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ABSTRACT

Large language models (LLMs) inference relies heavily on KV-caches to accel-
erate autoregressive decoding, but the resulting memory footprint grows rapidly
with sequence length, posing significant efficiency challenges. Current KV-cache
compression methods suffer from a Procrustes’ bed problem: they force diverse
workloads into fixed compression ratios, leading to suboptimal resource allocation
and inference performance. To this end, we present GVote, an adaptive per-request
KV-cache compression scheme that eliminates manual budget specification while
achieving superior accuracy-efficiency trade-offs. GVote operates on the princi-
ple that the important keys are the aggregation of keys required by future queries.
Gvote predicts future query attention demands by Monte-Carlo style sampling po-
tential queries and aggregating selected keys to determine the optimal cache bud-
get without manual specification. Experimental evaluation demonstrates GVote’s
effectiveness across multiple benchmarks, including GSM8K, RULER and Long-
bench. Compared to baselines, GVote exhibits 2× memory reduction while the
accuracy maintains higher or comparable.

1 INTRODUCION

Large language models (LLMs) rely on key–value (KV) caches to store intermediate attention re-
sults during autoregressive decoding, enabling efficient reuse of previously computed representa-
tions. However, the deployment of LLMs faces a critical bottleneck: the quadratic growth of KV-
cache memory with sequence length (Vaswani et al., 2017). In practical deployments like docu-
ment summarization, RAG and question answering (Lewis et al., 2020; Raffel et al., 2020; Beltagy
et al., 2020; Brown et al., 2020), the KV-cache often dominates GPU memory usage, limiting batch
size, inflating inference latency, and restricting model accessibility in resource-constrained environ-
ments(Alizadeh et al., 2024; Liu et al., 2024). Consequently, efficient KV-cache compression has
become essential for enabling long-context reasoning while maintaining the accuracy and efficiency
of LLM inference. (Beltagy et al., 2020; Zaheer et al., 2020).

Recent advances such as SnapKV and AdaKV (Li et al., 2024; Feng et al., 2024) demonstrate that
exploiting the sparsity of attention scores can yield substantial KV-cache compression. However,
these approaches follow a rigid fixed-budget paradigm, where practitioners must pre-allocate a static
memory quota (e.g., retaining 20% of the cache) without foreknowledge of the contextual demands
of incoming requests. Such a one-size-fits-all design inevitably forces heterogeneous workloads into
the same compression ratio, leading to a Procrustes’ bed problem that creates an intractable trade-off
between memory efficiency and model accuracy.

Consider a production LLM inference engine serving diverse requests, ranging from mathematical
reasoning (e.g., GSM8K (Cobbe et al., 2021)) to long-document analysis (e.g., RULER-4K (Hsieh
et al., 2024)) and various QA tasks. When the cache budget is set too low (e.g., 20%), memory
efficiency is improved but reasoning-intensive tasks suffer catastrophic degradation, with accuracy
dropping to nearly zero. Conversely, allocating a higher budget (e.g., 50%) preserves performance
on complex tasks but results in substantial memory waste for simpler workloads, where accuracy
remains stable even under lower budgets, as illustrated in Figure 1.

Fixed-budget KV-cache compression is fundamentally flawed for dynamic workloads. Any pre-
defined budget risks either severe performance degradation or wasteful memory over-provisioning,
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Figure 1: Accuracy-usage analysis across diverse benchmarks using the Llama-3.1-8B-Instruct
model. The four panels display results for GSM8K (<1K tokens), RULER-4K (4K tokens), Multi-
Doc QA (34K tokens) and Single-Doc QA (51K tokens), representing tasks with varying token
lengths. The graphs show Accuracy on the y-axis against Average Memory Usage on the x-axis.
The performance of StreamLLM, SnapKV, AdaKV, and GVote (ours) is compared. GVote consis-
tently finds a favorable trade-off between accuracy and memory usage, achieving good accuracy
while maintaining low memory consumption, thereby eliminating the need for manual budget set-
tings, as shown in the plots.

a trade-off that necessitates costly, task-specific hyperparameter tuning (He et al., 2021) and cre-
ates brittleness to distribution shifts (Liu et al., 2021). This forces practitioners into conservative,
inefficient memory allocation strategies.

