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ABSTRACT

Understanding misalignments in human task-solving trajectories is critical for im-
proving AI models trained to mimic human reasoning. This study categorizes these
misalignments into (1) Functional Inadequacies in Tools, (2) User Unfamiliarity
with Tools, and (3) Cognitive Dissonance in Users. We introduce a misalign-
ment detection algorithm and a visualization tool to analyze discrepancies in user
trajectories from O2ARC, formalizing intention-aware trajectory modeling. Addi-
tionally, we propose an intention prediction algorithm that infers user intentions by
identifying frequently visited states and structured transitions. By incorporating
intention-aligned supervision into a Decision Transformer-based ARC solver, we
demonstrate that aligning AI with inferred human intentions significantly improves
task-solving performance. These findings underscore the importance of modeling
human task-solving trajectories beyond action sequences and capturing underlying
intentions for better AI alignment.

1 INTRODUCTION

The Abstraction and Reasoning Corpus (ARC-AGI, hereafter ARC) has become a key benchmark
for evaluating AI models’ abstract reasoning and generalization abilities (Chollet, 2019). ARC tasks
require identifying high-level transformations from minimal examples and applying them to novel
inputs, mirroring human cognitive processes (Fig. 1). Despite progress in deep learning (DL) and
reinforcement learning (RL), these models still struggle with ARC, underscoring a gap between AI
and human reasoning.

To address this, interactive platforms (Borsky, 2021; Johnson et al., 2021; Lab42, 2022; Kim et al.,
2022; Shim et al., 2024; Strandgaard, 2024; LeGris et al., 2024) collect human task-solving trajecto-
ries, offering insights into human approaches. Among them, O2ARC (Shim et al., 2024) provides
extensive trajectory data, forming the basis for ARCLE (Lee et al., 2024), a reinforcement learning
environment designed to model human strategies.

Task 23b5c85d

Figure 1: Desirable ARC solvers can infer the rule from input-output pairs and generate the correct
output grid for a new input. The correct answer is the 3× 3 magenta-colored rectangle. Solve this
task on the O2ARC website: https://o2arc.com/task/23b5c85d.
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However, training AI models directly on O2ARC trajectories presents challenges. Recent studies (Park
et al., 2023; Kim et al., 2024) utilize these trajectories, but their effectiveness is limited by rigid
preprocessing rules, reducing generalization to unseen tasks. We hypothesize that this stems from
misalignments between human intentions and trajectory data, caused by user errors, tool limitations,
and reasoning-to-action gaps. These misalignments can be categorized into:

• Functional Inadequacies in Tools: Missing functions make task completion difficult.

• User Unfamiliarity with Tools: Users struggle due to limited prior knowledge or experience.

• Cognitive Dissonance in Users: Misinterpreted task objectives lead to inefficient actions.

To address this, we introduce an Intention Prediction Algorithm (Alg. 1) that aligns trajectories with
inferred human intentions. We assume that most human demonstrations follow correct task-solving
steps and that frequently visited popular states serve as critical waypoints. By identifying these states
and encoding transitions between them, we infer structured intention labels for trajectory actions.

Furthermore, we show that incorporating intention-aligned supervision significantly improves AI
learning efficiency. Our experiments confirm that models trained with intention labels generalize
better, reducing reliance on spurious correlations and encouraging structured decision-making.

Contributions We make the following key contributions:

• We analyze and categorize three types of misalignment in human task-solving trajectories.

• We propose an algorithm that infers user intention from logged trajectories.

• We demonstrate that intention-aligned trajectory learning enhances task-solving performance.

By aligning AI decision-making with structured human problem-solving strategies, this research
provides a framework for improving trajectory-based learning. Our approach also paves the way for
future work on learning-based intention inference and more adaptive task-solving methods.

2 MISALIGNMENTS IN TRAJECTORY

The trajectory data collected from O2ARC provide a detailed record of users’ decisions and actions
as they navigate tasks. Each trajectory is structured using the state-action format defined by the
ARC Learning Environment (ARCLE) (Lee et al., 2024), serving as a framework to analyze user
interactions and problem-solving strategies.

