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Figure 1: Text image super-resolution results of our method on diverse scene texts.

ABSTRACT

Text Image Super-Resolution (TISR) aims to recover high-resolution images from
low-resolution inputs degraded by unknown factors. The goal is to produce visu-
ally faithful output while preserving text readability and semantic consistency.
Despite recent progress, existing methods struggle to preserve structure and vi-
sual fidelity under complex glyphs, severe degradations, or varied layouts. This
mainly stems from three challenges: lack of training data, limitations in model fi-
delity, and limited adaptability to complex layouts. Therefore, we novelly propose
ReGenText, a systematic solution for diverse text super-resolution. ReGenText
integrates data generation, image restoration, and training strategies, substantially
mitigating the three aforementioned challenges. Specifically, we propose: Gen-
Text: a diffusion-based data generation framework that combines font styles and
glyph priors to synthesize large-scale, high-quality text images, effectively allevi-
ating data scarcity; Re-Text: a hybrid diffusion–GAN model that balances struc-
tural precision and fine-detail restoration for high-fidelity reconstruction; Bucket
Training: a training strategy that groups samples based on text length and orien-
tation, improving generalization on long and vertical texts. Extensive experiments
show that ReGenText achieves state-of-the-art performance in both text recogni-
tion and visual quality across multiple benchmarks.

1 INTRODUCTION

Text images serve as crucial information carriers in computer vision (Chen et al., 2021b; Ma
et al., 2023c), where their clarity and readability directly affect the performance of downstream
tasks (Zhang et al., 2024; Jiang et al., 2024; Chen et al., 2025; Hu et al., 2024). Unlike natural im-
ages, text images demand exceptionally high visual fidelity. Even minor stroke omissions or struc-
tural distortions may result in significant semantic errors (Especially in Chinese). Therefore, Text
Image Super-Resolution (TISR) not only restores high-quality visual appearance but also faithfully
preserves character structures and semantics.

However, existing methods (Ma et al., 2023b; 2022; Li et al., 2023) still struggle to restore text
structure and maintain visual fidelity in real-world scenarios, as shown in Fig. 1. Traditional text
super-resolution methods (Ma et al., 2023b; 2022) have limited generative capacity and struggle to
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recover text structures from severely degraded images, even with structural priors or recognition
modules. Although recent methods (Li et al., 2023; Zhang et al., 2024) leverage GANs and dif-
fusion models to improve performance, these methods are prone to introducing excessive texture
hallucinations and instability under diverse layouts (e.g., horizontal or vertical).

The reasons can be attributed to the following three aspects: Lack of training data. The scale
of real-world text image datasets (Chen et al., 2021b) remains limited, with fewer than 100,000
high-quality samples available. Moreover, complex fonts and rare characters are even more scarce,
making it difficult for models to learn diverse glyph structures. Limitations in model fidelity. Insuf-
ficient generative capacity fails to restore text structure; conversely, excessive capability introduces
textural hallucinations (Li et al., 2022), compromising visual fidelity. Limited adaptability to com-
plex layouts. Current models (Zhang et al., 2024), constrained by fixed-size input designs during
training, struggle to handle complex layout scenarios such as long texts and vertical texts. To tackle
these challenges, there is an urgent need for an approach that integrates data, models, and training
strategies to ensure high-fidelity restoration of text images.

Therefore, we propose ReGenText, a systematic solution for diverse text image super-resolution,
as shown in Fig. 2. Unlike previous works that focus on model refinements, ReGenText system-
atically integrates data generation, image restoration, and training strategies to address the three
key bottlenecks. Specifically, ReGenText builds on three complementary perspectives: 1). Data
generation with Gen-Text. We develop Gen-Text, a generation network that integrates reference
style guidance with glyph priors. Gen-Text significantly improves style consistency and stroke-
level structure accuracy, enabling the synthesis of large-scale, high-quality text image samples. 2).
Image restoration with Re-Text. We propose Re-Text, a novel hybrid architecture that combines
pixel-level diffusion (Hoogeboom et al., 2023) with GANs. Re-Text integrates the text generation
capabilities of diffusion models with the detail-sharpening strengths of GANs, achieving a com-
plementary improvement in both visual fidelity and text clarity. 3). Layout-aware learning with
Bucket Training. To handle the diversity of text layouts, ReGenText introduces a bucket training
strategy that groups samples by length and layout, improving robustness on long and vertical texts.

