
Trompt: Towards a Better Deep Neural Network for Tabular Data

Kuan-Yu Chen 1 Ping-Han Chiang 1 Hsin-Rung Chou 1 Ting-Wei Chen 1 Darby Tien-Hao Chang 1 2

Abstract

Tabular data is arguably one of the most com-
monly used data structures in various practical
domains, including finance, healthcare and e-
commerce. However, based on a recently pub-
lished tabular benchmark, we can see deep neu-
ral networks still fall behind tree-based models
on tabular datasets (Grinsztajn et al., 2022). In
this paper, we propose Trompt–which stands for
Tabular Prompt–a novel architecture inspired by
prompt learning of language models. The essence
of prompt learning is to adjust a large pre-trained
model through a set of prompts outside the model
without directly modifying the model. Based on
this idea, Trompt separates the learning strategy
of tabular data into two parts for the intrinsic in-
formation of a table and the varied information
among samples. Trompt is evaluated with the
benchmark mentioned above. The experimental
results demonstrate that Trompt outperforms state-
of-the-art deep neural networks and is comparable
to tree-based models (Figure 1).

1. Introduction
Tabular data plays a vital role in many real world applica-
tions, such as financial statements for banks to evaluate the
credibility of a company, diagnostic reports for doctors to
identify the aetiology of a patient, and customer records for
e-commerce platforms to discover the potential interest of
a customer. In general, tabular data can be used to record
activities consisting of heterogeneous features and has many
practical usages.

On the other hand, deep learning has achieved a great suc-
cess in various domains, including computer vision, natural
language processing (NLP) and robotics (He et al., 2016;

1SinoPac Holdings, Taipei, Taiwan 2Department of Electronic
Engineering, National Cheng Kung University, Tainan, Taiwan.
Correspondence to: Kuan-Yu Chen <lavamore@sinopac.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(a) Medium-sized classifica-
tion task.

(b) Medium-sized regression
task.

(c) Large-sized classification
task.

(d) Large-sized regression
task.

Figure 1. Benchmark results.

Redmon et al., 2016; Gu et al., 2017; Devlin et al., 2018).
Besides extraordinary performance, there are numerous ben-
efits of the end-to-end optimization nature of deep learning,
including (i) online learning with streaming data (Sahoo
et al., 2017), (ii) multi-model integration that incorporates
different types of input, e.g., image and text (Ramachan-
dram & Taylor, 2017) and (iii) representation learning that
realizes semi-supervised learning and generative modeling
(Van Engelen & Hoos, 2020; Goodfellow et al., 2020).

Consequently, researchers have been dedicated to apply
deep learning on tabular data, either through (i) transformer
(Huang et al., 2020; Somepalli et al., 2021; Gorishniy et al.,
2021) or (ii) inductive bias investigation (Katzir et al., 2020;
Arik & Pfister, 2021).

Though many of the previous publications claimed that they
have achieved the state of the art, further researches pointed
that previous works were evaluated on favorable datasets and
tree-based models still show superior performances in the
realm of tabular data (Borisov et al., 2021; Gorishniy et al.,
2021; Shwartz-Ziv & Armon, 2022). For a fair comparison

1

Trompt: Towards a Better Deep Neural Network for Tabular Data

between different algorithms, a standard benchmark for
tabular data was proposed by (Grinsztajn et al., 2022). The
benchmark, denoted as Grinsztajn45 in this work, consists
of 45 curated datasets from various domains.

In this paper, we propose a novel prompt-inspired architec-
ture, Trompt, which abbreviates Tabular Prompt. Prompt
learning has played an important role in the recent devel-
opment of language models. For example, GPT-3 can well
handle a wide range of tasks with an appropriate prompt
engineering (Radford et al., 2018; Brown et al., 2020). In
Trompt, prompt is utilized to derive feature importances
that vary in different samples. Trompt consists of multiple
Trompt Cells and a shared Trompt Downstream as Figure 2.
Each Trompt Cell is responsible for feature extraction, while
the Trompt Downstream is for prediction.

The performance of Trompt is evaluated on the Grinsztajn45
benchmark and compared with three deep learning models
and five tree-based models. Figure 1 illustrates the overall
evaluation results on Grinsztajn45. The x-axis is the number
of hyperparameter search iterations and y-axis is the nor-
malized performance. In Figure 1, Trompt is consistently
better than state-of-the-art deep learning models (SAINT
and FT-Transformer) and the gap between deep learning
models and tree-based models is narrowed.

Our key contributions are summarized as follows:

• The experiments are conducted on a recognized tab-
ular benchmark, Grinsztajn45. Additionally, we add
two well-performed tree-based models, LightGBM (Ke
et al., 2017) and CatBoost (Prokhorenkova et al., 2018)
to baselines.

• Trompt achieves state-of-the-art performance among
deep learning models and narrows the performance gap
between deep learning models and tree-based models.

• Thorough empirical studies and ablation tests were
conducted to verify the design of Trompt. The results
further shed light on future research directions of the
architecture design of tabular neural network.

2. Related Work
In this section, we first discuss the prompt learning of lan-
guage models. Secondly, we discuss two research branches
of tabular neural networks, transformer and inductive bias
investigation. Lastly, we discuss the differences between
Trompt and the related works and highlight the uniqueness
of our work.

2.1. Prompt Learning

The purpose of prompt learning is to transform the input and
output of downstream tasks to the original task used to build

a pre-trained model. Unlike fine-tuning that changes the task
and usually involves updating model weights, a pre-train
model with prompts can dedicate itself to one task. With
prompt learning, a small amount of data or even zero-shot
can achieve good results (Radford et al., 2018; Brown et al.,
2020). The emergence of prompt learning substantially
improves the application versatility of pre-trained models
that are too large for common users to fine-tune.

To prompt a language model, one can insert a task-specific
prompt before a sentence and hint the model to adjust its
responses for different tasks (Brown et al., 2020). Prompts
can either be discrete or soft. The former are composed of
discrete tokens from the vocabulary of natural languages
(Radford et al., 2018; Brown et al., 2020), while the latter
are learned representations (Li & Liang, 2021; Lester et al.,
2021).

2.2. Tabular Neural Network

Transformer. Self-attention has revolutionized NLP since
2017 (Vaswani et al., 2017), and soon been adopted by other
domains, such as computer vision, reinforcement learning
and speech recognition (Dosovitskiy et al., 2020; Chen et al.,
2021; Zhang et al., 2020). The intention of transformer
blocks is to capture the relationships among features, which
can be applied on tabular data as well.

TabTransformer (Huang et al., 2020) is the first transformer-
based tabular neural network. However, TabTransformer
only fed categorical features to transformer blocks and ig-
nored the potential relationships among categorical and nu-
merical features. FT-Transformer (Gorishniy et al., 2021)
fixed this issue through feeding both categorical and numeri-
cal features to transformer blocks. SAINT (Somepalli et al.,
2021) further improved FT-Transformer through applying
attentions on not only the feature dimensions but also the
sample dimensions.

Inductive Bias Investigation. Deep neural networks per-
form well on tasks with clear inductive bias. For example,
Convolutional Neural Network (CNN) works well on im-
ages. The kernel of CNN is designed to capture local pat-
terns since neighboring pixels usually relate to each other
(LeCun et al., 1995). Recurrent Neural Networks (RNN) is
widely used in language understanding because the causal
relationship among words is well encapsulated through re-
current units (Rumelhart et al., 1986). However, unlike other
popular tasks, the inductive bias of tabular data has not been
well discovered.

Given the fact that tree-based model has been the solid state
of the art for tabular data (Borisov et al., 2021; Gorishniy
et al., 2021; Shwartz-Ziv & Armon, 2022), Net-DNF (Katzir
et al., 2020) and TabNet (Arik & Pfister, 2021) hypothesized
that the inductive bias for tabular data might be the learning

2

Trompt: Towards a Better Deep Neural Network for Tabular Data

L

L-1

1

2

L

2

L-1

Trompt Downstream
(shared) 1

Prediction

Label

1
Trompt Cell

Trompt Cell

Trompt Cell

Trompt Cell

Input

Prediction

Prediction

Loss

Loss

Loss

Loss

L-1

L

Average Sum

Final
Prediction

Overall
Loss

Trompt Downstream
(shared) 2

Prediction

Trompt Downstream
(shared)

Trompt Downstream
(shared)

Figure 2. Overall architecture of the proposed Trompt.

strategy of tree-based model. The strategy is to find the
optimal root-to-leaf decision paths by selecting a portion
of the features and deriving the optimal split from the se-
lected features in non-leaf nodes. To emulate the learning
strategy, TabNet utilized sequential attention and sparsity
regularization. On the other hand, Net-DNF theoretically
proved that decision tree is equivalent to some disjunctive
normal form (DNF) and proposed disjunctive neural normal
form to emulate a DNF formula.

2.3. The Uniqueness of Trompt

We argue that the column importances of tabular data are
not invariant for all samples and can be grouped into mul-
tiple modalities. Since prompt learning is born to adapt a
model to multiple tasks, the concept is used in Trompt to
handle multiple modalities. To this end, Trompt separates
the learning strategy of tabular data into two parts. The first
part, analogous to pre-trained models, focus on learning
the intrinsic column information of a table. The second
part, analogous to prompts, focus on diversifying the feature
importances of different samples.

As far as our understanding, Trompt is the first prompt-
inspired tabular neural network. Compared to transformer-
based models, Trompt learns separated column importances
instead of focusing on the interactions among columns.
Compared to TabNet and Net-DNF, Trompt handle mul-
tiple modalities by emulating prompt learning instead of the
branch split of decision tree.

3. Trompt
In this section, we elaborate on the architecture design
of Trompt. As Figure 2 shows, Trompt consists of mul-
tiple Trompt Cells and a shared Trompt Downstream. Each
Trompt Cell is responsible for feature extraction and provid-
ing diverse representations, while the Trompt Downstream

is for prediction. The details of Trompt Cell and Trompt
Downstream are discussed in Section 3.1 and Section 3.2,
respectively. In Section 3.3, we further discuss the prompt
learning of Trompt.

3.1. Trompt Cell

Figure 3 illustrates the architecture of a Trompt Cell, which
can be divided into three parts. The first part derives fea-
ture importances (Mimportance) based on column embeddings
(Ecolumn), the previous cell’s output (Oprev) and prompt em-
beddings (Eprompt). The second part transforms the input
into feature embeddings (Efeature) with two paths for cate-
gorical and numerical columns, respectively. The third part
expands Efeature for the later multiplication.

The details of the first part are illustrated in Section 3.1.1
and the details of the second and third parts are illustrated
in Section 3.1.2. Lastly, the generation of the output of a
Trompt Cell is illustrated in Section 3.1.3.

3.1.1. DERIVE FEATURE IMPORTANCES

Let Ecolumn ∈ RC×d be column embeddings and Eprompt ∈
RP×d be prompt embeddings. C is the number of columns
of a table defined by the dataset, while P and d are hy-
perparameters for the number of prompts and the hidden
dimension, respectively. Both Ecolumn and Eprompt are input
independent and trainable. Let Oprev ∈ RB×P×d be the
previous cell’s output and B be the batch size.

