f(x, y). (4)

The margin of the hypothesis f at a labeled example (x, y)
is defined as

ρf (x, y) =
1

2

(
f(x, y)−max

y′ ̸=y
f (x, y′)

)
(5)

The corresponding margin loss of f is

errρP (f) = Ex∼PΦρ (ρf (x, y)) (6)

where Φρ is

Φρ(x) =

{
0 ρ ≤ x
1− x/ρ 0 ≤ x ≤ ρ
1 x ≤ 0

(7)

Based on the margin loss, the expression of MDD is

dρf,F (Ps, Pt) = sup
f ′∈F

(
dispρPt

(f ′, f)− dispρPs
(f ′, f)

)
,

(8)



where

dispρP (f ′, f) = Ex∼PΦρ (ρf ′ (x, hf ))

Combining the Eq. 3 and Eq. 8, the optimization problem of
step 1 can be written as

min
f

errρPs
(f, g) + dρf,F (Ps, Pt | g) ,

where

errρPs
(f, g) = Ex∼Ps [Φρ (ρf (x, y)) · g(x)] ,

dρf,F (Ps, Pt, g) = sup
f ′∈F

(
dispρPt

(f ′, f, g)− dispP ρ
Ps

(f ′, f, g)
)

= sup
f ′∈F

(Ex∼Pt
[Φρ (ρf ′ (x, hf )) · g(x)]−

Ex∼Ps
[Φρ (ρf ′ (x, hf )) · g(x)]) .

(9)
Eq. 9 can be easily trained end-to-end by a minimax opti-
mization procedure through standard back-propagation.

Optimal Reject Rule
The problems of target risk and distribution discrepancy
among the different marine regions have been addressed,
we need to search for the optimal reject rule g in step 2.
That is, we need to find gna using the non-abstained sam-
ples (gr = gr−1 · grna

)
. In information theoretic learning,

the normalized mutual information (NMI) (Finn 1993) mea-
sures the degree of dependence between the targets T and
the decision outputs Y :

NMI(T, Y ) =
I(T, Y )

H(T )
, (10)

where I(T, Y ) is the mutual information of T and Y , and
H(T ) is the Shannon’s entropy of T . NMI in Eq. 10 restricts
the mutual information score to the range [0, 1]. The cost
information about the error and reject can be derived from
NMI in abstaining classification, which is determined by the
data distributions (Hu 2013). Therefore, NMI provides ob-
jectivity in getting the optimal error-reject trade-off. In a k-
class abstaining classification (the rejected class is denoted
as 0), the empirical estimation of NMI is defined as:

NMI =

∑k
i=1

∑k
j=1 P (T = i, Y = j) log P (T=i,Y=j)

P (T=i)P (Y=j)

−
∑k

i=1 P (T = i) logP (T = i)

=

∑k
i=1

∑k
j=1 cij log

(
cij

Ci
∑k

i=1

cij
n

)
−
∑k

i=1 Ci log
Ci

n
(11)

where cij is the number of the instances that belongs to the
ith class classified as the jth class, Ci =

∑k
j=0 cij and

n =
∑k

i=1

∑k
j=0 cij . In the cross-domain coral recognitions

setting, denote z as the number of remaining non-abstained
coral samples from the source marine region, and the output
label vector with respect to the coral sample is defined as
hs = [hs

1, h
s
2, . . . , h

s
z]:

hs
i =

(
argmax

l
f (xs

i , l)

)
· gna (xs

i ) (12)

where hs
i ∈ {0, 1, . . . , k}, f (xs

i , l) is the probabilistic out-
put of class l ∈ {1, . . . , k} for xs

i from the source marine
regions, i.e.,

∑k
l=1 f (xs

i , l) = 1 and 0 ≤ f (xs
i , l) ≤ 1. The

optimization problem of the reject rule gna is formulated as:

max
τ

NMI (ys,hs)

gna (x
s
i ) =

{
1 max

(
f(xs

i ,l)
τl

)
≥ 1

0 otherwise ,

0 < τl ≤ 1, l = 1, 2, . . . , k,

(13)

Finally, the optimal gna learned based on real source labels
is utilized to find newly rejected data from two marine re-
gions in step 1. In the two-step procedure, we alternatively
bridge the domain gap and improve the reject quality until
convergence.

Experiments
In this section, we empirically demonstrate the effectiveness
of the proposed method in cross-domain coral recognition.

Cross-domain coral recognition datasets
Due to the lack of a cross-domain underwater coral dataset,
we propose a new cross-domain benchmark dataset from
openly available EILAT datasets (Shihavuddin 2017) and
CoralNet’s website. Owing to the datasets collected from
three different marine regions, we have named this dataset
EILAT3. EILAT3 consists of three sub-datasets: E1, E2, and
E3, which contain 1094 image patches of size 64 × 64.
Each sub-dataset has the same species, including the Urchin,
Sand, Favid Coral, Branching Coral, and Brain Coral. E1
is composed of image patches cropped from coral images.
These coral patches obtain the texture feature of different
parts of the coral image and do not capture the global struc-
ture feature of the coral image. E2 is collected from different
marine regions near Eilat in the Red Sea and consists of coral
images with the global structure. E3 is a dataset obtained by
scraping data from CoralNet’s website, which has coral im-
ages with different marine regions and various growth cy-
cles. We construct 6 cross-domain underwater coral recog-
nition tasks by using the three different marine region com-
binations.

