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MaterialSeg3D: Segmenting Dense Materials from 2D Priors for
3D Assets

(a) Raw 3D assets

(b) Processed 3D assets using MaterialSeg3D

Figure 1: (a) Renderings of raw 3D assets that only have albedo information. (b) Renderings of processed assets with material
information under different lighting conditions. Given a raw asset, our MaterialSeg3D can actively predict and refine dense explicit
surface material based on 2D priors. Equipped with material definitions, 3D assets support physically based rendering, leading to
photorealistic visual effects.

ABSTRACT
Driven by powerful image diffusion models, recent research has
achieved the automatic creation of 3D objects from textual or visual
guidance. By performing score distillation sampling (SDS) itera-
tively across different views, these methods succeed in lifting 2D
generative prior to the 3D space. However, such a 2D generative
image prior bakes the effect of illumination and shadow into the
texture. As a result, material maps optimized by SDS inevitably
involve spurious correlated components. The absence of precise
material definition makes it infeasible to relight the generated as-
sets reasonably in novel scenes, which limits their application in
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downstream scenarios. In contrast, humans can effortlessly circum-
vent this ambiguity by deducing the material of the object from its
appearance and semantics. Motivated by this insight, we propose
MaterialSeg3D, a 3D asset material generation framework to infer
underlying material from the 2D semantic prior. Based on such a
prior model, we devise a mechanism to parse material in 3D space.
We maintain a UV stack, each map of which is unprojected from
a specific viewpoint. After traversing all viewpoints, we fuse the
stack through a weighted voting scheme and then employ region
unification to ensure the coherence of the object parts. To fuel the
learning of semantics prior, we collect a material dataset, named
Materialized Individual Objects (MIO), which features abundant
images, diverse categories, and accurate annotations. Extensive quan-
titative and qualitative experiments demonstrate the effectiveness of
our method.

CCS CONCEPTS
• Computing methodologies → Image processing; Texturing;
Mesh geometry models.
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1 INTRODUCTION
3D asset creation, as a pivotal topic in computer graphics, has great
application potential in virtual reality, augmented reality, games, and
movies. It is a laborious workload for the artist in the traditional
industrial pipeline. To create a 3D object of high quality, the artist
often spends several days on sculpting geometry and drawing tex-
ture. The creation should adhere to some commonly recognized
principles, such as neat polygon mesh and proper material design.
This paper focuses on the material assignment of 3D assets. We
follow Disney-principled BRDF and employ roughness and metallic
as the primary physical properties of the material. These properties
modulate the BRDF terms in the rendering equation and enable
realistic re-lighting effects in different illumination conditions. With
the advance of generative modeling, recent research [13, 39, 71]
has achieved automatic creation of 3D objects according to textual
or visual description. Most current methods resort to powerful 2D
generative image models to supervise the 3D content generation.
However, such 2D supervision bakes illumination. In this case, score
distillation sampling inevitably leads to entangled material maps.
Without precise material information, the generated assets cannot
be re-lit realistically in novel scenes, which limits their application
scope greatly.

For better usability, it is desirable to generate Physically-Based
Rendering (PBR) material maps during asset creation [58]. We first
investigate how the artist completes such a challenge. Given refer-
ence images of the object-of-interest, the artist can infer the material
properties of each part according to the semantic information and
appearance. For example, assuming an armchair with silver legs,
thick black cushions, and a backrest, a human can confidently deter-
mine that the legs are metal and the seat cushion might be leather.
Inspired by such a phenomenon, we point out that 2D priors’ knowl-
edge of material information can serve as powerful guidance for
3D material. Intuitively, material segmentation on 2D images is a
perception-based method that can distill knowledge from labeled
training images. However, existing material-related segmentation
datasets such as DMS [65] or MINC [7] only provide material la-
bels for open scenes including multiple instances, which are less
reliable in dealing with single-object component segmentation. With
the motivation of establishing a database to construct 2D material
prior knowledge for individual objects, we collect Materialized
Individual Objects (MIO), a novel 2D single-object segmentation
dataset consisting of dense material semantic annotations of ob-
jects with intricate semantic classes and captured camera angles.
Images are (a) collected from both real-world captures and 3D as-
set renderings, augmenting the prior knowledge from reality and
easing the domain gap; (b) sampled with various camera angles
including but not limited to top and side views; (c) annotated and
supervised by professional annotators. For each material class label
in the dataset, we assign PBR material (Metallic, Roughness) under
instructions of prior knowledge from experienced modelers. The
MIO dataset contributes to establishing robust prior knowledge in
material information while narrowing the distribution gap between
object renderings in the application and the training data as well.

Empowered by the MIO dataset, we manage to propose Materi-
alSeg3D, a workflow that can automatically predict and generate
precise surface material for 3D objects. Taking the geometry mesh
and Albedo UV of an asset as input, our method first renders multi-
view images of the asset with a manually and randomly selected
camera pose. These multi-view renderings are then inferred by the
material segmentation model, which is trained beforehand on the
MIO dataset. Each predicted material result of multi-view images
is further projected back onto a temporary UV map with the corre-
sponding camera matrix. The final UV map for material labels is
calculated through the voting mechanism and is further converted
into a PBR material UV map including the Metallic and Roughness
score for each material label assigned in the MIO dataset. As shown
in Fig. 1, by absorbing 2D prior knowledge of material information
from the MIO dataset, MaterialSeg3D can generate accurate sur-
face material for 3D assets, resulting in vivid rendered visuals and
application potential in the real world.

To summarize, the contributions of this paper are:

• We innovatively propose to utilize human prior knowledge
of 2D material information in the surface material gener-
ation of 3D assets. Prior knowledge of the inherent rela-
tionship between the semantics and materials offers more
reliable and precise guidance.