Oprev is fused with the prompt embeddings as Equations (1)
and (2). Since Eprompt is input independent and lack a batch
dimension, Eprompt is expanded to SEprompt through the
stack operation as Equation (1). Later, we concatenate
SEprompt and Oprev and then reduce the dimension of the
concatenated tensor back to RB×P×d for the final addition
as Equation (2).

3

Trompt: Towards a Better Deep Neural Network for Tabular Data

input

Categorical
Features

Numerical
Features

Embedding

D
ense

R
eLU

Layer
N

orm
Layer
N

orm

Layer
N

orm

C
oncat

D
ense +

Layer
N

orm

C
oncat

M
atrix M

ultiplication

D
ense

R
eLU

G
roup

N
orm

+

Elem
ent-w

ise M
ultiplication

C
olum

n-w
ise Sum

Part 2: Construct feature embeddings Part 3: Expand feature embeddings to accomodate multiple prompts

Part 1: Derive feature importances

Softm
ax

Figure 3. Architecture of a Trompt Cell.

For the same reason as Eprompt, the Ecolumn is expanded
to SEcolumn as Equation (3). Subsequently, feature impor-
tances are derived through Equation (4), where ⊗ is the
batch matrix multiplication, ⊺ is the batch transpose, and
the softmax is applied to the column axis.

SEprompt = stack(Eprompt) ∈ RB×P×d (1)

ŜEprompt =dense(concat(SEprompt,Oprev))

+ SEprompt

+Oprev

∈ RB×P×d

(2)

SEcolumn = stack(Ecolumn) ∈ RB×C×d (3)

Mimportance = softmax(ŜEprompt ⊗ SE⊺
column) ∈ RB×P×C

(4)

The output of the first part is Mimportance ∈ RB×P×C ,
which accommodates the feature importances yielded by
P prompts. Notice that the column embeddings are not
connected to the input and the prompt embeddings are fused
with the previous cell’s output. In Section 3.3, we further
discuss these designs and their connections to the prompt
learning of NLP.

3.1.2. CONSTRUCT AND EXPAND FEATURE
EMBEDDINGS

In Trompt, categorical features are embedded through a
embedding layer and numerical features are embedded
through a dense layer as previous works (Somepalli et al.,

2021; Gorishniy et al., 2021). The embedding construc-
tion procedure is illustrated in part two of Figure 3, where
Efeature ∈ RB×C×d is the feature embeddings of the batch.

The shapes of Mimportance and Efeature are RB×P×C

and RB×C×d, respectively. Since Efeature lacks the
prompt dimension, Trompt expands Efeature into Êfeature ∈
RB×P×C×d to accommodate the P prompts by a dense
layer in part three of Figure 3.

3.1.3. GENERATE OUTPUT

The output of Trompt Cell is the column-wise sum of the
element-wise multiplication of Êfeature and Mimportance as
Equation (5), where ⊙ is element-wise multiplication. No-
tice that, during element-wise multiplication, the shape of
Mimportance is considered RB×P×C×1. In addition, since col-
umn is the third axis, the shape is reduced from RB×P×C×d

to RB×P×d after column-wise summation.

O =

C∑
i=1

(Êfeature ⊙Mimportance):,:,i,: ∈ RB×P×d (5)

3.2. Trompt Downstream

A Trompt Downstream makes a prediction based on a
Trompt Cell’s output, which contains representations cor-
responding to P prompt embeddings. To aggregate these
representations, the weight for each prompt is first derived
through a dense layer and a softmax activation function as
Equation (6). Afterwards, the weighted sum is calculated as
Equation (7).

The prediction is subsequently made through two dense
layers as Equation (8), where T is the target dimension.

4

Trompt: Towards a Better Deep Neural Network for Tabular Data

Dense

Softmax

Prompt-wise
Weighted Sum

Dense

ReLU

Layer Norm

Dense

Prediction

Figure 4. Architecture of a Trompt Downstream.

Table 1. Analogy of the prompt learning of Trompt to that of NLP.

Problem
Identification Implemented by Inspired by

Sample-invariant
Intrinsic Properties Ecolumn

Fixed Large
Language Model

Sample-specific
Feature Importances Mimportance

Task-specific
Predictions

For classification tasks, T is the number of target classes.
For regression tasks, T is set to 1. As Figure 2 shows, a
sample gets a prediction through a Trompt Cell and thus
multiple predictions through all cells. During training, the
loss of each prediction is separately calculated and the loss
is summed up to update model weights. During inference,
on the other hand, predictions through all cells are simply
averaged as the final prediction as Equation (9), where L is
the number of Trompt Cells.

Wprompt = softmax(dense(O)) ∈ RB×P (6)

Ô =

P∑
i=1

(Wprompt ⊙O):,i,: ∈ RB×d (7)

P = dense(relu(dense(Ô))) ∈ RB×T (8)

loss =

L∑
i=1

loss fn(Pi, y)

pred =

L∑
i=1

Pi/L

(9)

3.3. Prompt Learning of Trompt

Trompt’s architecture is specifically designed for tabular
data, taking into account the unique characteristics of this
type of data and the impressive performance of tree-based
models. Unlike conventional operations, the design may ap-
pear unconventional and detached from tabular data features.
In this section, we explain the rationale behind Trompt’s
network design and how we adapted prompt learning to a
tabular neural network.

Tabular data is structured, with each column representing a
specific dataset property that remains constant across indi-
vidual samples. The success of tree-based models relies on
assigning feature importances to individual samples. This
concept has been explored in models such as TabNet (Arik
& Pfister, 2021) and Net-DNF (Katzir et al., 2020). How-
ever, tree-based algorithms do not explicitly assign feature
importances to individual samples. Instead, importances
vary implicitly along the path from the root to a leaf node.
Only the columns involved in this path are considered im-
portant features for the samples reaching the corresponding
leaf node, representing sample-specific feature importances.

Given the fundamental characteristic of tabular data and the
learning strategy of tree-based models, Trompt aims to com-
bine the intrinsic properties of columns with sample-specific
feature importances using a prompt learning-inspired archi-
tecture from NLP (Radford et al., 2018; Brown et al., 2020).
Trompt employs column embeddings to represent the intrin-
sic properties of each column and prompt embeddings to
prompt column embeddings, generating feature importances
for given prompts. Both column embeddings and prompt
embeddings are invariant across samples. However, before
prompting column embeddings with prompt embeddings,
the prompt embeddings are fused with the output of the
previous Trompt Cell as shown in Equation (2), enabling
input-related representations to flow through and derive
sample-specific feature importances. The ”prompt” mecha-
nism in Trompt is implemented as a matrix multiplication
in Equation (4).

A conceptual analogy of Trompt’s prompt learning approach
to NLP is presented in Table 1. It’s important to note that
the implementation details of prompt learning differ sub-
stantially between tabular data and NLP tasks due to the
fundamental differences between the two domains. There-
fore, appropriate adjustments must be made to bridge these
two domains.

4. Experiments
In this section, the experimental results and analyses are
presented. First, we elaborate on the settings of experiments
and the configurations of Trompt in Section 4.1. Second,
the performance of Trompt on Grinsztajn45 is reported in

5

Trompt: Towards a Better Deep Neural Network for Tabular Data

Section 4.2. Third, ablation studies regarding the hyper-
parameters and the architecture of Trompt are studied in
Section 4.3. Lastly, the interpretability of Trompt is investi-
gated using synthetic and real-world datasets in Section 4.4.

4.1. Setup

The performance and ablation study of Trompt primarily fo-
cus on the Grinsztajn45 benchmark (Grinsztajn et al., 2022)
1. This benchmark comprises datasets from various domains
and follows a unified methodology for evaluating different
models, providing a fair and comprehensive assessment.
Furthermore, we evaluate the performance of Trompt on
datasets selected by FT-Transformer and SAINT to compare
it with state-of-the-art tabular neural networks.

For interpretability analysis, we follow the experimental
settings of TabNet (Arik & Pfister, 2021). This involves
using two synthetic datasets (Syn2 and Syn4) and a real-
world dataset (mushroom) to visualize attention masks.

The settings of Grinsztajn45 are presented in Section 4.1.1
and the implementation details of Trompt are presented in
Section 4.1.2. Furthermore, the settings of datasets cho-
sen by FT-Transformer and SAINT are provided in Ap-
pendix B.2 and Appendix B.3, respectively.

4.1.1. SETTINGS OF GRINSZTAJN45

To fairly evaluate the performance, we follow the configu-
rations of Grinsztajn45, including train test data split, data
preprocessing and evaluation metric. Grinsztajn45 com-
prises two kinds of tasks, classification tasks and regression
tasks. Please see Appendix A.1 and Appendix A.2 for the
dataset selection criteria and dataset normalization process
of Grinsztajn45. The tasks are further grouped according to
(i) the size of datasets (medium-sized and large-sized) and
(ii) the inclusion of categorical features (numerical only and
heterogeneous).

In addition, we make the following adjustments: (i) models
with incomplete experimental results in (Grinsztajn et al.,
2022) are omitted, (ii) two well-performed tree-based mod-
els are added for comparison, and (iii) Trompt used a hy-
perparameter search space smaller than its opponents. The
details of the adjustments are described in Appendix A.3
and Appendix A.4.

4.1.2. IMPLEMENTATION DETAILS

Trompt is implemented using PyTorch. The default hyperpa-
rameters are shown in Table 2. The size of embeddings and
the hidden dimension of dense layers are configured d. Note
that only the size of column and prompt embeddings must
be the same by the architecture design. The hidden dimen-

1https://github.com/LeoGrin/tabular-benchmark

sion of dense layers is set as d to reduce hyperparameters
and save computing resources. On the other hand, the num-
ber of prompts and the number of Trompt Cells are set to P
and L. Please refer to Appendix F for the hyperparameter
search spaces for all baselines and Trompt.

Table 2. Default hyperparameters of Trompt.

Hyperparameter Symbol Value

Feature Embeddings
Prompt/Column Embeddings
Hidden Dimension

d 128

Prompts P 128

Layer L 6

4.2. Evaluation Results

The results of classification tasks are discussed in Sec-
tion 4.2.1 and the results of regression tasks are discussed
in Section 4.2.2. The evaluation metrics are accuracy and
r2-score for classification and regression tasks, respectively.
In this section, we report an overall result and leave results
of individual datasets in Appendix B.1. In addition, the eval-
uation results on datasets chosen by FT-Transformer and
SAINT are provided in Appendix B.2 and Appendix B.3,
respectively.

4.2.1. CLASSIFICATION

On the medium-sized classification tasks, Figure 5 shows
that Trompt outperforms DNN models. The curve of Trompt
is consistently above deep neural networks (SAINT, FT-
Transformer and ResNet) on tasks with and without categor-
ical features. Additionally, Trompt narrows the gap between
deep neural networks and tree-based models, especially on
the tasks with heterogeneous features. In Figure 5b, Trompt
seems to be a member of the leading cluster with four tree-
based models. The GradientBoostingTree starts slow but
catches up the leading cluster in the end of search. The other
deep neural networks forms the second cluster and have a
gap to the leading one.