We introduce GVote, a per-request adaptive compression scheme that eliminates manual budget tun-
ing. Our approach stems from a key observation: LLM hidden states follow a discernible Gaussian
distribution(NVIDIA, 2025). GVote leverages this by sampling a small number of representative
states to dynamically compute the minimal required KV-cache for each request.

GVote consistently outperforms fixed-budget methods. Figure 1 starkly illustrates that different
tasks have vastly different optimal compression ratios, rendering any single fixed budget inherently
suboptimal. While static budgets force a compromise—sacrificing either memory on simple tasks or
accuracy on complex ones—GVote automatically finds the sweet spot. For example, on Multi-Doc
QA, GVote delivers 0.35 accuracy using only 10% average memory, surpassing baselines that use
over 20% memory yet achieve lower accuracy. GVote thus breaks the rigid trade-off of fixed-budget
methods, adaptively delivering both high performance and memory efficiency.

Our contributions are threefold. First, we identify and formalize the fundamental limitation of fixed-
budget KV-cache compression in serving diverse workloads. Second, we propose GVote, a novel
adaptive compression algorithm that automatically computes optimal cache budgets through query
sampling and voting mechanisms. Third, we demonstrate substantial empirical improvements across
multiple benchmarks, showing that adaptive computation significantly outperforms fixed-budget ap-
proaches while eliminating manual tuning requirements.

2 BACKGROUND

2.1 KV CACHE AND TOP-DOWN COMPRESSION

We consider modern autoregressive LLMs with L layers and Hkv key-value heads, employing archi-
tectures like MHA (Vaswani et al., 2017) or GQA (Ainslie et al., 2023). Inference in these models is
a two-stage process. First, during prefilling, the input prompt of length S is processed to generate its
Key-Value (KV) cache. Second, during decoding, the model generates tokens sequentially, where
each new token’s query attends to the KV cache of the prompt and all previously generated tokens.

The attention mechanism at each step t computes weights At and aggregates values V1:t−1:

At = softmax
(
QtK

T
1:t−1√
dk

)
; Attention(·) = AtV1:t−1 (1)

The memory footprint of the prompt’s KV cache, generated during prefilling, scales linearly with
S, creating a significant bottleneck for long contexts. Crucially, recent work has revealed that at-
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tention weights At are often highly sparse, with only a few key-value pairs receiving most of the
attention (Zhang et al., 2023; Li et al., 2024). This sparsity is the primary motivation for KV-cache
compression: we can discard a large portion of the prompt’s KV cache post-prefilling without sub-
stantially degrading performance.

The Top-Down Compression Framework. Existing methods that exploit this sparsity can be
unified under a three-step, top-down framework applied to the prompt cache:

1. Scoring: An importance score S ∈ RL×H×S is computed for each token in the prompt’s
KV cache.

S = Score(K,V,Q). (2)

2. Allocation: A pre-determined global budget B is distributed into per-head quotas b(ℓ,h).

{b(ℓ,h)} = Alloc(B,L,H,S) s.t.
∑
ℓ,h

b(ℓ,h) = B. (3)

3. Selection: Within each head, the top-b(ℓ,h) tokens are retained based on their scores to
form the compressed cache. During decoding, the prompt kv cache behaves as if it only
has the kv cache of these tokens.

I(ℓ,h) = TopK(S(ℓ,h), b(ℓ,h)). (4)

All these methods follow a ”cake-slicing” paradigm (Qin et al., 2025): a global budget B is fixed
a priori, and the subsequent steps merely select tokens to fit this size. The fundamental flaw lies
in this static assumption. The optimal budget is highly dependent on the input’s complexity and
is unknowable at deployment time. This forces a dilemma: either over-provision memory for sim-
ple prompts, wasting resources, or risk catastrophic performance degradation on complex ones by
setting the budget too low. Our work directly addresses this limitation.

2.2 EXISTING WORKS

Scoring Strategies. A first line of work focuses on designing token-importance scores from which
the cache is pruned. For example, StreamingLLM (Xiao et al., 2023) leverages a sliding-window
augmented with attention sinks to approximate query–key affinity. SnapKV (Li et al., 2024) selects
important key-value pairs by analyzing the attention from a small tail window of tokens to the
prompt, retaining those with high cumulative attention. H2O (Zhang et al., 2023) formulates the
selection of important key-value pairs as a heavy hitter detection problem, leveraging algorithms
from large-scale data analysis. In practice, these works commonly apply a Top-K rule to select
tokens based on their computed scores.