Subsequent experimental results show that on the CTR-TSR-Test benchmark (Chen et al., 2021b),
our method improves OCR accuracy by 7.08%. In addition, we extend existing scene text bench-
marks by incorporating variable-length and vertical texts, and further construct a rare-character
dataset to systematically evaluate model generalization. The results show that ReGenText improves
accuracy by 5.19% in variable-length texts and 14.05% in rare character texts, significantly outper-
forming existing methods. The main contributions of our work are summarized as follows:

• We propose ReGenText, a systematical paradigm that integrates data generation, model
design, and training strategies, effectively allevi- ating three key challenges in text image
super-resolution: limited training data, compromised visual fidelity, and poor adaptability
to complex layouts.

• ReGenText builds on three pillars: Gen-Text: integrates font style and glyph priors to syn-
thesize large-scale, high-fidelity training samples, fundamentally alleviating data scarcity;
Re-Text: introduces a hybrid diffusion–GAN architecture for dual high-fidelity restoration
of structure and details; Bucket Training: employs a length- and layout-aware adaptive
grouping strategy to enhance generalization under complex layouts.

• We extend existing scene text benchmarks to include variable-length and vertical text, form-
ing CTR-X, and further construct a dataset of rare Chinese characters, named RareText.
This provides a testing platform for evaluating its ability to generate complex glyphs.

• In multiple benchmarks, our proposed model consistently outperforms existing methods
in both text recognition accuracy and perceptual quality metrics, achieving state-of-the-art
performance. These results highlight the effectiveness and robustness of ReGenText.

2 RELATED WORK

2.1 TEXT IMAGE GENERATION

Text image synthesis plays a key role in scene text recognition, enhancement, and generation. Early
methods (Jaderberg et al., 2014; Gupta et al., 2016) rely on text rendering engines or graphics

2
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Figure 2: We present ReGenText, a systematic solution for text super-resolution via data generation,
image restoration, and bucket training. Gen-Text can synthesize large-scale, high-fidelity training
samples; Re-Text achieves dual high-fidelity of text structure and visual details.

pipelines to generate characters from font libraries and overlay them onto backgrounds. However,
these methods exhibit significant gaps in texture, shadow, and background integration compared to
real-world scenes. To overcome these limitations, recent work has increasingly adopted genera-
tive models for text image synthesis. UDiffText (Zhao & Lian, 2024) and Glyph-ByT5 (Liu et al.,
2024a;b) improve glyph awareness by aligning text encoders with visual features. GlyphDraw (Ma
et al., 2023a), GlyphControl (Yang et al., 2023), and AnyText (Tuo et al., 2023) leverage glyph
structures to guide generation. Nevertheless, architectural limitations and complex backgrounds
still challenge these methods in preserving font style consistency and stroke accuracy. To address
this, we propose Gen-Text, a Diffusion Transformer (Peebles & Xie, 2023) for text image gen-
eration. Gen-Text integrates style information and glyph representations as dual constraints in the
diffusion process, improving both font consistency and stroke fidelity. By generating highly realistic
text lines, it provides super-resolution models with abundant high-quality training data.