On the large-sized classification tasks, tree-based models
remain the leading positions but the gap to deep neural
networks is obscure. This echoes that deep neural net-
works requires more samples for training (LeCun et al.,
2015). Figure 6a shows that Trompt outperforms ALL
models on the task with numerical features and Figure 6b
shows that Trompt achieves a comparable performance to
FT-Transformer on tasks with heterogeneous features.

With the small hyperparameter search space, the curve of
Trompt is relatively flat. The flat curve also suggests that
Trompt performs well with its default hyperparameters. Its

6

https://github.com/LeoGrin/tabular-benchmark

Trompt: Towards a Better Deep Neural Network for Tabular Data

(a) Numerical features only. (b) Heterogeneous features.

Figure 5. Benchmark on medium-sized classification datasets.

(a) Numerical features only. (b) Heterogeneous features.

Figure 6. Benchmark on large-sized classification datasets.

performance after an exhausted search is worthy of future
exploring.

4.2.2. REGRESSION

On the medium-sized regression tasks, Figure 7 shows that
Trompt outperforms deep neural networks as the curves of
Trompt are consistently higher than SAINT, FT-Transformer
and ResNet on tasks with and without categorical features.
The gap between deep neural networks and tree-based mod-
els is less obvious in Figure 7a than that in Figure 7b. On
the tasks with numerical features only, Trompt achieves a
comparable performance with random forest. On the tasks
with heterogeneous features, Trompt narrows the gap but is
below all the tree-based models.

On the large-sized regression tasks with numerical features
only, Figure 8a shows that Trompt is slightly worse than
SAINT and FT-Transformer in the end of search. On the
large-sized regression tasks with heterogeneous features,
Figure 8b shows that Trompt outperforms deep neural net-
works with a large margin.

In general, deep learning models are not good at handling
categorical features. Trompt alleviates this weakness as
shown in all tasks with heterogeneous features in Figure 5–
Figure 8. Trompt achieves superior performance over state-
of-the-art deep neural networks except on the large-sized
regression tasks with numerical features only.

(a) Numerical features only. (b) Heterogeneous features.

Figure 7. Benchmark on medium-sized regression datasets.

(a) Numerical features only. (b) Heterogeneous features.

Figure 8. Benchmark on large-sized regression datasets.

4.3. Ablation Study

In this subsection, we discuss the ablation study results of
Trompt regarding hyperparameters and architecture design.
Please refer to Appendix C for the settings of the ablation
study. In the main article, we report two major ablations on
(i) the number of prompts and (ii) the necessity of expanding
feature embeddings by a dense layer. Other ablations can
be found in Appendix D.

Ablations on the number of prompts. Prompt embeddings
(Eprompt) stand a vital role to derive the feature importances.
Here we discuss the effectiveness of adjusting the number
of prompts.

As shown in Table 3, setting the number of prompts to one
results in the worse results. However, halving and doubling
the default number (128) do not have much effect on the
performance. The results demonstrate that Trompt is not
sensitive to the number of prompts, as long as the number
of prompts is enough to accommodate the modalities of the
dataset.

Ablations on expanding feature embeddings by a dense
layer. Part three of Figure 3 uses a dense layer to expand
feature embeddings to accommodate P prompts. Here we
discuss the necessity of the dense layer.

As you can see in Table 4, adding a dense layer really leads
to better results and is a one of the key architecture de-
signs of Trompt. By design, adding the dense layer enables

7

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 3. The performance of different number of prompts.

1 64 128 (default) 256

Classification 79.74% 81.76% 81.81% 81.85%

Regression 72.07% 74.11% 74.15% 74.14%

Trompt to generate different feature embeddings for each
prompt. Without the dense layer, Trompt is degraded to a
simplified situation where each prompt uses the same fea-
ture embeddings. The results of Table 3 and Table 4 suggest
that the variation of feature importances, which comes from
both the prompt embedding and the expansion dense layer,
is the key to the excellent performance of Trompt.

Table 4. The performance of with and without applying feature
transformation on Input Transform.

w (default) w/o

Classification 81.81% 80.76%

Regression 74.15% 73.73%

4.4. Interpretability

Besides outstanding performance, tree-based models are
well-known for their interpretability. Here we explore
whether Trompt can also provide concise feature impor-
tances that highlighted salient features. To investigate this,
we conduct experiments on both synthetic datasets and real-
world datasets, following the experimental design of TabNet
(Arik & Pfister, 2021). To derive the feature importances of
Trompt for each sample, Mimportance ∈ RB×P×C is reduced
to M̂importance ∈ RB×C as Equation (10), where the weight
of Mimportance is the Wprompt of Equation (6).

Notice that all Trompt Cells derive separated feature impor-
tances. We demonstrate the averaged results of all cells here
and leave the results of each cell in Appendix E.1.

M̂importance =

P∑
i=1

(Wprompt ⊙Mimportance):,i,: ∈ RB×C

(10)

Synthetic datasets. The Syn2 and Syn4 datasets are used to
study the feature importances learned by each model (Chen
et al., 2018). A model is trained on oversampled training set
(10k to 100k) using default hyperparameters and evaluated
on 20 randomly picked testing samples. The configuration
is identical to that in TabNet (Arik & Pfister, 2021).

Figure 9 and Figure 10 compare the important features of
the dataset and those learned by Trompt. In the Syn2 dataset,
features 2–5 are important (Figure 9a) and Trompt excel-
lently focuses on them (Figure 9b). In the Syn4 dataset,
either features 0–1 or 2–5 could be important based on
the value of feature 10 (Figure 10a). As Figure 10 shows,
Trompt still properly focuses on features 0–5 and discovers
the influence of feature 10.

(a) Important features. (b) Feature importances of
Trompt.

Figure 9. Attention mask on Syn2 dataset (synthetic).

(a) Important features. (b) Feature importances of
Trompt.

Figure 10. Attention mask on Syn4 dataset (synthetic).

Real-world datasets. The mushroom dataset (Dua & Graff,
2017) is used as the real-world dataset for visualization as
TabNet (Arik & Pfister, 2021). With only the Odor feature,
most machine learning models can achieve > 95% test
accuracy (Arik & Pfister, 2021). As a result, a high feature
importance is expected on Odor.

Table 5 shows the three most important features of Trompt
and five tree-based models. As shown, all models place
Odor in their top three. The second and third places of
Trompt, gill-size and gill-color, also appear in the top three
of the other models. Actually, cap-color is selected only by
XGBoost. If it is excluded, the union of the top important
features of all models comes down to four features. The
one Trompt missed is spore-print-color, which is the fifth
place of Trompt. Overall speaking, the important features
selected by Trompt are consistent with those by tree-based
models, and can therefore be used in various analyses that
are familiar in the field of machine learning.

To further demonstrate that the experimental results were
not ad-hoc, we repeat the experiments on additional real-
world datasets. Please see Appendix E.2 for the details and

8

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 5. The top-3 importance score ratio on the mushroom dataset.

1st 2nd 3rd

RandomForest odor (15.11%) gill-size (12.37%) gill-color (10.42%)

XGBoost spore-print-color (29.43%) odor (22.71%) cap-color (14.07%)

LightGBM spore-print-color (22.08%) gill-color (14.95%) odor (12.96%)

CatBoost odor (72.43%) spore-print-color (10.57%) gill-size (2.71%)

GradientBoostingTree gill-color (31.08%) spore-print-color (19.89%) odor (17.44%)

Trompt (ours) odor (24.93%) gill-size (8.13%) gill-color (5.73%)

experimental results.

5. Discussion
In this section, we further explore the “prompt” mechanism
of Trompt. Section 5.1 clarifies the underlying hypothe-
sis of how the prompt learning of Trompt fits for tabular
data. In addition, as Trompt is partially inspired by the
learning strategy of tree-based models, we further discussed
the difference between Trompt and tree-based models in
Section 5.2.

5.1. Further exploration of the ”prompt” mechanism in
Trompt

The ”prompt” mechanism in Trompt is realized as Equa-
tion (4). This equation involves a matrix multiplication of
expanded prompt embeddings (ŜEprompt ∈ RB×P×d) and
the transpose of expanded column embeddings (SEcolumn ∈
RB×C×d). It results in Mimportance ∈ RP×C , which repre-
sents prompt-to-column feature importances. The matrix
multiplication calculates the cosine-based distance between
ŜEprompt and SEcolumn, and favors high similarity between
the sample-specific representations and sample-invariant
intrinsic properties.

To make it clearer, ŜEprompt consists of P embeddings that
are specific to individual samples, except for the first Trompt
Cell where Oprev is a zero tensor since there is no previous
Trompt Cell, as stated in Equations (1) and (2). On the other
hand, SEcolumn consists of C embeddings that represent
intrinsic properties specific to a tabular dataset as stated in
Equation (3).

Unlike self-attention, which calculates the distance between
queries and keys and derives token-to-token similarity mea-
sures, Trompt calculates the distance between ŜEprompt
and SEcolumn in Equation (4) to derive sample-to-intrinsic-
property similarity measures. The underlying idea of the
calculation is to capture the distance between each sample
and intrinsic property of a tabular dataset and we hypothe-
size that incorporating the intrinsic properties into the mod-

eling of a tabular neural network might help making good
predictions.

5.2. The differences between Trompt and Tree-based
Models

As discussed in Section 3.3, the idea of using prompt learn-
ing to derive feature importances, is inspired by the learning
algorithm of tree-based models and the intrinsic properties
of tabular data. As a result, Trompt and tree-based models
share a common characteristic in that they enable sample-
dependent feature importances. However, there are two
main differences between them. First, to incorporate the
intrinsic properties of tabular data, Trompt uses column em-
beddings to share the column information across samples,
while the learning strategy of tree-based models learn col-
umn information in their node-split nature. Second, Trompt
and tree-based models use different techniques to learn fea-
ture importance. Trompt derives feature importances explic-
itly through prompt learning, while tree-based models vary
the feature importances implicitly in the root-to-leaf path.

6. Conclusion
In this study, we introduce Trompt, a novel network archi-
tecture for tabular data analysis. Trompt utilizes prompt
learning to determine varying feature importances in indi-
vidual samples. Our evaluation shows that Trompt outper-
forms state-of-the-art deep neural networks (SAINT and
FT-Transformer) and closes the performance gap between
deep neural networks and tree-based models.

The emergence of prompt learning in deep learning is
promising. While the design of Trompt may not be intuitive
or perfect for language model prompts, it demonstrates the
potential of leveraging prompts in tabular data analysis. This
work introduces a new strategy for deep neural networks
to challenge tree-based models and future research in this
direction can explore more prompt-inspired architectures.

9

Trompt: Towards a Better Deep Neural Network for Tabular Data

References
Arik, S. Ö. and Pfister, T. Tabnet: Attentive interpretable

tabular learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 6679–6687,
2021.

Averagemn. Lgbm with hyperopt tuning, 2019. URL
https://www.kaggle.com/code/donkeys/
lgbm-with-hyperopt-tuning/notebook.
[Online; accessed 5-January-2023].

Bahmani, M. Understanding lightgbm parameters (and how
to tune them), 2022. URL https://neptune.ai/
blog/lightgbm-parameters-guide. [Online;
accessed 5-January-2023].