Allocation Policies. A complementary line of research studies how a global memory budget should
be allocated. The simplest heuristic is a global Top-k rule that keeps the highest-scoring tokens ir-
respective of their origin. More refined schemes assign budgets at the layer level—PyramidKV (Cai
et al., 2024) uses heuristics to distribute the budget across layers, while SimLayerKV (Zhang et al.,
2024) leverages defined layer similarity to guide allocation. At the head level, AdaKV (Feng et al.,
2024) achieves theoretical optimality in allocation at the attention score level given a fixed budget,
though this does not always translate to optimal end-to-end performance. These works make im-
portant contributions to the allocation problem, but they also exacerbate the fundamental challenge:
how should the budget be determined in the first place?

3 METHOD

GVote departs from the top-down “cake-slicing” paradigm. Instead of compressing within a fixed
budget, it adaptively determines the budget itself based on a bottom-up estimation of future require-
ments. This section first establishes the core hypothesis of our approach—that synthetic queries can
serve as a useful, albeit imperfect, proxy for future ones—and provides empirical validation. Then,
grounded in this nuanced understanding, we detail the GVote algorithm, including a key design
choice motivated by the proxy’s limitations.

3
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Figure 2: Hidden states illustration using Qwen3-1.7B at head 12 of layer 12. They exhibit explicit
channel-wise Gaussian structure.

3.1 MOTIVATION

What defines an optimal KV-cache compression? We argue it is one that preserves the minimal set
of keys whose attention weights constitute the top-p cumulative probability mass. This criterion
provides a natural trade-off, retaining only the most influential tokens for each query.

Imagine an oracle that knows all future queries {Qt,Qt+1, . . .} that will be generated. The optimal
compression strategy would be to keep the union of the top-p key-sets required by each of these
future queries. Formally, the ideal keep-set is K∗ =

⋃
u≥t argTop-p(Au), where Au is the attention

map for a future query Qu. This oracle perspective reveals the fundamental goal: the compressed
cache must satisfy the aggregate needs of all subsequent decoding steps.

The practical challenge, of course, is that future queries are unknown. How can we estimate this
ideal set K∗? Our key insight stems from a statistical regularity in Transformers: hidden states,
when viewed across the sequence dimension, approximate a Gaussian distribution (NVIDIA, 2025).
This property, which we verify in Figure 2, arises from operations like Layer Normalization (Ba
et al., 2016; Sun et al., 2024).

This finding provides a principled way to approximate the unknown future. By sampling from a
Gaussian distribution fitted to the current hidden states, we can generate a set of plausible future
queries. The union of the key-sets required by these synthetic queries can then serve as a robust
proxy for the ideal keep-set K∗. This Monte Carlo approach, where multiple synthetic queries
“vote” on which keys to retain, is the foundation of GVote.

3.2 VALIDATION: ARE SYNTHESIZED QUERIES GOOD PROXIES?

Before building an algorithm upon this idea, we must critically evaluate its central premise. We
compare the attention patterns from our synthetic queries against those from real, ground-truth sub-
sequent queries. To quantify this comparison, we define Attention Overlap as follows: for each
synthesized query, we select the tokens corresponding to the top-0.95 cumulative attention weights
to form a candidate set. The overlap score is then computed as the sum of attention weights in the
ground-truth query that correspond to the same tokens in this candidate set. This metric quantifies
how well our synthesized queries capture the salient tokens that the model actually attends to in the
future. We also measure the corresponding token usage rate; and visualize a specific head’s attention
pattern and illustrate the correspondence of real attention weights and synthetic attention weights in
Figure 3.

We observe a strong positive correlation (r = 0.7759) and a high attention overlap (µ = 0.929),
which validates that synthetic queries are indeed a meaningful proxy for real future queries. They
successfully capture the general trend of where future attention will be directed.