2.2 TEXT IMAGE SUPER-RESOLUTION

Although natural image super-resolution (Wang et al., 2024; Wu et al., 2024a;b) has achieved re-
markable progress, it often falls short when applied to text images. This is mainly because text
images demand high structural integrity and stroke-level precision. To address this gap, Text Image
Super-Resolution (TISR) (Wang et al., 2019; Mou et al., 2020; Wang et al., 2020; Zhao et al., 2022)
has been proposed. TPGSR (Ma et al., 2023b) incorporates text priors to enhance glyph representa-
tions, while TATT (Ma et al., 2022) introduces a global attention module to better handle irregular
text layouts. C3-STISR (Zhao et al., 2022) leverages triple cues: recognition feedback, visual cues,
and language cues, to guide text restoration. MARCONet (Li et al., 2023) employs a generative
structure prior by combining a structural codebook with style latents under the StyleGAN frame-
work, enabling the recovery of diverse character styles. DiffTSR (Zhang et al., 2024) integrates
image and text diffusion models and utilizes a multi-modal fusion module to simultaneously refine
style and structure during the diffusion process. However, these methods still struggle to achieve
simultaneous structural and visual fidelity and perform poorly on variable-length text. To address
this, we propose Re-Text, a hybrid architecture that combines the text generation capability of diffu-
sion models with the detail refinement strength of GANs. Moreover, we introduce a bucket training
strategy, which significantly enhances the model’s generalization ability on complex text layouts.

3 METHOD

To tackle the challenges of data scarcity, structural fidelity, and layout diversity in text image super-
resolution, we propose ReGenText, a systematic framework comprising four key components. 3.1
Gen-Text: generates diverse, high-quality text images using font styles and glyph priors to mitigate
data scarcity. 3.2 Re-Text: restores fine-grained structures and visual fidelity in degraded text images
via a hybrid diffusion–GAN model. 3.3 Bucket Training: groups samples by text length and layout
to improve robustness on long and vertical texts. 3.4 Benchmark: provides CTR-X and RareText,
evaluating models on variable-length, vertical, complex, and rare characters.

3
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3.1 GEN-TEXT FOR TEXT IMAGE GENERATION

A key limitation of existing text image super-resolution models is the scarcity of training data, par-
ticularly for rare and complex characters. To address this, we propose Gen-Text, a diffusion-based
generation network that leverages font styles and glyph priors to synthesize high-fidelity training
samples with both semantic and visual consistency.

Specifically, we denote the input image as x ∈ RH×W×3, the position binary mask as m ∈
{0, 1}H×W , the glyph image as g ∈ RH×W×3, and the textual prompt as y. We encode x, g,
and m with a VAE (Kingma & Welling, 2013) to obtain the latent features z0, zg , and zm. The style
feature is obtained by masking out the foreground, x ⊙ (1 − m), and encoding the result with the
VAE to produce zs. Following the rectified flow (RF) paradigm (Esser et al., 2024), Gaussian noise
ϵg ∼ N (0, I) is sampled, and for each latent a random timestep t is drawn according to a density
p(t). A flow-matching noise scale σ(t) is computed, yielding the noisy latent:

zt = (1− σ(t)) z0 + σ(t) ϵg, where t ∼ p(t), ϵg ∼ N (0, I). (1)

The latent feature zt is concatenated with zm and zs along the channel dimension, denoted as zk =
Concat(zt, zm, zs). Meanwhile, the T5 encoder (Raffel et al., 2020) is employed to encode the
text condition y, producing the text embedding cte. And then, a DiT denoiser ϵθ(·) is employed to
predict the noise added to the latent image zt with the following objective:

Ld = Ez0,zk,zg,cte,t

[
∥ϵg − ϵθ(zk, zg, cte, t)∥22

]
. (2)

Here, x̂ denotes the predicted image obtained by removing the noise from the latent zt using the
DiT denoiser ϵθ(·) and subsequently decoding it through the VAE. To explicitly preserve glyph
structures, we introduce a Sobel loss (Roberts & Mullis, 1987) that encourages the gradients of the
generated image to align with those of the ground truth, effectively maintaining stroke edges:

Lsobel = ∥Sobel(x̂)− Sobel(x)∥1, (3)

The final training objective jointly optimizes both the RF loss and the Sobel loss:

Lgen = Ld + λSobel LSobel. (4)

Through these operations, Gen-Text generates text images with precise structures and diverse styles,
effectively expanding the training data and mitigating the long-tail problem for rare characters.