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. arXiv preprint arXiv:2110.01889, 2021.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. In International Conference on
Machine Learning, pp. 883–892. PMLR, 2018.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.,
Cho, H., Chen, K., et al. Xgboost: extreme gradient
boosting. R package version 0.4-2, 1(4):1–4, 2015.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J.
Modeling wine preferences by data mining from physic-
ochemical properties. Decision support systems, 47(4):
547–553, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. Ad-
vances in Neural Information Processing Systems, 34:
18932–18943, 2021.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do
tree-based models still outperform deep learning on typ-
ical tabular data? In Thirty-sixth Conference on Neu-
ral Information Processing Systems Datasets and Bench-
marks Track, 2022. URL https://openreview.
net/forum?id=Fp7__phQszn.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. Tab-
transformer: Tabular data modeling using contextual em-
beddings. arXiv preprint arXiv:2012.06678, 2020.

Katzir, L., Elidan, G., and El-Yaniv, R. Net-dnf: Effective
deep modeling of tabular data. In International Confer-
ence on Learning Representations, 2020.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural infor-
mation processing systems, 30, 2017.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

10

https://www.kaggle.com/code/donkeys/lgbm-with-hyperopt-tuning/notebook
https://www.kaggle.com/code/donkeys/lgbm-with-hyperopt-tuning/notebook
https://neptune.ai/blog/lightgbm-parameters-guide
https://neptune.ai/blog/lightgbm-parameters-guide
http://archive.ics.uci.edu/ml
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn

Trompt: Towards a Better Deep Neural Network for Tabular Data

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categori-
cal features. Advances in neural information processing
systems, 31, 2018.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Ramachandram, D. and Taylor, G. W. Deep multimodal
learning: A survey on recent advances and trends. IEEE
signal processing magazine, 34(6):96–108, 2017.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Sahoo, D., Pham, Q., Lu, J., and Hoi, S. C. Online deep
learning: Learning deep neural networks on the fly. arXiv
preprint arXiv:1711.03705, 2017.

scikit learn. sklearn.ensemble.histgradientboostingclassifier,
2023a. URL https://
scikit-learn.org/stable/modules/
generated/sklearn.ensemble.
HistGradientBoostingClassifier.html.
[Online; accessed 21-January-2023].

scikit learn. sklearn.preprocessing.quantiletransformer,
2023b. URL https://scikit-learn.org/
stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.
html. [Online; accessed 26-January-2023].

Shwartz-Ziv, R. and Armon, A. Tabular data:
Deep learning is not all you need. Informa-
tion Fusion, 81:84–90, 2022. ISSN 1566-2535.
doi: https://doi.org/10.1016/j.inffus.2021.11.011.
URL https://www.sciencedirect.com/
science/article/pii/S1566253521002360.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss,
C. B., and Goldstein, T. Saint: Improved neural networks
for tabular data via row attention and contrastive pre-
training. arXiv preprint arXiv:2106.01342, 2021.

Van Engelen, J. E. and Hoos, H. H. A survey on semi-
supervised learning. Machine Learning, 109(2):373–440,
2020.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo,
L. Openml: networked science in machine learn-
ing. SIGKDD Explorations, 15(2):49–60, 2013. doi:
10.1145/2641190.2641198. URL http://doi.acm.
org/10.1145/2641190.264119.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Zhang, Q., Lu, H., Sak, H., Tripathi, A., McDermott, E.,
Koo, S., and Kumar, S. Transformer transducer: A stream-
able speech recognition model with transformer encoders
and rnn-t loss. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7829–7833. IEEE, 2020.

11

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
http://doi.acm.org/10.1145/2641190.264119
http://doi.acm.org/10.1145/2641190.264119

Trompt: Towards a Better Deep Neural Network for Tabular Data

A. Settings of Grinsztajn45
In this section, we provide brief summaries with regard to dataset selection criteria in Appendix A.1, dataset normalization
in Appendix A.2, baseline models in Appendix A.3 and hyperparameter search mechanism in Appendix A.4.

A.1. Dataset Selection Criteria

Grinsztajn45 (Grinsztajn et al., 2022) selects 45 tabular datasets from various domains mainly provided by OpenML
(Vanschoren et al., 2013), which is listed in section A.1 of their paper.

The dataset selection criteria are summarized below. Please refer to section 3.1 of the original paper for detailed selection
criteria.

• The datasets contain heterogeneous features.

• They are not high dimensional.

• They contain I.I.D. data.

• They contain real-world data.

• They are not too small.

• They are not too easy.

• They are not deterministic.

A.2. Dataset Normalization

To ensure the homogeneity of the datasets and focus on challenges specific to tabular data, Grinsztajn45 did some
modifications to the datasets to make sure that the datasets in the benchmark conform to the following criteria. Please refer
to section 3.2 of the original paper for detailed modification.

• The training sets are truncated to medium-sized (10,000) or large-sized (50,000).

• All missing data were removed from the datasets.

• The classes are balanced.

• Categorical features with more than 20 items were removed

• Numerical features with less than 10 unique values were removed.

• Numerical features with 2 unique values are converted to categorical features.

A.3. Baseline Models

The paper by Grinsztajn45 presents the performance of four DNN models and four tree-based models. The DNN models
include MLP (Gorishniy et al., 2021), ResNet (Gorishniy et al., 2021), FT-Transformer (Gorishniy et al., 2021), and SAINT
(Somepalli et al., 2021). The tree-based models consist of RandomForest (Breiman, 2001), GradientBoostingTree (Friedman,
2001), XGBoost (Chen et al., 2015), and HistGradientBoostingTree (scikit learn, 2023a).

However, two models, namely MLP (Gorishniy et al., 2021) and HistGradientBoostingTree (scikit learn, 2023a), were
omitted from the evaluation due to incomplete experimental results in Grinsztajn45 (Grinsztajn et al., 2022). To provide a
comprehensive comparison, we have included LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018) as
additional models. These models were selected based on their excellent performance and popularity.

12

Trompt: Towards a Better Deep Neural Network for Tabular Data

A.4. Hyperparameter Search Mechanism

Grinsztajn45 evaluates models based on the results of a random search that consumes 20,000 compute-hours, as mentioned
in Section 3.3 of the paper (Grinsztajn et al., 2022). Since different models have varying inference and update times, the
number of random search iterations completed within the same compute-hour differs for each model. For instance, Model A
may perform around two hundred iterations, while Model B may perform around three hundred iterations within 20,000
hours. To ensure a fair evaluation, the iterations are truncated based on the minimum iteration count among all the compared
models.

Due to limited computing resources, we have chosen a small search space (Table 30) consisting of 40 parameter combinations.
To avoid unfairly truncating random search results of other models, and compromising the low search iterations of Trompt,
we duplicated the grid search results of Trompt to exceed the lowest search iteration count among the models provided by
Grinsztajn45. For instance, if the lowest search iteration of a model was three hundreds, the search results of Trompt will be
oversampled to surpass three hundreds and avoid being the lower bound, so other models can retain same search iterations
as provided by Grinsztajn45. As a result, the other models can retain the same search iterations as provided by Grinsztajn45.

Grinsztajn45’s suggested evaluation procedure involves an extensive hyperparameter search that explores hundreds of
parameter combinations. However, due to limited computing resources, we have selected a smaller search space of 40
parameter combinations (Table 30 in Appendix F) for Trompt. Please refer to Appendix F for the hyperparameter search
spaces of all models.

B. More Evaluation Results
In Appendix B.1, we present additional evaluation results for Grinsztajn45, which expand upon the findings and analysis
presented in the original paper (Grinsztajn et al., 2022). These additional results provide further insights and contribute to a
more comprehensive understanding of the evaluated models.

Furthermore, we include evaluation results on different datasets using the datasets selected by FT-Transformer (Gorishniy
et al., 2021) and SAINT (Somepalli et al., 2021) in Appendix B.2 and Appendix B.3, respectively. By applying these
datasets to the models, we aim to assess the performance of Trompt in different scenarios and gain a deeper understanding
of its capabilities and generalizability.

B.1. Grinsztajn45

In main paper, we have discussed the overall performance of Trompt using the learning curves during hyperparameter
optimization. In this section, we present quantitative evaluation results of both default and optimized hyperparameters. In
addition, we provide the figures of individual datasets for reference.

The quantitative evaluation results of classification and regression tasks are discussed in Appendix B.1.1 and Appendix B.1.2
respectively. For classification datasets, we use accuracy as the evaluation metric. For regression datasets, we use r2-score
as the evaluation metric. As a result, in both categories, the higher the number, the better the result. Besides evaluation
metrics, the ranking of each model is also provided. To derive ranking, we calculate the mean and standard deviation of all
rankings on datasets of a task. Notice that since the names of some datasets are long, we first denote each dataset a notation
in Tables 6 to 8 and use them in following tables.

13

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 6. Notation of medium-sized datasets (1).

Notation Dataset

A1 KDDCup09 upselling

A2 compass

A3 covertype

A4 electricity

A5 eye movements

A6 rl

A7 road-safety

B1 Higgs

B2 MagicTelescope

B3 MiniBooNE

B4 bank-marketing

B5 california

B6 covertype

B7 credit

B8 electricity

B9 eye movements

B10 house 16H

B11 jannis

B12 kdd ipums la 97-small

B13 phoneme

B14 pol

B15 wine

14

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 7. Notation of medium-sized datasets (2).

Notation Dataset

C1 Bike Sharing Demand

C2 Brazilian houses

C3 Mercedes Benz Greener Manufacturing

C4 OnlineNewsPopularity

C5 SGEMM GPU kernel performance

C6 analcatdata supreme

C7 black friday

C8 diamonds

C9 house sales

C10 nyc-taxi-green-dec-2016

C11 particulate-matter-ukair-2017

C12 visualizing soil

C13 yprop 4 1

D1 Ailerons

D2 Bike Sharing Demand

D3 Brazilian houses

D4 MiamiHousing2016

D5 california

D6 cpu act

D7 diamonds

D8 elevators

D9 fifa

D10 house 16H

D11 house sales

D12 houses

D13 medical charges

D14 nyc-taxi-green-dec-2016

D15 pol

D16 sulfur

D17 superconduct

D18 wine quality

D19 year

15

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 8. Notation of large-sized datasets.

Notation Dataset

A1 covertype

A2 road-safety

B1 covertype

B2 Higgs

B3 MiniBooNE

B4 jannis

C1 black friday

C2 diamonds

C3 nyc-taxi-green-dec-2016

C4 particulate-matter-ukair-2017

C5 SGEMM GPU kernel performance

D1 diamonds

D2 nyc-taxi-green-dec-2016

D3 year

B.1.1. CLASSIFICATION

The evaluation results for medium-sized classification tasks are presented in Table 9 for heterogeneous features, and in
Tables 10 and 11 for numerical features only.

For large-sized classification tasks, the results can be found in Table 12 for heterogeneous features, and in Table 13 for
numerical features only.

Furthermore, individual figures illustrating the performance of Trompt on medium-sized tasks are provided in Figure 11 for
heterogeneous features, and in Figure 12 for numerical features only. The individual figures for large-sized tasks can be
found in Figure 13 for heterogeneous features, and in Figure 14 for numerical features only.