However, the analysis also reveals crucial imperfections. The correlation, while strong, is not per-
fect, and the scatter plot shows the presence of outliers. This indicates that a single synthetic query
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(a) Attention overlap and token usage analysis
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Figure 3: Comprehensive analysis of synthetic query approximation quality. (a) Layer-wise and
head-wise attention overlap and token usage rates, showing consistency between synthetic and real
query attention patterns with high overlap scores (mean µ = 0.929) and moderate token usage
rates (mean µ = 0.594). (b) Detailed attention correlation analysis for a specific attention head,
including attention map comparison and correlation scatter plot with r = 0.7759, demonstrating
strong alignment between synthetic and real query attention patterns.

can occasionally produce a noisy attention distribution where some token scores are significantly
over- or under-estimated compared to the ground truth. Specifically, oracle-style “top-p” is sensitive
to outliers and it urges us to seek for another robust selection methods . For instance, under a top-
0.95 criterion, if a single high-probability token’s score is underestimated (e.g., from a true 0.8 to a
predicted 0.6), the residual probability mass required to meet the threshold more than doubles (from
0.15 to 0.35). This gap must then be filled by a long tail of low-probability, often noisy, tokens,
causing the selection set to expand dramatically. This motivates a more robust selection mechanism.

This motivates a more robust selection mechanism. We observe that top-p selection is effectively
a method to dynamically determine a K for a top-k operation, and its instability results in a poor
estimation of real K. To mitigate this, we can adopt a more stable top-k approach. We propose
using the last ground-truth query as a stable anchor: we compute the K it would require to meet
the top-p threshold and apply this fixed K as an estimated selection size for all subsequent synthetic
queries in the step. This estimated K is often significantly smaller than the true number of tokens
that would ultimately need to be retained for optimal performance. This is precisely what we aim
for, as we can refine our estimation by increasing the number of synthetic samples (S), avoiding the
pitfall of over-selecting noisy tokens from the outset.

3.3 THE PROPOSED GVOTE SCHEME

To counteract the noise sensitivity of a single synthetic query, we propose GVote (Gaussian-based
Voting), a robust KV-cache compression scheme based on Monte Carlo aggregation. As detailed in
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Algorithm 1 GVote: Adaptive Monte–Carlo KV-cache compression

Require: Keys K1:L ∈ RHk×L×dk , values V1:L, hidden state h ∈ RL×dh , nucleus threshold pnuc, number
of samples S, number of future positions nf

1: A0 ← softmax
(
Q0K

⊤
1:L/
√
dk

)
// Q0 is current query, A0 :R1×L

2: C0 ← TopP
(
A0, pnuc

)
3: Bstep ← |C0| // step budget
4: µ← mean(h), σ2 ← var(h) // Step 2
5: H̃ ∼ N (µ,σ) // H̃ ∈ RS×dh

6: P← AverageCosSin(nf ) // Compute average cos/sin for nf future positions

7: Q̃← Reshape
(

RoPE
(
H̃Wq,P

))
// Apply RoPE using averaged positions, Q̃ ∈ RHq×S×dk

8: L← Q̃K⊤
1:L/
√
dk // attention logits, L ∈ RHq×S×L

9: {C(s)}Ss=1 ← TopK
(
L, Bstep

)
// row-wise on logits

10: K ←
⋃S

s=1 C
(s) // Step 4

11: Prune (K1:L,V1:L) to the indices in K
12: return Compressed KV-cache (KK,VK)

Algorithm 1, the procedure first establishes a dynamic selection budget, Bstep, by applying nucleus
sampling to the current query’s attention scores. It then synthesizes S diverse future queries by
sampling from a channel-wise Gaussian distribution fitted to the model’s hidden states. Each of
these queries “votes” for its top-Bstep tokens from the cache. The final keep-set, K, is formed by the
union of all votes, effectively preserving tokens deemed important across multiple plausible futures
while filtering out noise from any single prediction. The entire process is performed per-request and
per-head, adapting naturally to heterogeneous workloads.

3.4 IMPLEMENTATION AND OVERHEAD

The GVote algorithm is designed for efficient, parallel execution on GPU architectures. The S
synthetic queries are processed in a single batch, amortising the computational cost. The union
operation (line 01) is performed efficiently using boolean masks (torch.any). And the final
indices for K are extracted via a nonzero operation. The subsequent pruning (line 11) is then
a simple indexing operation which gathers the selected keys and values. This entire procedure
introduces a one-time computational overhead during the prefill phase. While non-trivial, this cost
is fixed and does not scale with the number of generated tokens.