3.2 RE-TEXT FOR TEXT IMAGE SUPER-RESOLUTION

Although Gen-Text alleviates the problem of limited training data, restoring visual fidelity and tex-
tual structure remains challenging when handling severely degraded text images. Therefore, we
propose Re-Text, which performs diffusion directly in the pixel space, and further combine it with a
GAN-based refinement to enhance perceptual quality.

Specifically, given a high-resolution text image xHR, we first apply Real-ESRGAN (Wang et al.,
2021) to generate the corresponding low-resolution image xLR. To improve modeling efficiency,
both xLR and xHR are further downsampled by a factor of 4 using bilinear interpolation, and the
results are fed into the diffusion model. Following the DDPM Ho et al. (2020) paradigm, Gaussian
noise is gradually added to xHR:

xt =
√
αt xHR +

√
1− αt ϵr, ϵr ∼ N (0, I), (5)

where αt denotes the variance schedule at time step t. The resulting noisy latent xt is concatenated
with the original xLR along the channel dimension. In addition, the text prior c, obtained from
OCR predictions, is incorporated via a cross-attention module, providing semantic guidance to the
generation process. The diffusion loss is defined as:

Ldiff = Ex0,xLR,ϵr,c,t

[
∥ϵr − ϵθ(xt, xLR, c, t)∥22

]
, (6)

where ϵθ is the denoiser parameterized by the diffusion model.

To further improve sharpness and perceptual realism, we introduce an adversarial refinement stage
with a generator G and a discriminator D. G reconstructs high-resolution images from noise-
corrected features conditioned on the low-resolution input, while D encourages G to produce outputs
indistinguishable from real high-resolution images.

4
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Table 1: Quantitative comparison with state-of-the-art methods on CTR-TSR-Test/ReaCE x4.

Method CTR-TSR-Test RealCE
PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑ PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑

SRCNN 20.74 0.501 116.5 0.6031 0.6160 16.63 0.364 128.1 0.7101 0.8018
ESRGAN 20.90 0.310 21.86 0.6179 0.6272 16.84 0.407 83.22 0.7121 0.8047
NAFNET 21.82 0.447 87.93 0.6451 0.6573 16.76 0.359 118.1 0.7122 0.8023
TSRN 19.41 0.535 137.3 0.6149 0.6267 15.22 0.418 148.5 0.6963 0.7873
TBSRN 21.56 0.442 132.6 0.6360 0.6486 16.51 0.367 130.8 0.7050 0.7960
TATT 21.84 0.453 107.6 0.6273 0.6403 16.79 0.422 118.3 0.7214 0.8135
MARCONet 19.33 0.436 108.5 0.5123 0.5241 16.04 0.397 103.1 0.6638 0.7411
DiffTSR 21.85 0.231 8.482 0.8350 0.8471 17.49 0.336 70.59 0.8475 0.8747
Ours 26.73 0.163 8.067 0.9058 0.9075 19.61 0.301 55.49 0.8791 0.8801

Table 2: Quantitative comparison with state-of-the-art methods on CTR-X/RareText x4.

Method CTR-X RareText
PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑ PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑

SRCNN 25.03 0.370 83.03 0.5658 0.5760 23.21 0.414 111.2 0.4500 0.4607
ESRGAN 24.74 0.450 87.51 0.5658 0.5679 22.85 0.466 108.7 0.4530 0.4631
NAFNET 22.71 0.4084 81.43 0.6034 0.6048 21.83 0.422 103.5 0.4600 0.4696
TSRN 19.12 0.4697 88.17 0.5658 0.5679 18.58 0.452 103.6 0.4214 0.4300
MARCONet 11.04 0.771 105.8 0.5319 0.5349 13.52 0.659 129.4 0.3635 0.3723
DiffTSR 20.97 0.329 50.72 0.5949 0.5961 19.58 0.327 65.62 0.4054 0.4145
Ours 26.97 0.165 29.05 0.6468 0.6488 24.48 0.221 46.25 0.5459 0.5560