• We construct MIO dataset, which is currently the largest
multiple-class single asset 2D material semantic segmenta-
tion dataset including images captured from especial camera
angles and patterns, and each image is accurately annotated
by a professional team.

• We introduce MaterialSeg3D, a novel workflow that can
infer underlying material from the 2D semantic prior and
accurately generate precise surface material for different
parts of the 3D asset. This method can be significant in im-
proving the quality of 3D assets from existing open-source
datasets or websites.

2 RELATED WORK
2.1 3D Asset Generation
Early methods in 3D asset generation often adapted existing 2D
convolutional neural networks (CNNs) and generative adversarial
networks (GANs) to generate 3D voxel grids [24, 30, 45, 61, 69, 74],
these methods are straightforward but also difficult to generate high-
quality 3D assets because they have many limitations such as high
memory usage and computational complexity.

Subsequent research explored more methods such as based on
point clouds [2, 46, 50, 76, 81], and implicit functions [14, 48]. The
biggest problem of these 3D characterizations is the lack of compati-
ble performance on standard computer graphics. Then to improve
the quality and efficiency of 3D asset generation, the mesh-based 3D
generative models [26, 29, 38, 42, 56, 64, 80] have emerged, accom-
modating complex topologies and shapes with varying resolutions.
Importantly, the results from these models can seamlessly integrate
with standard graphics engines, aligning with current industry de-
mands for effective 3D data representation.

Currently, mainstream 3D generative models largely rely on text
guidance to create a variety of 3D assets. Some methods involved
optimizing Neural Radiance Fields (NeRF) [49] through text-image

2
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Figure 2: Overall framework of our MaterialSeg3D workflow. The material segmentation model is trained on MIO beforehand.
Multi-view renderings are first generated with pre-defined and randomly selected camera angles and are further inferenced by the
material segmentation model and attached to a stacked temporary UV map. Weighted voting and region unification are further applied
to generate the final material UV.

alignment using the text-image Contrastive Language-Image Pre-
training(CLIP) [32, 51, 57] model. DreamFusion [55] replaced CLIP
with a diffusion model and introduced the loss of Score Distil-
lation Sampling (SDS) to extract knowledge from the denoising
process. Magic3D [37] further enhanced generative performance
by adopting a coarse-to-fine framework and employing grids as a
3D representation in the second stage. Additionally, some other
methods [1, 10, 11, 27, 52, 53, 60, 75] have combined NeRF tech-
niques with the diffusion-based text-to-image models, proposing
NeRF-based generators, but they primarily focused on geometric
generation and often overlooking appearance.

2.2 Surface Material Generation
Generating realistic PBR material information such as metallic and
roughness on the surface of 3D assets is key to making the asset
look like a real object, that will dictate how surfaces interact with
incident light, determining asset surface reflective behavior and color
variations.

Traditional material generation methods predominantly focus on
predicting physics-based materials under given lighting conditions,
often requiring intricate multi-view [4] or polarizing [21] equipment.
These methods often use synthetic data to train single-view Spatially
Varying Bidirectional Reflectance Distribution Function (SVBRDF)
prediction networks [19], which are then combined with other single-
view data [25, 47] or custom training strategies [20, 36, 67] to obtain
predicted material textures. These methods generated surface mate-
rial information that looks inconsistent with what we perceive in the
real world.

In recent years, many work have appeared in the field of 2D
material segmentation for the controllable generation of materials
in the form of SVBRDF maps [34, 58, 66, 68]. Based on a simi-
lar idea, there are several new work have also emerged in the field
of 3D material generation in an attempt to estimate materials un-
der natural light conditions, Fanasia3D [13] decouples geometric
and appearance modeling, using Bidirectional Reflectance Distribu-
tion Function (BRDF) to generate photo-realistic textures. However,
it always predicts materials entangled with environmental lights,
which leads to unrealistic renderings under novel lighting conditions.
PhotoScene [78] utilizes procedural graphs as a prior for materials,
generating high-resolution tiled material textures for each object in
a scene, along with globally consistent lighting for the entire scene.
PhotoScene, DiffMat [79], and Material Palette [43] are tailored for

tiled material generation. However, the surface material of a single
complex 3D asset is often not tiled, making it difficult to gener-
ate and represent the asset’s true appearance through simple tiling.
MatAtlas [9] generates relightable textures for 3D models given a
text prompt with GPT4-V, but its generations across different views
might differ in the appearance of the details.

2.3 Existing 3D and 2D Datasets
When considering learning prior information about the surface mate-
rial, the first step is collecting enough data to support running the
training process. In recent years, there have been some large-scale
3D datasets released, one of the most representative is the Objaverse,
which is divided into Objaverse-1.0 [18] and Objaverse-XL [17],
with approximately 800,000 and 10 million 3D assets, respectively.
However, 3D assets in Objaverse generally lack material information,
posing a limitation for research on surface appearance generation.
Other 3D datasets like KIT [33], YCB [8], BigBIRD [59], and
pix3d [63] offer calibrated models for various household objects,
but they suffer from a severe lack of scale, containing at most a
few hundred objects. Larger photorealistic object datasets [23, 54]
and CAD model datasets [35, 70, 72] all do not include Albedo or
material information. These existing 3D datasets fail to meet the
requirements for generating realistic surface materials UV maps for
individual complex 3D assets.

Due to the relative ease of obtaining 2D images, 2D material seg-
mentation has accumulated more extensive large-scale datasets than
3D in the past decades. Such as the DMS dataset [65], encompassing
44,560 indoor and outdoor images with annotations for 3.2 million
dense segments. The OpenSurfaces dataset [6] contains annotations
for 37 material categories on 19,000 images of residential indoor
surfaces. MINC [7] hosts the largest texture recognition dataset,
featuring 3 million points annotated for 23 materials across 437,000
images. While these 2D datasets are extensive, their labels are often
tailored for multi-object scenarios, bringing too much training noise
when learning 2D priors for single-object scenarios.