During the decoding phase, the GVote procedure is applied independently for each attention head,
leading to a non-uniform KV-cache where different heads may retain a varying number of key-value
pairs. This structurally sparse format precludes storage as a single dense tensor. However, it is
fully compatible with modern attention kernels like FlashAttention (Dao, 2023), which are designed
to handle variable-length sequences via the varlen interface. This approach of creating a non-
uniform, content-aware cache is consistent with prior work like AdaKV (Feng et al., 2024). We
provide a detailed PyTorch-style implementation of GVote in Appendix A.

3.5 PARAMETERS

The GVote algorithm introduces two key hyperparameters: the nucleus sampling threshold pnuc and
the number of synthetic queries S.

Nucleus threshold (pnuc). This parameter (Algorithm 1, line 2) sets the cumulative probability
mass of attention weights that must be preserved—effectively specifying the recall of the softmax at-
tention distribution. We recommend pnuc = 0.95 in practice, which offers decent accuracy-memory
trade-off. For short sequences pnuc = 0.95 would suggests a slightly larger proportion, yet the effect
is trivial since the absolute length of the sequence is small. Detailed sensitivity analysis is presented
in Section 4.5.

Number of samples (S). This parameter (Algorithm 1, line 5) controls the number of synthetic
future queries used to form the final keep-set K. In practice, the impact of S on the final budget is
less pronounced than that of pnuc. While a larger S can produce a more robust estimate, it typically
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Figure 4: Accuracy vs. Cache Usage across eight benchmarks using Qwen2.5-7B-Instruct. Each
baseline shows results across different compression ratios (10%-50%). The optimal budgets across
different datasets are various, a characteristics that fixed budget cannot deal with. GVote (orange
square) consistently achieves accuracy-usage trade-off sweet spot compared to baselines with fixed
budgets.

comes with higher KVCache usage and higher computational overhead. We find that S ≥ 8 typically
offers a good compromise between robustness and efficiency. We recommend using a conservative
pnuc with a moderately high S. Further empirical results are discussed in Section 4.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on eight diverse benchmarks spanning different sequence lengths and task
types: GSM8K (mathematical reasoning)Cobbe et al. (2021), RULER-CWE Hsieh et al. (2024), and
LongbenchBai et al. (2024) (long-context understanding).

Baselines. We compare against three representative KV-cache compression methods: Stream-
LLM Xiao et al. (2023), SnapKV Li et al. (2024), and AdaKV Feng et al. (2024).

Model and Implementation. We extensively tests four popular models accross different families
and sizes: Llama3.1-8B-Instruct, Llama3.2-3B-InstructDubey et al. (2024), Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct Team (2024). All experiments are conducted on a single NVIDIA RTX-
A6000 (NVIDIA, 2025).

Evaluation Metrics. We measure accuracy and the effective cache usage ratio. For each baseline,
we sweep compression ratios from 10% to 50% to construct accuracy-usage curves. GVote operates
without a budget specification, automatically determining the optimal compression ratio per request.

4.2 MAIN RESULTS

Figure 4 presents the core results across all eight datasets and reports the average performance.
GVote achieves higher accuracy under significantly low budget under most scenarios, and hence the
overall performance is impressive, reducing 2x memory budget while maintaining the accuracy.
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Figure 5: GVote performance across different model architectures and sizes. All models are of
Instruct version. We omit the suffix due to space limitation. The figure shows accuracy-usage
curves for various models, demonstrating the adaptive mechanism’s generalization across different
model configurations.

4.3 MULTI-MODEL EVALUATION

Figure 5 demonstrates GVote’s effectiveness across different model architectures and sizes. The
adaptive compression mechanism maintains its advantages across various model configurations, in-
dicating good generalization properties. Full evaluation matrices are presented in Appendix B.

4.4 LATENCY AND OVERHEAD ANALYSIS

We analyze GVote’s computational overhead in the prefill and generation phases (Figure 6) using
a synthetic dataset for precise length with Llama-3.1-8B-Instruct. During prefilling, the overhead
of compression is noticeable for short contexts, where GVote’s latency is modestly higher than
other compression methods (Figure 6a). However, as context length increases, model computation
becomes the dominant bottleneck, rendering the relative overhead of GVote’s logic negligible. This
ensures GVote’s scalability for long-context scenarios where its benefits are most critical.