Specifically, the predicted noise ϵθ from the diffusion denoiser is first used to remove the noise from
the noisy latent xt:

x̂HR = xt −
√
1− αt ϵθ(xt, xLR, c, t), (7)

where x̂HR denotes the noise corrected feature. The generator then reconstructs the final high-
resolution image. The adversarial objectives for the discriminator and generator are defined as:

LD
gan = −ExHR

[
logD(xHR)

]
−Ex̂HR

[
log(1−D(x̂HR))

]
, LG

gan = −Ex̂HR

[
logD(x̂HR)

]
, (8)

where LD
gan updates the discriminator, and LG

gan provides the adversarial refinement signal for the
generator. The overall training loss can be expressed as:

Lre = Ldiff + λgan LG
gan. (9)

This hybrid framework enables high-quality text image super-resolution with both structural preser-
vation and realistic visual appearance.

3.3 BUCKET TRAINING STRATEGY

To improve generalization across varying text lengths and layouts, we propose the Bucket Training
strategy to both Gen-Text and Re-Text. For super-resolution models, previous methods (Zhang et al.,
2024) typically fix images to a 4:1 aspect ratio, which may distort the text structure of long or vertical
text. We divide training samples into buckets based on text length and orientation. Samples within
each bucket have similar length and layout characteristics. During training, each batch samples only
from a single bucket, effectively mitigating performance degradation in complex layouts.

3.4 BENCHMARK DATASET

CTR-X. We extend the existing scene text benchmark CTR-TSR-Test (Chen et al., 2021b) to con-
struct CTR-X, aiming to systematically evaluate text super-resolution across diverse text lengths
and orientations. Specifically, we group images in the original CTR-TSR-Test dataset by aspect
ratio and randomly sample up to 50 per group, taking all if fewer, to ensure sufficient vertical text
samples. In total, CTR-X contains around 1500 samples, covering aspect ratios from 1:15 to 15:1.
All images and annotations are manually checked and corrected to ensure high image quality and
label accuracy. Thus, CTR-X serves as a standardized benchmark for assessing model robustness in
variable-length text, vertical layouts.

RareText. There is currently a lack of real-world Traditional Chinese text images for evaluation.
Existing datasets mainly target classical texts (Saini et al., 2019), with limited scene diversity or low
resolution (Chen et al., 2021c), making them unsuitable for text image super-resolution tasks. To

5
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Figure 3: Text image generation results of our proposed Gen-Text.

FluxTextGlyph AnyText Ours

Figure 4: Text generation results compared to existing methods.

address this, we construct RareText, providing a challenging benchmark for assessing models’ abil-
ity to reconstruct Traditional and complex Chinese characters in real-world scenarios. The dataset
comprises about 1,000 high-resolution images collected from diverse environments, covering a wide
range of character types, scene conditions, and font styles. It contains: (i) Traditional Chinese char-
acters, characterized by dense radicals and strokes, commonly used in Taiwan, Hong Kong, Macau,
and classical literature; (ii) complex characters with more than 15 strokes, intricate structures, or
artistic glyphs derived from inscriptions, ancient scripts, and stylized fonts. This design enables
comprehensive evaluation of stroke-intensive, artistic, and non-standard layouts. Images are sourced
from social media, forums, cultural archives, and open repositories. Annotations are first generated
using PPOCR-v5 (Cui et al., 2025) and then manually verified to ensure high-quality character-level
labels and accurate text orientation.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Text Image Generation. We first construct training data on the CTR dataset. Specifically, we
use OCR to detect character positions in each image and extract the semantic information of each
character, generating position images and glyph images as input features. For each image, the
first character is retained as a style reference to encode font, stroke thickness, and structural style
information. During training, we perform LoRA fine-tuning of Gen-Text on the FLUX-Fill (Labs,
2024) dataset to improve the model’s adaptability and generation quality on real-world text images.