2.1 THE FORMAT OF O2ARC TRAJECTORY

To formalize ARC tasks and trajectories, we adopt the notation proposed in recent work (Akyürek
et al., 2024). A single ARC task d from the set of tasks DARC is defined as:

d = {(xtrain
k ,ytrain

k )Kk=1, (x
test,ytest)} ∈ DARC, (1)

where (xtrain
k ,ytrain

k ) are input-output grid pairs provided as demonstrations, and (xtest,ytest) represent
the test problem grid and its answer grid.

A set of user trajectories Td are collected as sequences of states and actions while solving a task d. A
single trajectory τd is represented as:

τd = (s0, a0, s1, a1, . . . , sn) ∈ Td, (2)

where si denotes a state, ai an action, and n the number of actions in the trajectory τd. Every state si
and action ai in the trajectory τd follow the same state-action transition function f(s, a) as the yellow
arrow in Fig. 2:

f(si, ai) = si+1 (3)
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si ai  = MoveDown

f(s, a)

si+1

Figure 2: A single state transition step in ARCLE (Lee et al., 2024). An action transforms the current
state si into the next state si+1 through the transition function f(si, ai) = si+1. In this example, the
selected grids masked in white are shifted down by one row.

States Each state si is derived from xtest and evolves through the state-action transition function
f(s, a) like:

si =

{
xtest if i = 0,

f(si−1, ai−1) if 1 ≤ i ≤ n.
(4)

States encompass the current task grid and additional contextual information, such as object properties
and clipboard contents, which enable actions like copy-paste and provide richer data for analyzing
user strategies (Lee et al., 2024).

This formalization captures the dynamic problem-solving process in O2ARC and provides a founda-
tion for identifying misalignments between user actions and intentions.

2.2 FUNDAMENTAL CONCEPTS FOR TRAJECTORY ANALYSIS

O2ARC trajectory does not record user intentions, making it challenging to track user intentions.
To address this, we propose a method to infer intentions from trajectories by leveraging the data’s
inherent structure and introducing fundamental assumptions.

The assumption is that users generating each trajectory τd share similar problem-solving strategies.
Although users may adopt diverse approaches for general tasks, ARC tasks’ emphasis on precise
analogies leads us to hypothesize that most users converge on common intentions. While this
assumption involves risks of oversimplification, prior studies (Johnson et al., 2021; LeGris et al.,
2024) have observed consistency in user strategies across tasks.

Popular States Popular states, also called bottleneck states in prior studies (Johnson et al., 2021),
are defined as frequently visited states among trajectories. In this study, we determined by a threshold
function θ(|Td|) that depends on the total number of trajectories of the task d. For example, setting
θ(x) =

√
x balances precision and robustness in identifying frequently visited states. Formally, the

set of popular states Pd for d is:

Pd = {si | N(si; Td) ≥ θ(|Td|)}, (5)

where N(si; Td) represents the number of trajectories visiting state si.

Intention An intention is defined as an action sequence that transitions between two popular states.
An action sequence ai:j consists of consecutive actions ai, ai+1, . . . , aj−1, achieving a transition
from si to sj while avoiding intermediate popular states. Formally:

ai:j = (ai, ai+1, . . . , aj−1) such that
si, sj ∈ Pd and sk /∈ Pd for i < k < j. (6)

Ideal Actions To simplify the representation of the intention, we define an ideal action, denoted as
a⋆i:j . This ideal action encapsulates the intention behind the sequence ai:j , abstracting the sequence
into a single, efficient action that transitions directly from si to sj .

f(si, a
⋆
i:j) = sj . (7)

Here, a⋆i:j is a hypothetical action summarizing the intention of ai:j . The set of all such ideal actions
for d is:

A⋆
d = {a⋆i:j | f(si, a⋆i:j) = sj where si, sj ∈ Pd}. (8)
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Ideal Trajectory An ideal trajectory is defined as a sequence of popular states and ideal actions
transitioning through popular states, satisfying the conditions for an optimal transition. Unlike
observed trajectories in Td, ideal trajectories represent a conceptual framework for understanding
optimal user behavior. Thus, the ideal trajectory τ⋆d for a task d is represented as:

τ⋆d = (s0, a0, s1, a1, . . . , sn) where ∀si ∈ Pd,∀ai ∈ A⋆
d. (9)

Here, τ⋆d represents the optimal path that fully aligns with the user’s intentions.