The evaluation results consistently demonstrate that Trompt outperforms state-of-the-art deep neural networks (FT-
Transformer and SAINT) across all classification tasks (refer to Tables 9 to 13). Moreover, Trompt’s default rankings
consistently yield better performance than the searched rankings, indicating its strength in default configurations without
tuning. Remarkably, in a large-sized task with numerical features only, Trompt even surpasses tree-based models (refer to
Table 13).

16

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 9. The performance of medium-sized classification task (heterogeneous features).

A1 A2 A3 A4 A5 A6 A7 Ranking

Default

Trompt (ours) 78.91% 78.59% 87.29% 84.50% 64.25% 75.13% 75.80% 3.71± 1.78

FT-Transformer 78.56% 73.43% 85.57% 82.71% 58.79% 71.52% 73.90% 6.29± 2.00

ResNet 74.24% 73.78% 82.49% 81.99% 57.14% 66.51% 73.45% 8.29± 2.92

SAINT 79.00% 70.09% 83.04% 82.42% 58.62% 67.69% 75.89% 6.86± 2.55

CatBoost 79.90% 74.22% 83.69% 85.01% 64.62% 75.29% 76.80% 2.93± 2.55

LightGBM 78.70% 73.63% 83.23% 86.37% 64.48% 77.04% 76.43% 3.86± 1.93

XGBoost 78.39% 74.46% 84.13% 87.86% 64.77% 78.42% 75.94% 3.00± 2.92

RandomForest 79.38% 79.28% 84.75% 86.24% 63.62% 73.82% 75.45% 3.71± 1.86

GradientBoostingTree 79.90% 72.01% 78.92% 82.94% 61.81% 69.60% 75.00% 6.36± 2.51

Searched

Trompt (ours) 79.00% 79.55% 88.29% 85.13% 64.29% 76.02% 76.38% 4.43± 2.20

FT-Transformer 78.00% 75.30% 86.64% 84.01% 59.85% 70.38% 76.86% 5.57± 2.19

ResNet 76.87% 74.35% 85.17% 82.68% 57.82% 69.59% 75.85% 8.43± 2.73

SAINT 77.80% 71.87% 84.95% 83.32% 58.54% 68.20% 76.43% 7.86± 2.64

CatBoost 80.50% 76.87% 87.48% 87.73% 66.48% 78.67% 77.16% 2.43± 2.71

LightGBM 79.81% 78.15% 86.62% 88.64% 66.14% 77.69% 76.43% 3.14± 2.05

XGBoost 79.69% 76.83% 86.25% 88.52% 66.57% 77.18% 76.69% 3.57± 1.93

RandomForest 79.38% 79.28% 85.89% 87.76% 65.70% 79.79% 75.88% 4.29± 2.27

GradientBoostingTree 80.01% 73.77% 85.55% 87.85% 63.30% 77.58% 76.23% 5.29± 2.17

17

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 10. The performance of medium-sized classification task (numerical features only) (1).

B1 B2 B3 B4 B5 B6 B7 B8

Default

Trompt (ours) 69.26% 86.30% 93.82% 79.36% 89.09% 82.68% 75.84% 82.89%

FT-Transformer 66.94% 84.42% 92.80% 80.09% 87.40% 80.42% 74.32% 81.24%

ResNet 65.39% 85.11% 93.10% 78.68% 86.90% 79.09% 74.99% 80.91%

SAINT 69.29% 85.16% 93.18% 79.18% 87.69% 78.05% 76.49% 81.25%

CatBoost 71.30% 86.14% 93.64% 80.45% 90.21% 80.16% 76.95% 84.48%

LightGBM 70.79% 85.47% 93.16% 80.33% 90.06% 79.50% 77.17% 84.34%

XGBoost 69.25% 85.31% 93.29% 79.81% 90.30% 79.87% 75.91% 86.11%

RandomForest 70.12% 85.56% 92.09% 79.46% 88.80% 81.35% 76.64% 84.79%

GradientBoostingTree 70.49% 84.44% 92.16% 80.27% 88.00% 76.85% 77.52% 82.16%

Searched

Trompt (ours) 69.60% 86.35% 93.74% 79.30% 89.28% 83.73% 76.52% 83.12%

FT-Transformer 70.67% 85.26% 93.59% 80.22% 88.61% 81.22% 76.50% 81.94%

ResNet 69.02% 85.62% 93.69% 79.13% 87.28% 80.21% 76.28% 80.98%

SAINT 70.73% 84.85% 93.54% 79.29% 88.92% 80.27% 76.24% 81.84%

CatBoost 71.46% 85.92% 93.84% 80.39% 90.32% 82.98% 77.59% 86.33%

LightGBM 71.01% 85.70% 93.71% 80.15% 90.13% 81.81% 77.13% 85.94%

XGBoost 71.36% 86.05% 93.66% 80.34% 90.12% 81.75% 77.26% 86.94%

RandomForest 70.76% 85.41% 92.65% 79.82% 89.21% 82.73% 77.25% 86.14%

GradientBoostingTree 71.00% 85.57% 93.22% 80.26% 89.68% 81.72% 77.27% 86.24%

18

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 11. The performance of medium-sized classification task (numerical features only) (2).

B9 B10 B11 B12 B13 B14 B15 Ranking

Default

Trompt (ours) 61.60% 88.05% 76.89% 86.61% 88.67% 98.49% 79.07% 4.07± 2.61

FT-Transformer 58.62% 87.16% 72.94% 87.16% 85.67% 98.08% 77.21% 6.93± 2.06

ResNet 56.06% 86.48% 70.70% 86.94% 85.37% 94.87% 77.06% 8.20± 2.05

SAINT 57.18% 88.19% 76.04% 88.32% 85.28% 97.04% 75.90% 6.20± 2.13

CatBoost 63.87% 88.59% 77.85% 87.98% 87.44% 98.46% 78.58% 2.47± 2.03

LightGBM 64.39% 88.43% 77.27% 87.43% 86.90% 98.38% 79.81% 3.27± 1.82

XGBoost 64.75% 88.16% 76.00% 87.31% 87.05% 98.35% 79.78% 4.13± 1.97

RandomForest 63.16% 87.92% 76.34% 88.32% 88.01% 98.10% 80.30% 3.93± 2.16

GradientBoostingTree 62.33% 87.68% 76.17% 88.32% 84.26% 96.71% 77.09% 5.80± 2.52

Searched

Trompt (ours) 62.71% 88.46% 76.99% 87.25% 88.67% 98.38% 78.58% 4.80± 2.47

FT-Transformer 58.30% 88.15% 76.43% 89.12% 85.66% 98.45% 76.74% 6.47± 2.41

ResNet 57.03% 87.54% 74.63% 88.23% 85.87% 94.86% 77.41% 7.73± 2.50

SAINT 58.90% 88.27% 77.22% 89.05% 85.39% 98.12% 76.87% 6.93± 2.22

CatBoost 65.07% 88.54% 77.95% 88.02% 88.83% 98.47% 79.89% 1.93± 2.36

LightGBM 65.43% 88.62% 77.70% 88.18% 87.60% 98.21% 79.55% 3.53± 1.44

XGBoost 65.83% 88.83% 77.83% 88.12% 86.81% 98.09% 79.46% 3.20± 2.22

RandomForest 65.04% 87.80% 77.27% 87.95% 88.45% 98.20% 78.96% 5.33± 1.88

GradientBoostingTree 63.04% 88.22% 77.17% 88.32% 86.68% 98.06% 78.56% 5.07± 1.77

19

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 12. The performance of large-sized classification task (heterogeneous features).

A1 A2 Ranking

Default

Trompt (ours) 92.76% 78.36% 1.50± 4.36

FT-Transformer 93.17% 76.09% 4.50± 3.61

ResNet 89.45% 76.53% 6.00± 2.25

SAINT 91.23% 77.31% 4.50± 1.73

CatBoost 88.27% 78.21% 4.50± 1.73

LightGBM 84.76% 77.97% 6.00± 2.84

XGBoost 87.81% 78.22% 4.50± 2.65

RandomForest 90.66% 77.67% 4.50± 1.00

GradientBoostingTree 79.46% 75.19% 9.00± 4.62

Searched

Trompt (ours) 93.95% 78.44% 3.50± 3.40

FT-Transformer 93.61% 78.92% 3.50± 2.36

ResNet 92.27% 78.40% 8.00± 3.61

SAINT 92.54% 77.96% 8.50± 4.36

CatBoost 93.70% 80.15% 1.50± 4.36

LightGBM 93.25% 79.75% 4.00± 1.32

XGBoost 93.07% 79.91% 4.00± 2.18

RandomForest 93.30% 78.13% 6.00± 2.47

GradientBoostingTree 92.99% 78.59% 6.00± 1.76

20

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 13. The performance of large-sized classification task (numerical features only).

B1 B2 B3 B4 Ranking

Default

Trompt (ours) 72.13% 94.68% 90.04% 79.54% 1.38± 3.44

FT-Transformer 69.60% 94.03% 89.83% 75.86% 6.00± 2.96

ResNet 69.88% 94.09% 88.01% 73.58% 6.00± 2.78

SAINT 71.81% 94.36% 86.94% 78.60% 3.75± 1.82

CatBoost 72.61% 94.32% 83.77% 79.54% 2.88± 3.01

LightGBM 72.12% 93.71% 80.71% 78.70% 5.00± 2.17

XGBoost 71.64% 93.67% 83.61% 78.28% 6.00± 1.50

RandomForest 71.58% 93.08% 87.67% 77.97% 6.00± 1.80

GradientBoostingTree 71.03% 92.25% 76.98% 77.18% 8.00± 3.29

Searched

Trompt (ours) 72.86% 94.36% 91.27% 79.88% 3.25± 2.97

FT-Transformer 72.86% 94.42% 90.57% 79.59% 3.25± 2.07

ResNet 72.29% 94.46% 89.36% 78.11% 6.75± 3.49

SAINT 72.65% 94.45% 89.53% 79.30% 5.50± 1.67

CatBoost 72.99% 94.55% 90.19% 79.89% 1.75± 3.49

LightGBM 72.55% 94.39% 89.71% 79.32% 6.00± 0.89

XGBoost 72.81% 94.40% 89.32% 79.67% 5.25± 2.30

RandomForest 71.98% 93.53% 90.59% 78.85% 7.00± 3.96

GradientBoostingTree 72.49% 94.07% 89.79% 79.34% 6.25± 1.95

21

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 11. Benchmark on every medium-sized classification dataset with heterogeneous features.

22

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 12. Benchmark on every medium-sized classification dataset with numerical features only.

23

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 13. Benchmark on every large-sized classification dataset with heterogeneous features.

Figure 14. Benchmark on every large-sized classification dataset with numerical features only.

B.1.2. REGRESSION

The evaluation results for medium-sized regression datasets are presented in Tables 14 and 15 for heterogeneous features,
and in Tables 16 to 18 for numerical features only.

For large-sized regression datasets, the results can be found in Table 19 for heterogeneous features, and in Table 20 for
numerical features only.

Furthermore, individual figures illustrating the performance of Trompt on medium-sized regression tasks are provided in
Figure 15 for heterogeneous features, and in Figure 16 for numerical features only. The individual figures for large-sized
tasks can be found in Figure 17 for heterogeneous features, and in Figure 18 for numerical features only.