Text Image Restoration. We strictly follow the DiffTSR (Zhang et al., 2024) pipeline to preprocess
the CTR dataset: i) remove the images with a resolution smaller than 64 pixels; ii) only retain images
with a width-to-height ratio greater than 2; iii) only retain images with the length of text annotations

6
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Figure 5: Qualitative results of different methods on vertical text.
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Figure 6: Qualitative comparison for the real-world dataset RealCE with different methods.

not larger than 24. In addition, we augment the training set with high-quality Chinese text images
generated by Gen-Text. Low-resolution (LR) images are synthesized via Real-ESRGAN (Wang
et al., 2021) degradation to simulate real-world image distortions. During training, the diffusion
network adopts a U-Net architecture, with the upsampling module combining SwinIR (Liang et al.,
2021) to simultaneously improve text structure and visual clarity.

More detailed information can be found in the Appendix.

4.2 QUANTITATIVE COMPARISON

We conduct a systematic evaluation of existing competitive methods, including SRCNN (Dong
et al., 2015), ESRGAN (Wang et al., 2018), NAFNET (Chen et al., 2022), TSRN (Wang et al.,
2020), TBSRN (Chen et al., 2021a), TATT (Ma et al., 2022), MARCONet (Li et al., 2023) and
DiffTSR (Zhang et al., 2024). The evaluation covers four benchmarks: CTR-TSR-Test, Real-CE,
CTR-X, and RareText. For TSR-TSR-Test (Chen et al., 2021b) and Real-CE (Ma et al., 2023c), we
directly adopt the results reported in DiffTSR (Zhang et al., 2024), while for CTR-X and RareText,
we strictly follow the official codes and released weights to ensure fair and comparable results.

As shown in Tab. 1 and Tab. 2, Re-Text consistently outperforms existing competitors across all
benchmarks in terms of both image quality and text accuracy. Specifically, our method achieves
improvements of 4.88%, 2.12%, 6.88%, and 4.9% in PSNR over the latest approaches (Zhang et al.,
2024), and gains of 7.08%, 3.21%, 5.19%, and 14.05% in OCR accuracy. These results validate
the superiority of our approach and demonstrate its robustness and generalization across diverse and
challenging scenarios.

7
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Table 3: Impact of data generated by Gen-Text on the effectiveness of super-resolution methods.

Methods PSNR↑ LPIPS↓ FID↓ ACC ↑
DiffTSR w/o Gen-Text 17.49 0.336 70.59 0.8475
DiffTSR w/ Gen-Text 19.09 0.355 98.17 0.8696

Our w/o Gen-Text 19.56 0.322 59.30 0.8772
Our w/ Gen-Text 19.61 0.3011 55.49 0.8794

Table 4: Effectiveness verification of different modules in Re-Text.

Diffusion GAN CTR-X RealCE
PSNR↑ SSIM↑ LPIPS↓ FID↓ ACC↑ PSNR↑ SSIM↑ LPIPS↓ FID↓ ACC↑

Only None Out of Memory
None Only 23.03 0.677 0.253 52.01 0.5836 18.28 0.58 0.298 95.84 0.8490

Down×4 None 25.42 0.745 0.295 55.21 0.6276 19.63 0.63 0.412 97.21 0.8732
Down×4 Up×4 26.97 0.788 0.165 29.05 0.6468 19.61 0.63 0.301 55.49 0.8791

4.3 QUALITATIVE COMPARISON

Text Image Generation. We conduct a qualitative analysis to demonstrate the capability of Gen-
Text in generating complex text images, as shown in Fig. 3 and Fig. 4. Fig. 3 presents diverse sam-
ples generated by Gen-Text, including various fonts and text lengths. The results show that Gen-Text
preserves fine-grained stroke structures while producing visually realistic and stylistically diverse
text images. Fig. 4 compares Gen-Text with existing AnyText (Tuo et al., 2023) and FluxText (Lan
et al., 2025). Compared to these methods, Gen-Text more accurately recovers complex glyphs, such
as stroke-dense Traditional Chinese characters and artistic fonts, maintaining stroke integrity and
font details. Backgrounds are also more naturally rendered, closely resembling real-world scenes.
Overall, the visual analysis demonstrates that Gen-Text effectively generates structurally accurate,
style-diverse, and visually realistic text images, providing high-quality and rich training samples for
downstream text super-resolution models.