In the generation phase, we evaluate latency under a fair comparison framework where each method
is configured to match the accuracy of GVote using Llama-3.1-8B-Instruct. The reported latency
in Figure 6b represents the computational time required for each method given the memory usage
needed to achieve this target accuracy, with details presented in Appendix C. GVote consistently
demonstrates the lowest latency across all context lengths, from 2k to 128k. This superior efficiency
is primarily due to its lower memory requirements; by maintaining high accuracy with a smaller
memory footprint, GVote inherently reduces the computational overhead during token generation.
While the latency of all methods increases with context length, the overhead introduced by other
methods like AdaKV, SnapKV, and particularly StreamLLM, grows substantially more pronounced.
In contrast, GVote’s latency remains significantly lower, showcasing its superior performance and
scalability for low-latency generation, especially in long-context scenarios where efficient memory
management is critical.

4.5 HYPERPARAMETER ANALYSIS

In this section, we investigate about what is the optimal hyperparameters of GVote. We primarily
test different parameter combinations on RULER dataset.

Sampling number S. Figure 7 demonstrates the effects of different sampling number S on final
performance. As intuition, higher S would approximate the real distribution better. However, in
case the context length is huge, for example, > 128K, higher S would result in an extremely large
intermediate logits matrix L, potentially leading to out of memory errors.

Nucleus Sampling Threshold (pnuc). Figure 8 examines how the nucleus sampling threshold for
single-step budget estimation affects overall performance. Similar to S, higher pnuc would also
result in both high accuracy and memory usage. However, it is more sensitive to S, as it reaching
comparable accuracy with higher memory. The specific value of pnuc has no impact on pruning
speed, unlike S.

8
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(b) Per-token generation latency (ms/token) bar-chart.

Figure 6: Latency analysis for the prefill and generation phases. (a) shows GVote’s prefill overhead
is comparable to other methods or insignificant compared to the overall prefill time. (b) demonstrates
GVote’s superior generation latency, especially when context length is large.

Figure 7: Effect of sampling number S on
GVote performance. Higher S would deliver
better accuracy with moderately higher us-
age. However it would cost more memory
and computation for compression.

Figure 8: Effect of nucleus sampling thresh-
old pnuc. Similarly, higher pnuc would re-
sult in a higher accuracy and memory usage.
However, it seems to be more sensitive com-
pared to S.

5 CONCLUSION

We observe the uneven budget requirements of different requests and hence propose GVote to ad-
dress this challenge. By moving beyond a one-size-fits-all approach and embracing the heteroge-
neous sparsity of requests through a Gaussian distribution, we have shown a clear path to substantial
memory reduction. Our findings open the door for exciting future work. Specifically, we aim to in-
vestigate even more sophisticated adaptive methods that eliminate the need for an accuracy-memory
trade-off. We also look forward to tackling the critical engineering challenges required to bring these
theoretical gains into practical application.

6 LLM USAGE

The ideation, testing, and research process for this paper were human-led, with assistance from a
Large Language Model (LLM) for refinement. Specifically, the manuscript was initially drafted
by humans, after which an LLM was used for grammar and formatting checks. Furthermore, the
experimental data was collected manually by humans, while its visualization was created with the
assistance of the LLM.
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A IMPLEMENTATION DETAILS

In this section, we provide a detailed PyTorch-style implementation of the GVote algorithm, as
outlined in Algorithm 1. The following code (Listing 1) demonstrates the core logic for generating
a KV-cache pruning mask. The implementation is fully vectorized to ensure high efficiency on
GPUs and is designed to be compatible with modern transformer architectures, including a precise
handling of Grouped-Query Attention (GQA).

The function gvote get mask takes as input the necessary tensors and configuration parameters
and returns a boolean mask. This mask identifies the key-value pairs that are deemed most important
for future token generation and should be retained in the cache. The implementation faithfully
follows the four main steps of the GVote algorithm:

1. Adaptive Budget Calculation: It first determines an independent budget of KV entries to
keep (Bstep) for each of the model’s query heads by applying nucleus sampling (Top-P) to
the attention scores of the current query.