The evaluation results consistently demonstrate that Trompt outperforms state-of-the-art deep neural networks (SAINT and
FT-Transformer) on medium-sized regression tasks (refer to Tables 14 to 18). However, Trompt’s performance is slightly
inferior to other deep neural networks on large-sized datasets (refer to Tables 19 and 20). Nevertheless, it is worth noting
that the performance of Trompt remains consistently competitive when considering all benchmark results.

24

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 14. The performance of medium-sized regression task (heterogeneous features) (1).

C1 C2 C3 C4 C5 C6 C7 C8

Default

Trompt (ours) 93.93% 99.63% 54.09% 8.71% 99.96% 94.70% 57.94% 98.88%

FT-Transformer 93.21% 88.00% 54.24% 0.00% 99.96% 93.99% 31.46% 98.84%

ResNet 89.90% 87.47% 51.99% 0.00% 99.72% 91.09% 10.79% 98.46%

SAINT 92.50% 99.20% 54.25% 11.23% 99.96% 95.10% 40.72% 98.47%

CatBoost 94.21% 99.59% 56.33% 15.16% 99.97% 98.01% 61.70% 99.11%

LightGBM 94.02% 99.38% 54.77% 14.41% 99.97% 98.23% 61.68% 99.01%

XGBoost 93.93% 99.76% 49.71% 6.64% 99.97% 97.59% 58.93% 98.96%

RandomForest 93.61% 99.30% 50.78% 13.16% 99.98% 98.00% 55.85% 98.79%

GradientBoostingTree 84.15% 99.62% 57.17% 15.30% 99.97% 98.27% 61.34% 98.42%

Searched

Trompt (ours) 94.50% 99.75% 56.87% 13.05% 99.96% 97.93% 60.17% 98.99%

FT-Transformer 93.58% 88.12% 54.90% 14.05% 99.97% 97.63% 37.93% 98.96%

ResNet 93.65% 87.83% 54.47% 12.95% 99.96% 97.83% 35.56% 98.79%

SAINT 93.89% 99.51% 55.14% 13.90% 99.97% 94.59% 58.72% 98.72%

CatBoost 94.87% 99.60% 57.74% 16.54% 99.97% 98.33% 61.79% 99.18%

LightGBM 94.37% 99.42% 55.58% 14.41% 99.97% 98.23% 61.68% 99.07%

XGBoost 94.62% 99.76% 56.87% 16.21% 99.98% 98.30% 61.88% 99.12%

RandomForest 93.79% 99.34% 57.55% 14.94% 99.98% 98.07% 60.91% 98.79%

GradientBoostingTree 94.07% 99.46% 57.53% 15.27% 99.98% 98.13% 61.54% 98.98%

25

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 15. The performance of medium-sized regression task (heterogeneous features) (2).

C9 C10 C11 C12 C13 Ranking

Default

Trompt (ours) 89.02% 9.61% 64.94% 99.95% 0.64% 5.38± 2.02

FT-Transformer 87.38% 12.38% 65.43% 99.94% 0.00% 6.88± 1.74

ResNet 86.45% 0.00% 65.23% 98.70% 0.00% 8.35± 2.13

SAINT 88.01% 17.48% 64.80% 99.98% 0.00% 6.31± 1.54

CatBoost 89.75% 54.63% 69.16% 99.99% 4.97% 2.15± 2.13

LightGBM 89.05% 54.48% 68.74% 99.99% 4.91% 3.00± 1.74

XGBoost 88.34% 56.99% 66.16% 100.00% 0.00% 4.08± 2.46

RandomForest 87.44% 56.18% 65.44% 100.00% 5.92% 4.23± 2.27

GradientBoostingTree 86.93% 46.90% 67.17% 99.94% 0.00% 4.62± 2.92

Searched

Trompt (ours) 89.16% 48.04% 66.33% 99.99% 3.59% 5.77± 1.98

FT-Transformer 88.85% 50.44% 67.18% 99.90% 3.18% 7.23± 1.70

ResNet 88.10% 42.42% 65.50% 99.76% 2.11% 8.31± 2.08

SAINT 89.18% 36.42% 66.93% 99.99% 1.21% 7.00± 1.98

CatBoost 89.84% 56.79% 69.33% 100.00% 9.08% 2.00± 2.24

LightGBM 89.33% 54.48% 68.74% 100.00% 4.91% 4.31± 1.18

XGBoost 89.65% 57.82% 69.08% 100.00% 8.01% 2.15± 1.74

RandomForest 87.50% 58.48% 67.44% 100.00% 9.52% 4.31± 2.80

GradientBoostingTree 89.05% 57.29% 68.30% 100.00% 5.54% 3.92± 1.35

26

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 16. The performance of medium-sized regression task (numerical features only) (1).

D1 D2 D3 D4 D5 D6 D7

Default

Trompt (ours) 84.80% 68.29% 99.70% 92.75% 81.17% 97.23% 94.15%

FT-Transformer 83.80% 66.92% 99.71% 91.87% 79.20% 96.85% 93.85%

ResNet 82.54% 64.52% 99.57% 91.41% 75.06% 96.75% nan

SAINT 0.00% 67.85% 99.39% 91.46% 82.04% 98.33% 94.24%

CatBoost 85.76% 69.93% 99.60% 93.56% 86.16% 98.56% 94.57%

LightGBM 84.68% 69.28% 99.38% 92.25% 84.33% 98.46% 94.49%

XGBoost 82.58% 67.93% 99.76% 92.03% 84.04% 98.25% 94.09%

RandomForest 83.71% 67.32% 99.29% 91.41% 81.54% 98.23% 93.96%

GradientBoostingTree 83.95% 67.58% 99.62% 89.42% 80.46% 98.34% 94.41%

Searched

Trompt (ours) 85.08% 68.57% 99.62% 92.80% 84.53% 98.61% 94.31%

FT-Transformer 83.90% 67.17% 99.77% 91.87% 83.00% 97.87% 94.34%

ResNet 83.21% 66.71% 99.69% 91.36% 82.03% 98.07% nan

SAINT 78.31% 68.44% 99.41% 92.10% 83.67% 98.39% 94.42%

CatBoost 85.92% 70.31% 99.62% 93.78% 86.90% 98.67% 94.59%

LightGBM 84.68% 69.28% 99.28% 93.33% 84.80% 98.31% 94.49%

XGBoost 84.58% 69.43% 99.76% 93.59% 85.64% 98.61% 94.55%

RandomForest 83.75% 68.69% 99.33% 92.42% 83.02% 98.28% 94.53%

GradientBoostingTree 84.25% 68.94% 99.60% 92.43% 84.48% 98.51% 94.47%

27

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 17. The performance of medium-sized regression task (numerical features only) (2).

D8 D9 D10 D11 D12 D13 D14

Default

Trompt (ours) 89.69% 62.96% 54.53% 88.04% 83.52% 97.88% 16.99%

FT-Transformer 91.01% 63.03% 48.90% 87.42% 81.10% 97.82% 5.86%

ResNet 88.77% 62.01% 47.62% 84.71% 75.92% 97.80% 22.34%

SAINT 87.30% 64.59% 50.30% 87.34% 81.59% 97.81% 46.65%

CatBoost 91.17% 66.18% 51.01% 88.73% 84.72% 97.82% 52.91%

LightGBM 88.59% 66.49% 51.95% 88.12% 83.51% 97.85% 53.06%

XGBoost 88.48% 64.75% 48.14% 87.43% 83.74% 97.73% 54.87%

RandomForest 83.37% 63.58% 51.12% 86.87% 82.99% 97.67% 54.54%

GradientBoostingTree 80.22% 66.31% 47.33% 86.16% 78.74% 97.94% 45.15%

Searched

Trompt (ours) 90.69% 65.13% 46.50% 88.27% 83.57% 97.92% 45.57%

FT-Transformer 91.37% 64.69% 48.67% 87.56% 83.05% 97.92% 47.43%

ResNet 90.82% 64.19% 48.16% 86.72% 82.08% 97.91% 46.78%

SAINT 92.27% 65.06% 49.40% 87.87% 82.03% 97.94% 49.58%

CatBoost 91.56% 66.39% 41.22% 88.89% 85.53% 97.93% 54.06%

LightGBM 88.59% 66.49% 51.60% 88.45% 85.33% 97.85% 53.06%

XGBoost 90.67% 66.79% 54.63% 88.76% 84.95% 97.87% 55.23%

RandomForest 83.82% 65.47% 49.15% 87.10% 82.77% 97.89% 56.04%

GradientBoostingTree 85.84% 66.32% 52.49% 88.32% 84.07% 97.94% 55.21%

28

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 18. The performance of medium-sized regression task (numerical features only) (3).

D15 D16 D17 D18 D19 Ranking

Default

Trompt (ours) 95.13% 80.96% 87.91% 31.68% 18.41% 4.68± 2.29

FT-Transformer 94.16% 82.70% 88.01% 26.98% 0.00% 6.21± 2.29

ResNet 84.68% 74.54% 87.14% 26.86% 8.13% 8.06± 2.08

SAINT 99.04% 80.52% 89.22% 36.25% 25.92% 5.32± 1.86

CatBoost 98.63% 86.85% 90.51% 45.00% 27.34% 2.05± 2.16

LightGBM 98.70% 81.43% 89.79% 42.86% 25.50% 3.05± 1.89

XGBoost 98.50% 83.49% 89.55% 42.37% 16.33% 4.47± 2.04

RandomForest 98.67% 84.47% 90.20% 48.28% 20.69% 5.26± 2.40

GradientBoostingTree 93.49% 81.04% 85.62% 37.57% 24.21% 5.84± 2.60

Searched

Trompt (ours) 99.58% 84.15% 89.49% 40.91% 26.03% 5.11± 1.97

FT-Transformer 99.44% 84.26% 88.26% 36.07% 23.96% 6.37± 2.48

ResNet 94.99% 81.45% 89.22% 36.11% 21.73% 7.61± 2.31

SAINT 99.56% 78.81% 89.37% 37.38% 26.45% 5.79± 2.46

CatBoost 99.24% 86.84% 90.94% 50.11% 28.26% 2.26± 2.46

LightGBM 98.70% 81.31% 90.48% 42.86% 25.50% 4.84± 2.25

XGBoost 98.97% 86.03% 91.02% 50.06% 28.04% 2.79± 2.11

RandomForest 98.87% 85.64% 90.89% 50.43% 24.09% 5.58± 2.33

GradientBoostingTree 98.91% 81.31% 90.36% 45.55% 26.94% 4.58± 1.69

29

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 19. The performance of large-sized regression task (heterogeneous features).