Text Image Restoration. We further conduct a visual comparison of Re-Text with representative
text super-resolution methods, as shown in Fig. 1, 5. It can be observed that Re-Text produces more
precise strokes, particularly for long texts, vertical layouts, and complex characters. In contrast,
traditional methods (Dong et al., 2015; Wang et al., 2018; Chen et al., 2022) struggle with severely
degraded inputs, resulting in poor overall restoration. MARCONet (Li et al., 2023) can recover text
structure but often suffers from inconsistent styles and text-background separation. DiffTSR (Zhang
et al., 2024), while partially effective in restoring low-resolution text, exhibits inferior background
restoration and struggles with long or vertically arranged text. By combining a bucket training
strategy with the strengths of both diffusion and GAN, Re-Text generates high-resolution images
with superior text fidelity and consistent visual quality. Moreover, Fig. 6 illustrates the fine-tuned
results of Re-Text on the RealCE dataset, demonstrating its strong adaptability and robustness under
real-world degradations.

See the Appendix for more visualizations.

4.4 ABLATION STUDY

Effectiveness of the Gen-Text. We first evaluate the contribution of each module in Gen-Text
through a systematic ablation study on the glyph feature, style feature, and Sobel loss, as shown
in Fig. 7. Glyph only: The generated text preserves the basic structure of complex characters, but
fine-grained control over strokes is limited, and font styles appear random. Glyph+Style: Incor-
porating the style features produces text with more consistent font styles, and stroke thickness and
curvature are better controlled. Glyph+Style+Sobel loss: Adding the Sobel loss further enhances
stroke sharpness and edge details, achieving the best performance in terms of structure, style, and
fine details. Additionally, we also evaluate the impact of high-quality data generated by Gen-Text
on text super-resolution tasks (Tab. 3). The results show that these high-quality synthetic images
significantly improve text recognition accuracy. They also enhance visual quality metrics such as
PSNR and FID, partially compensating for the low quality of the original datasets.
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Glyph(G)

Style(S+G)

Sobel(S+S+G)

Figure 7: Visual analysis of different modules in Gen-Text.

HR HR

2X

4X

8X

16X

LR Image Restored Image LR Image Restored Image

Figure 8: Qualitative analysis under higher degradation scales.

Effectiveness of the Re-Text. To validate the effectiveness of Re-Text, we design three variants for
ablation study: GAN-only: training a GAN without diffusion. Downsampling+Diffusion: down-
sampling the input by 4×, applying diffusion restoration, and then upsampling back to the original
size. Downsampling+Diffusion+GAN (Re-Text): downsampling the input by 4×, restoring global
structures with diffusion, and further enhancing stroke fidelity and texture details with GAN. The
experimental results show that: Only the GAN module struggles to generate complex characters due
to its limited generative capacity. Due to GPU memory limitations, Diffusion-only cannot directly
handle 512x128(or larger) LR inputs, making it impractical in real-world scenarios. Diffusion with
downsampling alleviates the memory bottleneck and improves recognition accuracy; however, its
perceptual quality (LPIPS) is even worse than that of only-GAN. Re-Text combines diffusion for
structural restoration with GANs for fine-grained refinement, preserving structure while enhancing
visual details, thereby achieving superior visual quality.

Effectiveness under more severe degradations. We also conduct a qualitative visual analysis of
the model’s performance under more severe degradations. Specifically, the images are progressively
downsampled by factors of 2, 4, 8, and 16. As shown in Fig. 8, even under the extreme 16× degra-
dation, our model is still able to restore the images, with text structures clearly preserved. The
results highlight the model’s robustness under severe degradation and its potential for real-world
super-resolution.