3 SIGNIFICANCE OF MATERIAL
Creating high-quality materials in computer graphics is a challenging
and time-consuming task, which requires great expertise. 3D assets
with the correct materials can present the same impressions as in
the real world under various lighting conditions. Components of the
asset with different PBR materials will result in various reflection

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Without material information With material information

Figure 3: Comparison of 3D assets rendered with and without
PBR material information under the same lighting conditions.

(a) (b)

Figure 4: Case analysis of AI-generated asset surface material.
(a) shows the rendering effect with the PBR material set to a
fixed value on different structural components. (b) shows the
generated material information cannot be consistent within the
same semantic area.

Table 1: Statistics on the frequency of occurrence of different
material categories contained in each image.

Material label Number Material label Number

metal 935 brick 186
wood 842 porcelain 163
plastic 768 clay terracotta 154
glass 712 concrete 152
paint 626 nylon 75
rubber 524 rusty metal 53
leather 437 ston 46
fabric 391 bone 25
fruit&leaf 273 bamboo 22
flower 252 others 181

effects even under the same illumination. 3D assets without PBR
material information will cause extreme distortion when rendering
diversified illuminations, making these properties inapplicable for
real-world demands. Visualization can be found in Fig.3.

After recognizing the importance of PBR materials for 3D assets,
we have conducted our early attempts to explore the potential of
existing public datasets of 3D assets. In the newly proposed large-
scale 3D object datasets Objaverse [17], we have analyzed a total
of more than 270,000 assets of various categories, while only about
3k assets are attached with realistic PBR material information. This
lack of material information in Objaverse makes it hard to learn the
distributions of material semantics from the provided 3D assets.

Although there are some of the latest 3D asset generation meth-
ods [9, 13] claimed to have provided surface materials for the AI-
generated content, the surface material quality of the 3D assets gener-
ated by these methods is rather poor with obvious distortions [58, 68],
mainly caused by the following two problems. One of the problems
that happened in some methods is that the PBR materials (Metal-
lic, Roughness, etc.) attached to the surface are pre-defined fixed
values regardless of the Albedo or semantic information. As shown
in Fig. 4(a), the same PBR material values are attached to the han-
dle and the head of the hammer, but they should be two materials
with significant differences. Another issue is that the generation of
the PBR material lacks guidance from real-world common sense or
prior knowledge. The materials attached to a continual region of the
asset may be discontinuous or unconvincingly related to the actual
semantics of that region. A case is shown in Fig. 4(b), the region
of the back of the chair should be applied with a continual material
such as fabric or nylon, but metal is mistakenly attached in some
part of the region.

Inspired by such case studies, we consider that human prior knowl-
edge of witnessed categories of 3D assets can be utilized to judge or
supervise the generation of the surface material. This statement also
explains the logic of modelers manually assigning PBR materials to
different assets, making it more convincing and logical. Further, we
surveyed 100 people about the materials they thought were likely
to appear in different categories of objects and showed each person
10 pictures of indoor and outdoor scenes. Each person was asked
to count what materials might occur in every image, and the results
are shown in Tab. 1. The survey results ensure that humans can
confidently infer material information from a 2D image, and the
frequency of different materials that occur in common objects is also
supposed to be determined. This result greatly supports our motiva-
tion to introduce prior 2D knowledge to surface material generation
of 3D assets.

4 MIO DATASET
4.1 Motivation for Establishment
Our pilot research indicates that 2D prior knowledge from humans
can provide strong guidance and supervision for generating surface
material on 3D assets. The following questions will be about how to
employ and where to obtain such material prior knowledge related
to 3D asset generation. Inspired by our relevant knowledge of the
computer vision area, we figured out that perception-based methods
can intuitively learn prior knowledge from training data into the
models and infer the samples accordingly. Considering providing
dense surface PBR material on 3D assets, segmentation is the most
suitable method as it can provide pixel-wise prediction of material
classes.

As aforementioned, in early attempts, we tried to collect available
material information from public 3D asset datasets to build prior
knowledge but ended up due to the extreme lack of material infor-
mation. We subsequently notice that compared with 3D assets, 2D
images are easily accessible through public websites or datasets with
much wider distribution and total amounts. However, domain gaps
exist between the distributions of 3D asset multi-view renderings
and the existing annotated 2D image datasets, which makes learning
& applying material prior knowledge less accessible. Therefore, we
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Figure 5: Visual example of the material class annotations and
the mapping with PBR material spheres.

Figure 6: Visual displays of samples in metaclass Cars collected
in MIO dataset.

were motivated to construct a customized 2D image dataset that
perfectly fits the demand of providing robust prior knowledge for
surface material.

4.2 Data Collection and Annotation
To overcome possible domain gaps between 2D images and 3D asset
renderings, we tried to collect and construct the image samples of
our dataset under the following guidelines: (a) Each image sample
could only contain one out-standing foreground object; (b) Image
samples should be collected with similar amounts from both real-
world scenes or renderings of 3D assets; (c) Image samples should
be captured from diverse camera angles, including some especial
angles such as the top view or bottom-side view. With the above
guidelines, we ensure the gathered images share similar distributions
with multi-view renderings of 3D assets, which largely guarantees
the accuracy of further material predictions.

The sources of the collected images are freely accessible pub-
lic datasets [31, 77] and 2D image renderings from 3D objects in
website photo libraries [5]. In addition, we also procured some
well-designed 3D assets that are used for game development and
expanded the data collection by rendering multi-view images of
these high-quality assets.