2. Hypothetical Query Generation: It then models future hidden states by sampling from a
normal distribution parameterized by the mean and variance of the existing hidden states.
These are projected into hypothetical future queries and infused with averaged future posi-
tional information via RoPE.

3. Importance Voting: Each of the hypothetical queries attends to the entire KV-cache. We
then select the most important tokens for each query head based on its unique budget cal-
culated in the first step. To achieve this efficiently, we use a rank-based selection method
(double argsort) instead of a conventional topk operation, which allows for a different
number of tokens to be selected for each head in a fully vectorized manner.

4. Mask Creation and Union: A boolean selection mask is created for each query head. For
models using GQA, the masks from query heads within the same group are combined via a
logical OR (torch.any) operation, effectively taking the union of their votes. Finally, a
second union operation is performed across all hypothetical samples to produce the pruning
mask for the entire KV-cache.

1 import torch
2 import torch.nn.functional as F
3 import math
4

5 def gvote_get_mask(
6 q_current: torch.Tensor,
7 k_cache: torch.Tensor,
8 hidden_states: torch.Tensor,
9 rotary_emb: torch.nn.Module,

10 q_proj_weight: torch.Tensor,
11 p_nuc: float,
12 num_samples: int,
13 num_future_positions: int,
14 num_kv_heads: int,
15 ) -> torch.Tensor:
16 """
17 PyTorch-style implementation of GVote (Algorithm 1) to generate a

pruning mask.
18 """
19 # Get input shapes
20 batch_size, num_q_heads, _, head_dim = q_current.shape
21 _, _, seq_len, _ = k_cache.shape
22 hidden_dim = hidden_states.shape[-1]
23 device = k_cache.device
24 num_groups = num_q_heads // num_kv_heads
25

26 # === Step 1: Adaptive Budget (Lines 1-3) ===
27 k_cache_rep = k_cache.repeat_interleave(num_groups, dim=1)
28 attn_scores = torch.matmul(q_current, k_cache_rep.transpose(-2, -1))

/ math.sqrt(head_dim)
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29 attn_probs = F.softmax(attn_scores, dim=-1).squeeze(2)
30

31 sorted_probs, _ = torch.sort(attn_probs, dim=-1, descending=True)
32 cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
33 # Calculate a different budget b_step for each query head. Shape: [B,

H_q]
34 b_step_per_head = torch.sum(cumulative_probs < p_nuc, dim=-1) + 1
35

36 # === Step 2: Generate Hypothetical Future Queries (Lines 4-7) ===
37 mu = torch.mean(hidden_states, dim=1)
38 std = torch.std(hidden_states, dim=1)
39

40 h_tilde = mu.unsqueeze(1) + std.unsqueeze(1) * torch.randn(
41 batch_size, num_samples, hidden_dim, device=device
42 )
43

44 q_tilde = F.linear(h_tilde, q_proj_weight)
45 q_tilde = q_tilde.view(batch_size, num_samples, num_q_heads, head_dim

).transpose(1, 2)
46

47 future_positions = torch.arange(seq_len, seq_len +
num_future_positions, device=device)

48 cos, sin = rotary_emb.forward(future_positions)
49 avg_cos = cos[None, :, :].mean(dim=1, keepdim=True)
50 avg_sin = sin[None, :, :].mean(dim=1, keepdim=True)
51

52 def apply_rotary_pos_emb(q, cos, sin):
53 q_embed = (q * cos) + (torch.cat([-q[..., 1::2], q[..., ::2]],

dim=-1) * sin)
54 return q_embed
55

56 q_tilde_rope = apply_rotary_pos_emb(q_tilde, avg_cos, avg_sin)
57

58 # === Step 3 & 4: Vote for Important Keys and Create Mask (Lines
8-15) ===

59 logits = torch.matmul(q_tilde_rope, k_cache_rep.transpose(-2, -1)) /
math.sqrt(head_dim)

60

61 ranks = logits.argsort(dim=-1, descending=True).argsort(dim=-1)
62

63 # Create selection mask for each query head based on its unique
budget

64 # Shape: [B, H_q, S_samples, S_len]
65 selection_mask = ranks < b_step_per_head.unsqueeze(-1).unsqueeze(-1)
66