5 CONCLUSION

In this work, we present ReGenText, a systematic framework for diverse text image super-resolution.
Unlike previous methods that focus solely on model design, ReGenText integrates data generation,
image restoration, and training strategies to address data scarcity, limited model fidelity, and com-
plex layout adaptation. Specifically, Gen-Text jointly models font styles and glyph representations
to synthesize large-scale, high-quality text images. Re-Text combines the generative capabilities of
diffusion models with the detail-enhancing strengths of GANs, improving both structural fidelity
and visual clarity. The bucket training strategy further enhances the robustness to variable-length
and vertical texts. Extensive experiments on the CTR-TSR-Test, Real-CE, CTR-X, and RareText
benchmarks demonstrate significant improvements in OCR accuracy and visual quality. These re-
sults validate the effectiveness of ReGenText in real-world scenarios.
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REPRODUCIBILITY STATEMENT

We provide implementation details in Sec. 4.1 and Appendix A.2, including the training process and
selection of hyper-parameters. We also provide details on dataset preparation in Sec. 3.4, and the
code and data will be made available along with it.

ETHICS STATEMENT

This work focuses on text image super-resolution (TISR) and does not involve the collection of
personally identifiable or sensitive data. All experiments use publicly available benchmarks and
synthetically generated datasets. While our method can improve accessibility in applications such
as digitization of historical texts and assistive technologies, it may also be misused for purposes such
as document forgery or disinformation. We emphasize that our contributions are intended solely to
advance research in text clarity and accessibility. Finally, we acknowledge the environmental cost
of training large generative models and encourage energy-efficient practices and dataset reuse to
reduce computational overhead.
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FluxTextGlyph AnyText Ours

Figure 9: Qualitative results compared with other text image generation methods.

A.2 MORE IMPLEMENTATION DETAILS

We trained two models for different text image tasks. For text generation, a LoRA-based model
was fine-tuned on cropped text-line images with masked inputs, building on FluxFill base model.
Training employed bucket-based sampling to accommodate varying aspect ratios, with a per-GPU
batch size of 1 and gradient accumulation of 8, using the AdamW optimizer at a learning rate of
2× 10−5 and LoRA rank 256. Training ran for up to 3,0000 steps. For text image super-resolution,
the model with a SwinIR (Liang et al., 2021) decoder was trained on high-resolution text images
using 4 NVIDIA GPUs in a distributed setting via the HuggingFace accelerate framework. Training
lasted 10 epochs with a per-GPU batch size of 8 (effective batch size 32), using the Adam optimizer
with an initial learning rate of 1×10−4. To improve robustness to extremely elongated text, training
images were sampled with aspect ratios of 15:1 and 1:15. In the super-resolution task, we set the
diffusion time steps t to 1000 during training, and 20 during inference. This unified setup ensures
reproducible and efficient training across both low-resolution text generation and high-resolution
restoration tasks.

A.3 EXAMPLES OF OUR SYNTHETIC DATASET

In Fig. 9, 10, 11, we present additional examples generated by Gen-Text and compare them with
recent state-of-the-art methods. It can be observed that Gen-Text consistently produces text images
with precise structures and diverse styles. This provides a continuous source of high-quality train-
ing data for subsequent super-resolution tasks, thereby effectively enhancing model robustness and
performance.

A.4 MORE COMPARISON RESULTS ON TEXT IMAGE SUPER-RESOLUTION

We provide additional qualitative results in Fig. 12 ,Fig. 13 and Fig. 14. In Fig. 12, we present
further comparison results on the performance of complex characters. Our method faithfully re-
constructs the text structures, benefiting from the use of synthetic data and the bucketed training
strategy. In Fig. 13 and Fig. 14 , we show qualitative results for text images with various aspect
ratios. Our method demonstrates consistent performance across different aspect ratios, highlighting
its robustness.
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Figure 10: Examples of synthetic data generated by our text generation method.

Figure 11: Qualitative results of vertical text image generation.
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Figure 12: Qualitative results on complex characters.
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Figure 13: Qualitative results on various lengths.

Figure 14: Qualitative results on vertical text.
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