The biggest difference between our dataset and existing 2D seg-
mentation datasets is that our customized dataset is designed to
build extra alignments between semantic labels of different material
classes and real PBR material values (Metallic, Roughness) for the
included materials. The accuracy of the image annotation affects
the overall performance of the material segmentation model trained

Table 2: Statistics of material labels occurrence in images.

Material label Number Material label Number

metal 8,946 fabric 3,373
wood 7,088 fruit&leaf 1,742
plastic 6,928 flower 1,677
glass 5,802 brick 1,017
paint 5,626 porcelain 921
rubber 5,324 clay terracotta 910
leather 3,417 concrete 794

Table 3: Number of rendered images and real images of every
metaclass in the MIO dataset.

Class name (abbr.) Rendered image Real image Total image

Furniture (fur.) 4,152 5,455 9,607
Cars (car) 1,935 4,117 6,052
Buildings (bui.) 418 1,752 2,170
Musical Instrument (ins.) 627 1,637 2,264
Plants (pla.) 552 2,417 2,969

on the dataset, while the authority and rationality of the mapping
between material class annotations and PBR materials influence the
final rendered visualization of the assets. The number of material
categories included in the dataset and their mapping relationships
with PBR materials were discussed and determined by a group of
nine professional 3D asset modelers. They have drawn upon their
modeling expertise and considered the survey results shown in Tab. 1
to collect PBR material sphere candidates from more than 1,000 real
PBR material spheres from public material libraries such as ACG [3]
or Adobe Substance 3D Painter. Finally, 14 material categories, to-
gether with the mapping with the PBR materials to be the label space
of our dataset.

After confirming the number of material categories in the dataset,
we cooperated with a large and highly specialized annotators team
to conduct pixel-wise dense annotations on the collected image sam-
ples. Based on the design of the dataset, we require that only the
foreground objects contained in each picture be labeled with materi-
als, and the background part is set to the background class regardless
of the semantics. Each image sample was first annotated through
an application driven by Segment Anything [34] and manual refine-
ments, and sent to other annotators for multi-round re-annotation.
Each annotator can handle approximately 50 images per day, en-
suring the quality of the annotations is precise and accurate. Fig. 5
illustrates the annotations and alignments of material information in
one of our samples.

4.3 Dataset Distribution
The dataset is named Materialized Individual Objects (MIO), con-
taining single-object image samples captured under diverse camera
poses and annotated with convincing material labels and PBR mate-
rial values. The MIO dataset comprises 23,062 multi-view images of
individual complex objects, annotated into 14 material classes and
categorized into five metaclasses: furniture, cars, buildings, musical
instruments, and plants. The occurrence of each label is shown in
Tab. 2. Occurrence frequency statistics of each metaclass belonging
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to real images and asset-rendered images are illustrated in Tab. 3. Ap-
proximately 4,000 top-view images are included in the MIO dataset,
providing a unique perspective rarely found in existing 2D datasets.
Some image samples with the metaclass cars are displayed repre-
senting the diversity of camera poses and distributions, shown in
Fig. 6.

5 METHOD
5.1 Material Segmentation
Inspired by existing semantic segmentation methods trained under
material semantic labels, we establish a material segmentation pro-
cess that better fits the demands of 3D assets. Compared with current
semantic datasets annotated with material information, material seg-
mentation focuses on dense predictions of a single object under
diverse poses and camera angles. Given an image 𝐼 with pixel-wise
RGB value 𝑥 and annotated material label 𝑦 as a pair < 𝑥𝑖 , 𝑦𝑖 >

for each pixel 𝑖, the material segmentation network encodes visual
features from the input image and decodes the features into per-
pixel possibility vectors 𝑃𝑖 = (𝑝 (𝑖,1) , 𝑝 (𝑖,2) , ..., 𝑝 (𝑖,𝑛) ) for 𝑛 different
classes at pixel 𝑖. The final prediction of each pixel can be calculated
from 𝑃𝑖 through argmax function.

We notice that the Segment Anything Model (SAM) [34] has
shown its ability to handle semantic region segmentation on single-
object images in previous work [71]. Thus, we formulate the material
segmentation network with a modified ViT [22] backbone using pre-
trained segmentation weights from SAM-b model. The decode head
follows the setting in UperNet [73] with cross-entropy loss as super-
vision. To prevent possible long-tail problems caused by imbalanced
training data, we adopt a class-balanced sampling strategy [16] to en-
hance the robustness and generalization ability of the model. During
training stage, the cross-entropy loss can be calculated with:

𝐿 = − 1
𝐻𝑊

𝐻𝑊∑︁
𝑖=1

𝑛−1∑︁
𝑐=0

𝑦 (𝑖,𝑐 )𝑙𝑜𝑔(𝑝 (𝑖,𝑐 ) ), (1)

where 𝐻,𝑊 denotes the shape of the input image, 𝑛 denotes the
number of the classes, 𝑦 (𝑖,𝑐 ) , 𝑝 (𝑖,𝑐 ) represents the ground truth value,
and the predicted possibility of class 𝑐 at pixel 𝑖.

5.2 MaterialSeg3D
In this section, we introduce a novel material generation method,
named MateriaSeg3D, a workflow that generates precise material
information for 3D assets. The proposed MateriaSeg3D includes
three components: multi-view rendering, material prediction, and
material UV generation, as shown in Fig. 2. Specifically, in the
multi-view rending stage, the workflow first defines diverse camera
poses capturing 360◦ of the target assets. 2D rendering images can
be obtained from various angles from specific camera poses. In the
material prediction stage, the material segmentation model is trained
beforehand and infers multi-view renderings captured in the previous
stage into the predicted material labels. In the material UV gener-
ation stage, predicted results of the renderings are first projected
back to temporary UV maps and are further processed through a
weighted-voting mechanism to obtain the final material label UV.
Pixel values of the material label UV can be further transformed into
PBR material (Metallic, Roughness) with the mapping relationships