2.3 THREE TYPES OF MISALIGNMENTS IN TRAJECTORY

(a) Ideal Trajectory (b) Functional Inadequacies in Tools

(c) User Unfamiliarity with Tools (d) Cognitive Dissonance in Users

Figure 3: Various trajectories of the ARC Task 23b5c85d as shown in Fig. 1. (a) The ideal trajectory
transitions directly between popular states with the shortest possible sequence of actions, perfectly
representing user intentions. (b) Functional inadequacies influence the trajectory in tools, where the
lack of a suitable action requires combining multiple actions, resulting in longer transitions between
popular states. (c) A trajectory is caused by user unfamiliarity with tools, where redundant actions
reflect inefficiencies despite the existence of a shorter ideal trajectory. (d) Trajectory reflects cognitive
dissonance in users, where errors or misinterpretations prevent reaching the correct answer state,
deviating from transitions between popular states.

Based on Activity Theory (Engeström, 2015), these misalignments can be categorized into three types,
each reflecting contradictions between users, tools, and tasks. We leverage the concepts of popular
states, intentions, ideal actions, and ideal trajectories to formalize and analyze these categories.

Functional Inadequacies in Tools This misalignment occurs due to contradictions between tools
and tasks. The toolset (e.g., O2ARC) lacks an ideal action a⋆i:j that transitions between two popular
states si and sj :

a⋆i:j /∈ Ad. (10)

As a result, users must combine a sequence of actions (ai, ai+1, . . . , aj−1) to achieve the same
intention:

ai:j = (ai, ai+1, . . . , aj−1), ai, . . . , aj ∈ Ad. (11)
For instance, Fig. 3b shows a trajectory where the absence of a “cropping” action forces the user to
rely on sequences like copying, pasting, and resizing. This results in an inefficient trajectory compared
to the ideal trajectory shown in Fig. 3a, where direct transitions are achieved using “cropping”.

User Unfamiliarity with Tools This misalignment arises from contradictions between users and
tools. Although an ideal action a⋆i:j exists in the supported action set Ad:

a⋆i:j ∈ Ad, (12)

the user fails to utilize it and instead chooses an inefficient action sequence:

ai:j = (ai, ai+1, . . . , aj−1), ai, . . . , aj ∈ Ad \ A⋆
d. (13)
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Suppose the trajectory in Fig. 3b represents an ideal trajectory. Fig. 3c then illustrates a scenario
where the user, unfamiliar with the copy-paste functionality, attempts to move an object step by step.
This results in a redundant action sequence of 16 actions, which could otherwise be represented by
two ideal actions, highlighting inefficiency in transitioning between popular states.

Cognitive Dissonance in Users This misalignment reflects contradictions between users and tasks.
Cognitive Dissonance can manifest in two distinct cases: (1) when users have incorrect intentions, or
(2) when users possess the correct intention but execute incorrect actions, leading them to an incorrect
final state. However, since the O2ARC trajectories do not explicitly record user intentions, verifying
the second case is not feasible. Therefore, we define and detect Cognitive Dissonance solely based
on the first case.

Specifically, Cognitive Dissonance occurs when a user’s trajectory fails to reach a correct final state,
deviating from popular states:

sn ̸= ytest, where ytest ∈ Pd (14)
where sn represents the final state of the trajectory, ytest the answer grid of the task d, and Pd the set
of popular states for the task d.

This focus highlights cases where the user either misunderstood the task objectives or encountered
significant errors during problem-solving, resulting in an incorrect solution state.

2.4 STATE SPACE GRAPH FOR TRAJECTORIES

Fig. 4 visualizes user trajectories from Fig. 3 in the form of a state space graph. Edges with the same
color across Fig. 3a-3d are blurred to highlight their misalignment with ideal trajectories. Importantly,
the type of misalignment for some trajectories depends on whether cyan nodes are considered popular
states. Regardless of this consideration, red edges consistently represent Cognitive Dissonance in
Users (Fig. 3d), as they lead to incorrect states.

If only the blue and green nodes are considered popular states, the dashed blue edge represents
an ideal action (

crop−−−→) that is absent from the action set (Fig. 3a). In this case, every edge in the
green (

copy−−−→ paste−−−→ resize−−−−→) and the yellow ( move−−−→ ×16 resize−−−−→) intentions corresponds to Functional
Inadequacies in Tools (Fig. 3b), as they require multiple actions to achieve cropping, a single ideal
action.