C1 C2 C3 C4 C5 Ranking

Default

Trompt (ours) 99.96% 60.97% 99.17% 40.35% 70.48% 5.20± 1.50

FT-Transformer 99.94% 35.14% 99.23% 40.61% 67.61% 5.80± 2.48

ResNet 98.95% 33.70% 98.16% 39.71% 66.60% 8.00± 2.86

SAINT 99.97% 38.91% 99.18% 54.80% 68.74% 4.80± 0.75

CatBoost 99.98% 63.32% 99.28% 60.50% 70.68% 1.80± 2.25

LightGBM 99.98% 63.24% 99.16% 57.69% 70.37% 3.60± 1.67

XGBoost 99.98% 63.45% 99.22% 62.44% 70.60% 1.60± 2.73

RandomForest − − − − − −
GradientBoostingTree 99.98% 61.65% 98.57% 48.09% 67.73% 5.20± 1.36

Searched

Trompt (ours) 99.98% 62.86% 99.18% 54.79% 70.73% 6.20± 2.26

FT-Transformer 99.98% 39.00% 99.26% 57.02% 70.45% 5.80± 1.75

ResNet 99.98% 39.38% 99.23% 54.30% 68.71% 6.40± 2.88

SAINT 99.98% 39.53% 99.26% 56.58% 69.73% 5.20± 1.55

CatBoost 99.98% 63.62% 99.33% 62.64% 71.17% 2.60± 2.25

LightGBM 99.98% 63.24% 99.24% 57.69% 70.99% 4.60± 1.86

XGBoost 99.98% 63.90% 99.32% 64.79% 71.22% 1.20± 2.80

RandomForest − − − − − −
GradientBoostingTree 99.98% 63.06% 99.18% 63.62% 70.58% 4.00± 2.07

30

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 20. The performance of large-sized regression task (numerical features only).

D1 D2 D3 Ranking

Default

Trompt (ours) 94.58% 33.79% 24.98% 5.67± 1.41

FT-Transformer 94.52% 11.98% 11.72% 7.33± 3.07

ResNet 94.10% 24.69% 11.88% 7.33± 2.95

SAINT 94.45% 53.44% 28.87% 4.33± 2.06

CatBoost 94.76% 58.47% 30.20% 1.33± 3.37

LightGBM 94.75% 56.07% 28.10% 2.67± 2.22

XGBoost 94.74% 60.87% 25.12% 3.00± 2.22

RandomForest − − − −
GradientBoostingTree 94.59% 46.35% 25.74% 4.33± 0.48

Searched

Trompt (ours) 94.61% 52.42% 29.71% 7.33± 3.30

FT-Transformer 94.63% 53.82% 30.51% 5.67± 1.83

ResNet 94.64% 52.84% 28.01% 7.00± 2.63

SAINT 94.65% 54.94% 30.46% 5.00± 0.50

CatBoost 94.80% 59.97% 31.30% 2.00± 2.63

LightGBM 94.75% 56.07% 28.10% 4.67± 1.71

XGBoost 94.80% 62.36% 30.75% 1.33± 3.37

RandomForest − − − −
GradientBoostingTree 94.72% 61.72% 30.73% 3.00± 1.71

31

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 15. Benchmark on every medium-sized regression dataset with heterogeneous features.

32

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 16. Benchmark on every medium-sized regression dataset with numerical features only.

33

Trompt: Towards a Better Deep Neural Network for Tabular Data

Figure 17. Benchmark on every large-sized regression dataset with heterogeneous features.

Figure 18. Benchmark on every large-sized regression dataset with numerical features only.

B.2. Datasets chosen by FT-Transformer

In this section, we further investigate the performance of Trompt on datasets selected by FT-Transformer (Gorishniy et al.,
2021), which encompass different domains, task types, and sizes. To ensure a fair comparison, we adjust the model sizes of
Trompt to match those of FT-Transformer by reducing the dimensions of its hidden layers.

34

Trompt: Towards a Better Deep Neural Network for Tabular Data

It’s important to note that due to limited computing resources, Trompt did not undergo hyperparameter search. Instead, we
obtained the performance of FT-Transformer from its original paper. In terms of the learning strategy, Trompt was trained
for 100 epochs, and the performance was evaluated using the checkpoint at the 100th epoch. This approach was adopted as
we observed that the datasets chosen by FT-Transformer are often large, making overfitting less likely.

As shown in Table 21, Trompt generally achieves comparable or slightly inferior performance when compared to the default
hyperparameter settings of FT-Transformer on the datasets specifically chosen by FT-Transformer. It is important to note
that the reported performance is an average result based on three random seeds.

Table 21. The performance on datasets chosen by FT-Transformer.

Dataset Metric Trompt (ours) FT (Default) FT (Tune) #Parameters (Trompt) #Parameters (FT)

CA RMSE 0.474 0.469 0.459 850, 852 894, 913

AD Acc. 0.8629 0.857 0.859 863, 509 915, 458

HE Acc. 0.3690 0.381 0.391 873, 883 921, 316

JA Acc. 0.7269 0.725 0.732 876, 079 913, 156

HI Acc. 0.7279 0.725 0.729 861, 781 902, 786

AL Acc. 0.9317 0.953 0.96 1, 044, 523 1, 133, 800

EP Acc. 0.8932 0.8959 0.8982 1, 638, 931 1, 659, 841

YE RMSE 8.8218 8.889 8.855 895, 132 926, 401

CO Acc. 0.9048 0.967 0.970 876, 466 913, 735

YA RMSE 0.7537 0.756 0.756 1, 223, 992 1, 160, 257

MI RMSE 0.7468 0.747 0.746 919, 972 944, 065

B.3. Datasets chosen by SAINT

In this section, we conducted further evaluation of Trompt on datasets selected by SAINT (Somepalli et al., 2021), which
cover various domains, task types, and sizes. To ensure fair comparison, we adjusted the model sizes of Trompt to match
those of SAINT by reducing the dimensions of its hidden layers.

It is important to note that due to limited computing resources, Trompt did not undergo hyperparameter search. Instead, we
obtained the performances of SAINT from its original paper. In terms of the learning strategy, Trompt was trained for 100
epochs, and the performance was evaluated using the checkpoint with the lowest validation loss. This approach was adopted
as we observed that some datasets chosen by SAINT are often small, and models are more prone to overfitting.

As shown in Table 22, Trompt achieves comparable performance to SAINT on the datasets specifically chosen by SAINT. It
is worth mentioning that the reported performance is based on a single random seed.

35

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 22. The performance on datasets chosen by SAINT.

OpenML ID Metric Trompt (ours) SAINT #Parameters (Trompt) #Parameters (SAINT)

31 AUC 0.8265 0.7900 7, 578, 619 8, 233, 739

1017 AUC 0.8933 0.8430 39, 521, 539 84, 093, 615

44 AUC 0.9835 0.9910 38, 675, 971 58, 399, 221

1111 AUC 0.8114 0.8080 60, 085, 567 61, 716, 420

1487 AUC 0.9230 0.9190 38, 733, 571 91, 681, 626

1494 AUC 0.9258 0.9370 29, 659, 027 31, 136, 311

1590 AUC 0.9165 0.9210 3, 945, 643 4, 420, 452

4134 AUC 0.8419 0.8530 45, 276, 931 3, 296, 373, 186

42178 AUC 0.8454 0.8570 65, 51, 239 7, 500, 881

42733 AUC 0.6820 0.6760 29, 743, 735 30, 585, 898

1596 Acc. 0.960281 0.9460 38, 665, 096 52, 507, 599

4541 Acc. 0.6071 0.6060 40, 478, 596 44, 131, 471

40664 Acc. 0.9913 1.0000 8, 664, 841 8, 960, 176

40685 Acc. 0.9997 0.9990 1, 969, 996 2, 142, 668

188 Acc. 0.6622 0.6800 6, 569, 098 7, 547, 934

40687 Acc. 0.7463 0.7350 3, 203, 035 3, 381, 200

40975 Acc. 0.9884 0.9970 1, 037, 761 1, 147, 867

41166 Acc. 0.7064 0.7010 34, 490, 755 35, 807, 954

41169 Acc. 0.3839 0.3770 13, 802, 953 14, 361, 949

42734 Acc. 0.7495 0.7520 8, 922, 568 9, 205, 592

422 RMSE 0.0272 0.0270 39, 478, 402 76, 649, 015

541 RMSE 7.9160 11.6610 684, 082 897, 840

42563 RMSE 23094.4130 33112.3870 38, 900, 098 109, 678, 283

42571 RMSE 1918.3982 1953.3910 17, 456, 806 19, 048, 879

42705 RMSE 8.9351 10.2820 38, 840, 962 173, 809, 579

42724 RMSE 12144.9121 11577.6780 38, 683, 522 62, 405, 052

42726 RMSE 2.0735 2.1130 1, 466, 218 1, 775, 189

42727 RMSE 0.1502 0.1450 35, 502, 610 37, 517, 460

42728 RMSE 16.3780 12.5780 2, 049, 022 2, 234, 102

42729 RMSE 1.9436 1.8820 6, 682, 150 6, 922, 958

C. Settings of Ablation Study
In the ablation study, we explored different approaches to normalize the regression targets for regression tasks. Specifi-
cally, we compared standardization (mean subtraction and scaling) with the quantile transformation used in Grinsztajn45
(Grinsztajn et al., 2022), which relies on the Scikit-learn library’s quantile transformation (scikit learn, 2023b).

Based on our experiments, we found that standardization generally leads to better performance compared to quantile
transformation, as demonstrated in Table 23. To ensure a fair comparison, all results in Section 4.2 were obtained using the
configurations specified in Grinsztajn45.

In the ablation study, we simply selected the better normalization approach based on its performance. We provide these
details here to explain the performance differences observed in the regression tasks discussed in Section 4.2, as well as those

36

Trompt: Towards a Better Deep Neural Network for Tabular Data

in Section 4.3 and Appendix D.

Table 23. Average r2-score of Trompt using different target normalizations on Grinsztajn45 regression tasks.

Target Normalization r2-score

Quantile Transformation 70.55%

Standardization 74.15%

D. More Ablation Studies
In Appendix D.1, we present additional ablation studies focusing on different values of various hyperparameters. We
investigate the impact of varying these hyperparameters on the performance of Trompt.

Furthermore, in Appendix D.2, we delve into the necessity of key components in the architecture of Trompt. We conduct
ablation experiments to examine the effect of removing or modifying these components on the overall performance of
Trompt.

These additional ablation studies aim to provide further insights into the role and importance of different hyperparameters
and architectural components in Trompt.

D.1. Hyperparameters

Ablations on the size of hidden dimension.

The hidden dimension (d) parameter in Trompt plays a crucial role in configuring various parts of the model, such as the size
of dense layers and embeddings. To evaluate the impact of different values of d, we conducted experiments using Trompt
with six different values of d.

The results presented in Table 24 demonstrate that Trompt achieves good performance when an adequate amount of hidden
dimension is used, particularly when d is larger than 32. This suggests that a larger hidden dimension allows Trompt to
capture and represent more complex patterns and relationships in the data, leading to improved performance.

Table 24. The performance of different number of hidden dimension.

8 16 32 64 128 (Default) 256

Classification 79.53% 80.49% 81.16% 81.62% 81.81% 81.69%

Regression 72.63% 73.61% 74.22% 74.30% 74.15% 74.47%

Ablations on the number of Trompt Cells.

The number of Trompt Cells (L) has a significant impact on the model capacity of Trompt. As shown in Table 25, the
evaluation results indicate that increasing the number of cells leads to better performance.

In particular, Trompt performs poorly when L = 1. This can be attributed to the design of the Trompt Cell, as depicted in
the first part of Figure 3, which relies on the output from the previous cell (Oprev) to absorb input-dependent information.