between labels and material spheres. We will introduce the details in
the following subsections.
Multi-View Rendering. In order to provide dense material predic-
tions on the entire surface of an object, the elevation and rotation
matrices of the rendering camera should cover 360◦ of the entire
asset. Therefore, we first manually define five specific camera an-
gles with the elevation and rotation status at (90◦, 0◦), (15◦, 0◦),
(15◦, 90◦), (15◦, 180◦), (15◦, 270◦). These rendered views can pro-
vide high-quality results and serve as popular views for human
inspection. Next, we equally divide the entire 360◦ rotation into 12
different directions, on which there will be three different elevation
angles, 0◦ as a fixed value, and the other two will be randomly se-
lected within the range of (0◦,±30◦) respectively. Through this, the
renderings can provide visual information about all surfaces of the
object, including the top and bottom. The manually selected views
will further present additional constraints during the ensemble stage
of the material UV.
Material Prediction. Following the details presented in Sec. 5.1,
we can obtain a material segmentation model capable of predicting
accurate material labels on images captured from various views. This
model is used to infer the material information of the multi-view
renderings of the input object. The predicted material labels are then
used to generate material UVs.
Material UV Generation. After acquiring the predicted material
results on the multi-view renderings, we generate the PBR material
UV map for the 3D asset by attaching the material information to the
pixel-wise UV map. Specifically, for each rendering with the rotation
and elevation angle, we assign the predicted material labels to the
corresponding pixel coordinates in the Albedo UV and form a new
temporary material label UV. Through this, we can obtain a group
of single-angle material label UV maps 𝑀𝑣𝑖𝑒𝑤 = 𝑀1, ..., 𝑀𝑛 , where
𝑛 represents the number of the sampled camera views mentioned in
the earlier paragraph.

As each rendering view can only provide limited material label
information on the entire UV map, instead of sequentially updating
the material label UV [12], we introduce a weighted voting method
to decide the final material label of each pixel on the UV map.
As aforementioned, five manually selected views will have higher
weights when voting. Thus, the voted material label UV map can be
calculated as follows:

𝑀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑣𝑜𝑡𝑒 (𝛼 (𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5), 𝑀6, ..., 𝑀𝑛), (2)

where 𝛼 denotes the weighting factor of the high-value views, and
we set 𝛼 = 2 in our experiments.

While the pixel values of the material label UV map are class
labels predicted from the material segmentation model, the PBR
material (Metallic, Roughness) UV map used to render visual effects
can be transformed from the mapping relations between class labels
and material spheres defined in the dataset.

6 EXPERIMENTS
6.1 Implementations & Evaluations
Learning precise 2D material prior information is at the forefront
of our MaterialSeg3D pipeline for raw 3D objects. We trained our
model with SAM-b[34] pre-trained ViT [22] backbone. The opti-
mizer is AdamW [44] with the learning rate and weight decay are
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Figure 7: Detailed visual comparisons between MaterialSeg3D and previous method from three aspects: single-image-to-3D generation
methods, texture generation methods, and public 3D assets.

6 × 10−5 and 1 × 10−2, respectively. We set batch size = 8 and train-
ing iterations = 80𝑘, and images are resized to 1024 × 1024. All
experiments are conducted under MMsegmentation [15] framework
and on 4 80G NVIDIA A100 GPUs.

6.2 Compared with Previous Work
Material Segmentation. To evaluate the effectiveness of our pro-
posed material segmentation method mentioned in Sec. 5.1, we
apply five widely-used and state-of-the-art semantic segmentation
backbones as comparisons to train segmentation models on the MIO
dataset. We provide mIOU performance comparisons between these

methods on Objaverse [18] samples and the test image set of the
MIO dataset. We randomly sample 50 assets with ground-truth PBR
material UV from Objaverse and evaluate the accuracy of the out-
put material label UV from MaterialSeg3D with the ground-truth.
Quantitative results are shown in Tab. 4. It can be observed that our
material segmentation method outperforms all the other semantic
segmentation backbones, providing accurate and reliable material
predictions for further renderings.
Overall Performances. To evaluate the effectiveness of the proposed
material generation method, we compare previous approaches from
the following three aspects: single-image-to-3D generation methods,
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Figure 8: Visualization of the segmentation results on multi-
view rendering of 3D assets and the colored material UV map
acquired from the weighted voting mechanism.
Table 4: Quantitative results about the performance of the se-
mantic segmentation methods on the test split of MIO dataset /
material label UV of Objaverse.

Method
MIO Dataset (%) Objaverse Dataset (%)

car fur. bui. ins. pla. mIOU car fur. bui. ins. pla. mIOU

ConvNeXt[41] 71.03 74.85 69.33 72.40 76.72 72.87 75.35 76.04 72.34 76.72 78.95 75.88

HRNet[62] 75.71 79.94 76.37 80.14 81.35 78.70 78.40 78.83 76.03 82.00 81.40 79.33

ViT[22] 73.96 77.67 75.53 79.45 78.66 77.05 77.33 78.45 75.70 81.38 78.36 78.24

Swin-T[40] 75.09 79.04 78.45 80.92 81.40 78.98 78.89 79.77 78.64 82.97 82.01 80.46

MAE[28] 76.42 82.06 77.59 82.74 85.92 80.95 79.61 81.28 76.96 83.41 86.37 81.53

Ours 81.83 85.22 81.76 84.39 86.38 83.92 82.75 84.33 81.14 84.33 87.76 84.06

texture generation methods, and public 3D assets. The correspond-
ing results are shown in Fig. 7. Considering single image-to-3D
generation methods, we compare state-of-the-art Wonder3D [42],
TripoSR [64], and OpenLRM [29] in this section. Specifically, given
a reference view as input, Wonder3D, TripoSR, and OpenLRM
generate a 3D object with referenced texture. We can observe that
the provided MaterialSeg3D significantly outperforms the previous
work owing to the adoption of well-defined 3D mesh and Albedo in-
formation. Fairly comparison, we modify existing texture generation
methods like Fantasia3D [13], Text2Tex [12], and online functions
provided by Meshy 1 for evaluation. Given a well-defined geometry
mesh, previous work provide texturing results according to the text
prompt as shown in Fig. 7. The results demonstrate our method
provides much more realistic renderings under different lighting
conditions. Note that for Fantasia3D, we only adopt its texture gen-
eration (Appearance Modeling) stage during comparison. Moreover,
we also provide material generation results for 3D assets obtained
from public websites, exampling as tripo3d 2 and turbosquid 3. From
the results in Fig. 7, we can observe the proposed MaterialSeg3D
can generate precise PBR material information while significantly
improving the overall quality of the assets.