If cyan nodes are also regarded as popular states, trajectories have three intentions (copying, pasting,
resizing), and the hypothetical blue edge that indicates cropping is no longer needed. In this scenario,
each green edge corresponds to ideal actions (

copy−−−→,
paste−−−→, resize−−−−→), while every yellow edge

( move−−−→ ×16) indicates User Unfamiliarity with Tools (Fig. 3c), reflecting redundant actions despite
the availability of more efficient ideal actions (

copy−−−→ paste−−−→).

3 MISALIGNMENT ANALYSIS

This section analyzes misalignments in O2ARC trajectories across four hierarchical levels. We
begin with an action-level analysis of the frequency and distribution of actions leading to specific
states. Next, we examine intention-level misalignments between popular states. We then explore
trajectory-level relationships between misalignment types. Finally, a task-level analysis investigates
variations in misalignments across tasks.

3.1 ACTION-LEVEL ANALYSIS

This subsection analyzes action distributions across states to identify patterns associated with mis-
alignments. In the state space graph (Fig. 4), node size indicates the in-degree of a state, representing
actions leading to it. Smaller average in-degrees suggest more diverse strategies, fewer popular nodes,
and greater misalignment potential.

Average In-Degree The in-degree distribution reveals differences in task complexity and user
behavior. Tasks with smaller average in-degrees, summarized in Table 1, often involve pixel-level
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Figure 4: State space graph for Fig. 3. The blue
node represents the test input grid, the green
node the answer grid, and red nodes incorrect
submissions. Node and edge thickness indicate
frequency of states and actions.

Table 1: Tasks with the bottom 10 average node
sizes. These tasks involve complex patterns, mul-
tiple objects, or filling in patterns, requiring di-
verse strategies. See Sec. 3.1 for discussion

Task ID
(ARC)

Shortest
Length

Task
Description

017c7c7b 3 stretch and coloring
0e206a2e 5 placing the object
025d127b 2 squash the object
0dfd9992 10+ carpet filling
05269061 3 carpet filling
1a07d186 10+ string pulling an object
0962bcdd 2 expand the pattern
3428a4f5 10+ Coloring and Bitwise OR
09629e4f 6 counting and expansion
00d62c1b 1 filling the enclosed part

adjustments or non-intuitive solutions. For example, Task 0dfd9992 required inefficient pattern filling
across large grids, while Task 1a07d186 involved moving numerous pixels individually to implement
gravity. These tasks dispersed user actions across more states, leading to lower in-degrees and greater
variability.

Key Insights from Action-Level Analysis Low average in-degrees highlight Functional Inadequa-
cies in Tools, where available actions fail to efficiently address task requirements. Pixel-level tasks
forced users to rely on repetitive actions, emphasizing the need for a more comprehensive action set.

With in-degree distributions, we identified key patterns highlighting Functional Inadequacies in
Tools, particularly in tasks requiring repetitive or granular actions. These findings show how user
behavior and tool limitations interact at a granular level. This action-level perspective sets the stage
for intention-level analysis, where we investigate how sequences of actions between popular states
contribute to broader misalignment patterns.

3.2 INTENTION-LEVEL ANALYSIS

This subsection examines misalignments at the intention level by analyzing action sequences between
popular states. Each intention corresponds to a sequence of actions connecting two consecutive
popular states, enabling the categorization of misalignments within these segments.

Distribution of Misalignment Types Table 2 presents the distributions of intentions and actions
across different misalignment types. Although 91.11% of intentions are aligned, they represent only
49.57% of the total actions, showing that misaligned intentions involve less optimal actions, particu-
larly in cases of Functional Inadequacy where repetitive pixel-level operations inflate action counts.
This imbalance is pronounced in Functional Inadequacy, where repetitive pixel-level adjustments
inflate the action proportion for tasks requiring efficient solutions.

Key Insights from Intention-Level Analysis

• Aligned intentions dominate: The high proportion of aligned intentions (91.11%) demonstrates
consistent user behavior across most tasks. This suggests that O2ARC trajectories capture well-
structured strategies, making them a reliable dataset for analyzing user behavior.

• Functional Inadequacy drives inefficiency: Despite representing only 4.15% of intentions, Func-
tional Inadequacy accounts for 27.54% of all actions, revealing toolset limitations for tasks requiring
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repetitive or complex modifications. Addressing these inefficiencies through tool enhancements
improves user performance.