Compared Methods
In cross-domain coral recognition, we systematically com-
pare the proposed method with the following state-of-the-
art coral recognition methods. The compared methods can
be roughly categorized into two groups. The first group is
composed of coral recognition methods without any trans-
fer learning, including ResNet50 and ResNet101 (He et al.
2016). Due to the outstanding performance of the ResNet,
most previous work (Beijbom et al. 2012; Gómez-Rı́os et al.
2019; Raphael et al. 2020) utilize the different variations
of ResNet to demonstrate the state-of-the-art coral recogni-
tion accuracies. The second group consists of previous trans-
fer learning methods including DAN (Long et al. 2015),
DANN (Ganin and Lempitsky 2015), JAN (Long et al.
2017), CDAN (Long et al. 2018), MCD (Saito et al. 2018),
MDD (Zhang et al. 2019) and CGDM (Du et al. 2021).



Table 1: Accuracy(%) on coral dataset for cross-domain coral recognition

Method E1→E2 E1→E3 E2→E1 E2→E3 E3→E1 E3→E2

ResNet50 78.9 43.8 97.6 84.2 90.4 93.8
ResNet101 79.9 44.2 97.5 82.9 94.0 91.1

DANN 80.9 56.2 96.9 88.3 74.9 90.5
DAN 84.5 67.1 97.6 86.7 91.3 94.7
JAN 69.1 52.1 93.6 75.0 90.5 88.5

MCD 78.0 52.9 97.1 80.8 65.5 94.7
CDAN 84.2 58.3 96.2 87.9 80.0 91.8
CGDM 79.4 64.8 90.6 87.8 58.3 91.5
MDD 83.9 57.1 97.5 87.5 75.5 95.1

CR-Cross(ours) 88.288.288.2 77.877.877.8 98.498.498.4 98.698.698.6 95.795.795.7 98.798.798.7

Results and Discussion
During the process of cross-domain coral recognition, we
repeat the learning process until the maximum reject rate p
for the target coral data is reached and set p is 10%. From
table 1, several observations can be made. (1) Due to the
domain shift among the different marine regions, the coral
recognition methods without transfer learning including the
ResNet50 and ResNet101 have lower accuracy. Specifically,
for the transfer task from E1 to E3, the accuracy of ResNet50
is only 43.8 %. The larger models also can not reduce the do-
main shift, and the cross-domain coral recognition accuracy
of ResNet101 is only 44.2 %. (2) On the previous transfer
learning methods, the domain shift can be slightly reduced
in some transfer tasks. For the transfer learning from E2 to
E3, DANN and CDAN gained 4.1 % and 3.7 % improve-
ment, respectively. However, JAN and CGDM perform even
worse than the non-transfer learning model impacted by the
negative transfer. (3) Depending on the fusion of the tex-
ture feature and the structure feature and the optimal reject
strategy, our method achieves the best accuracy on all trans-
fer tasks. Compared to ResNet50, CR-Cross achieved im-
provements of 9.3%, 34%, 0.8%, 14.4%, 5.3%, and 4.9%
on six cross-domain coral recognition tasks. Different from
the previous transfer learning methods which rely on general
information to complete the cross-domain coral recognition,
CR-Cross transfers the structure and texture information of
corals from one marine region to another. In addition, the op-
timal reject rule can further eliminate the transfer of useless
or even negative information.

Qualitative Analysis
Feature Visualization: To provide an intuitive under-

standing of the aligned feature of the source marine region
and target marine region, we utilize the t-SNE to visualize
the feature of different methods. We conduct the experiment
on the transfer task from E2 to E3. As shown in Figure 2,
we can derive three conclusions. As shown in Figure 2(a)
and (b), the source coral samples have a clear classification
boundary and obvious discriminative structure. Due to the
existence of domain shifts, different marine regions have a
huge distribution gap. Figure 2 (c), 2 (d), and 2 (e) show that
DAN, DANN, and MDD can slightly reduce the domain dis-
crepancy among the different marine regions. However, al-

(a) ResNet50 (b) ResNet101 (c) DAN

(d) DANN (e) MDD (f) Ours

Figure 2: The t-SNE visualization of features generated by
ResNet50, ResNet101, DAN, DANN, MDD, and Ours from
different marine regions. Red and blue dots represent the
source domain and the target domain, respectively.

though the distribution discrepancy of the DAN, DANN, and
MDD is reduced, the classification boundary and discrim-
inative structure of the target marine region are relatively
poor. Relying on the fusion of the texture feature and the
structure feature and the optimal reject strategy, our method
has a clear classification bound and nearly similar feature
distributions among the source marine region and target ma-
rine region. In addition, our method maximally aligns the
discriminative structure and realizes the intra-class compact-
ness between the source marine region and the target marine
region. The results demonstrate the effectiveness and feasi-
bility of our method.

Conclusion
In this paper, we propose a novel CR-Cross framework,
which can utilize both coral’s texture features, coral’s struc-
ture features, and the optimal reject rule to achieve cross-
domain coral recognitions. CR-Cross applies the texture and



structure feature extractor to obtain transferable knowledge
from the source marine region to realize the coral recogni-
tion in the target marine region. To overcome the difficulty
that the confusing coral images (e.g., bleached corals) are
prone to be misclassified and transfer useless or even neg-
ative information, our algorithm is equipped with the reject
option for the confusing corals while adapting, which fur-
ther reduces the distribution discrepancy among the different
marine regions. Cross-domain coral recognition goes a step
further in tackling the challenges of missing coral data, max-
imizing the utilization of available coral datasets, and en-
hancing the reusability of both coral data and coral recogni-
tion models. In addition, CR-Cross can be easily integrated
into almost all coral recognitions. A series of empirical stud-
ies show that our method remarkably outperforms a broad
range of baselines, which offers exciting potential for large-
scale cross-domain coral conservation.
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