Furthermore, we also provide quantitative results comparing
our method and existing Image-to-3D methods including Won-
der3D [42], TripoSR [64] and OpenLRM [29]. We adopt CLIP
1https://app.meshy.ai/
2https://www.tripo3d.ai/app/
3https://www.turbosquid.com/

Table 5: Quantitative evaluations from reference view and novel
views on samples from Objaverse-1.0 dataset.

Method
Evaluation CLIP Similarity↑ PSNR↑ SSIM↑

mesh
view

Reference Novel Reference Novel Reference Novel

Wonder3D [42]
w/o

0.85 0.84 16.06 15.83 0.78 0.75
TripoSR [64] 0.93 0.90 16.93 16.14 0.79 0.76
OpenLRM [29] 0.92 0.87 16.30 15.37 0.77 0.76

Baseline
w

0.93 0.93 16.28 16.30 0.79 0.78
Baseline + Ours 0.98 0.97 20.72 18.39 0.85 0.84

Similarity [57], PSNR, and SSIM as the evaluations, and the cor-
responding results are shown in Table 5. We choose assets from
Objaverse-1.0 dataset [18] as the test sample and randomly select
three camera angles as novel views. The ground-truth reference and
novel views are captured from assets with ground-truth material
information and fixed lighting conditions. Given a well-defined 3D
mesh and Albedo, our workflow can provide reliable PBR material,
resulting in more realistic rendering visual effects.

6.3 Visualization on Weighted Voting
To illustrate the effectiveness of the weighted voting mechanism
in the material UV generation stage, we provided visualizations
of multi-view material segmentation results and the final material
label UV maps, shown in Fig. 8. Although some regions might
be predicted as wrong materials in some tricky angles, the correct
predictions of the same region from other views will correct the
final material labels through the weighted voting mechanism of the
temporary UV maps.

7 LIMITATION
One of the limitations of our work is that current 3D asset generation
methods mostly bake specific illuminations onto the generated RGB
textures. Applying our workflow to the Albedo UV coupled with
light reflections will lead to unrealistic visual effects under different
illuminations.

Another limitation is that the quality of the input mesh will largely
influence the generation of surface material and visual renderings.
When applying our workflow on low-quality coarse meshes with
uneven surfaces, the results are less satisfying. Detailed explanations
and visualizations can be found in Supplementary Materials.

8 CONCLUSIONS
In this paper, we innovatively introduce the idea of adopting 2D
prior knowledge of surface material in the material generation of 3D
assets. We propose MaterialSeg3D, a novel workflow that takes a
geometry mesh and Albedo UV as input, and generates dense PBR
material information with the supervision of 2D prior knowledge. We
also establish a 2D single-object material segmentation dataset MIO
including images collected from diverse distributions and camera
poses, thus providing strong 2D prior knowledge for the material
segmentation model. Extensive experiments show the effectiveness
of our proposed workflow. The workflow and the dataset show its
ability to complete missing PBR material information for the public
3D assets, providing convenience for subsequent studies.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MaterialSeg3D: Segmenting Dense Materials from 2D Priors for 3D Assets ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Rameen Abdal, Hsin-Ying Lee, Peihao Zhu, Menglei Chai, Aliaksandr Siarohin,

Peter Wonka, and Sergey Tulyakov. 2023. 3davatargan: Bridging domains for
personalized editable avatars. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 4552–4562.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas.
2018. Learning representations and generative models for 3d point clouds. In
International conference on machine learning. PMLR, 40–49.

[3] AmbientCG. 2024. Pbr repository. https://ambientcg.com.
[4] Louis-Philippe Asselin, Denis Laurendeau, and Jean-François Lalonde. 2020.

Deep SVBRDF estimation on real materials. In 2020 International Conference
on 3D Vision (3DV). IEEE, 1157–1166.

[5] Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell, and Josef
Sivic. 2014. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large
dataset of cad models. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 3762–3769.

[6] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2013. OpenSurfaces:
A richly annotated catalog of surface appearance. ACM Transactions on graphics
(TOG) 32, 4 (2013), 1–17.

[7] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Material
recognition in the wild with the materials in context database. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3479–3487.

[8] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M Dollar. 2015. Benchmarking in manipulation research: The ycb object
and model set and benchmarking protocols. arXiv preprint arXiv:1502.03143
(2015).

[9] Duygu Ceylan, Valentin Deschaintre, Thibault Groueix, Rosalie Martin, Chun-
Hao Huang, Romain Rouffet, Vladimir Kim, and Gaëtan Lassagne. 2024. MatAt-
las: Text-driven Consistent Geometry Texturing and Material Assignment. arXiv
preprint arXiv:2404.02899 (2024).

[10] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan,
Shalini De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh
Khamis, et al. 2022. Efficient geometry-aware 3D generative adversarial net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 16123–16133.

[11] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2021. pi-gan: Periodic implicit generative adversarial networks for 3d-aware
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 5799–5809.