• Overlap in misalignment types: User Unfamiliarity (2.31% and Cognitive Dissonance (2.43%)
exhibited similar intention proportions. Also, their action proportions (11.30% and 11.59%) show
similar patterns. This overlap indicates potential shared causes but highlights the need for further
investigation into how these misalignments differ in trajectory-level manifestations.

The intention-level analysis revealed that most user strategies align with ideal actions, although
misaligned intentions lead to suboptimal actions. This insight highlights how tool inefficiencies
and user strategies manifest at an intention level. Building on this, the next analysis extends to
the trajectory level, where we explore the cumulative effects of misalignments across entire action
sequences.

3.3 TRAJECTORY-LEVEL ANALYSIS

This subsection examines misalignments at the trajectory level by analyzing complete sequences of
actions. Figure 5 illustrates the distribution of misalignments and their overlaps.

Table 2: Intention-level misalignment, showing their relative oc-
currence as a proportion of total intentions and actions. Mis-
aligned intentions, although fewer, account for a significant share
of suboptimal actions.

Misalignment Type Intentions Actions
User Unfamiliarity 2.31% 11.30%
Functional Inadequacy 4.15% 27.54%
Cognitive Dissonance 2.43% 11.59%
Not Misaligned 91.11% 49.57%

Figure 5: Trajectory-level mis-
alignment distribution.

Key Insights from Trajectory-Level Analysis

• Consistency in ideal trajectories: The proportion of ideal trajectories (35.24%) highlights struc-
tured user strategies, particularly for simpler tasks with intuitive solutions. This suggests that
O2ARC trajectory data capture meaningful behavior patterns essential for training AI systems to
emulate effective approaches.

• Prevalence of Functional Inadequacy: Functional Inadequacy appeared in over 40% of misaligned
trajectories, underscoring limitations in the current action set. Tasks involving repetitive operations,
such as pixel-level modifications, were particularly affected. Addressing these issues with tool
enhancements could reduce misalignments and improve efficiency.

• Minimal overlap between misalignment types: Overlaps between misalignment types were
minimal, especially between User Unfamiliarity and Cognitive Dissonance. This indicates distinct
causes: User Unfamiliarity stems from inefficient tool usage, while Cognitive Dissonance reflects
task misinterpretations or incomplete solutions. Differentiating these misalignments enables
tailored interventions.

The trajectory-level analysis showed that Functional Inadequacy is the most prevalent misalignment
type and that overlaps between other misalignments remain minimal. These findings suggest distinct
causes for each misalignment type and reinforce the need to address tool limitations. To further
contextualize these patterns, the next section investigates how misalignments vary across tasks,
providing a broader view of user behavior and tool challenges.
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4 EVALUATING INTENTION-ALIGNED TRAJECTORIES

In the previous sections, we analyzed misalignments in O2ARC trajectories and found that a sig-
nificant proportion—approximately 65% as shown in Fig. 5—exhibit some form of misalignment.
This suggests that addressing these misalignments could substantially improve the efficiency of
trajectory-based learning. To this end, we propose a method for predicting the implicit intentions
within O2ARC trajectories based on popular states. Furthermore, we demonstrate that incorporating
these predicted intentions into model training enhances task-solving performance.

4.1 INTENTION PREDICTION ALGORITHM

We present Algorithm 1, which formalizes the process of intention prediction by leveraging popular
states as key decision points. Our key assumption is that most human demonstrations follow correct
task-solving procedures and that popular states represent crucial intermediate points in the task-
solving process.

Algorithm 1: Intention Prediction Algorithm
Input: Trajectories for Solving task Td = (s0, a0, · · · , sn),

Threshold Function θ
Output: Task Trajectories with Assigned Intentions T
P ← {} ; // Initialize popular states set
// Step 1. Identify Popular States
for τd ∈ Td do

for si ∈ τd do
if N(si) ≥ θ(|T |) then
P ← P ∪ {si} ;

// Step 2. Assign Intention Edges
for τd ∈ T do

s← τd[s0] ; for si, ai ∈ τd do
if si ∈ P then

for sj , aj ∈ τd[s : si] do
aj [intention]← (s, si) ;

s← si ; // Update current popular state

return Td

Under this assumption, we hypothesize that user intentions exist at the level of transitions between
popular states. Specifically, for each trajectory τd, we annotate all actions ai:j occurring between
two consecutive popular states (si, sj) with an intention tuple (si, sj). This pair of popular states
represents an ideal edge a⋆i:j connecting key transitions within the trajectory.