When L = 1, the first Trompt Cell lacks the previous cell’s output, resulting in feature importances that are irrelevant to the
input and becoming deterministic feature importances for all samples. This degradation in performance can be observed in
the evaluation results.

Therefore, it is evident that a larger number of Trompt Cells is necessary to effectively capture and leverage input-dependent
information and achieve better performance in Trompt.

37

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 25. The performance of different number of Trompt Cells.

1 3 6 (default) 12

Classification 79.70% 81.36% 81.81% 82.10%

Regression 70.47% 73.57% 74.15% 74.61%

D.2. Architecture

Ablations on whether the output of previous Trompt Cell is connected to current Trompt Cell.

The connection between the output of the previous Trompt Cell and the current Trompt Cell is crucial, as it allows for the
fusion of prompt embeddings with input-related representations. This fusion results in sample-wise feature importances,
providing valuable insights into the importance of each feature. Without this connection, the feature importances of each
Trompt Cell would become deterministic and lose their variability. As illustrated in Table 26, connecting the output of the
previous Trompt Cell yields improved performance in both regression and classification tasks.

Table 26. The performance of whether the output of previous Trompt Cell is connected to current Trompt Cell.

True (default) False

Classification 81.81% 81.68%

Regression 74.15% 73.82%

Ablations on whether column embeddings are input independent.

When constructing column embeddings, we deliberately design them to be independent of the input and to capture the
intrinsic properties of the tabular dataset through end-to-end training. In this particular experiment, we examined the impact
of sharing the column embeddings (Eprompt) and input embeddings (Efeature), which compromises the input-independent
nature of column embeddings. The results in Table 27 demonstrate that maintaining input-independent column embeddings
leads to improved performance in both regression and classification tasks.

Table 27. The performance of whether column embeddings are input independent.

True False (default)

Classification 81.66% 81.81%

Regression 74.03% 74.15%

E. More Interpretability Experiments
In the main paper, we presented the average of M̂importance for each Trompt Cell. In Appendix E.1, we provide the individual
M̂importance values for each Trompt Cell. Furthermore, in Appendix E.2, we offer additional results on real-world datasets.

E.1. Feature Importances of Each Layer

As evident from the attention visualization in Figures 19 and 20, Trompt effectively directs its attention towards important
features in both the Syn2 and Syn4 datasets. It is worth noting that in our experiments, we employed default hyperparameters,
as outlined in Table 2, resulting in Trompt being composed of six Trompt Cells.

38

Trompt: Towards a Better Deep Neural Network for Tabular Data

(a) Important Features. (b) Masks of Trompt.

Figure 19. Attention masks of each layer on Syn2 dataset.

(a) Important Features. (b) Masks of Trompt.

Figure 20. Attention masks of each layer on Syn4 dataset.

E.2. Additional Real-world Datasets

The additional interpretability experiments were conducted on the red wine quality dataset and white wine quality dataset
(Cortez et al., 2009). According to the descriptions of dataset, feature selections are required since there are noisy columns
in both datasets. The experimental results are presented in Tables 28 and 29. The results indicate that both Trompt and
tree-based models yielded comparable feature importances. Specifically, Trompt assigned higher scores to the alcohol and
sulphates columns in the red wine quality dataset, and the volatile acidity column in the white wine quality dataset.

Table 28. The top-3 importance score ratio on the red wine quality dataset.

1st 2nd 3rd

RandomForest alcohol (27.17%) sulphates (15.44%) volatile acidity (10.92%)

XGBoost alcohol (35.42%) sulphates (15.44%) volatile acidity (7.56%)

LightGBM alcohol (26.08%) sulphates (15.75%) volatile acidity (10.63%)

CatBoost sulphates (16.29%) alcohol (15.67%) volatile acidity (10.40%)

GradientBoostingTree alcohol (26.27%) sulphates (16.24%) volatile acidity (11.12%)

Trompt (ours) alcohol (11.83%) sulphates (10.94%) total sulfur dioxide (9.78%)

39

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 29. The top-3 importance score ratio on the white wine quality dataset.

1st 2nd 3rd

RandomForest alcohol (24.22%) volatile acidity (12.44%) free sulfur dioxide (11.78%)

XGBoost alcohol (31.87%) free sulfur dioxide (11.38%) volatile acidity (10.05%)

LightGBM alcohol (24.02%) volatile acidity (12.47%) free sulfur dioxide (11.45%)

CatBoost alcohol (17.34%) volatile acidity (12.07%) free sulfur dioxide (11.47%)

GradientBoostingTree alcohol (27.84%) volatile acidity (13.59%) free sulfur dioxide (12.87%)

Trompt (ours) fixed acidity (10.91%) volatile acidity (10.47%) pH (10.37%)

F. Hyperparameter Search Spaces
The hyperparameter search space of all models is defined in Tables 30 to 39. We use the same search spaces for the models
tested in Grinsztajn45 and additionally define the search spaces for CatBoost, LightGBM, and Trompt since they are newly
added. For CatBoost, we followed the search spaces declared by FT-Transformer (Gorishniy et al., 2021). For LightGBM,
we followed the search spaces suggested by practitioners (Averagemn, 2019; Bahmani, 2022).

Notice that for the hyperparameter search space of Trompt, we focus on the variation of deriving feature importances (part
one of Figure 3). In the default design, we apply concatenation on SEprompt and Oprev. Here, we explore the possibility
of summation. Additionally, if we applied summation, the following dense layer is not necessary. Here, we explore the
possibility of removing the dense layer. As for dense, we explore the variation of sharing weight among all prompts.
Lastly, removing residual connections of Equation Equation (2) is also explored. Besides the variation of deriving feature
importances, we also explore removing the residual connection of expanding feature embeddings (part three of Figure 3). In
addition, we adjust the minimal batch ratio so that Trompt can be trained using different batch sizes.

To clarify, since the dense layer must be applied if concatenation was applied, and sharing dense must be false if the dense
layer was not applied, the effective parameter combinations of Table 30 amount to 40.

Table 30. Hyperparameter space of Trompt.

Parameter Distribution

Feature Importances Type [concat, add]
Feature Importances Dense [true, false]
Feature Importances Residual Connection [true, false]
Feature Importances Sharing Dense [true, false]
Feature Embeddings Residual Connection [true, false]
Minimal Batch Ratio [0.1, 0.01]

40

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 31. Hyperparameter space of FT-Transformer.

Parameter Distribution

Num Layers uniform int[1, 6]
Feature Embedding Size uniform int[64, 512]
Residual Dropout uniform[0, 0.5]
Attention Dropout uniform[0, 0.5]
FFN Dropout uniform[0, 0.5]
FFN Factor uniform[2/3, 8/3]
Learning Rate log uniform[1e− 5, 1e− 3]
Weight Decay log uniform[1e− 6, 1e− 3]
KV Compression [true, false]
LKV Compression Sharing [headwise, key value]
Learning Rate Scheduler [true, false]
Batch Size [256, 512, 1024]

Table 32. Hyperparameter space of ResNet.

Parameter Distribution

Num Layers uniform int[1, 16]
Layers Size uniform int[64, 1024]
Hidden Factor uniform[1, 4]
Hidden Dropout [0, 0.5]
Residual Dropout uniform[0, 0.5]
Learning Rate log uniform[1e− 5, 1e− 2]
Weight Decay log uniform[1e− 8, 1e− 3]
Category Embedding Size uniform int[64, 512]
Normalization [batch norm, layer norm]
Learning Rate Scheduler [true, false]
Batch Size [256, 512, 1024]

Table 33. Hyperparameter space of MLP.

Parameter Distribution

Num Layers uniform int[1, 8]
Layer Size uniform int[16, 1024]
Dropout [0, 0.5]
Learning Rate log uniform[1e− 5, 1e− 2]
Category Embedding Size uniform int[64, 512]
Learning Rate Scheduler [true, false]
Batch Size [256, 512, 1024]

Table 34. Hyperparameter space of SAINT.

Parameter Distribution

Num Layers uniform int[1, 2, 3, 6, 12]
Num Heads [2, 4, 8]
Layer Size uniform int[32, 64, 128]
Dropout [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
Learning Rate log uniform[1e− 5, 1e− 3]
Batch Size [128, 256]

41

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 35. Hyperparameter space of CatBoost.

Parameter Distribution

Max Depth [3, 4, 5, 6, 7, 8, 9, 10]
Learning Rate log uniform[1e− 5, 1]
Iterations quantile uniform[100, 6000]
Bagging Temperature uniform[0, 1]
L2 Leaf Reg log uniform[1, 10]
Leaf Estimation Iteration [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Table 36. Hyperparameter space of LightGBM.

Parameter Distribution

Learning Rate uniform[0.001, 1]
Max Depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Bagging Fraction uniform[0.1, 1.0]
Bagging Frequency [1, 2, 3, 4, 5]
Num Leaves quantile uniform[30, 150]
Feature Fraction uniform[0.1, 1.0]
Num Estimators 1000
Boosting [gbdt, rf, dart]

Table 37. Hyperparameter space of XGBoost.

Parameter Distribution

Max Depth uniform int[1, 11]
Num Estimators 1000
Min Child Weight log uniform int[1, 1e2]
Subsample unifrom[0.5, 1]
Learning Rate log unifrom[1e− 5, 0.7]
Col Sample by Level uniform[0.5, 1]
Col Sample by Tree uniform[0.5, 1]
Gamma log uniform[1e− 8, 7]
Lambda log uniform[1, 4]
Alpha log uniform[1e− 8, 1e2]

Table 38. Hyperparameter space of RandomForest.

Parameter Distribution

Max Depth [none, 2, 3, 4]([0.7, 0.1, 0.1, 0.1])
Num Estimators 250
Criterion [gini, entropy]([squared error, absolute error])
Max Features [sqrt, log2, none, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Min Samples Split [2, 3]([0.95, 0.05])
Min Samples Leaf log uniform int[1.5, 50.5]
Bootstrap [true, false]
Min Impurity Decrease [0.0, 0.01, 0.02, 0.05]([0.85, 0.05, 0.05, 0.05])

42

Trompt: Towards a Better Deep Neural Network for Tabular Data

Table 39. Hyperparameter space of GradientBoostingTree.

Parameter Distribution

Loss [deviance, exponential](classif)([squared error, absolute error, huber])(regression)
Learning Rate log normal[log(0.01), log(10)]
Subsample uniform[0.5, 1]
Num Estimators 1000
Criterion [friedman mse, squared error]
Max Depth [none, 2, 3, 4, 5]([0.1, 0.1, 0.5, 0.1, 0.1])
Min Samples Split [2.3]([0.95, 0.05])
Min Impurity Decrease [0.0, 0.01, 0.02, 0.05]([0.85, 0.05])
Max Leaf Nodes [none, 5, 10, 15]([0.85, 0.5])

Table 40. Hyperparameter space of HistGradientBoosting.

Parameter Distribution

Loss [squared error, absolute error, huber](regression)
Learning Rate log normal[log(0.01), log(10)]
Max Iteration 1000
Min Depth [none, 2, 3, 4]
Min Samples Leaf normal int[20, 2]
Max Leaf Nodes normal int[31, 5]

43