[12] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and
Matthias Nießner. 2023. Text2tex: Text-driven texture synthesis via diffusion
models. arXiv preprint arXiv:2303.11396 (2023).

[13] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023. Fantasia3d: Disentan-
gling geometry and appearance for high-quality text-to-3d content creation. arXiv
preprint arXiv:2303.13873 (2023).

[14] Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 5939–5948.

[15] MMSegmentation Contributors. 2020. MMSegmentation: OpenMMLab Se-
mantic Segmentation Toolbox and Benchmark. https://github.com/open-mmlab/
mmsegmentation.

[16] MMEngine Contributors. 2022. MMEngine: OpenMMLab Foundational Library
for Training Deep Learning Models. https://github.com/open-mmlab/mmengine.
(2022).

[17] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel,
Aditya Kusupati, Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak
Gadre, et al. 2023. Objaverse-xl: A universe of 10m+ 3d objects. arXiv preprint
arXiv:2307.05663 (2023).

[18] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli Van-
derBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
2023. Objaverse: A universe of annotated 3d objects. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13142–
13153.

[19] Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-image svbrdf capture with a rendering-aware deep net-
work. ACM Transactions on Graphics (ToG) 37, 4 (2018), 1–15.

[20] Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided fine-
tuning for large-scale material transfer. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 91–105.

[21] Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh. 2021. Deep polarization
imaging for 3D shape and SVBRDF acquisition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 15567–15576.

[22] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[23] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman,
Krista Reymann, Thomas B McHugh, and Vincent Vanhoucke. 2022. Google
scanned objects: A high-quality dataset of 3d scanned household items. In 2022
International Conference on Robotics and Automation (ICRA). IEEE, 2553–
2560.

[24] Matheus Gadelha, Subhransu Maji, and Rui Wang. 2017. 3d shape induction from
2d views of multiple objects. In 2017 International Conference on 3D Vision
(3DV). IEEE, 402–411.

[25] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019.
Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary
number of images. ACM Trans. Graph. 38, 4 (2019), 134–1.

[26] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li,
Or Litany, Zan Gojcic, and Sanja Fidler. 2022. Get3d: A generative model of high
quality 3d textured shapes learned from images. Advances In Neural Information
Processing Systems 35 (2022), 31841–31854.

[27] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. 2021. Stylenerf:
A style-based 3d-aware generator for high-resolution image synthesis. arXiv
preprint arXiv:2110.08985 (2021).

[28] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. 2022. Masked autoencoders are scalable vision learners. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 16000–
16009.

[29] Zexin He and Tengfei Wang. 2023. Openlrm: Open-source large reconstruction
models.

[30] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2019. Escaping plato’s
cave: 3d shape from adversarial rendering. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 9984–9993.

[31] images.cv. 2024. CV image dataset. https://images.cv.
[32] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole.

2022. Zero-shot text-guided object generation with dream fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 867–
876.

[33] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. 2012. The kit object
models database: An object model database for object recognition, localization and
manipulation in service robotics. The International Journal of Robotics Research
31, 8 (2012), 927–934.

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

[35] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Arte-
mov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019.
Abc: A big cad model dataset for geometric deep learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 9601–9611.

[36] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling surface ap-
pearance from a single photograph using self-augmented convolutional neural
networks. ACM Transactions on Graphics (ToG) 36, 4 (2017), 1–11.

[37] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023.
Magic3d: High-resolution text-to-3d content creation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 300–309.

[38] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang Xu, Hao Su, et al.
2023. One-2-3-45: Any single image to 3d mesh in 45 seconds without per-shape
optimization. arXiv preprint arXiv:2306.16928 (2023).

[39] Zexiang Liu, Yangguang Li, Youtian Lin, Xin Yu, Sida Peng, Yan-Pei Cao, Xi-
aojuan Qi, Xiaoshui Huang, Ding Liang, and Wanli Ouyang. 2023. UniDream:
Unifying Diffusion Priors for Relightable Text-to-3D Generation. arXiv preprint
arXiv:2312.08754 (2023).

[40] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision. 10012–10022.

[41] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A convnet for the 2020s. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 11976–11986.

[42] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie
Liu, Yuexin Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al.
2023. Wonder3d: Single image to 3d using cross-domain diffusion. arXiv preprint
arXiv:2310.15008 (2023).

[43] Ivan Lopes, Fabio Pizzati, and Raoul de Charette. 2023. Material Palette: Ex-
traction of Materials from a Single Image. arXiv preprint arXiv:2311.17060
(2023).

[44] Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in
adam. (2018).

[45] Sebastian Lunz, Yingzhen Li, Andrew Fitzgibbon, and Nate Kushman. 2020.
Inverse graphics gan: Learning to generate 3d shapes from unstructured 2d data.
arXiv preprint arXiv:2002.12674 (2020).

[46] Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision

9

https://ambientcg.com
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmengine
https://images.cv


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and Pattern Recognition. 2837–2845.
[47] Rosalie Martin, Arthur Roullier, Romain Rouffet, Adrien Kaiser, and Tamy

Boubekeur. 2022. MaterIA: Single Image High-Resolution Material Capture
in the Wild. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 163–
177.

[48] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. 2019. Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 4460–4470.

[49] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[50] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and
Leonidas J Guibas. 2019. Structurenet: Hierarchical graph networks for 3d shape
generation. arXiv preprint arXiv:1908.00575 (2019).

[51] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa.
2022. Clip-mesh: Generating textured meshes from text using pretrained image-
text models. In SIGGRAPH Asia 2022 conference papers. 1–8.

[52] Michael Niemeyer and Andreas Geiger. 2021. Giraffe: Representing scenes as
compositional generative neural feature fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11453–11464.

[53] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and
Ira Kemelmacher-Shlizerman. 2022. Stylesdf: High-resolution 3d-consistent
image and geometry generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 13503–13513.