Building on existing research that leverages human task-solving trajectories for training (Park et al.,
2023), we investigate whether including intention information improves model learning. Our approach
augments the training data with intention annotations and evaluates the impact of these additional
supervisory signals on task-solving performance.

4.2 EXPERIMENTS

To evaluate the effectiveness of intention supervision, we integrated intention annotations into an
existing Decision Transformer (DT) framework (Park et al., 2023). Using a predefined transformation
policy, the original model was trained on human expert trajectories generated from augmented
input-output pairs. The model iteratively predicts state, action, return-to-go, and timestep based on
observed inputs during training. Prior research has shown that augmenting state representations with
object information improves task-solving performance.

To extend this framework, we modified the model to process intention-labeled inputs and explicitly
predict intention transitions. We achieved this by introducing an auxiliary loss term encouraging the
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model to learn intention structures alongside state-action transitions. By incorporating this additional
supervision, we hypothesize that the model will better capture the structured reasoning underlying
human task demonstrations.

Table 3: Incorporating intention information enhances task-solving performance. DT and DT+PnP
are baselines without intention. DT represents vanilla Decision Transformer Chen et al. (2021), and
DT+PnP represents the baseline with object detection Park et al. (2023).

Test Set DT DT + Intention DT + PnP DT + PnP + Intention
1 61.35 59.6 84.2 90.1
2 60.2 56.25 82.7 89.25
3 60.35 58.35 83.9 88.55
4 60.25 58.4 83.55 89.85

Avg 60.54 58.15 83.59 89.44

4.3 RESULTS

Our results are summarized in Table. 3, demonstrate that incorporating intention supervision sig-
nificantly enhances task-solving performance. Specifically, adding intention information to the
existing model with object features (DT + Object) resulted in an average performance improvement
of 5.85% across four datasets, each consisting of 2,000 augmented tasks. Despite the strong baseline
performance of DT + Object (83.59%), integrating intention alignment further boosted accuracy to
nearly 90%, providing strong evidence that intention-based supervision positively impacts model
learning.

However, as seen in the loss curves, training with intention supervision required more samples,
suggesting an increased learning complexity. This outcome is expected, as the model must learn a
richer representation incorporating both object-level and intention-based reasoning. Notably, when
intention information was added to the baseline model without object features (DT + Intention), the
model exhibited reduced efficiency in leveraging intention cues, leading to a drop in performance
rather than an improvement. This indicates that intention alignment alone is insufficient without a
structured representation of object-level information.

These findings underscore the importance of combining structured object representations with
intention-based supervision to improve trajectory learning. While intention alignment enhances
reasoning over key transitions, its effectiveness depends on the availability of complementary features
such as object information. Future research could explore more efficient training strategies or explicit
intention annotation methods to further refine this approach.

5 CONCLUSION AND FUTURE WORKS

Understanding the discrepancy between a user’s thought process and the externalized steps recorded
in trajectories is a critical challenge for developing systems that effectively support problem-solving
behavior. This requires considering latent cognitive processes that are not directly observable in
trajectory logs but significantly influence task performance.

In this study, we introduced an algorithm to identify three types of misalignment: functional inade-
quacies in tools, user unfamiliarity with tools, and cognitive dissonance in users. Additionally, we
proposed an intention prediction framework based on popular states and demonstrated its effective-
ness in improving trajectory-based learning. Our findings suggest that intention-aligned supervision
helps models capture higher-level reasoning patterns beyond low-level execution steps.

Building on these contributions, several promising directions emerge for future research. First,
advanced reward modeling techniques from Inverse Reinforcement Learning (IRL) and Reward
Learning from Human Preferences (RLHP) can help align AI models with human strategies by
prioritizing meaningful transitions. Second, improving intention inference using Graph Neural
Networks (GNNs) or Transformer-based models could enable the automatic discovery of latent
structures in task-solving trajectories. Finally, refining O2ARC tools and scoring metrics using
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state-space graph analysis could provide a more robust framework for evaluating trajectory quality
beyond task completion time.

As AI systems continue to evolve, understanding the underlying intentions behind user actions will
be essential for building more interpretable and generalizable decision-making models. Future work
will explore alternative approaches for refining intention prediction and integrating intention-based
reasoning into broader AI applications.
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