67 # If using GQA, combine masks within each KV group using a logical OR
(union)

68 if num_groups > 1:
69 selection_mask = selection_mask.view(
70 batch_size, num_kv_heads, num_groups, num_samples, seq_len
71 )
72 # Union within the group: keep if ANY query head in the group

voted for it
73 mask_per_kv_head = torch.any(selection_mask, dim=2)
74 else:
75 mask_per_kv_head = selection_mask
76

77 # Union across the hypothetical samples: keep if ANY sample voted for
it

78 # Shape: [B, H_k, S_len]
79 final_mask = torch.any(mask_per_kv_head, dim=2)
80 return final_mask

Listing 1: Efficient, vectorized PyTorch-style implementation of GVote with precise GQA handling.
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A.1 INFERENCE WITH EVICTED CACHE

Once the pruning mask has been generated by the GVote algorithm, it must be efficiently applied
during the attention computation of subsequent generation steps. A naive approach of physically
rearranging the KV-cache for each head would incur significant memory movement overhead. To
circumvent this, we leverage specialized, highly optimized attention kernels designed for variable-
length sequences, specifically the flash attn varlen func provided by the FlashAttention
library (Dao, 2023).

The core strategy is to treat the pruned KV-cache of each head as an independent sequence of variable
length. The entire process can be conceptualized in the following steps:

1. Physical Cache Compaction: Given the boolean eviction mask M of shape [B,Hk, Slen],
we first compact the key and value caches. This is achieved by flattening both the cache and
the mask tensors and then using the mask for boolean indexing. This operation produces
new, dense tensors containing only the key-value pairs marked for retention, concatenated
together.

2. Calculating Per-Head Lengths: After compaction, the KV-cache for each head has a
new, shorter length. This length is easily calculated by summing the boolean mask along
its sequence length dimension (Li =

∑
j Mi,j). This results in a tensor of shape [B×Hk]

containing the precise length of the retained KV-cache for every head.
3. Constructing Cumulative Sequence Lengths: The most critical step is to construct the

cumulative sequence length tensor, cu seqlens k. This tensor is the cumulative sum of
the per-head lengths, with an initial zero prepended. For instance, if the lengths of three
heads are [l0, l1, l2], the cu seqlens k tensor will be [0, l0, l0 + l1, l0 + l1 + l2]. This
tensor acts as an index, informing the kernel where the data for one head ends and the next
begins within the compacted tensor.

4. Executing Variable-Length Attention: Finally, the compacted key and value caches,
along with the query states and the newly created cu seqlens k tensor, are passed to the
flash attn varlen func. The kernel interprets this input as a batch of B ×Hk se-
quences with varying lengths and computes the attention output with maximum efficiency.

This methodology allows the attention computation to proceed directly on the compacted data struc-
ture, seamlessly integrating the cache eviction process with the highly optimized forward pass of the
attention layer.

B DETAILED MULTI-MODEL EVALUATION RESULTS

In this section, we report the detailed evaluation matrices of Qwen (Figure 9) and Llama (Figure 10)
families. The results of GVote are reported based on pnuc = 0.95, 0.9, 0.85 and S = 8.

C GENERATION HEATMAP

Figure 11 shows the generation latency of Llama-3.1-8B-Instruct on A6000, across various context
lengths.
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Figure 9: Metrics for the Qwen models.
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(a) Llama-3.1-3B-Instruct
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(b) Llama-3.1-8B-Instruct

Figure 10: Accuracy-Usage plots for the Llama models.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5
Memory Usage

4k

8k

16k

32k

64k

128k

Co
nt

ex
t 

Le
ng

th
 (

to
ke

ns
)

32.3 32.2 32.2 32.7 32.6

32.3 33.0 32.8 34.1 34.2

32.3 33.8 33.6 34.2 34.8

33.1 34.3 35.6 36.6 38.0

34.1 36.6 39.8 43.7 47.5

36.5 43.7 51.3 59.0 66.5

35

40

45

50

55

60

65

La
te

nc
y 

(m
s/

to
ke

n)

Figure 11: The generation latency of Llama-3.1-8B-Instruct on A6000.
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