[54] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M Seitz. 2018.
Photoshape: Photorealistic materials for large-scale shape collections. arXiv
preprint arXiv:1809.09761 (2018).

[55] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

[56] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing
Li, Hsin-Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. 2023.
Magic123: One image to high-quality 3d object generation using both 2d and 3d
diffusion priors. arXiv preprint arXiv:2306.17843 (2023).

[57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[58] Sam Sartor and Pieter Peers. 2023. Matfusion: a generative diffusion model for
svbrdf capture. In SIGGRAPH Asia 2023 Conference Papers. 1–10.

[59] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel.
2014. Bigbird: A large-scale 3d database of object instances. In 2014 IEEE
international conference on robotics and automation (ICRA). IEEE, 509–516.

[60] Ivan Skorokhodov, Aliaksandr Siarohin, Yinghao Xu, Jian Ren, Hsin-Ying Lee,
Peter Wonka, and Sergey Tulyakov. 2023. 3d generation on imagenet. arXiv
preprint arXiv:2303.01416 (2023).

[61] Edward J Smith and David Meger. 2017. Improved adversarial systems for 3d
object generation and reconstruction. In Conference on Robot Learning. PMLR,
87–96.

[62] Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong
Mu, Xinggang Wang, Wenyu Liu, and Jingdong Wang. 2019. High-resolution
representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514
(2019).

[63] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang,
Tianfan Xue, Joshua B Tenenbaum, and William T Freeman. 2018. Pix3d: Dataset
and methods for single-image 3d shape modeling. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2974–2983.

[64] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, Adam Letts,
Yangguang Li, Ding Liang, Christian Laforte, Varun Jampani, and Yan-Pei Cao.
2024. Triposr: Fast 3d object reconstruction from a single image. arXiv preprint
arXiv:2403.02151 (2024).

[65] Paul Upchurch and Ransen Niu. 2022. A dense material segmentation dataset for
indoor and outdoor scene parsing. In European Conference on Computer Vision.
Springer, 450–466.

[66] Giuseppe Vecchio, Rosalie Martin, Arthur Roullier, Adrien Kaiser, Romain Rouf-
fet, Valentin Deschaintre, and Tamy Boubekeur. 2023. ControlMat: A Controlled
Generative Approach to Material Capture. arXiv preprint arXiv:2309.01700
(2023).

[67] Giuseppe Vecchio, Simone Palazzo, and Concetto Spampinato. 2021. Sur-
facenet: Adversarial svbrdf estimation from a single image. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 12840–12848.

[68] Giuseppe Vecchio, Renato Sortino, Simone Palazzo, and Concetto Spampinato.
2023. Matfuse: Controllable material generation with diffusion models. arXiv
preprint arXiv:2308.11408 (2023).

[69] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum.
2016. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. Advances in neural information processing systems 29
(2016).

[70] Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. Deepcad: A deep generative
network for computer-aided design models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 6772–6782.

[71] Tong Wu, Zhibing Li, Shuai Yang, Pan Zhang, Xingang Pan, Jiaqi Wang, Dahua
Lin, and Ziwei Liu. 2023. HyperDreamer: Hyper-Realistic 3D Content Generation
and Editing from a Single Image. In SIGGRAPH Asia 2023 Conference Papers.
1–10.

[72] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for vol-
umetric shapes. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 1912–1920.

[73] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. 2018. Uni-
fied perceptual parsing for scene understanding. In Proceedings of the European
conference on computer vision (ECCV). 418–434.

[74] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and
Ying Nian Wu. 2018. Learning descriptor networks for 3d shape synthesis and
analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 8629–8638.

[75] Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Ivan Skorokhodov, Aliaksandr
Siarohin, Ceyuan Yang, Yujun Shen, Hsin-Ying Lee, Bolei Zhou, et al. 2023.
DisCoScene: Spatially Disentangled Generative Radiance Fields for Control-
lable 3D-aware Scene Synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4402–4412.

[76] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and
Bharath Hariharan. 2019. Pointflow: 3d point cloud generation with continuous
normalizing flows. In Proceedings of the IEEE/CVF international conference on
computer vision. 4541–4550.

[77] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2015. A large-scale
car dataset for fine-grained categorization and verification. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 3973–3981.

[78] Yu-Ying Yeh, Zhengqin Li, Yannick Hold-Geoffroy, Rui Zhu, Zexiang Xu, Miloš
Hašan, Kalyan Sunkavalli, and Manmohan Chandraker. 2022. Photoscene: Pho-
torealistic material and lighting transfer for indoor scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18562–
18571.

[79] Liang Yuan, Dingkun Yan, Suguru Saito, and Issei Fujishiro. 2024. DiffMat:
Latent diffusion models for image-guided material generation. Visual Informatics
(2024).

[80] Song-Hai Zhang, Yuan-Chen Guo, and Qing-Wen Gu. 2021. Sketch2model:
View-aware 3d modeling from single free-hand sketches. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6012–
6021.

[81] Linqi Zhou, Yilun Du, and Jiajun Wu. 2021. 3d shape generation and completion
through point-voxel diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5826–5835.

10


	Abstract
	1 Introduction
	2 Related Work
	2.1 3D Asset Generation
	2.2 Surface Material Generation
	2.3 Existing 3D and 2D Datasets

	3 Significance of material
	4 MIO Dataset
	4.1 Motivation for Establishment
	4.2 Data Collection and Annotation
	4.3 Dataset Distribution

	5 Method
	5.1 Material Segmentation
	5.2 MaterialSeg3D

	6 Experiments
	6.1 Implementations & Evaluations
	6.2 Compared with Previous Work
	6.3 Visualization on Weighted Voting

	7 Limitation
	8 Conclusions
	References

